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ABSTRACT
This paper proposes a novel localization technique based
on a multivariate Gaussian modeling of the signal strength
measurements collected from several access points (APs) at
different locations. It considers a discretized grid-like form
of the environment and computes a signature at each cell of
the grid. At run time the system compares the signature at
the unknown position with the signature of each cell using
the Kullback-Leibler Divergence estimation (KLD) between
their corresponding probability densities. The paper eval-
uates the performance of the proposed technique and com-
pares it with other statistical fingerprint-based localization
systems. The performance analysis studies were conducted
at the premises of a research laboratory and an aquarium
under various conditions. Furthermore, the paper evaluates
the impact of the number of APs and the size of the mea-
surement datasets.
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1. INTRODUCTION
Location-sensing has been impelled by the emergence of

location-based services in the transportation industry, emer-
gency situations for disaster relief, the entertainment indus-
try, and assistive technology in the medical community.

Location-sensing systems can be classified according to
their dependency on and use of: (a) specialized infrastruc-
ture and hardware, (b) signal modalities, (c) training, (d)
methodology and/or use of models for estimating distances,
orientation, and position, (e) coordination system (absolute
or relative), scale, and location description, (f) localized or
remote computation, (g) mechanisms for device identifica-
tion, classification, and recognition (h) accuracy and pre-
cision requirements. The distance can be estimated using
time of arrival (e.g., GPS, PinPoint [36]) or signal-strength
measurements, if the velocity of the signal and a signal at-
tenuation model for the given environment, respectively, are
known. Positioning systems may employ different modal-
ities, such as, IEEE802.11 (Radar [7, 15], Ubisense, Eka-
hau [2]), infrared (Active Badge [34]), ultrasonic (Cricket [26,
27], Active Bat), Bluetooth [8, 13, 28, 5, 15], 4G [29], vision
(EasyLiving), and physical contact with pressure (Smart
Floor), touch sensors or capacitive detectors. They may
also combine multiple modalities to improve the localization,
such as optical, acoustic and motion attributes (e.g., [6]).

The popularity of IEEE802.11 infrastructures, their low
deployment cost, and the advantages of using them for both
communication and positioning, make them an attractive
choice. Most of the signal-strength based localization sys-
tems can be classified into the following two categories, namely
signature- or map-based and distance-prediction-based tech-
niques. The first type creates a signal-strength signature or
map of the physical space during a training phase and com-
pares it with the signature generated at runtime (at the
unknown position) [7, 21, 35]. To build such signatures,
signal-strength data is gathered from beacons received from
APs. During a training phase, such measurements are col-
lected at various predefined positions (of the map) and sig-
natures are generated that associate the corresponding po-
sitions of the physical space with statistical measurements
based on signal-strength values acquired at those positions.
Such maps can be formed with data from different sources or
signal modalities to improve location-sensing [26, 15]. The
distance-prediction-based techniques use the signal-strength
values and radio-propagation models to predict the distance



of a wireless client from an AP (or any landmark) or even
between two wireless clients (peers) with estimated posi-
tion (such as CLS [32]). In situations where a deployment
of a wireless infrastructure may not be feasible, positioning
mechanisms may exploit cooperation by enabling devices to
share positioning estimates [30, 9, 22, 32, 14, 11, 12, 36]. A
survey of positioning systems can be found in [17].

This paper builds on our earlier work on CLS [32, 14].
CLS generates statistical-based fingerprints using the col-
lected RSSI measurements from an IEEE802.11 infrastruc-
ture and also signal-strength measurements from single-hop
neighboring wireless peers. The vast majority of current fin-
gerprint positioning methods does not take into account the
interdependencies among the RSSI measurements at a cer-
tain position from the various APs. These interdependencies
provide important information about the geometry of the
environment and can be quantified using the second-order
spatial correlations among the measurements. Hence, the
employment of multi-dimensional distributions is expected
to provide a more accurate representation of the RSSI pro-
files, leading to improved positioning performance. Simple
models whose parameters (second-order statistics) can be
accurately and easily estimated should be used in a practi-
cal positioning scenario. This paper designs and evaluates a
novel fingerprint approach based on this observation. Specif-
ically, it makes two distinct contributions:

1. It proposes and evaluates a novel fingerprinting ap-
proach that exploits the spatial correlations of signal-
strength measurements collected from various wireless
APs based on a multivariate Gaussian model.

