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Abstract Various algorithms have been proposed for finding a Bayesian network structure

that is guaranteed to maximize a given scoring function. Implementations of state-of-the-art

algorithms, solvers, for this Bayesian network structure learning problem rely on adaptive

search strategies, such as branch-and-bound and integer linear programming techniques.

Thus, the time requirements of the solvers are not well characterized by simple functions

of the instance size. Furthermore, no single solver dominates the others in speed. Given a

problem instance, it is thus a priori unclear which solver will perform best and how fast it

will solve the instance. We show that for a given solver the hardness of a problem instance

can be efficiently predicted based on a collection of non-trivial features which go beyond

the basic parameters of instance size. Specifically, we train and test statistical models on

empirical data, based on the largest evaluation of state-of-the-art exact solvers to date. We

demonstrate that we can predict the runtimes to a reasonable degree of accuracy. These

predictions enable effective selection of solvers that perform well in terms of runtimes on a

particular instance. Thus, this work contributes a highly efficient portfolio solver that makes

use of several individual solvers.
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1 Introduction

Since the formalization and popularization of Bayesian networks (Pearl 1988) for modeling

and reasoning with multiple variables, much research has been devoted to learning them

from data (Heckerman et al. 1995). One of the main challenges has been to learn the model

structure, represented by a directed acyclic graph (DAG) on the variables. Cast as a problem

of finding a DAG that is a global optimum of a score function for given data, the Bayesian

network structure learning problem (BNSL) is notoriously NP-hard; the hardness is chiefly

due to the acyclicity constraint imposed on the DAG to be learned (Chickering 1996). To cope

with the computational hardness, early work on structure learning resorted to local search

algorithms. While local search algorithms oftentimes perform well, they are unfortunately

unable to guarantee global optimality. The uncertainty about the quality of the found network

hampers the use of the network (Malone et al. 2015) in probabilistic inference and causal

discovery.

The last decade has raised hopes of solving larger problem instances to optimality. The

first algorithms guaranteed to find an optimum adopted a dynamic programming approach

to avoid exhaustive search in the space of DAGs (Ott et al. 2004; Koivisto and Sood 2004;

Singh and Moore 2005; Silander and Myllymäki 2006). Later algorithms have expedited the

dynamic programming approaches using the A∗ search algorithm with various admissible

heuristics (Yuan and Malone 2013), or have employed quite different approaches, such as

branch and bound in the space of (cyclic) directed graphs (de Campos and Ji 2011), integer

linear programming (ILP) (Jaakkola et al. 2010; Cussens 2011, 2013), and constraint pro-

gramming (CP) (van Beek and Hoffmann 2015). In this work, we focus on such complete

solvers for BNSL, which we call simply solvers. Our interest is in unsupervised learning of

a joint structure over the variables, only noting in passing that alternative methods have been

developed for supervised learning of the relationship between a designated response variable

and the other predictor variables [see, e.g., a recent survey (Bielza and Larrañaga 2014) and

references therein].

Due to the intrinsic differences between the algorithmic approaches underlying BNSL

solvers, it is not surprising that their relative efficiency varies greatly on a per-instance basis.

To exemplify this, a comparison of the runtimes of three current state-of-the-art solvers, based

on A∗, ILP, and CP, is illustrated in Fig. 1 using typical benchmark datasets. Evidently, no

single one of these three solvers dominates the other two.

A∗ vs. ILP A∗ vs. CP CP vs. ILP

Fig. 1 Comparison of three state-of-the-art algorithms for finding an optimal Bayesian network. Runtimes

below 1 or above 7200 s are rounded to 1 and 7200, respectively. The specific solver parameterizations are

A∗-comp (A∗), ilp-162 (ILP), and cpbayes (CP); see Sect. 5 for descriptions of the solvers and the datasets
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Figure 1 suggests that, to improve over the existing solvers, an alternative to developing yet

another solver is to design algorithm portfolios which select a solver to run on a per-instance

basis, ideally combining the best-case performance of the different solvers. Indeed, in this

work we do not focus on developing or improving an individual algorithmic approach. Instead,

we aim to characterize how the performance of different algorithmic approaches depends on

the problem instance, which is the key to the design of efficient algorithm portfolios. The

underlying motivation for developing such techniques is the aim of improving the efficiency

of state of the art in complete solvers in solving hard BNSL instances.

In this quest, it is vital to discover a collection of features that are efficient to compute

and yet informative about the hardness of an instance for a solver. Prior work has identified

two simple features, namely the number of variables and the number of so-called candidate

parent sets, denoted by n and m, respectively. To explain the observed orthogonal performance

characteristics shown in Fig. 1, it has been suggested, roughly, that typical instances can be

solved to optimality by A∗, if n is at most 40 (no matter how large m), and by ILP if m is

moderate, say, at most some tens of thousands (no matter how large n) (Cussens 2013; Yuan

and Malone 2013); for the more recent CP approach, we are not aware of any comparable

description. Beyond this rough characterization, the practical time complexity of the best-

performing solvers is currently poorly understood. This stems from the sophisticated search

heuristics employed by the solvers, which tend to be sensitive to small variations in the

instances, thus resulting in somewhat chaotic-looking behavior of runtimes. Furthermore,

the gap between the analytic worst-case and best-case runtime bounds, in terms of n and m,

is huge, and typical instances fall somewhere in between the two extremes.

The starting point of our work is the following basic open question:

Q1 For determining the fastest of the available solvers on a given instance, do the

simple features, the number of variables and the number of candidate parent sets,

suffice?

We answer this question in the affirmative. Our result is empirical in that it relies on training

and testing a statistical model with a large set of problem instances collected from various

sources. We show that a simple set of features yields a model which accurately predicts the

fastest solver for a given instance based on the parameters n and m only. Furthermore, we

show how this yields an algorithm portfolio that almost always runs as fast as the fastest

solver, thus significantly outperforming any fixed solver on a large collection of instances.

However, a closer inspection reveals that the predicted runtimes of the model based on the

simple features often differ from the actual runtimes by one to two orders of magnitude. The

large deviations suggest that, if the interest is in accurate estimation of the runtimes, then the

simple feature set may not suffice. This observation motivates our second question:

Q2 For predicting the runtime of a solver on a given instance, can the accuracy be

significantly improved by including additional efficiently computable features?

Also to this question our answer is affirmative. We introduce and study several additional

features that capture the hardness of the problem more accurately for a given solver. We

focus on what are currently the three top-performing solver families based on A∗ (Yuan and

Malone 2013), ILP (Cussens 2013), and CP (van Beek and Hoffmann 2015), which clearly

dominate earlier approaches based on dynamic programming and branch-and-bound (Malone

et al. 2014). Specifically, we show that models with a wider variety of features yield at times

significant improvements in prediction accuracy.

Besides the aforementioned contributions, the empirical work associated with this paper

also provides the most elaborate evaluation of state-of-the-art solvers to date, significant in

its own right.
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The present work extends and revises substantially our preliminary study reported at the

AAAI-14 conference (Malone et al. 2014). Here we have thoroughly revised the methodology

and analysis presented throughout the paper. We have expanded the portfolio itself to include

the very recent CP-based solver (van Beek and Hoffmann 2015). At the same time, we have

updated the runtime results to the most recent versions of the A∗-based and ILP-based solvers.

Furthermore, we provide a more fine-grained analysis by categorizing datasets based on their

origin. Our results show that the origin of the dataset significantly affects the relative runtime

performance of solvers. To this end, we have also increased the number of synthetic data sets

considerably, from a few dozens to several hundred. Finally, we provide a more extensive

discussion of the characteristics of the learned models, such as preprocessing strategies.

1.1 Related work

Due to the wide range of potential applications, the general research area of algorithm selec-

tion, with tight connections to machine learning and algorithm portfolio design, is very

diverse. Instead of aiming at a full review of the relevant literature, here we aim at a brief

overview of the research area by providing references to some of the key early works on

the topic and some of the more recent works most closely related to ours. For an expanded

discussion of the literature on algorithm selection and runtime prediction, we refer the reader

to two recent surveys on the topic with further pointers to related work (Hutter et al. 2014;

Kotthoff 2014).

Research on algorithm selection for various types of important computational problems

has its roots in Rice (1976), where the algorithm selection problem was introduced, and

feature-based modeling was proposed to facilitate the selection of the best-performing algo-

rithm for a given problem instance, considering various example problems. Later works,

including Carbonell et al. (1991), Fink (1998) and Lobjois and Lemaître (1998), demonstrated

the efficacy of applying machine learning techniques, such as Bayesian approaches (Horvitz

et al. 2001), to learn models from empirical performance data.

More recently, empirical hardness models (Leyton-Brown et al. 2002, 2009) have been

applied in the construction of solver portfolios (Gomes and Selman 2001) for various NP-

hard search problems (Kotthoff et al. 2012), including Boolean satisfiability (SAT) [e.g.,

in Xu et al. (2008)], constraint programming [e.g., in Gebruers et al. (2005) and Hurley

et al. (2014)], quantified Boolean formula satisfiability [e.g., in Pulina and Tacchella (2008)],

answer set programming [e.g., in Hoos et al. (2014)], as well as for the traveling salesperson

problem [e.g., in Kotthoff et al. (2015)]. To the best of our knowledge, for the important

problem of Bayesian network structure learning, the present work is the first to adopt the

approach.

