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Abstract. The aim of this paper is to document some empirical facts related
to log-returns of diversified world stock indices when these are denominated in
different currencies. Motivated by earlier results, we have obtained the estimated
distribution of log-returns for a range of world stock indices over long observation
periods. We expand previous studies by applying the maximum likelihood ratio
test to the large class of generalized hyperbolic distributions, and investigate the
log-returns of a variety of diversified world stock indices in different currency
denominations. This identifies the Student-t distribution with about four degrees of
freedom as the typical estimated log-return distribution of such indices. Owing to
the observed high levels of significance, this result can be interpreted as a stylized
empirical fact.
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1 Introduction

There is a long standing interest in the financial literature in the identification of
the typical log-return distribution of financial instruments. The importance of a
systematic study of log-returns of financial securities was highlighted by the 1987
stock market crash. In this instance, the typical assumption that the distribution
of log-returns of financial indices was Gaussian failed to be any longer acceptable.
It became clear that the probabilities of extreme values of log-returns were much
larger than those supported by the standard Gaussian assumption. Moreover, this
invalid assumption turns out to be rather dangerous for a range of applications in
risk management. Many studies after the crash strongly rejected the normality
of log-returns for indices, stocks and exchange rates. Their results were often
based on the observation of excessively large kurtosis, or the better fit of various
leptokurtic log-return densities.

It has now been established that log-return densities of financial indices exhibit
heavier tails and are more peaked than the Gaussian assumption would permit.
However, a distribution that will generally fit log-returns of particular classes of
financial securities has yet not been agreed upon in the literature. This paper
aims to resolve this problem for the case of diversified stock market indices.

As will be explained below, the most promising instruments for which one may
identify a particular type of log-return density, are diversified stock indices. Stud-
ies on log-returns for indices include the two papers by Markowitz & Usmen
(1996a, 1996b) analyzing S&P500 log-returns in a Bayesian framework. These
authors considered the rich family of Pearson distributions and identified the
Student-t distribution with about 4.5 degrees of freedom as the best fit to daily
log-return data of the S&P500. Independently, Hurst & Platen (1997) reached a
similar conclusion by studying daily log-returns of the S&P500 and other regional
stock market indices. Their research was focused on a large family of normal-
variance mixture distributions, [see Clark (1973)], which included the log-return
distributions generated by several important models proposed in the literature.
These distributions included among others the normal, [see Samuelson (1957) and
Black & Scholes (1973)]; the alpha-stable, [see Mandelbrot (1963)]; the Student-t,
[see Praetz (1972) and Blattberg & Gonedes (1974)]; the normal-inverse Gaus-
sian, [see Barndorff-Nielsen (1995)]; the hyperbolic, [see Eberlein & Keller (1995)
and Küchler et al.(1999)]; the variance gamma, [see Madan & Seneta (1990)]; and
the symmetric generalized hyperbolic distribution, [see Barndorff-Nielsen (1978)
and McNeil, Frey & Embrechts (2005)]. In Hurst & Platen (1997) the Student-t
distribution with 3.0-4.5 degrees of freedom was determined as the best fit to
daily, regional stock market index log-returns. This confirmed and generalized
Markowitz’s and Usmen’s findings by the use of an alternative statistical method-
ology and a wider range of stock market indices. Recently, Fergusson & Platen
(2006) employed a maximum likelihood ratio test, [see Rao (1973)], in the class
of symmetric generalized hyperbolic distributions. They studied the log-return
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distribution of a world stock index, whose constituent weights were determined by
market capitalization, and considered different currency denominations of such
an index. These authors concluded, at a high level of significance, that the log-
returns of their index exhibited a Student-t behavior with approximately four
degrees of freedom.

Finally, we should mention that for multivariate log-returns there exists an ad-
vanced statistical methodology for identifying particular generalized hyperbolic
distributions as described in McNeil, Frey & Embrechts (2005). These authors
showed in the application of their results to indices, exchange rates and stocks
that Student-t type log-return distributions are often likely to fit the data. How-
ever, they did not quantify any level of significance.

The aim of this study is to extend the analysis in Fergusson & Platen (2006)
by (a) using a range of different purposely constructed, diversified world stock
indices, and (b) by searching among the larger class of generalized hyperbolic dis-
tributions for a best fit. The use of diversified world stock indices, for studying
properties of log-returns, instead of stock prices or exchange rates, is motivated
by the benchmark approach developed in Platen (2002, 2004) and Platen & Heath
(2006). Such diversified indices approximate the growth optimal portfolio (GOP),
which has a number of outstanding properties. The GOP maximizes expected
logarithmic utility from terminal wealth. It is almost surely the portfolio with
the maximum long term growth rate and is also known as Kelly portfolio, [see
Kelly (1956)]. In our study we partly follow Le & Platen (2006), who proposed a
general construction methodology for diversified portfolios (DPs). By a diversifi-
cation theorem, presented in Platen (2005), a DP can be considered to be a good
approximation of the GOP under certain assumptions. The equally weighted in-
dex (EWI) can be regarded as one of the most diversified portfolios and thus, as a
likely proxy for the GOP, [see Platen & Heath (2006)]. Moreover, we will demon-
strate that the purposely constructed equally weighted index EWI104s, which is
based on 104 world industry sector indices, is one of the best performing world
stock indices when its historical long term growth is considered. This supports
the view adopted in this paper that the EWI104s may be an excellent proxy for
the GOP.