2. It performs a comparative performance analysis of var-
ious signal-strength fingerprinting methods and Eka-
hau in the premises of a research laboratory and an
aquarium under different conditions.

The multivariate Gaussian-based approach takes into con-
sideration not only the signal strength measurements from
each AP but also the interplay (covariance) of measurements
collected from pairs of APs. The signature comparison and
position estimation is based on the Kullback-Leibler diver-
gence (KLD): the cell corresponding to the minimum KLD
is reported as the estimated position. The paper generalizes
this approach by applying it iteratively in different spatial
scales. It also evaluates its accuracy using empirical mea-
surements in the premises of FORTH under different con-
ditions. Furthermore, we ran a comparative performance
analysis of various signal-strength fingerprinting approaches
and Ekahau in the premises of an aquarium.

The paper is organized as follows: Section 2 presents var-
ious statistical signal-strength signature techniques. In Sec-
tion 3.1, we discuss the comparative performance study of
these techniques in the premises TNL, while Section 3.2 eval-
uates their performance in the premises of a popular aquar-
ium. Section 4 overviews related positioning systems for
mobile computing. Finally, Section 5 summarizes our main
results and provides directions for future work.

2. FINGERPRINT METHODS
A wireless device that listens to a channel receives the bea-

cons sent by APs (at that channel) periodically and records
their RSSI values. Wireless devices that run fingerprint-
based positioning systems acquire such measurements and

generate statistical fingerprints for a position using these
measurements. The statistical-based generation of finger-
prints can take place using various methods, such as con-
fidence intervals, percentiles, the empirical distribution or
the parameters of a theoretical distribution. The physical
space is represented as a grid of cells with fixed size and
well-known coordinates. During a training phase, at known
positions of the physical space such measurements are col-
lected by a wireless client (training measurements). At each
position, the wireless client scans all the available channels
and listens for beacons from APs. During the runtime phase,
the system also records the RSSI values from the received
beacons (runtime measurements). As in the case of training,
the wireless client scans all the available channels.

A statistical-based signature is constructed for each cell
of the grid using the signal-strength measurements collected
during the training phase (training signatures). Similarly,
applying the same statistical method, at runtime, a statistical-
based signature is also generated using the runtime measure-
ments on-the-fly (runtime signature). The runtime signature
is then compared with all the training signatures. The cell
with a training signature that has the smallest distance from
the runtime signature is reported as the estimated position.
The fingerprint of a cell is a vector of training signatures.
Each entry of the vector corresponds to one AP. The finger-
print of the unknown position is the corresponding vector
of the runtime signatures. The next paragraphs present the
various methods for generating statistical-based signatures
used in this work.

2.1 Confidence interval
The signature is a vector of confidence intervals, each cor-

responding to an AP. Each confidence interval is generated
using the RSSI values of the beacons received from the corre-
sponding AP. Let us denote as [T−

i (c), T+

i (c)] the confidence
interval for AP i at cell c during the training phase. The
fingerprint of a cell is the vector of these confidence inter-
vals (for all APs) at that cell. Similarly, at run time, at
the unknown position, the system records the RSSI values
from a number of beacons sent by the APs and computes a
confidence interval for each AP. For example, the runtime
confidence interval for AP i is the [R−

i , R+

i ]. The runtime
fingerprint is a vector composed by all confidence intervals
formed at runtime from all APs. This approach will compare
the runtime fingerprint with the training fingerprint of each
cell. An AP (e.g., i) participates in this technique by assign-
ing a vote for a cell (e.g., c) that indicates the similarity of its
training confidence interval ([T−

i (c), T+

i (c)]) with the run-
time confidence interval ([R−

i , R+

i ]). By adding these votes,
the confidence-interval based approach computes a weight
for that cell that indicates its likelihood to be the unknown
position (at which the corresponding runtime measurements
were collected).