In terms of terminology, we investigate algorithm selection in the context of learning

Bayesian networks, which is an unsupervised learning task. Nevertheless, this work is well-

situated in the context of meta-learning (Giraud-Carrier et al. 2004), which most often

considers supervised settings. The BNSL features we propose in Sect. 3.1 are exactly a

set of meta-features for this particular domain. The regression models we learn (Sect. 3.2)

capture meta-knowledge about the state-of-the-art BNSL solvers.

Previous work (Lee and Giraud-Carrier 2008; Leyton-Brown et al. 2014) has suggested

that in many cases, a small set of features can lead to accurate predictions; indeed, in Sect. 5.2

we show that a very small number of features leads to near-optimal algorithm selection

performance. Furthermore, while that work relied on qualitative visual analysis, in Sect. 6.4

we quantify the utility of each feature using the Gini importance (Breiman 2001).
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Recently, a simple “Best in Sample” approach (Rijn et al. 2015) was shown to be very

effective for algorithm (classifier) selection in the supervised setting. Briefly, this approach

trains each classifier in the portfolio using a very small subset of the data; it then selects the

classifier to use based on performance on the subset. “Probing” features—a central form of

features in, for example, SAT portfolios (Xu et al. 2008)—we apply in the context of BNSL

(see Sect. 3.1) are similar in spirit to this approach, though adapted to the unsupervised

learning setting. In terms of evaluation, our virtual best solver comparisons in Sect. 5 are

quite similar to Loss Curves (Leite et al. 2012), which have previously been used in the

context of meta-learning.

1.2 Organization

The remainder of this paper is organized as follows. We begin in Sect. 2 by describing

the problem of structure learning in Bayesian networks and by giving an overview of the

algorithmic techniques underlying the state-of-the-art solvers. Section 3 presents the building

blocks of our empirical hardness model: we introduce several BNSL features; we choose an

appropriate statistical learning framework; and we describe the methods we use for training

and evaluating the models. In Sect. 4, we present the experimental setting, namely technical

details of the investigated solvers and characteristics of the collected problem instances.

Results on learning solver portfolios and on predicting runtimes of individual solvers are

reported in Sects. 5 and 6, respectively. Finally, we discuss some questions that are left open

and directions for future research in Sect. 7.

2 Learning Bayesian networks

A Bayesian network (G, P) consists of a directed acyclic graph (DAG) G on a set of random

variables X1, . . . , Xn and a joint distribution P of the variables such that P factorizes into a

product of the conditional distributions P(X i |Gi ). Here Gi denotes the set of parents of X i

in G; we call a variable X j a parent of X i , and X i a child of X j , if G contains an arc from

X j to X i .

2.1 The structure learning problem

In its simplest form, structure learning in Bayesian networks concerns finding a DAG that

best fits some observed data on the variables.1 Throughout this work, we only deal with this

optimization formulation, here only mentioning that there are also other popular formulations

based on frequentist (multiple) hypothesis testing (Spirtes et al. 1993; Cheng et al. 2002) and

Bayesian model averaging (Madigan and York 1995; Friedman and Koller 2003; Koivisto

and Sood 2004).

The goodness of fit is typically measured by a real-valued scoring function s, which asso-

ciates a DAG G with a real-valued score s(G).2 Frequently used scoring functions are based

on (penalized) maximum likelihood, minimum description length, or Bayesian principles

(e.g., BDeu and other forms of marginal likelihood). Additionally, they decompose (Hecker-

man et al. 1995) into a sum of local scores si (Gi ) for each variable X i and its set of parents

1 Strictly speaking, the data are assumed to consist of N independent and identically distributed tuples

(X t
1, . . . , X t

n), t = 1, . . . , N , so the dimension of the data is N × n.

2 The score does not depend on the parameters of the unspecified distribution P , which are treated as nuisance

parameters and absorbed by the scoring function (e.g., estimated or integrated away).
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Variable Candidate Parents Local Score

Xi Gi si(Gi)

X1 ∅ 2.0

X2 ∅ 1.0

X3 ∅ 0.2
X3 {X1} 1.0

X4 ∅ 0.1

X4 {X6} 0.8

X5 ∅ 0.1
X5 {X1} 0.7
X5 {X1, X2} 2.0

X6 ∅ 0.2
X6 {X3} 0.8
X6 {X3, X4} 2.0

X7 ∅ 0.1
X7 {X5} 0.5
X7 {X4, X5} 1.0

⇒

X1 X2

X3 X4 X5

X6 X7

Fig. 2 An optimal DAG (on the right) for a given scoring function s (on the left). There are n = 7 variables

and m = 15 candidate parent sets in total. The optimal score, 8.1, is the sum of the local scores shown in bold

face. Observe that choosing G4 = {X6} would have increased the score but violated the acyclicity constraint

Gi . In principle, for each i the local scores are defined for all the 2n−1 possible parent sets.

However, in practice this number is greatly reduced by enforcing a small upper bound for the

size of the parent sets Gi or by pruning, as preprocessing, parent sets that provably cannot

belong to an optimal DAG (Teyssier and Koller 2005; de Campos and Ji 2011). Applying

one or both of these reductions results in a collection of candidate parent sets, which we will

denote by Gi .

This motivates the following formulation of the Bayesian network structure learning

problem (BNSL).

Input: Local scores si (Gi ) for a collection of candidate parent sets Gi ∈ Gi

for i = 1, . . . , n.

Task: Find a DAG G that maximizes the score s(G) =
∑

i si (Gi ).
Along with the number of variables n, another key parameter describing the input size is

the total number of candidate parent sets m =
∑

i |Gi |. See Fig. 2 for an example instance

of the BNSL problem.

2.2 Overview of complete solvers for BNSL

We call an algorithm that is guaranteed to find a global optimum and prove its optimality for

the BNSL problem a complete solver for BNSL, or simply a solver. In the next paragraphs

we review some state-of-the-art solvers that fit the scope of our study. We omit algorithms

that assume significant additional constraints given as input (Perrier et al. 2008) or massive

parallel processing (Tamada et al. 2011; Parviainen and Koivisto 2013).

Several works (Ott et al. 2004; Koivisto and Sood 2004; Silander and Myllymäki 2006)

have proposed dynamic programming algorithms to solve BNSL. The solvers are based on

the early observation (Buntine 1991; Cooper and Herskovits 1992) that for any fixed ordering

of the n variables, the decomposability of the score enables efficient optimization over all

DAGs compatible with the ordering. The algorithms proceed by adding one variable at a time,
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only tabulating partial solutions for the explored subsets of the variables. Thus the runtime

scales roughly as 2n .

Yuan and Malone (2013) formulated BNSL as a state-space search through the dynamic

programming lattice and applied the A∗ search algorithm. Unlike the other sophisticated

solvers, A∗ maintains the meaningful worst-case time bound of dynamic programming. To

this end, they developed several admissible heuristics which relax the acyclicity constraint;

these allow the algorithm to prune suboptimal paths during search, thus typically avoiding

visiting all the variable subsets.

The branch-and-bound style algorithm by de Campos and Ji (2011) searches in a relaxed

space of directed graphs that may contain cycles. It begins by allowing all variables to

choose their optimal parents, which typically results in some number of cycles. Then, any

found cyclic solutions are iteratively ruled out: it finds a cycle and breaks it by removing one

arc in it, branching over the possible choices of the arc. It examines graphs in a best-first

order, so the first acyclic graph it finds is an optimal DAG. In this way, the algorithm ignores

many cyclic graphs.

Integer linear programming (ILP) algorithms by Jaakkola et al. (2010) and by Cussens

(2011, 2013) search in a geometric space, in which DAGs appear as vertices of an embedded

polytope, corresponding to integral solutions to a linear program (LP). A series of LP relax-

ations are solved, and the solution to each relaxation is checked for integrality; an integral

solution corresponds to an optimal DAG. The search space is effectively pruned by employing

domain-specific cutting planes.

A very recent development in solvers for BNSL is the constraint programming (CP)

based approach by van Beek and Hoffmann (2015), constituting a constraint-based depth-first

branch-and-bound approach to BNSL. As a key ingredient, the approach uses an improved

constraint model with problem-specific dominance, symmetry breaking, and acyclicity con-

straints and propagators. It also employs cost-based pruning rules applied during search,

together with domain-specific search heuristics. The approach combines some of the ideas

applied in A∗, specifically pattern databases, for obtaining bounds on the scoring function.

3 Empirical hardness models

In this work, we focus on the hardness of a BNSL instance, relative to a particular solver.