We analyze a number of differently constructed, diversified stock indices by a
maximum likelihood methodology, and estimate the distribution of their log-
returns. The estimated distribution of the log-returns of the EWI104s turns out
to be the Student-t distribution with approximately four degrees of freedom in
almost all currency denominations when searching among the large family of
generalized hyperbolic (GH) distributions. Since this result will be established at
a very high level of significance, it can be interpreted as a stylized empirical fact.
Although all other DPs show a Student-t feature, the EWI104s exhibits it most
clearly. Consequently, any advanced model for a diversified world stock index
should generate log-returns whose estimates appear to be Student-t distributed
with about four degrees of freedom.
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This paper is organized as follows. First, in Section 2 we present a methodology
for the construction of diversified stock indices. This is followed by a comparison
of different world stock indices with respect to their performance as investment
portfolios. In Section 3, we introduce the wide class of generalized hyperbolic
distributions and describe the maximum likelihood ratio test for this class. The
application of this methodology to index data in Section 4 leads to test statis-
tics accompanied by the corresponding estimated parameters and high levels of
significance.

2 Index Construction

This section focuses on a methodology for the construction of diversified world
stock indices. Such indices are usually formed in order to measure the general
market performance and general market risk, [see Basle (1996)]. They are widely
used as benchmarks in investment management. Some of the following indices
also have a more theoretical motivation; we construct them to be self-financing
portfolios.

The data selected for the d ∈ N = {1, 2, . . . } constituents of the indices consist
of daily data for the period from 1973 to 2006. We construct world stock indices
from regional stock market indices and from world sector market indices by us-
ing similar methodologies. The regional stock market indices represent market
capitalization weighted stock indices as constructed and provided by Thomson
Financial. The world sector indices are also constructed and provided by Thom-
son Financial, and reflect the worldwide evolution of respective industries. The
regional or the world sector indices are used in our study as constituents of the
newly constructed indices.

Portfolio Generating Functions. We emphasize in this study four main types
of indices, market capitalization weighted indices (MCIs), diversity weighted in-
dices (DWIs) as described by Fernholz (2002), equally weighted indices (EWIs),
and some type of world stock indices (WSIs) introduced in Le & Platen (2006).

We assume that all the constituents of our constructed indices are capable of
unbounded positive jumps and negative jumps leaving constituents arbitrarily
close to zero. This reflects the fact that, in principle, any of the constituents
Sj

t , j ∈ {1, 2, . . . , d}, can almost default at any time for one reason or another.
Therefore, since we consider only strictly positive portfolios in our study, their
fractions of wealth always need to remain nonnegative.

In order to eliminate the possibility of short sales, and have a systematic way
of generating nonnegative fractions using a wide range of methods; we introduce
the notion of a portfolio generating function (PGF), which has been inspired by a
similar construct described in Fernholz (2002). More precisely, a PGF A : <d →
[0, 1]d maps a given vector of fractions πδ,t = (π1

δ,t, π
2
δ,t, . . . , π

d
δ,t)

> ∈ <d, into a
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Figure 1: Indices constructed from regional stock market indices

vector of nonnegative fractions

π̃δ,t = (π̃1
δ,t, π̃

2
δ,t, . . . , π̃

d
δ,t)

> = A(πδ,t) ∈ [0, 1]d (2.1)

such that
∑d

j=1 π̃j
δ,t = 1 for all t ∈ <+. Note that the given vector of fractions

πδ,t may contain negative components. These components can be obtained by
any kind of method, including the use of statistical estimates of optimal fractions.
Estimates provided by experts or economically based theoretical predictions can
also be used. These fractions are then translated into nonnegative fractions by
a PGF. Note that we do not include the savings account in a PGF, as is also
typical for most commercial indices.

Market Capitalization Weighted Indices. For an MCI we define the fraction
of wealth held in the j-th constituent at time t as follows:

πj
δMCI ,t =

δj
t S

j
t∑d

i=1 δi
tS

i
t

, (2.2)

j ∈ {1, 2, . . . , d}. Here δj
t is the number of units of the jth constituent of the

portfolio Sδ
t at time t, which is typically held constant over certain periods of

time.

Diversity Weighted Index. The so called diversity weighted indices (DWIs)
are theoretically and practically interesting indices, which were proposed in Fern-
holz (2002). Here the PGF is a function of the MCI fractions πδMCI ,t given in
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Figure 2: Indices constructed from sector indices based on 35 industries

(2.2) and has the form

π̃j
δ,t =

(πj
δMCI ,t)

p

∑d
l=1(π

l
δMCI ,t)

p
(2.3)

for some choice of a real number p ∈ [0, 1] and j ∈ {1, 2, . . . , d}, t ∈ <+. The
DWI has been designed to outperform the market portfolio, that is the MCI, [see
Fernholz (2002)].