At the start of the runtime phase, each cell has a zero
weight. For each cell, the training confidence interval of
each AP is compared with the corresponding (for that AP)
runtime confidence interval. The algorithm assigns a weight
at cell c w(c) that indicates the likelihood that this cell is
the position of the device. Each AP participates by assign-
ing a vote to that cell. Specifically, the weight of that cell
is increased by a specific value, indicated by the following
criteria: In the case that the training confidence interval is
included in the runtime confidence interval or the runtime



confidence interval is included in the training confidence in-
terval, the weight of that cell is increased by one. In the
case of partial overlap of these two confidence intervals, the
value corresponds to the ratio of this overlap.

The cell with the maximum weight is reported as the es-
timated position.

2.2 Percentiles
This approach is similar to the confidence-interval one.

However, instead of using confidence intervals for construct-
ing the fingerprints, percentiles are employed. A set of per-
centiles can capture more detailed information about the
signal strength distribution than confidence intervals, and
thus, resulting to more accurate fingerprints. The weight of
a cell c, w(c), is computed as follows:

w(c) =
N

∑

i=1

√

√

√

√

p
∑

j=1

(Ri
j − T i

j (c))2 (1)

where N is the number of APs, p the number of percentiles,
Ri

j the j-th percentile of runtime measurements from the i-

th AP and T i
j (c) the j-th percentile using the training mea-

surements from the i-th AP at the cell c.
As in the confidence interval case, the cell with the max-

imum weight is reported as the estimated position. In the
case of the top 5 weighted percentiles approach, the centroid
of the top five cells with the largest weight is reported as the
estimated position.

2.3 Empirical distribution
The signature of a cell is a vector of size equal to the

number of APs that appear in both the training and runtime
measurements. Each entry of a training (runtime) signature
corresponds to the complete set of RSSI values collected
during the training (runtime) phase, respectively.

This method creates a signature based on the set of signal-
strength measurements collected at each cell from all APs.
At runtime, at an unknown position, each cell is assigned
a weight which corresponds to the average empirical KLD
distance of each AP (at that cell) from the runtime mea-
surements collected at the unknown position from the same
AP. The cell with the smallest weight is reported as the
position.

2.4 Multivariate Gaussian model
Unlike other fingerprint positioning methods, this one fo-

cuses on the interdependencies among the RSSI measure-
ments in a cell from various APs. These interdependencies
provide information about the geometry/topology of the en-
vironment and can be quantified using the second-order spa-
tial correlations among the measurements. According to this
proposed approach, in the training phase, a statistical sig-
nature is extracted for each cell of the grid by modeling the
acquired signal-strength measurements using a multivariate
Gaussian distribution. The density function of a multivari-
ate Gaussian in R

K , with a mean vector ~µ and covariance
matrix Σ, is given by:

p(~x|~µ,Σ) =
1

(2π)K/2|Σ|1/2
exp

(

−
1

2
(~x − ~µ)T

Σ
−1(~x − ~µ)

)

,

(2)
where |Σ| is the determinant of Σ.

Let N be the number of APs from which the mobile device
receives the measurements, K be the number of measure-

ments from each AP, and Si = [~y1, . . . , ~yN ] denote the K×N

matrix for the i-th cell ci, whose j-th column ~yj ∈ R
K con-

tains the received signal-strength values from the j-th AP.
The signal-strength measurements are modeled by a multi-
variate Gaussian distribution due to its simplicity and the
closed-form expression of the associated similarity measure
(KLD). More specifically, the signature Si of the i-th cell is
given by:

ci 7→ Si = {~µi,Σi} , (3)

where ~µi = [µi,1, . . . , µi,N ], with µi,j being the mean of the
j-th column of the measurement matrix Si, and Σi is the
corresponding covariance matrix, with its mn-th element
being equal to the covariance between the m-th and n-th
columns of Si. Hence, the mn-th element of matrix Σi de-
notes the spatial correlation between the RSSI measurements
of the i-th cell from the m−th and n-th APs. Thus, if L

is the number of cells in the grid representing the physical
space, during the training phase, the following set of training
signatures (T) is generated:

{Si, T }
L
i=1 =

{

{~µi, T ,Σi, T }
}L

i=1
. (4)

In addition, the i-th cell, ci,T , is also associated to a set of
indices Ii,T indicating its corresponding “active” APs, that
is, the APs from which it acquires the measurements during
the training phase.