We define the hardness of instance I for solver S simply as the runtime TS(I ) of the solver S

on the instance I .3 Due to the sophisticated heuristics underlying the state-of-the-art BNSL

solvers, evaluating the empirical hardness is presumably (that is, under standard complexity-

theoretic assumptions) computationally intractable; indeed, the fastest method we are aware

of for evaluating TS(I ) is actually running S on I .

Rather than exactly evaluating the function TS , we take a machine learning approach

to approximate it: from a large collection of example instances for which the actual run-

times are known (computed), we learn a model which is efficient to evaluate at any given

instance. Underlying this approach is the hypothesis that an accurate empirical hardness

model (Leyton-Brown et al. 2002) can be built based on a set of efficiently computable fea-

tures of BNSL instances; by a feature we refer to a mapping from the instances to the real

numbers. This approach naturally gives rise to the following supervised machine learning

problem, for a fixed solver S.

3 While, in principle, the function TS also depends on external factors such as the specific hardware on which

the solver is run, we do not consider those factors in this work.
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Input: A training set of BNSL instances (represented as collections of

feature values) and the respective runtimes of the solver S.

Task: Learn a function T̂S which minimizes the average prediction error

on an unseen set of BNSL instances.
We next introduce several categories of efficiently-computable features of BNSL

instances. Most of these features have not previously been used for characterizing the hard-

ness of BNSL. We then explain our training and testing strategies.

3.1 Features for BNSL

We use four different sets of features based on complementary strategies to characterize

BNSL instances: Basic, Basic extended, Upper bounding, and Probing. Table 1 lists the

features in each set. Further, we define the set All as the union of Basic, Basic extended,

Upper bounding, and Probing.

The Basic features are the number of variables n and the mean number of candidate

parent sets per variable, m/n, which can be viewed as a natural measure of the “density”

of an instance. The features in Basic extended are other simple features that summarize the

size distribution of the collections Gi and the candidate parent sets Gi in each Gi . During

training, we take the logarithm of the features related to the number of candidate parent sets

(Features 2–5).

In the Upper bounding set, the features are characteristics of a directed graph that is an

optimal solution to a relaxation of the original BNSL problem. Notice here especially the

features based on strongly connected components (SCCs), which can be seen as a proxy for

cyclicity.4 In the Simple UB subset, a graph is obtained by letting each variable select its best

parent set according to the scores. The resulting graph may contain cycles, and the associated

score is a guaranteed upper bound on the score of an optimal DAG. Many of the reviewed

state-of-the-art solvers either implicitly or explicitly use this upper bounding technique;

however, they do not use this information to estimate the difficulty of a given instance. The

features summarize structural properties of the graph: in- and out-degree distribution over

the variables, and the number and size of non-trivial strongly connected components. In the

Pattern database UB subset, the features are the same but the graph is obtained by solving

a more sophisticated relaxation of the BNSL problem using the pattern databases technique

(Yuan and Malone 2012). Briefly, this strategy optimally breaks cycles among some subsets

of variables but allows cycles among larger groups; it is a strictly tighter relaxation than the

Simple UB. Both A∗ and CP explicitly make use of the pattern database relaxation.

Probing refers to running a solver for a fixed number of seconds and collecting statistics

about its behavior during the run. Probing has previously been shown to be an important

form of features, for example, in the context of Boolean satisfiability within the SATzilla

portfolio approach (Xu et al. 2008). Hutter et al. (2014) survey the use of probing features

in other domains. Here in the context of BNSL we consider four probing strategies: greedy

hill climbing with a TABU list and random restarts, an anytime variant of A∗ (Malone and

Yuan 2013), and the default versions of ILP (Cussens 2013) and CP (van Beek and Hoffmann

2015). All of these algorithms have anytime characteristics, so they can be stopped at any time

and output the best DAG found so far. Furthermore, the A∗, ILP, and CP implementations give

guaranteed error bounds on the quality of the found DAGs in terms of the BNSL objective

function; an error bound can also be calculated for the DAG found using greedy hill climbing

by using the upper bounding techniques discussed above. Probing is implemented in practice

4 Note that counting the number of cycles in a given graph is, in terms of computational complexity, presumably

highly intractable, whereas SCC computation is achieved fast with well-known polynomial-time algorithms.
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Table 1 BNSL features

Basic

1. Number of variables

2. Mean number of CPSs (candidate parent sets)

Basic extended

3–5. Number of CPSs max, sum, sd (standard deviation)

6–8. CPS cardinalities max, mean, sd

Upper bounding

Simple UB

9–11. Node in-degree max, mean, sd

12–14. Node out-degree max, mean, sd

15–17. Node degree max, mean, sd

18. Number of root nodes (no parents)

19. Number of leaf nodes (no children)

20. Number of non-trivial SCCs (strongly connected components)

21–23. Size of non-trivial SCCs max, mean, sd

Pattern database UB

24–38. The same features as for Simple UB but calculated on the graph derived from the pattern databases

Probing

Greedy probing

39–41. Node in-degree max, mean, sd

42–44. Node out-degree max, mean, sd

45–47. Node degree max, mean, sd

48. Number of root nodes

49. Number of leaf nodes

50. Error bound, derived from the score of the graph and the pattern database upper bound

A∗ probing

51–62. The same features as for Greedy probing but calculated on the graph learned with A∗ probing

ILP probing

63–74. The same features as for Greedy probing but calculated on the graph learned with ILP probing

CP probing

75–86. The same features as for Greedy probing but calculated on the graph learned with CP probing

by running each algorithm for 5 s and then collecting several features, including in- and

out-degree statistics and the error bound. We refer to these feature subsets of Probing as

Greedy probing, A∗ probing, ILP probing, and CP probing, respectively.

3.2 Model training and evaluation

In this work, we use the auto- sklearn system (Feurer et al. 2015) to learn an explicit

empirical hardness model T̂S for each solver S; Briefly, auto- sklearn uses a Bayesian

optimization strategy for learning good model classes and hyperparameters for those model

classes for a given training set; additionally, preprocessing strategies, such as polyno-

mial expansion or feature selection, and associated hyperparameters are included in this

optimization. Importantly, this approach avoids the difficult step of manually choosing hyper-
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parameters in an ad hoc fashion. We refer the reader to the original publication (Feurer et al.

2015) for more details.

In total, auto- sklearn selects from amongst eleven preprocessing strategies, including

higher dimensional projection techniques like polynomial expansion and feature selection

strategies based on, for example, mutual information. The default learning strategy for auto-

sklearn includes twelve model classes for regression and selects an ensemble of up to 50

regressors with optimized hyperparameters. In order to learn interpretable models and avoid

potential overfitting, we restricted the use of auto- sklearn to learn the hyperparameters

for a single preprocessor and random forest.5 As described in detail in Sect. 4.2, this study

includes three types of BNSL instances: Real, Sampled and Synthetic. For model training,

we used all of the three types of datasets.

The portfolios and prediction accuracy are evaluated using an “outer” tenfold cross-

validation scheme. In other words, the data is partitioned into 10 non-overlapping subsets.

For each fold, nine of the subsets are used to train the model. As a first step in training, we

normalize each feature so that it has zero mean and unit variance; the same mean and variance

are later used to scale the test data. We then use auto- sklearn to learn the respective mod-

els. Internally, auto- sklearn further splits the training data in an “inner” cross-validation

approach to avoid overfitting. We give 5 h for training time for each fold. The remaining

subset is used for testing, which only takes a few seconds; each subset is used as the testing

set once. Importantly, the subset used for testing is not at all seen by auto- sklearn during

training.

For testing, we predict the runtime of each testing instance using the appropriate model

for each solver. For the algorithm selection analysis in Sect. 5.2, we then select the solver

with the lowest predicted runtime. In order to accurately reflect the entire cost of algorithm

selection, we report the runtime of a portfolio on a given instance as the sum of the runtimes of

(i) feature computation for all feature sets used in the respective models and (ii) the selected

solver.

4 Experimental setup

We continue with a detailed description of our experimental setup, including descriptions

of the solver parameterizations used, the data sets used in the experiments, as well as the

computing infrastructure used.

4.1 Solvers

We begin by describing the exact parameterizations of complete BNSL solvers used in the

experiments. Specifically, we evaluate three complete approaches: Integer-Linear Program-

ming (ILP), A∗-based state-space search (A∗), and a constraint programming based approach

(CP). Importantly, these approaches constitute the current state-of-the-art solvers for BNSL.6

We consider the following solvers and their parameterizations. We refer to all of the solvers

for each approach as a solver family.