Equally Weighted Indices. An almost ideally diversified index is obtained by
setting all fractions equal. The jth fraction of the EWI is then simply given by
the constant

πj
δEWI ,t =

1

d
(2.4)

for all j ∈ {1, 2, . . . , d}, where d is the number of constituents. The main advan-
tage of this index is that it forms the best diversified portfolio and does not need
the calculation of its fractions from data or other sources. We will show in this
paper that EWIs does not only exhibit excellent long term performance but also
have very clear distributional properties. These distributional features, as well as
their excellent long term growth rate, make EWIs important tools for theoretical
investigations and practical applications.

A Family of World Stock Indices. There have been many attempts in the
literature and in real life to construct investment portfolios with outstanding re-
turns. It is evident from estimation theory, [see for instance Kelly, Platen &
Sørensen (2004)], that, in principle, hundreds of years of data are necessary to
estimate risk premia with any reasonable level of significance. Such long data
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Figure 3: Indices constructed from sector indices based on 104 industries

sets are not available, and the risk premia cannot be expected to remain con-
stant over sufficient long periods of time. This makes it very difficult to use any
statistical method successfully in investment portfolio construction. There may
exist strategies that outperform the diversified indices described above. However,
it is unlikely that this superiority is systematic and can be sustained over long
periods. Despite the empirical difficulties, various stock indices were recently
studied by Le & Platen (2006) with the aim of approximating the GOP by also
using standard statistical estimates of risk premia and volatilities. No significant
advantage was reported for these constructed indices, as will be confirmed in this
paper.

We will study world stock indices (WSIs) as special cases in a family of indices
which also include the MCI, DWI and EWI. The PGF used for the construction
of this general family of indices is given by

π̃j
δ,t =

(πj
δ,t + µt)

p

∑d
l=1(π

l
δ,t + µt)p

, (2.5)

for all j ∈ {1, 2, . . . , d} and t ∈ <+, where p ∈ [0, 1] is some real number. This
construction is slightly more general than what has been suggested in Fernholz
(2002), [see (2.3)]. Essentially, the above PGF keeps the ranking of the fractions
πj

δ,t intact and transforms the original fractions into positive fractions. We obtain

the fractions of a DWI if πj
δ,t = πj

MCI,t and µt = 0 for all t ∈ <+. The fractions

πj
δ,t can be chosen to approximate those of the GOP on the basis of whatever

information is available. Theoretically one obtains the fractions of the GOP of
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the stock market in the form

πδ∗,t = Σ−1
t (at − rt1) (2.6)

for t ∈ <+, see [Merton (1973), Platen & Heath (2006) or Filipovic̀ & Platen
(2007)]. Here Σt denotes the covariance matrix of returns and at the vector of
expected returns of the constituents, while rt is the short rate.

It is reasonable to estimate the covariance matrix Σt from the observation of daily
returns, say, of the most recent one year period. Despite our reservations about
the low significance of any estimates for the appreciation rate vector at, we may
nevertheless estimate it in a standard manner from daily returns over the same
one year period. This is also what, in principle, is often performed in active fund
management. The resulting suggested fractions of the GOP vary in an extreme
manner and can be largely negative. To make the fractions positive via a PGF
we set

µt =
∣∣ inf

j
πj

δ,t

∣∣ + µ, (2.7)

for some choice µ ≥ 0, t ∈ <+.

Comparison of Constructed Indices. The indices described above are graphed
in Figs. 1-3. They are constructed from 38 regional stock market indices, 35 in-
dustry sector indices or 104 industry sector indices, respectively. For all three
types of constructed indices we observe that MCIs always perform worse than
DWIs, which again perform worse than EWIs and WSIs. This is a common fea-
ture of both regional and industry sector based indices. In particular, the EWI
and the EWI104s perform extremely well. It can be noticed that the performance
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of well diversified indices is generally much better than that of less diversified in-
dices. The diversification theorem in Platen (2005) provides an explanation for
this phenomenon by stating that well diversified portfolios are likely to be better
proxies for the GOP. Since the GOP is known almost surely to have the best long
term growth rates, this appears to be supported by the constructed indices.

Furthermore, we note that the EWI and the WSI are almost identical when
setting p = 0.5. This is due to the fact that the resulting WSI fractions are very
close to those of the EWI. On the other hand, the fractions of the WSI are still
flexible and make it possible for the WSI to outperform the EWI slightly. This,
however, comes with a significant computational cost and a decreasing level of
diversification. The real question is whether the suggested fractions for the GOP
have some statistical information that is readily exploitable. Unless this is the
case, it is unlikely that a WSI outperforms an EWI significantly in the long run.