During the run-time phase (R), we assume that the mobile
user is placed at an unknown cell (cR), whose location must
be estimated. Following the approach used in the training
phase, if SR = [~y1,R, . . . , ~yN′,R] is the K′ × N ′ run-time
signal-strength measurement matrix of cR, a signature is
generated as follows,

cR 7→ SR = {~µR,ΣR} . (5)

Notice here that in general the dimensions of the run time
measurement matrix are smaller than the dimensions of the
corresponding training matrix (K × N). This is due to the
fact that during run time it is more difficult to collect ex-
tensive measurements than during training. Furthermore,
the set of APs operating during the training phase is not
necessarily the same with the set of APs at runtime. Let
us denote as I

i,T
R the set of APs from which signal strength

measurements were collected both at runtime and also dur-
ing training at cell i. For the run-time (cR) and the i-th
training cell (ci,T ), we extract their corresponding mean sub-
vectors ~µs

R, ~µs
i,T and covariance sub-matrices Σs

R, Σs
i, T ac-

cording to the indices of I
i,T
R . Finally, if pR(~x|~µs

R,Σs
R) and

pi,T (~x|~µs
i,T ,Σs

i, T ) denote the multivariate Gaussian densi-
ties of cR and ci,T , respectively, their KLD is given by the
following closed-form expression:

D(pR||pi,T ) =
1

2

(

(~µs
i,T − ~µ

s
R)T (Σs

i, T )−1(~µs
i,T − ~µ

s
R)

+ tr
(

Σ
s
R(Σs

i, T )−1 − I
)

− ln |Σs
R(Σs

i, T )−1|

)

,

(6)

where tr(·) denotes the trace of a matrix (sum of its diago-
nal elements) and I is the identity matrix. KLD is a (non-
symmetric) measure of the difference between two prob-
ability distributions, well established and widely used in
probability and information theory. The estimated location
[x∗

R, y∗
R] is given by the coordinates of the i∗-th cell, which



minimizes (6), that is,

i
∗ = arg min

i=1,...,L
D(pR||pi,T ) . (7)

Algorithm 1 The multivariate Gaussian-based positioning
method (spatial scale of a cell)

1. During training phase, collect RSSI measurements
from APs at each cell
trainingAP(c): set of APs from which data are col-
lected at cell c

2. During run time, collect RSSI measurements from each
AP at the unknown position
runtimeAPs: set of APs from data are collected
effectiveAP (c) : trainingAP (c) ∩ runtimeAP

3. During runtime, perform the following steps for each
cell c:

• Generate the signature for cell c using only train-
ing measurements collected from APs ∈ effec-
tiveAP(c) (i.e., training signature(c))

• Generate the runtime signature using only run-
time measurements collected from APs in effec-
tiveAP(c) (i.e., runtime signature)

• Estimate the KLD distance of the training and
runtime signatures

4. Report as the estimated position the cell c∗ with the
smallest KLD distance

We performed a preliminary evaluation of Algorithm 1 us-
ing measurements from an IEEE802.11 infrastructure. The
algorithm did not always estimate correctly the cell due to
the radio propagation characteristics in the physical space,
affected by transient phenomena. It was not uncommon to
have a cell which is located far away from the unknown po-
sition with a training fingerprint very close to the runtime
fingerprint.

To improve the accuracy, we proposed a generalization of
this approach: instead of applying the multi-variate Gaus-
sian per cell, we apply it in an iterative fashion in multiple
spatial scales (e.g., regions). First, the physical space is di-
vided into overlapping regions of size larger than the size
of a cell and the multivariate Gaussian algorithm is applied
for each region separately. To generate the fingerprint of
a region, we employ all the signal-strength measurements
from all APs collected at positions within that region. This
spatial aggregation reduces the likelihood of selecting a false
region/cell (a region/cell that does not include/correspond
to the actual position) over the correct one. Essentially, via
this aggregation an incorrect region is eliminated (in the first
iteration) while the“weight”of the correct region is enhanced
by considering the signatures of the neighboring to the ac-
tual position cells. The region-based multivariate Gaussian
algorithm proceeds iteratively: after it estimates the region
at which the device is located, it repeats the process by di-
viding the selected region into sub-regions and applying the
algorithm on them. In this paper, a subregion corresponds
to a cell (two spatial granularities/scales).