5 The choice of preprocessor was not restricted.

6 In a preliminary version of this work (Malone et al. 2014), we also considered an earlier proposed branch-

and-bound approach (de Campos and Ji 2011), which we found to be always dominated by ILP; therefore, we

dropped it from consideration. Furthermore, the earlier proposed dynamic programming approach (Koivisto

and Sood 2004) is clearly dominated by A∗. We have also discarded some parameterizations of both ILP- and

A∗-based solvers that were found to be uncompetitive.
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ILP We use the GOBNILP solver (Cussens 2013) as a state-of-the-art representative of

the ILP-based approaches to BNSL. GOBNILP uses the SCIP framework (Achter-

berg 2009) and an external linear program solver; we chose the open source SoPlex

solver (Wunderling 1996) bundled with the SCIP Optimization Suite. We consider

the most recent version, GOBNILP 1.6.2, which uses SCIP 3.2.0 with SoPlex 2.2.0,

as well as GOBNILP 1.4.1 (SCIP 3.0.1, SoPlex 1.7.1). For both versions we consider

two parameterizations: the default configuration, which searches for BNSL-specific

cutting planes using graph-based cycle finding algorithms, and a second configura-

tion, “-nc” (“no cycle-finding”), which only uses nested integer programs. We call

these parameterizations ilp-141, ilp-141-nc, ilp-162, and ilp-162-nc, respectively,

for short.

A∗ We use the URLearning solver (Yuan and Malone 2013) as a state-of-the-art rep-

resentative approach to BNSL based on the A∗ search method. We consider three

parameterizations: A∗-ed3, which uses dynamic pattern databases, A∗-ec, which uses

a combination of dynamic and static pattern databases, and A∗-comp which uses a

strongly connected component-based decomposition (Fan et al. 2014).

CP We use the CPBayes solver (van Beek and Hoffmann 2015) as the most recent

state-of-the-art representative approach to BNSL based on branch-and-bound style

constraint programming search with problem-specific filtering (search-space prun-

ing) techniques. This solver does not expose any parameters to control its behavior,

so we apply the solver in our experiments in its default configuration, cpbayes.

The non-default parameterizations of the solvers were suggested to us by the solver devel-

opers. While we use both an “up-to-date” version (1.6.2) and an older version (1.4.1) of

GOBNILP, it is important to note that, generally, the choice of parameters and the solver

version can at times have a noticeable effect on the per-instance runtimes of the resulting

solver—so much so that one could consider the solvers different.7

4.2 Training data

To train our models we first obtained a collection of datasets from various sources. For each

dataset we then evaluated one or more scoring functions to produce a collection of BNSL

instances. We used datasets from the following three categories.8

Real Real-world datasets obtained from machine learning repositories: the UCI

repository (Bache and Lichman 2013), the MLData repository (http://mldata.

org/), and the Weka distribution (Hall et al. 2009). We searched primarily

for datasets of fully or mostly categorical data and a reasonable number of

variables (16–64) to produce instances that are feasible but non-trivial to solve.

Every dataset found and matching these criteria was included. While some

of the datasets have originally been designed for supervised learning, they

have been regularly included also in studies of unsupervised learning. These

datasets are summarized in more detail in Table 9 of the Appendix.

Sampled Datasets sampled from benchmark Bayesian networks, obtained from http://

www.cs.york.ac.uk/aig/sw/gobnilp/. These datasets are widely used for eval-

7 For corroborating evidence on this, see, e.g., empirical data provided (Cussens 2013) for different parame-

terizations and versions of GOBNILP.

8 The main motivations for including both more real and, on the other hand, synthetic datasets in the study

are twofold: (i) We aimed at a notably heterogeneous set of benchmarks for the study, yielding insights into

the prediction task on a wide range of datasets with different properties; and (ii) the three-way categorization

has analogies in the benchmark categorization used in the SAT domain (Järvisalo et al. 2012).
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Table 2 Number of source

datasets, instances generated

from the source datasets, and

instances used in training and

testing the models

Category Datasets All instances Training and testing

Real 39 637 486

Sampled 19 317 283

Synthetic 477 477 410

uating the performance of individual solvers, for example, recently in the

context of optimal BNSL (Bartlett and Cussens a; van Beek and Hoffmann

2015; Berg et al. 2014; Cussens 2013; Fan et al. 2014; Fan and Yuan 2015;

Malone et al. 2014, 2015; Saikko et al. 2015). These datasets are summarized

in Table 10 of the Appendix.

Synthetic Datasets sampled from synthetic Bayesian networks. We generated random

networks of varying number of binary variables (20–60) and maximum in-

degree (2–8). For each network one dataset was produced by sampling a

random number (100–10,000) of records.

We preprocessed each dataset by removing unique identifiers (to avoid overfitting) and

trivial variables that only take on one value. Continuous variables as well as other variables

with very large domains were either removed or discretized using a normalized maximum

likelihood approach (Kontkanen and Myllymäki 2007) when possible. The maximum number

of records per dataset was limited to 60,000 to make the evaluation of scoring functions

feasible.

We considered five different scoring functions9: the BDeu score with the Equivalent Sam-

ple Size parameter selected from {0.1, 1, 10, 100} and the BIC score. For each dataset in

the Real and Sampled categories we produced multiple instances by considering all scor-

ing functions and varying upper bounds on the size of each candidate parent set, ranging

from 2 to 6, as well as the unbounded case. For each dataset in Synthetic we produced

one instance, choosing both the scoring function and the parent limit at random. For larger

datasets, evaluating the scores was feasible only up to lower values of the maximum par-

ent set size. The total number of datasets and BNSL instances produced is summarized in

Table 2.

For running all solvers on these instances we used a cluster of Dell PowerEdge M610

computing nodes equipped with two 2.53-GHz Intel Xeon E5540 CPUs and 32-GB RAM.

For each individual run we used one CPU core, with a timeout of 2 h and a 30-GB memory

limit. We treat the runtime of any instance as 2 h if a solver exceeds either the time or memory

limit.

For training the models, we used a subset of all instances obtained by removing very

easy instances, solved within 5 s by all solvers, as well as instances on which all solvers

failed.10 We call these the training instances (see Table 2) and focus on them in the following

sections.

9 In our experiments, the results were not very sensitive to the scoring function, except through its effect on

the number of candidate parent sets and other features, so our results can generalize to other decomposable

scores as well.

10 This is in line with related work on portfolio construction in other domains such as SAT (Hutter et al.

2014) as well as the SAT Competitions where a similar criterion is used to filter out “too easy” instances from

the competition benchmark sets (Balint et al. 2015). Solver selection for very easy instances is trivial, as any

choice of a solver is essentially a good one.
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Table 3 The runtime of feature

computation for each feature

category in seconds, shown as the

average, median, minimum, and

maximum runtime over all

training instances

Feature set Average Median Min Max

Basic 0.00 0 0 0

Basic extended 0.00 0 0 0

Lower bounding 0.00 0 0 0

Greedy probing 2.53 2 0 6

A* probing 4.61 5 0 7

ILP probing 3.94 5 0 10

CP probing 4.49 6 0 10

All 15.57 18 0 26

4.3 Feature computation

In order to train the models we computed the features detailed in Sect. 3.1 for all training

instances. Table 3 summarizes the time spent to compute these features separately for each

feature category. We observe that the computation takes around 16 s per instance on average

and about 26 s in the worst case. Further, most of the time is spent on probing, while features

of all other categories are computed in less than 1 s. In other words, a time limit needs to

be enforced only for computing the probing features. As witnessed by the maximum feature

computation times, probing occasionally exhibits higher running times than the limit of 5 s

to finish a preprocessing step. This can be caused by overhead resulting, for example, from

memory deallocation operations. We gave an additional 5 s for probing to finish on those

specific instances. If the probing solver was still not completed within this time, it was

terminated.

All in all, the overhead from computing the features is negligible from a portfolio per-

spective, as our main interest is in choosing the fastest solver for harder instances that take

several minutes or even hours to solve. The easiest instances by contrast are often solved

already in the probing phase.11

4.4 Availability of experiment data

To facilitate open access and further analysis of the data produced in the experiments of this

work, we have made the full solver runtime data, as well as the models learned for runtime

prediction, available at

http://bnportfolio.cs.helsinki.fi/.

Furthermore, the runtime and feature data are available as a scenario in the ASlib Algorithm

Selection Library (Bischl et al. 2016) for further benchmarking purposes at

http://github.com/coseal/aslib_data/tree/master/BNSL-2016.

5 Portfolios for BNSL

This section focuses on the construction of practical BNSL solver portfolios in order to

address question Q1. Optimal portfolio behavior is to always select the best-performing solver

11 The benchmark set used was not filtered based on probing results.
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Fig. 3 The number of training instances for which a solver was fastest. Ties between solvers are broken at

random

for a given instance. As the main result, we will show that, perhaps somewhat surprisingly, it

is possible to construct a practical BNSL solver portfolio that vastly outperforms any single

solver using only the Basic features.

5.1 Solver performance

As the basis of this work, we ran all the solvers on all the BNSL instances, as described in

Sect. 4. A comparison of solver performance is shown in Fig. 3, in terms of the number of

instances for which a particular solver was empirically faster than all other solvers on the

considered benchmarks. Tables 4 and 5 show an alternative comparison in terms of the total

number of instances that were successfully solved within the given computational resources

as well as the total CPU time required to either solve an instance or run out of time or

memory. The results are given in comparison to the Virtual Best Solver (VBS), which is the

theoretically optimal portfolio that always selects the best solver, constructed by selecting a

posteriori the fastest solver for each input instance. Essentially, a theoretical lower bound on

the runtime of any portfolio approach using a fixed set of k solvers is the runtime of the VBS.