In Fig. 4, we now plot on a logarithmic scale the best performing indices, which
are the EWI, based on 38 regional stock market indices, and the EWI104s, with
104 world industry sectors as constituents. This graph shows that historically
sometimes the EWI and on other occasions the EWI104s performs slightly better.
They are both well diversified indices and, therefore, can be expected to be good
proxies of the GOP. This raises the question as to whether there are empirical
features that make one of these the better proxy of the GOP. We clarify this
question by studying the distribution of their log-returns.

3 A Class of Log-return Distributions

Let us introduce a framework for a sufficiently rich class of log-return distribu-
tions. The models we consider mix the normal distribution with different stochas-
tic means and variances, resulting in a class of normal mean-variance mixture
distributions.

The random variable X is said to have a normal mean-variance mixture distri-
bution if

X = m(W ) +
√

WσZ, (3.1)

where Z ∼ N(0, 1) is standard Gaussian. Here W ≥ 0 is a nonnegative random
variable which is independent of Z; σ ∈ < is a constant and m : [0,∞) → < is
a measurable function. A possible concrete specification for the function m(W )
is the affine function m(W ) = µ + Wγ, where µ and γ are parameters in <.
Note that this specification of normal mean-variance mixture distributions allows
skewness. The skewness parameter here is γ ∈ <. When the skewness vanishes,
with γ = 0, and the mean µ = 0 the normal mean-variance mixture distribution is
simplified to its symmetric case; this is the normal variance-mixture distribution.
Note that in this particular case the random variable X, given by (3.1), becomes
X =

√
WσZ, using the same notation as before.
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Generalized Hyperbolic Distributions. The generalized hyperbolic (GH) dis-
tribution belongs to the family of mean-variance normal mixture distributions.
Its density function can be obtained by assuming a generalized inverse Gaussian
(GIG) distribution for the mixing density, that is W ∼ GIG(λ, χ, ψ).

The distribution of X ∼ GH(λ, χ, ψ, µ, σ, γ) is characterized by its density

fX(x) =
ψλ(ψ + γβ)

1
2
−λ(
√

χψ)−λ

√
2πσKλ(

√
χψ)

×
Kλ− 1

2

(√
(χ + Q)(ψ + γβ)

)

(√
(χ + Q)(ψ + γβ)

) 1
2
−λ

eξβ (3.2)

for x ∈ <, where ξ = x− µ, β = γσ−2, Q = (x− µ)2σ−2 and Kλ(·) is a modified
Bessel function of the third kind with index λ, [see Abramowitz & Stegun (1972)].

One can introduce an alternative parametrization to the above (λ, χ, ψ)- parametriza-
tion. For the so called (ᾱ, λ)-parametrization, one sets α =

√
ψ, δ =

√
χ, ᾱ =

αδ. In this case the density (3.2) reads

fX(x) =
(α2 + γβ)

1
2
−λα2λᾱ−λ

√
2πσKλ(ᾱ)

×
Kλ− 1

2

(√
(δ2 + Q)(α2 + γβ)

)

(√
(δ2 + Q)(α2 + γβ)

) 1
2
−λ

eξβ (3.3)

for x ∈ <.

Note also the resulting convenient representation in the symmetric case γ = 0,
µ = 0. The symmetric generalized hyperbolic (SGH) density function for a random
variable X then has the form

fX(x) =
1

δσKλ(ᾱ)

√
ᾱ

2π

(
1 +

x2

(δσ)2

) 1
2
(λ− 1

2
)

Kλ− 1
2

(
ᾱ

√
1 +

x2

(δσ)2

)
(3.4)

for x ∈ <, where λ ∈ <, α, δ ≥ 0. We set α 6= 0 if λ ≥ 0 and δ 6= 0 if λ ≤ 0.
Hence, the SGH density is a three parameter density. The parameters λ and
ᾱ are invariant under scale transformations and can be interpreted as the shape
parameters for the tails of the distribution. We may define a new parameter c as
the unique scale parameter such that

c2 =





(δσ)2

−2(λ+1)
if α = 0 for λ < 0 and ᾱ = 0,

2λσ2

α2 , if δ = 0 for λ > 0 and ᾱ = 0,
(δσ)2Kλ+1(ᾱ)

ᾱKλ(ᾱ)
otherwise.

(3.5)

Special Cases of the SGH Distribution. There are several important cases
of the SGH distribution arising as log-return distributions in widely investigated
asset price models. In particular, we will further consider the following special
cases: Variance Gamma: ᾱ = 0 and λ > 0, [see Madan & Seneta (1990)]; Student-
t: ᾱ = 0 and λ < 0, [see Praetz (1972)]; Hyperbolic: λ = 1, [see Eberlein & Keller
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(1995)] and Normal Inverse Gaussian: λ = −0.5, [see Barndorff-Nielsen (1995)].
The first two special cases deserve more attention as they are limiting cases and
can be described taking into account the limiting behavior of the Bessel function
involved.