The original area of interest is discretized in G regions,
each of N cells. Let Ai be a GK×N matrix whose j-th

column (∈ R
GK) contains the received signal-strength values

from the j-th AP collected at cells of region i during training.
Let us denote with Ai,T (~x|~µs

i,T ,Σs
i, T ) the multivariate

Gaussian density of region i and pR(~x|~µs
R,Σs

R) the multi-
variate Gaussian density of the unknown position (runtime
signature). The KLD distance can be computed as in (6)
and the region closest to the unknown position is given by

i
∗
A = arg min

i=1,...,G
D(pR||Ai,T ) (8)

After the estimation of the correct region, the process is re-
peated (using the Algorithm 1) to compute the cell in that
region that corresponds to the unknown position (consider-
ing only the cells of that region).

3. PERFORMANCE ANALYSIS

3.1 Evaluation at FORTH
The empirical-based evaluation at FORTH took place in

the Telecommunication and Networks Lab (TNL), an area
of 7m×12m, which was discretized in a grid structure with
cells of 55cm×55cm.

During the training phase, we collected two data sets:
one during a relatively busy period and another one dur-
ing a quiet period. The busy period corresponds to a pe-
riod around 3pm on typical weekdays, during which there
were at least five people in the laboratory, and several oth-
ers walking in the hallways outside. The quiet period was
at around 11pm on the same weekdays as the busy period
dataset. During that time period, there was only one per-
son in the laboratory. The busy (quiet) period dataset in-
cluded measurements from 108 (104) different cells and 13
(12) APs, respectively. On average 6 APs were detected at
a given cell and more than 300 RSSI values were collected at
each cell per AP. To generate the training signatures, signal-
strength values at various cells of the grid were collected.
The trainer remained still for approximately 90s and 30s to
collect beacons at each position during training and runtime,
respectively. To capture signal strength values, iwlist, which
polls each channel and acquires the MAC address and RSSI
measurements from each AP (in dBm), and the tcpdump, a
passive scanner relying on libpcap, for the retrieval of each
packet were used. A Sony Vaio and Fujitsu Siemens Tablet
PC with the same wireless adapter were used for both the
training and run-time experiments.

In order to evaluate the performance of the various finger-
printing methods, we computed the localization error, mea-
sured as the Euclidean distance between the centers of the
reported cell and the cell at which the mobile user was ac-
tually located at run time. We ran 30 measurements at
different positions (run time cells).

Figures 1(a) and 1(b) illustrate the localization error of
the different signature-based approaches during busy and
quiet period, respectively. The multivariate Gaussian model
(MvGs) outperforms the percentiles, confidence interval (90%),
and empirical distribution approaches. Specifically, for the
quiet period datatrace, the median error is 4.16m and 2.91m
for the confidence interval, and percentiles, respectively, while
the MvGs results in a median error of 1.72m. For the busy
period dataset, the median error of the MvGs is 1.60m while
the others report a median error of 2.82m and 2.65m, for the
confidence interval (90%) and percentiles, respectively.

In general, it is expected that as the number of APs
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Figure 1: The performance of various fingerprint positioning methods at FORTH.

that participate in the signature generation increases, it will
become “easier” to distinguish the correct cell from other
further-away cells, which may have similar training finger-
print with the runtime one due to transient phenomena or
radio propagation characteristics in the given environment.
To measure the impact of the number of APs on the lo-
calization accuracy, we associate each AP with a popular-
ity index that indicates the number of cells at which there
were measurements (from that AP) at both training and
at runtime. For example, the popularity index of AP i is
|{c|APi ∈ effectiveAP (c)}|. The APs were sorted in a de-
creasing order based on their popularity index. The analysis
was repeated using the top k most popular APs for the busy
period and the quiet period datasets.

Figure 2 shows the impact of the number of APs on lo-
cation error. The higher the number of APs, the lower the
location error. However the impact of the number of APs di-
minishes after a certain threshold. The busy period dataset
is subject to a larger number of transient phenomena than
the quiet period, affecting the performance of fingerprinting.
Thus, the impact of the number of APs is more prominent
in the busy period dataset than in the quiet period one. For
example, in the busy period dataset, the improvement in
the location error when the number of APs becomes six is
about 80cm, while when the number of APs increases from
six to 13, the location error is reduced by only 20cm. Similar
results were also observed in the case of percentiles [19].