Furthermore, by interleaving the executions of the solvers until the best solver for a specific

instance terminates, a theoretical upper bound of k times the runtime of the VBS is obtained.

We observe that among the ILP parameterizations, the two default configurations, ilp-

141 and ilp-162, are empirically best-performing on the considered benchmarks, while in

terms of total runtime all four show fairly similar performance empirically. Among the A∗

parameterizations, A∗-comp does best on average, while A∗-ec outperforms A∗-ed3 on nearly

all instances and is also often the fastest parameterization in the Real category, even though

its total performance is worse than that of A∗-comp.

In terms of the the relative performance of the solvers, Fig. 4 shows the pairwise correla-

tions between the solvers on all instances. Unsurprisingly, different parameterizations within
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Table 4 The performance of all solvers as well as the Virtual Best Solver (VBS) and four portfolios on all

training instances, measured as the number of instances solved and the overall runtime

Solver Instances solved (%) Runtime (s)

Cumulative Average Median

VBS 1179 100 259,440 220 7.33

VBS without CP 1164 98 368,690 313 9.40

VBS without A∗ 1157 98 475,032 403 8.96

VBS without ILP 937 79 2,022,296 1715 33.35

portfolio-basic 1141 96 540,384 458 12.30

autofolio-basic 1146 97 548,030 465 18.34

portfolio-all 1152 97 488,093 414 27.70

autofolio-all 1152 97 501,146 425 23.84

ilp-141 1036 87 1,364,855 1158 36.39

ilp-141-nc 1034 87 1,384,022 1174 41.83

ilp-162 1029 87 1,453,932 1233 29.56

ilp-162-nc 1026 87 1,494,879 1268 32.18

cpbayes 896 75 2,423,547 2056 85.83

A∗-comp 768 65 3,152,809 2674 185.79

A∗-ec 519 44 4,866,797 4128 7200.00

A∗-ed3 478 40 5,163,876 4380 7200.00

Instances that were not successfully solved within the given resources count as 7200 s in the runtimes

the same solver family correlate strongly with each other. Within the A∗ family, the strongest

correlation is between A∗-ec and A∗-ed3, while all ILP parameterizations are strongly corre-

lated, though mildly less so between different versions of the solver. Between solver families,

A∗ and ILP correlate with each other the least, while CP exhibits mild correlation with ILP

and moderate correlation with A∗. Interestingly, A∗-comp correlates more with CP than with

the other A∗ parameterizations.

While the ILP approach appears to be the best-performing measured in the total runtime

and the number of instances solved on the set of benchmarks considered, the results suggest

that the performance of ILP on a per-instance basis is quite orthogonal to that of both CP

and A∗ (recall Fig. 1). We will now show that a BNSL solver portfolio can closely capture

the best-case performance of all eight of the considered solver parameterizations in terms of

empirical runtimes.

5.2 Portfolios for BNSL

As a main observation reported on in this section, we found that using only the Basic features

(number of variables, n, and mean number of candidate parent sets, m/n) is enough to

construct an efficient BNSL solver portfolio. We emphasize that, while on an intuitive level

the importance of these two features may be to some extent unsurprising, such intuition

does not directly translate into an actual predictor that would close-to-optimally predict the

best-performing solver.

We create two portfolios that select a solver based on the runtime predictions from a

random forest and preprocessor with hyperparameters optimized by auto- sklearn (Feurer

et al. 2015), as described in Sect. 3.2. We denote these portfolios (i) portfolio-basic and (ii)
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Table 5 The performance of all solvers and portfolios within each instance category

Solver Solved (%) Runtime (s) Category

Cumulative Average Median

VBS 486 100 92,165 78 2.69 Real

VBS without CP 480 98 141,833 120 5.13

VBS without A∗ 469 96 244,625 207 5.60

VBS without ILP 448 92 370,212 314 8.48

portfolio-basic 470 96 209,490 178 4.60

autofolio-basic 469 96 232,889 198 9.78

portfolio-all 475 97 175,555 149 16.66

autofolio-all 474 97 197,599 168 16.00

ilp-141 396 81 800,432 679 55.68

ilp-141-nc 396 81 799,734 678 56.78

ilp-162 382 78 882,431 748 44.24

ilp-162-nc 382 78 887,222 753 48.25

cpbayes 427 87 549,230 466 14.85

A∗-comp 382 78 860,025 729 65.98

A∗-ec 311 63 1,300,350 1103 156.30

A∗-ed3 281 57 1,523,034 1292 523.43

VBS 283 100 62,010 53 5.62 Sampled

VBS without CP 278 98 92,511 78 6.31

VBS without A∗ 280 98 97,027 82 5.95

VBS without ILP 227 80 453,422 385 33.07

portfolio-basic 274 96 131,034 111 9.02

autofolio-basic 277 97 123,468 105 17.15

portfolio-all 278 98 115,254 98 23.97

autofolio-all 280 98 97,502 83 19.08

ilp-141 256 90 253,298 215 9.54

ilp-141-nc 254 89 266,871 226 13.91

ilp-162 257 90 280,990 238 13.57

ilp-162-nc 252 89 309,674 263 15.07

cpbayes 212 74 603,795 512 91.45

A∗-comp 182 64 749,656 636 145.95

A∗-ec 81 28 1,488,628 1263 7200.00

A∗-ed3 71 25 1,558,424 1322 7200.00

VBS 410 100 105,264 89 14.98 Synthetic

VBS without CP 406 99 134,346 114 16.15

VBS without A∗ 408 99 133,380 113 15.90

VBS without ILP 262 63 1,198,662 1017 357.74

portfolio-basic 397 96 199,860 170 25.44

autofolio-basic 400 97 191,674 163 26.44

portfolio-all 399 97 197,284 167 38.68

autofolio-all 398 97 206,045 175 36.77

ilp-141 384 93 311,125 264 45.16
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Table 5 continued

Solver Solved (%) Runtime (s) Category

Cumulative Average Median

ilp-141-nc 384 93 317,417 269 50.39

ilp-162 390 95 290,512 246 30.32

ilp-162-nc 392 95 297,984 253 29.48

cpbayes 257 62 1,270,522 1078 758.21

A∗-comp 204 49 1,543,127 1309 7200.00

A∗-ec 127 30 2,077,819 1762 7200.00

A∗-ed3 126 30 2,082,419 1766 7200.00

Fig. 4 Pairwise (Pearson)
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portfolio-all, using (i) the Basic features only and (ii) the full feature set, respectively, to

make the algorithm selections.

Tables 4 and 5 show the performance of these two portfolios compared to each individual

solver parameterization as well as the Virtual Best Solver. The reported portfolio runtimes

include both the time required to run the selected solver and the time spent to compute the

features used by the portfolio. Figures 5, 6, 7 and 8 present a more detailed view of portfolio

performance, measured as the number of instances solved within a specific time, for the full

benchmark set (All; Fig. 5), as well as the individual benchmark categories: Real (Fig. 6),

Sampled (Fig. 7), and Synthetic (Fig. 8). Again, the time required to compute the necessary

features is included in the solving time. We observe that portfolio-basic solves over 96% of

the instances in the full benchmark set, with a cumulative runtime roughly twice that of the

VBS. It also greatly outperforms every individual solver; the fastest solvers overall are the

ones in the ILP solver family, which all solve 87% of the instances and are over five times

slower than the VBS. The portfolio using only the Basic features is only slightly worse than

portfolio-all, which solves a handful more instances and has a somewhat lower cumulative

runtime. The difference between the two portfolios is more pronounced within the Real

and Sampled categories, while within Synthetic their performance is almost equal. This

is presumably due to both portfolios heavily leveraging the ILP family, which alone exhibits

very good performance in Synthetic, solving 95% of the instances.
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Fig. 5 Fraction of instances solved by the VBS, the portfolios, and individual solvers within a given amount

of time

Fig. 6 Fraction of instances of the Real category solved by the VBS, the portfolios, and individual solvers

within a given amount of time

For understanding the marginal contributions of the selected solvers, we consider the

Shapley value (Shapley 1953) as a measure for the contribution of a specific solver to a

portfolio, following Fréchette et al. (2016). In this framework, one considers constructing

a portfolio by adding solvers incrementally and measuring the value of each solver as the

increase in the portfolio’s performance when the solver is added. As these values greatly

depend on the order in which solvers are added, the Shapley value of a solver is defined as

its average value over all possible solver permutations. Table 6 shows the Shapley values for

all solver parameterizations, using the total number of instances solved as the measure of

portfolio performance. Within each of the solver families, we observe that ilp-162, cpbayes,

and A∗-comp, respectively, have the highest Shapley values on the considered benchmarks.
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Fig. 7 Fraction of instances of the Sampled category solved by the VBS, the portfolios, and individual

solvers within a given amount of time

Fig. 8 Fraction of instances of the Synthetic category solved by the VBS, the portfolios, and individual

solvers within a given amount of time

Given the good runtime performance of the portfolios obtained using runtime predictions

from random forests as the underlying algorithm selection strategy, it is interesting to investi-

gate to what extent the choice of algorithm selection strategy impacts portfolio performance

using the same set of BNSL features. For comparison, we consider AutoFolio (Lindauer

et al. 2015), a state-of-the-art algorithm selection system,12 for constructing the portfolios