Variance Gamma Density. The variance gamma (VG) density arises for the
parameter choice ᾱ = 0, α =

√
2λ, δ =

√
χ = 0. It is a normal mean-variance

mixture distribution resulting from the choice of a gamma distribution Ga(λ, λ)
for the mixing random variable W . The normalization constant of equation (3.2)
then reduces to

C =
(2λ)λ(2λ + γβ)

1
2
−λ

√
(2π)σ2λ−1Γ(λ)

=

√
λ
(
1 + γβ

2λ

) 1
2
−λ

√
πσ2λ−1Γ(λ)

.

Passing to the limit as γ → 0, and assuming µ = 0 we obtain the symmetric
variance gamma density

fX(x) =

√
λ√

πσ2λ−1Γ(λ)

(√
2λ|x|
σ

)λ− 1
2

Kλ− 1
2

(√
2λ|x|
σ

)
(3.6)

for x ∈ </{0} and

fX(0) =

√
λ√

πσ2λ−1Γ(λ)
2λ− 3

2 Γ
(
λ− 1

2

)
. (3.7)

The symmetric variance gamma density is, therefore, a two parameter density
with λ as its shape parameter. Smaller values of λ indicate increasingly heavier
tails. Additionally, when λ → ∞ the variance gamma density asymptotically
approaches the Gaussian density.

Student-t Density. A Student-t density has been identified to model the log-
returns of financial securities, as can be seen, for instance, in Praetz (1972),
Blattberg & Gonedes (1974) and Fergusson & Platen (2006). The case of a
skewed Student-t density emerges for the parameter choice ᾱ = 0, α =

√
ψ = 0,

δ =
√

χ =
√

ν, ν = −2λ and the inverse gamma distribution Ig(1
2
ν, 1

2
ν) as the

distribution of the mixing random variable W .

We distinguish between the following two cases −1 < λ < 0 and λ ≤ −1.
1. The case −1 < λ < 0 corresponds to the degrees of freedom ν < 2 for which
the normalization constant diverges. This case is not relevant to the financial
applications that we have in mind, and is hence skipped in what follows.
2. The case λ ≤ −1 with degrees of freedom ν ≥ 2 is highly relevant for our
study. Equation (3.2) simplifies in this case to

fX(x) =
2(1−ν)/2

Γ
(

ν
2

)√
πνσ

×
(
1 +

Q

ν

)− ν+1
2

K ν+1
2

(√
(ν + Q)γβ

)

(√
(ν + Q)γβ

)− ν+1
2

eξβ. (3.8)
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Passing to the limit γ → 0 for the asymmetry parameter γ and assuming µ = 0
the equation (3.8) reduces to that of the symmetric Student-t density

fX(x) =
Γ
(

ν+1
2

)

√
πνσΓ

(
ν
2

) ×
(
1 +

x2

σ2ν

)− ν+1
2

. (3.9)

Hence, the symmetric Student-t density is a two parameter density with ν = −2λ
degrees of freedom. Note that σ is not the standard deviation of the random
variable X, which is σX = σ

√
ν

ν−2
. We observe an increase in the tail heaviness of

this density as the degrees of freedom decrease, which implies a larger probability
of extreme values. Additionally, with the increase of the degrees of freedom
ν →∞, the Student-t density converges asymptotically to the Gaussian density.

Likelihood Ratio Test. In order to test the hypothesis that a candidate log-
return distribution is acceptable or not, we follow the classical maximum likeli-
hood ratio test, [see Rao (1973)]. The likelihood ratio is defined by the expression

Λ =
L∗model

L∗nesting model

, (3.10)

here L∗model represents the maximized likelihood function of the specific nested
density, while L∗nesting model represents the maximized likelihood function of the
nesting density. For example, we will later choose in some cases the SGH density
as nesting model and the symmetric Student-t density as one of the nested models.
Note that in the process of maximizing the likelihood, we optimize with respect
to the parameters of the given parameterized distribution. Hence we obtain both
the optimal parameters and the optimal value of the likelihood function. It can
be shown that for increasing number of observations n →∞ the test statistic

Ln = −2 ln(Λ) (3.11)

is asymptotically distributed as a chi-square distribution, [see Rao (1973)]. Addi-
tionally, the degrees of freedom of this chi-square distribution are determined by
the difference between the number of parameters of the nesting and the nested
models. Specifically, the SGH density is a three-parameter density, while the
four special cases we consider: the symmetric variance gamma, Student-t, hy-
perbolic and generalized inverse Gaussian densities are two-parameter densities,
which implies that their test statistic is chi-square distributed with one degree of
freedom.