Figures 3(a) and 3(b) illustrate the impact of the mea-
surement size on the accuracy of the multivariate Gaussian-
based method. The % indicates the percentage of measure-
ments considered in both training and runtime datasets out
of the corresponding original datasets (used in the other
plots). In general, the larger the measurement set, the more
accurate the position estimation.

3.2 Evaluation at the Aquarium
Cretaquarium is the largest and most popular aquarium

in Greece, covering an area of 1760m2. During the period
of our study, it included 30 tanks, while another 25 were
being installed. There was an wireless infrastructure of eight
IEEE802.11 APs.

The physical space was represented as a grid with cells
of 1m × 1m. Training and runtime signal-strength mea-
surements were collected for the entire testbed during two
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Figure 2: Impact of the number of APs on loca-

tion error. The x-axis indicates the number of the

top x APs considered in both training and runtime

datasets.

different periods (normal and busy periods). At each cell,
we collected measurements from an average number of 5.7
APs. During the normal and busy periods when the data
sets were collected, there were about 100 and 250 visitors
present in the aquarium, respectively.

Under normal conditions, the median location error us-
ing the percentiles method was about 2m, while the con-
fidence interval reported a median location error of 3.6m.
Under the busy period, the median location error for the
confidence-interval method was about 4.3m. Figure 5 illus-
trates the performance of the various fingerprint methods
during a busy period in the aquarium. As we mentioned
before, the largest the measurement set, the more accurate
the position estimation. The relatively small signal-strength
measurement data set has a noticeable impact on the per-
formance of the multivariate Gaussian method.

A guiding application was designed for the aquarium to
provide personalized information to visitors about the habi-
tats in the tank in front of them. For that, the physical
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Figure 3: Impact of the number of signal-strength measurements on location error.

Figure 4: CreteAquarium divided into zones.

Figure 5: The performance of various fingerprint

positioning methods at the aquarium during a busy

period.

space was divided into 17 zones, according to the applica-
tion requirement. The positioning system reported the zone
in which the visitor was located. As shown in Figure 4, the

entrance is located at the top left corner of the floor plan
(red dot). Zone 0 is the first area that people visit. The
tanks are located at the center and at each side of the main
area of the aquarium. Visitors follow a “clockwise” path,
bounded by tanks, and finally arrive at the last zone (exit),
located at the top left corner of the floor plan. Furthermore,
we conducted experiments using the confidence interval and
also the Ekahau, a commercial positioning system that also
employs signal-strength-based fingerprints. The tests took
place at the same period and for the same runtime cells.
During that period, about 200-250 visitors were present in
the aquarium (e.g., corresponding to a busy period dataset).

In each zone, the systems were tested at three different
positions. The confidence-interval-based method reported
the correct zone 91% of the times, while Ekahau in 80%
of the times and had a median location error of 4.6m. A
more detailed performance analysis of CLS using percentiles
and confidence intervals at the premises of FORTH and the
Aquarium can be found in [19].

4. RELATED WORK
Recently significant work has been published in the area

of location-sensing using RF signals. Like CLS, Radar [7]
employs signal-strength maps that integrate signal-strength
measurements acquired during the training phase from APs
at different positions with the physical coordinates of each
position. Each measured signal-strength vector is compared
against the reference map and the coordinates of the best
match will be reported as the estimated position. Bahl et
al. [24] improved Radar to alleviate side effects that are
inherent properties of the signal-strength nature, such as
aliasing and multipath. Ladd et al. [21] proposed another
location-sensing algorithm that utilizes the IEEE802.11 in-
frastructure. In its first step, a host employs a probabilistic
model to compute the conditional probability of its loca-
tion for a number of different locations, based on the re-
ceived signal-strength measurements from nine APs. The
second step exploits the limited maximum speed of mobile
users to refine the results and reject solutions with a sig-
nificant change in the location of the mobile host. Kung
et al. [20] propose a method for evaluating the impact of
the IEEE802.11 APs on positioning in order to strengthen
the role/contribution of a“good”AP while“de-emphasizing”



the role of the “bad” APs. The “goodness” of an AP indi-
cates the capability of that AP to estimate accurately its
distance from the others. Youssef et al. Horus [35] sub-
stantially improved the accuracy (e.g., an 1.3m error in 90%
of their experiments) by employing an autoregressive model
that captures the autocorrelation in signal strength measure-
ments of the same AP at a particular location. Specifically,
the time series generated from signal-strength measurements
collected from an AP is represented by a first-order autore-
gressive model. The fingerprints are formed for each cell and
AP based on the degree of autocorrelation, the mean, and
the variance of the empirical measurements collected from
that AP at that cell. Finally, an interesting approach pro-
poses fingerprints based on attributes that characterize the
effects of multipath (e.g., channel response) in order to de-
tect changes of the positions of wireless hosts were presented
in [25, 37].