12 In particular, we use an updated version recommended by the author, https://github.com/mlindauer/

AutoFolio.
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Table 6 The contribution of

each solver to the VBS and the

two portfolios measured as the

Shapley value in terms of the

average number of additional

instances solved after adding the

indicated solver to the portfolio

Solver VBS portfolio-all portfolio-basic

ilp-162 184.53 181.82 178.75

ilp-141 184.12 179.78 181.86

ilp-141-nc 182.48 179.62 178.79

ilp-162-nc 181.50 178.96 177.44

cpbayes 160.42 152.18 149.37

A∗-comp 136.24 131.60 127.62

A∗-ec 78.28 77.72 77.10

A∗-ed3 71.43 70.34 70.08

autofolio-basic (using AutoFolio on the Basic feature set) and autofolio-all (using Aut-

oFolio on the full feature set).13

AutoFolio (Lindauer et al. 2015) trains a binary classifier for each pair of solvers which

selects the better-performing for a given instance; the instances are weighted based on the

difference in performance for the two solvers. Further, AutoFolio selects among the feature

sets to use during testing to minimize the overall solution time. A Bayesian optimization

strategy is used to optimize the classifier hyperparameters, feature set and preprocessing

choices.14 For an unseen instance, each of the trained classifiers votes for a solver; the solver

with the most votes is used for that instance. The training and testing splits were the same

for both AutoFolio and auto- sklearn. For AutoFolio, we also used an “outer” tenfold

cross-validation scheme to ensure it does not use testing instances during training.

The two portfolios produced by AutoFolio perform very similarly on the benchmark

set as those based on predicting runtimes with random forests. In more detail, autofolio-

all solves more instances than portfolio-all within the first 30 s for all instance types; this

is because AutoFolio does not always use all of the feature sets, so it spends less time

computing features during test time. After this initial phase, the number of instances solved

under a given per-instance timeout was very similar for portfolio-all and autofolio-all. As

Table 4 shows, though, in total, portfolio-all has a slightly lower cumulative runtime than

autofolio-all; the detailed breakdown in Table 5 clarifies that this is largely due to better

performance of portfolio-all on the Real instances.

On the other hand, portfolio-basic solves more instances than autofolio-basic in the

30 s time limit. Indeed, portfolio-basic consistently outperforms all of the other portfolios

and individual solvers within this time limit for all instance types. Eventually, autofolio-

basic solves 5 more instances than portfolio-basic, albeit with a higher average and median

runtime. In total, we do not see significant differences between the portfolios based on

AutoFolio and auto- sklearn. This may be at least partially due to the fact that, internally,

they both use the SMAC Bayesian optimization engine (Hutter et al. 2011) and similar model

classes and preprocessors.

13 We thank an anonymous reviewer for proposing this comparison with AutoFolio.

14 The AutoFolio implementation includes a pre-solving component (Hoos et al. 2015). We disabled that

feature for purposes of this comparison in order to strictly consider how well the models capture solver

behavior; however, a similar strategy could be used to include a pre-solver for the auto- sklearn-based

approach, as well.
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Fig. 9 All benchmark instances plotted in the space of the two Basic features, the number of variables and

the mean number of candidate parent sets (CPS). Each instance is marked according to which solver was the

fastest to solve it, specifically, whether the fastest solver was from the A∗, ILP, or CP family, or whether none

of the solvers could solve the instance. The comparison is presented for all solver families together (top left)

and individually for each single family, highlighting their limitations as either or both features grow too large

5.3 Basic features and solver performance

As the Basic features yield efficient BNSL portfolios, we look more closely at the effect of the

per-instance Basic feature values on solver performance. Figure 9 reinforces the orthogonal

strengths of different solver families in the space spanned by these two features. Specifically,

we observe that ILP parameterizations can fairly reliably solve instances up to around 1000

candidate parent sets per variable, regardless of the number of variables. In comparison, the

A∗ family consistently solves benchmark instances up to 30 variables, and many up to 40,

even with tens of thousands of candidate parent sets per variable. Our results show that CP

takes a middle ground between the two, solving many instances at the high end of either of

the Basic features, albeit less consistently than either A∗ or ILP.

In particular, Fig. 9 (top left) demonstrates why the Basic features result in strong portfolio

behavior; namely, the instances which are optimally solved by the different solver families

are nearly linearly separable in this space. The figure also supports the rough characterization

(recall Sect. 1) of the computational limitations of state-of-the-art solvers: none of the state-

of-the-art solvers are able to solve the benchmark instances where both of the Basic features

are very large.

Finally, we look deeper into the relationship between each feature independently and the

specific solvers. Here we focus on A∗-comp, cpbayes, and ilp-162 since they have the highest

Shapley value within the respective solver families for portfolio-all; we observed very similar

trends for all solvers in each solver family. Figure 10 illustrates that the runtimes for ilp-162

and the number of candidate parent sets are strongly related (coefficient of determination,

123



268 Mach Learn (2018) 107:247–283

A∗-comp

cpbayes

ilp-162

Fig. 10 Relationship between the Basic features, the number of variables and the mean number of candidate

parent sets (CPS), and the runtimes of solvers

that is, explained variance, R2 ≈ 0.78).15 On the other hand, the number of variables better

explains the variance in the runtimes of cpbayes (R2 ≈ 0.39) and A∗-comp (R2 ≈ 0.47).

Conversely, ilp-162 appears not to depend heavily on the number of variables (R2 ≈ 0.0004),

while A∗-comp and cpbayes seem able to solve instances irrespective of the number of

candidate parent sets (R2 ≈ 0.01, R2 ≈ 0.09, respectively).

6 Predicting runtimes

In this section, we turn to the arguably harder problem of predicting per-instance runtimes

of individual solvers. Apart from pure scientific interest, accurate runtime predictions on a

per-instance basis are useful for job schedulers as computing clusters often require an esti-

mated job time. In our case specifically, such predictions could also facilitate development of

improved BNSL solvers. For example, a model could be exploited as a heuristic estimate for

subproblem hardness during search within a parallel BNSL solver. As a further motivation,

model-based algorithm configuration (Hutter et al. 2011) crucially relies on runtime predic-

tions in order to guide search for better configurations in the algorithm configuration space.

In such contexts, note also that runtime is a primary resource to predict, as running out of

other resources such as memory directly imply running out of time as well.

15 R2 ranges from 0 to 1, where 0 indicates that the feature is completely uninformative about runtime, and

1 indicates that all of the variance in runtime is explained by the respective feature.
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llAcisaB

A∗-comp

cpbayes

ilp-162

Fig. 11 The actual runtimes of solvers compared to the predicted runtimes when using Basic (left) or All

(right) features

As shown in Sect. 5, the Basic features can effectively distinguish between solvers to use

on a particular instance of BNSL. We will now address question Q2, that is, whether the use

of additional features (cf. Sect. 3.1) improves the accuracy of the runtimes predicted by the

random forests learned with auto- sklearn.

6.1 Predictions with added features

Figure 11 depicts the actual runtimes of solvers compared to the runtimes predicted by the

random forests learned with auto- sklearn. We again use A∗-comp, cpbayes, and ilp-162

as representatives of their solver families (recall Sect. 5.2; similar conclusions hold for all

solvers within the respective families). On the left we see this comparison for models trained

using the Basic features only. Even though these predictions allow for good portfolio behavior,

the considerable amount of prediction error makes them less useful for obtaining accurate

estimates of the runtime. The right side, on the other hand, shows the same comparison when

using All, where the predictions are more concentrated near the diagonal. In other words, the

larger, more sophisticated feature set results in more accurate runtime predictions. Table 7

presents a numerical measure of the improvement in terms of change in the approximation
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Table 7 The percentage of instances with an approximation factor within the given ranges of ρ, when

predicting runtimes based on either Basic or All features

Range of ρ A∗-comp cpbayes ilp-162

Basic (%) All (%) Basic (%) All (%) Basic (%) All (%)

< 2 48 60 45 67 59 71

[2, 5) 22 22 27 20 29 22

[5, 10) 14 7 13 7 7 4

> 10 17 11 15 6 4 3

Higher percentages with lower approximation values indicate more accurate predictions

Table 8 The coefficient of determination (R2) for the actual runtime given the predicted runtime

Solver A∗-ec A∗-ed3 A∗-comp cpbayes ilp-141 ilp-141-nc ilp-162 ilp-162-nc

Basic 0.71 0.79 0.57 0.51 0.67 0.69 0.73 0.72

All 0.86 0.89 0.66 0.65 0.76 0.78 0.81 0.79

factor, defined as ρ = max{ a
p
,

p
a
}, where a and p are the actual and predicted runtimes,

respectively. In particular, smaller approximation factors are better.