Note that asymptotically it can be shown that

P (Ln < χ2
1−α,1) ≈ Fχ2(1)(χ

2
1−α,1) = 1− α, (3.12)

where Fχ2(1) denotes the chi-square distribution with one degree of freedom and
χ2

1−α,1 is its 100(1− α)% quantile.
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Figure 1: Log-histogram of the EWI104s log-returns and Student-t density with
four degrees of freedom

We then reject the hypothesis that the suggested density is the true underlying
density at the 99% level of significance if the following relation is not satisfied

Ln < χ2
0.01,1 ≈ 0.000157. (3.13)

If we require greater precision, then the hypothesis is not rejected at the 99.9%
level of significance if

Ln < χ2
0.001,1 ≈ 0.000002. (3.14)

To conclude the above discussion, we call the density with the smallest test statis-
tic Ln the best fit in the given family of distributions.

4 Fitted Log-Return Distributions

This section is devoted to the analysis of the log-returns of twelve world stock
indices. We distinguish between the world stock indices constructed from the
regional stock market indices, the world sector indices based on the 35 industry
indices, and the world sector indices based on the 104 industry indices. The
region based indices consist of the: MCI, DWI, EWI and WSI, while the sector
based indices are represented by the: MCI35s, DWI35s, EWI35s and WSI35s, as
well as, the MCI104s, DWI104s EWI104s and WSI104s. We use daily data from
1973 to 2006 provided by Thomson Financial for all the components underlying
our indices. In the following, we mainly report the results for the log-returns of
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Table 1: Empirical moments for log-returns of the EWI104s in various currency
denominations
Country µ̂y σ̂y β̂y κ̂y

Australia 0.000565 0.008573 1.255285 38.042243
Austria 0.000423 0.008932 -0.560596 9.818562
Belgium 0.000473 0.008616 -0.572222 8.617690
Brazil 0.000774 0.010628 0.470175 15.449772
Canada 0.000519 0.007150 -0.655434 11.930284
Denmark 0.000491 0.008637 -0.493104 10.819425
Finland 0.000524 0.008646 -0.305966 9.590003
France 0.000512 0.008546 -0.522862 8.826783
Germany 0.000426 0.008627 -0.611260 8.901389
Greece 0.000867 0.009325 0.530904 27.355595
Hong Kong 0.000600 0.007379 -0.709914 16.946884
India 0.000698 0.008086 0.260450 20.710839
Ireland 0.000554 0.008863 -0.359713 35.363948
Italy 0.000622 0.008481 -0.504651 9.270888
Japan 0.000394 0.008151 -0.742019 9.827505
Korea S. 0.000593 0.009045 0.453250 36.812322
Malaysia 0.000533 0.007845 -0.664893 15.829299
Netherlands 0.000439 0.008558 -0.598923 8.979067
Norway 0.000502 0.008365 -0.431793 10.298253
Portugal 0.000714 0.009343 0.168636 13.568042
Singapore 0.000499 0.007228 -1.116746 17.150500
Spain 0.000594 0.008756 0.204594 16.586917
Sweden 0.000560 0.008372 0.256363 17.623515
Taiwan 0.000502 0.007456 -0.956096 16.691994
Thailand 0.000634 0.009012 1.861305 62.413554
UK 0.000536 0.008165 -0.593624 9.567338
USA 0.000501 0.007004 -0.819822 14.237813

Table 2: Results for log-returns of the EWI104s
SGH Student-t NIG Hyperbolic VG

σ 0.9807068 0.7191163 0.9697258 0.9584118 0.9593693
ᾱ 0.0000000 0.9694605 0.7171357
λ -2.1629649 1.4912414
ν 4.3259646
ln(L∗) -285796.3865295 -285796.3865297 -286448.9371892 -287152.0787956 -287499.8259143
Ln 0.0000004 1305.1013194 2711.3845322 3406.8787696

the EWI104s when denominated in 27 currencies. A more extensive study, which
also reports the results for the above mentioned indices, can be found on the
website of the first author in an extended version of the paper.

A summary of the main empirical moments of the log-returns of the EWI104s
when denominated in different currencies, is presented in Table 1. Note that we
obtain here the average empirical mean µ̂y = 0.000557, the average empirical

standard deviation σ̂y = 0.008437, the average sample skewness β̂y = −0.213288
and the average sample excess kurtosis κ̂y = 17.823402. We do not remove any
extreme values as potential outliers from our data set, hence market crashes and
other sudden market corrections are not discarded. Removing outliers would also
not be appropriate, as the proper modeling of extreme log-returns is of great
importance in risk management.

First, to get a visual impression of the shape of the log-return density of the
EWI104s, we exploit all log-returns that we observe from this index in all 27
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Figure 1: Log-likelihood function based on the EWI104s

currency denominations. For this purpose we combine appropriately shifted and
scaled log-returns of all currency denominations. More precisely, for each currency
denomination of the index we shift all the obtained log-return values so that their
sample mean becomes zero, and scale them in order to obtain a sample variance
of one. In Fig. 1 we present the resulting histogram of the total cohort of shifted
and scaled log-returns on a logarithmic scale. Note that this histogram is based
on 214, 658 observations, which makes it very reliable. Additionally in Fig. 1, we
show in log-scale the theoretical Student-t density for ν = 4 degrees of freedom.
We observe visually an excellent fit of the log-returns of the EWI104s to the
Student-t density. For the other constructed indices, a similar visual impression
is obtained, with the EWI104s seeming to fit best.