Niculescu and Badri Nath [23] designed and evaluated
a cooperative location-sensing system that uses specialized
hardware for calculating the angle between two hosts in an
ad-hoc network. This can be done through antenna arrays
or ultrasound receivers. Hosts gather data, estimate their
position, and propagate them throughout the network. Pre-
viously, these authors [22] introduced a cooperative location-
sensing system in which position information of landmarks is
propagated towards hosts that are further away, while dur-
ing this process, hosts may further enrich this information
by determining their own location. Another location-sensing
system in ad-hoc networks performs positioning without the
use of landmarks or GPS and presents the tradeoffs among
internal parameters of the system [9]. The location-sensing
systems presented in [30] and [16] are the closest to CLS and
are compared in detail in [14].

Active Badge [33] uses diffuse infrared technology and re-
quires each person to wear a small infrared badge that emits
a globally unique identifier every ten seconds or on demand.
A central server collects this data from fixed infrared sensors
around the building, aggregates it and provides an applica-
tion programming interface for using the data. The system
suffers in the case of fluorescent lighting and direct sunlight,
because of the spurious infrared emissions these light sources
generate. A different approach, SmartFloor [3], employs a
pressure sensor grid installed in all floors to determine pres-
ence information. In a building without requiring users to
wear tags or carry devices, albeit without being able to iden-
tify individuals.

Examples of localization systems that combine multiple
technologies are UbiSense [4], Active Bats [1] and Surround-
Sense [6]. UbiSense can provide a high accuracy using a net-
work of ultra wide band (UWB) sensors installed and con-
nected into a building existing network. The UWB sensors
use Ethernet for timing and synchronization. They detect
and react to the position of tags based on time difference of
arrival and angle of arrival. An RFtag is a silicon chip that
emits an electronic signal in the presence of the energy field
created by a reader device in proximity. Location can be de-
duced by considering the last reader to see the card. RFID
proximity cards are in widespread use, especially in access
control systems. The Active Bats architecture consists of a
controller that sends a radio signal and a synchronized re-
set signal simultaneously to the ceiling sensors using a wired
serial network. Bats respond to the radio request with an ul-
trasonic beacon. Ceiling sensors measure time-of-flight from

reset to ultrasonic pulse. Active Bat applies statistical prun-
ing to eliminate erroneous sensor measurements caused by a
sensor hearing a reflected pulse instead of one that travelled
along the direct path from the Bat to the sensor. A rela-
tively dense deployment of ultrasound sensors in the ceiling
can provide within 9 cm of the true position for 95% of the
measurements. SurroundSense runs on a mobile phone to
provide logical localization by generating fingerprints using
sound, accelerometers, cameras and IEEE802.11. Tesoriero
et al. [31] propose a passive RFID-based indoor location
system that is able to accurately locate autonomous enti-
ties, such as robots and people, within a physical-space.

Ariadne [18] is an automated location determination sys-
tem. It uses a two dimensional construction floor plan and
only a single actual strength measurement. It generates an
estimated signal strength map comparable to those gener-
ated manually by actual measurements. Given the signal
measurements for a mobile, a proposed clustering algorithm
searches that signal strength map to determine the current
mobile’s location.