Additionally, we show the coefficient of determination (R2) values of the predictions

in Table 8. These values show that the observed variances in the actual runtimes are well-

explained by the predictions. As expected, R2 is always higher (better) when using All

features compared to only the Basic ones. This offers another view which shows that the

more sophisticated features improve prediction accuracy.

We also evaluated the impact of incrementally adding sets of features. Figures 12 and 13

show how the prediction error changes as we add Basic (features 1–2), Basic extended

(1–23), Upper bounding (1–38), the relevant probing features for A∗ (1–38, 51–62), CP

(1–38, 75–86), and ILP (1–38, 63–74), and finally All (1–86) for every solver. The results

show that predictions using the Basic features are typically worse than those incorporating

the other features, although this behavior is more pronounced for some solvers, feature sets

and instance categories than others. The plots also suggest that some features help more than

others for the different solvers. For instance, Upper bounding features greatly improve the

predictions of A∗ compared to the Basic and Basic extended features. In hindsight, this is

relatively unsurprising since the efficacy of the upper bounding directly impacts the perfor-

mance of A∗, showing that auto- sklearn effectively exploits features we intuitively expect

to characterize the empirical hardness. Probing offers a glimpse at the true runtime behavior

of the algorithms, and auto- sklearn leverages this information to further improve predic-

tion accuracy. For both A∗ and ILP, probing with the respective solvers alone is informative,

while the other probing strategies (All features) yield little improvement and even weaken

some of the predictions. In contrast, surprisingly, for CP the predictions modestly benefit

from probing with other solvers as well. Out of the three solver families CP predictions

improve most from added features in general.

Finally, we evaluate the root mean squared error (RMSE) of the predictions for each solver

as we incrementally add feature sets. Figure 14 echoes the results from Figs. 12 and 13.

We again see that Upper bounding improves predictions on all A∗ parameterizations. The
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Fig. 14 The improvement of the root mean squared error of the runtime predictions as the more sophisticated

features are used. “Probing” refers to the appropriate probing feature set for the respective solver, such as A∗

probing for the A∗-ec solver

respective probing features greatly improve the prediction accuracy for A∗-ec and A∗-ed3;

relevant probing modestly improves the accuracy for the other solvers, as well.

6.2 Preprocessing characteristics

We now turn to more qualitative analysis based on the preprocessor and single random forest

with optimized hyperparameters learned by auto- sklearn.

First, we examine preprocessor choices. As shown in Fig. 15, the choice of preprocessor

often reflects the amount of information inherently available in the feature sets. Furthermore,

Fig. 15 includes a clustering of the solvers and feature sets based on the choice of preprocessor.

In the clustering, we see that the families of solvers tend to cluster together.

The Basic feature set (dark tan) almost always result in a preprocessor which increases

the dimensionality, either the polynomial expansion or random forest embedding technique;

we interpret this to mean that the features alone do not provide sufficient information for

accurate prediction, so auto- sklearn attempts to increase the information with prepro-

cessing. Likewise, many of the “mildly informative” feature sets, such as Simple UB (dark

teal), almost exclusively result in polynomial expansion for preprocessing the input features.

Interestingly, the Basic extended feature set (light tan) results in polynomial expansion, a

dimensionality expansion strategy, and feature agglomeration, a dimensionality reduction

strategy, in roughly equal proportions for all solvers.

On the other hand, for the A* algorithms with the larger feature sets like All (light brown),

auto- sklearn has “too much” information, so it uses feature aggregation, as well as model-

based and percentile-based feature selection, to combine or remove uninformative features;

these choices typically are statistically significant. Preprocessing is usually not used for

predicting most of the ILP runtimes using “informative” feature sets, such as All and ILP

Probing (light teal); again, almost all of these choices are statistically significant.

This analysis demonstrates that the choice of preprocessing strategy by auto- sklearn

largely agrees with intuition. For small, relatively uninformative feature sets, feature expan-

sion strategies like polynomial expansion are often used; when more informative features are

available, they are relatively unchanged. Finally, when “too much” information is present,

sophisticated feature selection strategies are used to retain useful features while removing

noise.

123



274 Mach Learn (2018) 107:247–283

Solvers

A∗-comp

A∗-ec

A∗-ed3

cpbayes

ilp-141-nc

ilp-141

ilp-162-nc

ilp-162

Feature sets

A∗ probing

All

Basic

Basic extended

CP probing

Greedy probing

ILP probing

Pattern database UB

Simple UB

N
o
n
e

P
o
ly

n
o
m

ia
l
ex

p
an

si
o
n

R
an

d
o
m

tr
ee

em
b
ed

d
in

g

F
ea

tu
re

ag
g
lo

m
er

at
io

n

M
o
d
el

-b
as

ed

P
er

ce
n
ti
le

-b
as

ed

IC
A

P
C
A

Preprocessing technique

ilp-162; Basic extended
ilp-141-nc; Basic extended
A∗-ed3; Basic extended
A∗-comp; Basic extended
A∗-ec; Basic extended
cpbayes; Simple UB
cpbayes; Basic extended
ilp-162; Simple UB
cpbayes; Pattern database UB
ilp-141-nc; Simple UB
cpbayes; Greedy probing
cpbayes; ILP probing
ilp-162-nc; Simple UB
cpbayes; A∗ probing
cpbayes; CP probing
ilp-141; Simple UB
cpbayes; Basic
A∗-comp; Basic
ilp-141-nc; Basic
A∗-ed3; Basic
A∗-ec; Basic
ilp-162; Basic
ilp-141; Basic
ilp-162-nc; Basic
ilp-162-nc; Pattern database UB
ilp-141-nc; A∗ probing
ilp-162; Pattern database UB
ilp-141-nc; CP probing
ilp-162-nc; Basic extended
ilp-141-nc; Pattern database UB
ilp-141; Basic extended
ilp-162; All
ilp-141-nc; All
ilp-162; CP probing
ilp-162-nc; All
ilp-141; Pattern database UB
ilp-141; CP probing
ilp-162; A∗ probing
ilp-162; ILP probing
ilp-162-nc; A∗ probing
ilp-141; All
ilp-141-nc; ILP probing
ilp-141-nc; Greedy probing
ilp-141; A∗ probing
ilp-141; Greedy probing
ilp-141; ILP probing
ilp-162-nc; Greedy probing
ilp-162; Greedy probing
ilp-162-nc; ILP probing
ilp-162-nc; CP probing
A∗-ec; A∗ probing
A∗-comp; All
A∗-ec; ILP probing
A∗-ed3; A∗ probing
A∗-ec; Pattern database UB
A∗-ed3; ILP probing
A∗-ec; CP probing
A∗-comp; Pattern database UB
A∗-comp; Greedy probing
A∗-ec; Simple UB
A∗-comp; CP probing
A∗-ed3; Simple UB
A∗-comp; ILP probing
A∗-ec; All
A∗-comp; A∗ probing
cpbayes; All
A∗-ed3; All
A∗-ed3; Pattern database UB
A∗-ed3; Greedy probing
A∗-comp; Simple UB
A∗-ed3; CP probing
A∗-ec; Greedy probing

S
o
lv

er
;
F
ea

tu
re

se
t

0

2

4

6

8

10

Preprocessor
Uses

Fig. 15 The preprocessing techniques used by auto- sklearn for each combination of solver and feature

set. The blue–green column of colors on the left indicate the solver in that row, and the green–brown column

indicates the feature set; the text on the right also gives this information. Each cell shows the number of times

the respective preprocessing technique was selected in one of the ten cross-validation folds for the associated

(solver, feature set) pair. The UPGMA algorithm (Sokal and Michener 1958) with a Euclidean distance metric

was used for clustering. Cells shaded in green indicate statistically significantly high choices (p < 0.01,

one-sided binomial test comparing to a uniform distribution, Benjamini–Hochberg multiple test correction)

(Color figure online)
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6.3 Model complexity

We additionally analyzed the complexity of the learned random forests, in terms of the mean

size of the regression trees composing them. As expected, Fig. 16a shows that the trees

learned using the Basic features are the smallest. Other simpler feature sets, such as Basic

extended and Simple UB also resulted in small trees for all solvers.

Somewhat surprisingly, though, the regression trees for the various ILP solvers are much

larger than those for the cpbayes and A∗ family of solvers for the A∗ probing, Pattern

database UB, All and CP probing feature sets. As shown in Fig. 15, auto- sklearn often

forewent preprocessing in these cases for ILP. On the other hand, it used sophisticated pre-

processing, like the model-based approach, for A∗ and cpbayes a significant amount of the

time. Thus, these results suggest an implicit tradeoff in auto- sklearn between resources

used for preprocessing and the model itself.

Also unexpectedly, the trees for ILP without the graph-based cutting plane routines (the

“-nc” parameterizations) are much larger than those using it with the ILP probing feature

set. We hypothesize this is due to differences in the ILP implementation used for probing

and the “-nc” solvers; namely, the ILP implementation used in probing does use the graph-

based cutting plane routines. auto- sklearn uses preprocessing only sparingly in all of

these cases, so it again appears that a more complex model is used to handle the noise in the

features.