The maximum likelihood methodology is then employed to estimate the param-
eters of the SGH density. For the same sample used to produce the histogram in
Fig.1, we exhibit the log-likelihood function for the SGH in Fig.1 as a function of
the parameters λ and ᾱ. One notes a clear, flat global maximum around the point
ᾱ = 0 and λ = −2, which refers to a Student-t distribution with four degrees
of freedom. We then apply the maximum likelihood method to the log-returns
of the EWI104s for four special cases of the SGH distribution. These cases con-
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Figure 2: (ᾱ, λ)-plot for log-returns of indices in different currencies constructed
from regional stock market indices as constituents

cern the Student-t density, the NIG density, the hyperbolic density and the VG
density. We maximize the corresponding log-likelihood functions with respect
to the parameters σ, ᾱ, λ and ν of the SGH, as shown in Table 2, and display
their estimates in its second column. Additionally, row six of Table 2 contains
the estimated parameters and maximized values of the log-likelihood functions
for the SGH density and each of the four considered special cases. In the last
row of Table 2 we calculated the value of the test statistic Ln. The almost zero
value obtained for Ln suggests a very good fit of the Student-t distribution with
ν ≈ 4.3 degrees of freedom to our set of data in the class of SGH distributions.
The extremely small value of the test statistic, Ln = 0.0000004, allows us to
conclude that the H0 hypothesis of a Student-t fit to the EWI104s cannot be
rejected at least on a 99.9% level of significance, since χ2

0.001,1 ≈ 0.000002. We
emphasize that this is an extremely high level of significance. Note also that the
estimated parameter value ᾱ = 0 for the SGH density suggests that a Student-t
density already represents the best fit to the log-returns of the EWI104s when
searching among the family of SGH densities.

For all the components underlying our indices we now again use daily data from
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Figure 3: (ᾱ, λ)-plot for log-returns of indices in different currencies constructed
from 35 sector indices as constituents

1973 to 2006, provided by Thomson Financial. Furthermore, we denominate all
twelve constructed indices in 27 different currencies and study their log-returns for
each of the denominations separately. Note that the denomination of a diversified
world stock index in a given currency reflects in its fluctuations the general market
risk with respect to this currency, [see Platen & Stahl (2003)]. We mention that
the data for all exchange rates were not available from 1973. For instance, the
time series for the Brazilian real starts only in 1995.

For convenience, we shift and scale the log-returns in order to obtain sample
means equal to zero and sample standard deviations equal to one for all cur-
rency denominations. This does not change the generality of our analysis, but
standardizes the testing procedure.

We first apply the maximum likelihood estimation methodology for both the GH
and the SGH distributions for the log-returns of each index and for each currency
denomination. The GH distribution contains the extra parameter γ ∈ <, which
represents the level of skewness of this distribution. Our study, however, reveals
that the estimated parameter values for γ are of the order 10−6 or less. Since γ
and µ turn out to be extremely small we do not report the statistical findings for
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Figure 4: (ᾱ, λ)-plot for log-returns of indices in different currencies constructed
from 104 sector indices as constituents

the GH distribution and just concentrate on the SGH distribution which appears
to be almost identical.

In order to visualize the fitted log-return distributions of our twelve constructed
indices, we plot the estimated parameter λ versus the estimated parameter ᾱ in
Figs.2, 3 and 4 for each constructed index in all 27 currency denominations. Fig.2
presents the results for each of the MCI, DWI, EWI and WSI for 27 currency
denominations. Note that the estimated values of ᾱ are in most cases close to
zero, which already confirms the Student-t property. Furthermore, the estimated
values of the parameter λ range from around −2.5 to −1.0. This indicates that
the best fit can be expected for Student-t distributions with degrees of freedom
ν = −2λ ranging from around 2 to 5. This is emphasized by the cluster of points
located on the negative λ axis near −2 in Fig. 2.