In a recent work [10], the problem of indoor location esti-
mation is also treated in a probabilistic framework. In par-
ticular, a reduced number of locations sampled to construct
a radio map is employed in conjunction with an interpo-
lation method, which is developed to effectively patch the
radio map. Furthermore, a Hidden Markov Model (HMM)
that exploits the user traces to compensate for the loss of
accuracy is employed to achieve further improvement of the
radio map due to motion constraints, which could confine
possible location changes. Both the proposed multivariate
Gaussian model-based algorithm and the HMM-based ap-
proach belong to the class of the probabilistic localization
techniques. Usually, a probabilistic localization method is
characterized by an increased performance when compared
with a deterministic one, since it provides not only a point
estimate of the user’s position but also gives a confidence
interval for the quality of this estimate. This can be used
to improve further the estimation accuracy with the goal of
reducing the uncertainty. However, a first key observation is
the highly reduced complexity of our method compared to
the HMM-based approach. In particular, it is a one-iteration
method, where in each iteration only the simple estimate
of a mean vector, a covariance matrix, and the computa-
tion of the Kullback-Leibler divergence between multivari-
ate Gaussians (given in closed form) are required. On the
other hand, the HMM-based localization technique requires
several iterations to converge, while in each iteration sev-
eral model parameters have to be estimated (approximately
of the same dimensions as the parameters of our proposed
method). However, the reduced computational complexity
of the Gaussian-based technique comes at the cost of a po-
tentially degraded location estimate under certain circum-
stances. For instance, in the case of corrupted measurements
(e.g., due to an access-point failure or the presence of an ob-
stacle) our method is much more sensitive, since it is based
on measurements collected instantaneously. In contrast, the
HMM-based approach could provide a more accurate esti-
mate via the prior knowledge of a transition-probability ma-
trix, which is preserved and re-estimated in each iteration in
conjunction with the refinement achieved by an Expectation
Maximization algorithm. In conclusion, the major benefit of
our proposed algorithm , when compared with the HMM-
based approach, is the significantly reduced computational



complexity and implementation simplicity, as well as the
high accuracy in several specific environments (obstacle-free,
robust measurements) as it was revealed by the experimental
evaluation. On the other hand, the HMM-based approach
can be proved to be more robust in the case of system fail-
ures, but at the cost of requiring increased computational
resources.

5. CONCLUSIONS
This paper introduced a novel localization method that

creates signal-strength fingerprints using multivariate Gaus-
sian distributions. It estimates the position of the device
by computing the region with the training fingerprint that
has the closest KLD distance from the runtime fingerprint.
The empirical-based evaluation revealed that the multivari-
ate Gaussian method outperforms other signal-strength fin-
gerprint approaches. We performed an evaluation of vari-
ous fingerprint methods in the premises of FORTH and an
aquarium. The median position error varies from 1.7m to
4.6m, depending on the premise and the conditions. The
presence of people as well as the density and placement
of APs have a prominent impact on positioning. Further-
more, in the case of the multivariate Gaussian-based algo-
rithm we experimented with a multiple spatial scale iterative
approach in which, we applied the algorithm on larger re-
gions, to select the correct one, and then within the selected
region to estimate the correct cell. Something similar was
performed in the case of percentiles by selecting of the top 5
best candidate cells. We showed that it improves the accu-
racy by eliminating the distant incorrect cells and taking also
into consideration the “impact” of neighboring cells around
the correct one. Other related work has also shown that the
integration of user mobility models can further improve the
accuracy. In the context of the aquarium, in which mobility
patterns do exist, the integration of user mobility models
could be helpful.

We have been also experimenting with other modalities,
such as infrared, cameras and QR codes to improve the lo-
cation estimation. Specifically, in front of each landmark
(e.g., tank of the aquarium or office in TNL), a unique QR
code can be placed along with three infrared sensors (e.g.,
WII bar). The camera of the mobile device of a visitor may
capture the QR code, recognize it, and thus identify the
landmark, in front of which this visitor is standing. Simi-
larly, when the camera captures the infrared light from at
least two infrared sources, it can estimate its distance from
the landmark by measuring the distance of the two infrared
sources on the recorded image. We plan to extend our local-
ization system by incorporating these multi-modalities mea-
surements.

There is a growing interest in statistical methods that
exploit various spatio-temporal statistical properties of the
received signal to form robust fingerprints. In general, a
channel exhibits very transient phenomena and is highly
time-varying. At the same time, the collection of signal
measurements is subject to inaccuracies due to various is-
sues, such as hardware mis-configurations, limitations, time
synchronization, fine-grain data sampling, incomplete infor-
mation, and vendor-specific dependencies (often not publicly
available). Thus, the general problem of building a theoreti-
cal framework to analyze these fingerprint techniques taking
into consideration the above limitations opens up exciting
research opportunities.
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