6.4 Important features

Finally, we computed the Gini importance (Breiman 2001) of each feature for predicting

each solver while using the appropriate Probing features. The importance for a particular

feature is calculated using a standard two-step technique (Breiman 2001). First, the feature

is corrupted with noise to create a new dataset. Then, the new dataset is used for training and

testing as usual. The normalized increase in error when using the noisy feature is taken as

its importance. For the random forests, this procedure is performed for all trees in the forest.

The feature importance is then the average across all trees. Finally, we average the feature

importances across each cross-validation fold.

Figure 16b shows important features for the different solvers. Several of the importances

are unsurprising; the number of variables in the dataset determines the size of the search space

for A∗, and that was the most important feature for all parameterizations. Similarly, the size

of the linear program solved by ILP is directly determined by the number of candidate parent

sets, and its most important features describe these sets. Likewise, the respective probing error

bound features were typically somewhat important for ILP and CP. This is sensible because

these features indicate when a solver can quickly converge to a nearly-optimal solution;

however, as could be seen from Fig. 14, the overall improvement to RMSE is modest with

the addition of the probing features.

Figure 16b shows that the CP and A∗ family models share many important features. For

example, CP uses the pattern database relaxation which also guides the A∗ search, and pattern

database node degree features are indeed important for both CP and A∗ models.

In contrast to ILP and CP, A∗-comp is the only A∗ parameterization for which probing

was an important feature. Coupled with the minimal improvement to RMSE shown in Fig. 14

when using probing, this suggests that the runtime characteristics of the anytime variant of

A∗ are different enough from the A∗ family of solvers included in the portfolio that it adds

significant noise to learning.
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Fig. 16 a The average size of the regression trees in the random forests learned by auto- sklearn for each

solver and feature set. b The Gini importance (Breiman 2001) of features in the learned random forest models

for each solver using the respective Probing feature set. Only features with an importance of at least 0.05 for

at least one solver are included. We use the abbreviations “CPS” for candidate parent sets, “Pd” for pattern

database, and “sd” for standard deviation. The UPGMA algorithm (Sokal and Michener 1958) with a Euclidean

distance metric was used for clustering in both cases; the features in (b) were not clustered
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Another somewhat unexpected result concerning A∗ is that many Simple UB features are

quite important. Previous experimental results (Yuan and Malone 2013) show that the pattern

database bounding approach is much more informative during the A∗ search. However, the

solvers construct their pattern databases differently than those used for extracting features, so

the structural properties, such as the number of non-trivial SCCs, of the constructed graphs

may not reflect the difficulty of the problem for the solver.

In general, the results presented in Fig. 16b reveal that a small number of features were

consistently important for any particular solver; this is in line with previous work (Lee and

Giraud-Carrier 2008; Leyton-Brown et al. 2014). Qualitatively, this implies that most of the

trees were based on the same small set of features.

7 Conclusions

We have investigated the empirical hardness of BNSL, the Bayesian network structure learn-

ing problem, in relation to several state-of-the-art complete solvers based on A∗ search, integer

linear programming, and constraint programming. While each of these solvers always finds

an optimal Bayesian network structure (with respect to a given scoring function), the run-

times of the solvers can vary greatly even within instances of the same size. Moreover, on a

given instance, some solvers may run very fast, whereas others require considerably longer

time, sometimes by several orders of magnitude. We validated this general view, which has

emerged from a series of recent studies, by conducting the most elaborate evaluation of state-

of-the-art solvers to date. We have made the rich evaluation data publicly available16 in order

to facilitate possible further analyses that go beyond the scope of the present work.

As the second contribution, we applied machine learning methods to construct empirical

hardness models from the data obtained by the solver evaluations. Instantiating the general

methodology of empirical hardness models (Rice 1976; Leyton-Brown et al. 2009), we pro-

posed several features, that is, real-valued functions of BNSL instances, which are potentially

informative about solver runtimes and which go beyond the basic parameters of instance size.

We used two approaches, auto- sklearn and AutoFolio, for building BNSL portfolio

solvers, to directly address the algorithm selection problem. Additionally, we studied in

more detail the runtime prediction accuracy of the models learned with auto- sklearn.

Both of these state-of-the-art systems use Bayesian optimization to optimize model class,

preprocessing and relevant hyperparameters, for the respective models.

The learned models allowed us to answer two basic questions concerning prediction of

the solvers’ relative and absolute performance without actually running the solvers. The first

question (Q1) asked whether the basic parameters of input size suffice for reliably predicting

which of the solvers is the fastest on a given problem instance. We answered this question in

the affirmative by showing that whenever a solver is significantly slower than the fastest solver

on a given instance, the slower one is very rarely predicted as the fastest one. We compared

the performance of portfolios based on models learned by both AutoFolio and auto-

sklearn, and observed that these two approaches yielded very similar portfolio runtime

performance. For varying distributions of instances, our portfolio solver using a very basic

set of BNSL features resulted in the fastest solver overall, exhibiting cumulative runtimes

within two times that of the Virtual Best Solver (VBS). In contrast, the cumulative runtime

of the best individual solver is over five times that of the VBS. As a result, the proposed

16 http://bnportfolio.cs.helsinki.fi/, http://github.com/coseal/aslib_data/tree/master/BNSL-2016.
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solver portfolio is currently the fastest algorithm for solving BNSL when averaged over a

large heterogeneous set of instances.

Our answer was affirmative also to the second question (Q2) of whether the runtimes of

each of the solvers can be predicted more accurately by extending the set of features. We

observed that, in general, the more high-quality the features, the more accurate the predictions.

For algorithm selection, however, the more accurate runtime predictions translated only to

a small improvement. This was somewhat expected since the selections based on the basic

features already achieved very good performance.

Via the extensive empirical evaluation presented as part of this work, we managed to

answer some of the key basic questions about the empirical hardness of BNSL. This first

study opens several avenues for future research. First, we believe the proposed collection

of features is not complete—presumably, there are even more informative, albeit possibly

slower-to-compute, features yet to be discovered. For example, while not considered here,

one straightforward possibility would be to use summary statistics for the BNSL features that

are less susceptible to outliers, for example, medians. The question of how to efficiently trade

informativeness for computational efficiency is relevant also more generally for the algorithm

selection methodology; probing features (Hutter et al. 2014), as applied in this work to the

context of BNSL, provide just one, rather generic technique. Second, the empirical hardness

model and its evaluated performance obviously depend on the distribution of the training and

test instances. While this dependency is unavoidable, it is an intriguing question to what extent

the dependency can be weakened by considering appropriate distributions and sufficiently

large samples of instances.

Finally, we note that while in this work we focused on the runtime behavior of complete

BNSL solvers, that is, exact algorithms that provide provably-optimal solutions to given

BNSL instances, the techniques studied and developed in this paper could also be extended to

cover in-exact local-search style, greedy, and approximate algorithmic approaches to BNSL.

While such approaches typically exhibit better scalability than the exact approaches studied

here, the fact that in-exact approaches cannot give guarantees of optimality on the pro-

duced solutions brings new challenges in terms of portfolio construction and prediction,

specifically in understanding the interplay between solution quality and runtimes. Another

potentially interesting direction for further study—although a somewhat secondary aspect

compared to runtime behavior—would be to understand and predict the memory usage of

exact approaches. Furthermore, it would be interesting to expand the study in the future by

including additional datasets, for example, from OpenML (Vanschoren et al. 2013).
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Appendix: Details on the data sets

The numbers of variables and records in each of the data sets used in the experiments are

shown in Tables 9 and 10 for Real and Sampled, respectively.
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Table 9 Sizes of the datasets in

Real
Dataset #Variables #Records

letter 17 20,000

voting 17 435

zoo 17 101

lymph 19 148

eucalyptus 20 736

hepatitis 20 155

credit-g 21 1000

hypothyroid 22 3772

mushroom 22 8124

spect 23 267

autos 26 205

colic 28 368

pyrim 28 74

flag 29 194

trains 30 10

anneal 32 898

backache 32 180

marketing 33 364

student-mat 33 395

student-por 33 649

turkiye 33 5820

dermatology 35 366

soybean 36 307

kr-vs-kp 37 3196

stemmatology 37 1208

abscisic 41 5456

diabetes 41 60,000

connect-4_6000 43 6000

connect-4_60000 43 60,000

covtype_60000 43 60,000

sponge 45 76

wiki4he 53 913

lung-cancer 57 32

promoters 58 106

triazines 59 186

splice 61 3190

audiology_63 63 226

optdigits 63 5620

plants_63 63 34,781
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Table 10 Sizes of the datasets in

Sampled
Dataset #Variables #Records

kredit 18 1000

insurance 27 100; 1000; 10,000

water 32 100; 1000; 10,000

mildew 35 100; 1000; 10,000

alarm 37 100; 1000; 10,000

hailfinder 56 100; 1000; 10,000

carpo 60 100; 1000; 10,000
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