Note that in the group of indices shown in Fig.2 the log-returns of the MCI seem
to fit visually the Student-t distribution best. There are just nine points which
do not sit on the negative λ axis. It can be also noticed that the range of the
estimated values of λ in the case of the EWI and WSI is narrower for ᾱ = 0.
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Table 3: Ln test statistic of the EWI104s for different currency denominations
Country Student-t NIG Hyperbolic VG ν
Australia 0.000000 76.770817 150.202282 181.632971 4.281222
Austria 0.000000 39.289103 77.505683 102.979330 4.725907
Belgium 0.000000 31.581622 60.867570 83.648470 4.989912
Brazil 2.617693 5.687078 63.800349 60.078395 2.713036
Canada 0.000000 47.506215 79.917741 104.297607 5.316154
Denmark 0.000000 41.509921 87.199686 114.853658 4.512101
Finland 0.000000 28.852844 68.677271 88.553080 4.305638
France 0.000000 26.303544 57.639325 80.567283 4.722787
Germany 0.000000 27.290205 52.667918 71.120798 5.005856
Greece 0.000000 60.432172 104.789463 125.601499 4.674626
Hong.Kong 0.000000 42.066531 100.834255 122.965326 3.930473
India 0.000000 74.773701 163.594078 198.002956 3.998713
Ireland 0.000000 77.727856 136.505582 170.013644 4.761519
Italy 0.000000 25.196598 55.185625 75.481897 4.668983
Japan 0.000000 37.630363 77.163656 102.967380 4.649745
Korea.S. 0.000000 120.904983 304.829431 329.854620 3.289204
Malaysia 0.000000 79.714054 186.013963 221.061290 3.785195
Netherlands 0.000000 26.832761 51.625813 71.541627 5.084056
Norway 0.000000 42.243851 89.012090 115.059003 4.472349
Portugal 0.000000 61.177624 137.681039 165.689683 3.984860
Singapore 0.000000 36.379685 77.600590 98.124375 4.251472
Spain 0.000000 56.694545 109.533768 138.259224 4.517153
Sweden 0.000000 77.618384 143.420049 178.983373 4.546640
Taiwan 0.000000 41.162560 96.283628 115.186585 3.914719
Thailand 0.000000 78.250621 254.590254 267.508143 3.032038
UK 0.000000 26.693076 55.937248 80.678494 4.952843
USA 0.000000 40.678242 79.617362 100.901197 4.636661

Fig.3 illustrates the estimated parameters of the SGH distribution for the indices
constructed on the basis of 35 world industry sectors as constituents. Here we
used the observed log-returns of the MCI35s, DWI35s, EWI35s and WSI35s for
the estimation of the log-return distribution. Similarly, as for the case of regional
stock index based indices as constituents, we obtain estimates of ᾱ which are close
to zero and values for λ which range from approximately −1.0 to −2.5. In the
case of these sector based indices we observe an even better fit of the Student-
t distribution. This is, in particular, visible in Fig. 3 for the EWI35s and the
WSI35s. In these two cases, only the log-returns denominated in the Brazilian
real do not exhibit a proper Student-t fit, as the estimate of ᾱ is not zero in this
case but is approximately equal to 0.25. This is probably a consequence of the
short length of our data series on the Brazilian exchange rate. It is obvious that
data sets of sufficient length are necessary in order to obtain a proper fit to the
underlying true distribution.

In Fig.4 we analyzed log-returns of the MCI104, DWI104s, EWI104s and WSI104s,
based on 104 world industry sector indices as constituents. We again obtain es-
timates for the parameters ᾱ and λ, which indicate a good Student-t fit to the
observed log-returns of all four indices considered. We note that the improved
diversification of the indices in Fig. 4 did not greatly improve the Student-t fit
when compared with Fig.3. The best fits are here again obtained for the EWI104s
and the WSI104s.

In conclusion, in all three figures the estimated (ᾱ, λ) points are localized near the
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negative λ-axis which indicates an approximate Student-t density. Moreover, one
can notice that the Student-t density represents a better fit for two types of the
world industry sector based indices: it fits very well in the case of the EWI35s as
well as the EWI104s. These fits are remarkable and constitute a stylized empirical
fact.

In the second column of Table 3 we show only six digits for the Student-t test
statistics, which is sufficient to decide whether these values are less than the 99.9%
quantile 0.000002 of the chi-square distribution with one degree of freedom. We
emphasize that the estimated degrees of freedom of the Student-t density obtained
are in the range of around 3 to 5, with a concentration around 4, as can be
concluded from the last column of Table 3.

One possible explanation of the above documented facts is given by the Mini-
mal Market Model (MMM) introduced in Platen (2001) and further described
in Platen & Heath (2006). The MMM models the discounted GOP by a time
transformed squared Bessel process of dimension four. The squared volatility of
this process is the inverse of a square root process, which has as its stationary
density a gamma density with four degrees of freedom. Therefore, the mixing
density for the variance of the returns of the GOP is that of the inverse of a
gamma distributed random variable. Consequently, log-returns generated by the
MMM, when estimated over a sufficiently long time period, appear to be Student-t
distributed with four degrees of freedom.

5 Conclusions

This study has formally documented the empirical fact that log-returns of diver-
sified world stock indices over a sufficiently long observation period appear to be
Student-t distributed with about four degrees of freedom. This feature has been
identified in a robust manner for a variety of diversified stock indices. Moreover,
the most diversified indices, such as the equally weighted index, seem to approx-
imate the growth optimal portfolio best. This is observable in their excellent
long-term performance. Specifically, it appears that the EWI104s constructed
from 104 world industry sector indices as constituents exhibits a large long-term
growth rate. At the same time its log-returns fit at an extremely high level of
significance the Student-t distribution with about four degrees of freedom. This
makes this index an excellent benchmark for fund management and numeraire in
derivative pricing using the benchmark approach.
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