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SUMMARY

Let {Xi}‘iJ be i.i.d. non-negative r.v.’s with d.f. F and Laplace transform L. Let N
be integer valued and independent of {Xi}'i’. In many applications one knows that for

y - » and a function ¢

N
P{2 X, >y}~ ¢fy,nL(7),L" (7))

i= .

where in turn 7 is the solution of an equation

W 7,L(7),.)=0.

On the basis of a sample of size n we derive an estimator 7 for 7 by solving
'l’(Tn’Ln(Tn)’Lzlx(Tn)"") =0 where L_ is the empirical version of L. This estimator is
then used to derive the asymptotic behaviour of ¢(y,7,L n(Tn)’Lﬁ(Tn)"")' We include

five examples, some of which are taken from insurance mathematics.
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1. GENERAL PROCEDURE

Let X be a non-degenerate random variable with d.f. F on [0,0) and with Laplace
transform

(1) L(s) := E(e*X) = /2 ™dF(x) .

We always assume that L(s) exists in an open neighbourhood of the origin; let -0 be the
abscissa of convergence of L(s) and put I = (-0,0) or I = [-o,0) according to the case
where L(s) converges at -o or not respectively. The function L(.) is arbitrarily many
times differentiable in the interior of I and since X > 0 it is a decreasing convex function
onI. Let int I be the interior of I.

Many applications are concerned with compound distributions for which an
approximation is needed. This approximation contains ingredients such as L(s) and
derivatives at a point s = 7 where 7 is a proper solution of an equation involving in turn
L(s) and/or some of its derivatives. Saddle-point type approximations for nonnegative
r.v.-s provide a good general example.

In practical situations one often doesn’t know the precise form of L(-); one
only has a sample version Ln(-) based on a sample of independent observations

Xl,X .,Xn of X. Hence

g
(2) L (s) = % e-sz = f3 e XdF (%)
i

Il ea

1

where F_(x) = -}1- #{1<j<n: Xj < x} is the empirical distribution function of the
sample. This empirical Laplace transform L (s) is a random analytic function for all

(complex) values of 8. A natural sample-based estimator of the approximation will be
obtained by replacing the derivatives of L by those of Ln both in the approximation and

in the equation defining 7; the latter will then automatically define an estimator Tn

for 7.

An adaption of the proof of the Proposition in Csdrgd (1982) easily yields the
following auxiliary result, where L{K) is the k-th derivative of L, k = 0,1,2.... .




Proposition 1. If J is any closed interval contained in I, then almost surely as n + o for
any bounded k € N

sup 1109%6) -10)1 0.

This proposition and some elementary analysis imply a crucial consistency result in that
T T almost surely whenever 7 € int I.

A more elaborate analysis, based on the defining relation for 7 and Ty will
provide us with a limit in distribution for yn(r, - 7). The limit in distribution -

whenever it exists - will depend on the limits in distribution of some auxliary r.v.’s that
we introduce here for later reference.
For any s € int I we define

n -sX
3 w =13 x i pxkesXyy,
(3) kn(s) i {X%e ( )}

Then it follows from the central limit theorem that
D 2
Wy (S TU054(5)

where D, denotes convergence in distribution and

0 o3(s) = Var(x¥e*X)

=F x2k -2S E2(xk -Sx
(2)‘2“11(2“}(%) (L(“)(s»

The latter result only holds if 2s € int I. For later use we quote the next result.

Proposition 2. If 25 € int I then the r.v.’s defined by (3) satisfy

Wy o(8)5e 91(0,55(5))



where oﬁ(s) is given by (4).

In many applications we need variables of the type (3) but with s replaced by a random
sequence s converging almost surely tos. A one term Taylor expansion of the type

s X. -sX. -s_(j)X,
(6) e Pl=¢ J—(sn-—s)XJe =l

introduces random quantities s_(j) satisfying the inequalities
™ min(s, ) < 5,(i) < max(s,.8)

We will use the following abbreviations

1 3k 8K ki (k
Sk,n(s) =z j-z-:l Xje I=(-1) L1(1 )(s)
(8) 2 :
1 k 'sn(-l)x'
Skn(sn,s)=i- 21 XJe J

where s_(j) is determined by (6) and (7).

Combining a strong law of large numbers with proposition 1 we obtain a useful
result.

Proposition 3. Let s € int I; let §, - s almost surely. Then for any bounded k € N almost
surely as n + 00

(i) Sy o(6) - EX e ™)

(i) S, y(s,) -+ EXRe ]

(i) Sy 5 (8,,8) + EX*e ™)

For easy reference we quote some Slutsky-type results (Serfling (1980, p. 19)), where c is
a constant.



Proposition 4. (i) X, 2+X, Y, Zie=x_+¥, Zx+ec

@)X, 22X, v, Le=x v 2Xe

We now apply the above procedure to a number of specific examples. After shortly
introducing the example we then give subsequently

(i) general observations concerning the solution 7

(ii) the asymptotic behaviour of yn(7 - 7)

(iii) the asymptotic behaviour of the estimator for the required approximation.

We always assume ¢ > 0, and 27 € int I whenever necessary.

2. COMPOUND PASCAL DISTRIBUTION

N
Assume Y = ¥ X, where P[N = n] =[r+g-1]prqn and where N and {Xi}°1° are
i=1

independent; further,r € N, 0 < p.< 1, q = 1-p. Then Y has a compound Pascal

distribution
o0
P{Y<y}= T rJrf,'l]pran"n(y)
n=

where F' 2 is the n-fold convolution of F.

It has been known for a long time that under our assumptions on L(s); i.e. ¢ > 0,
the tail P[Y > y] has a gamma type approximation. See Beekman (1974, p. 66). In
Teugels (1985) and Embrechts e.a. (1985) it is shown that more precisely ‘

Ty r_1r-1
€e'py — 00

9 PIY > y]~ ,
) A @ ar

where L(1) = % . See also Sundt (1982).

(i) First note that as q < 1, 7 < 0. To have a proper solution within int I we
need L(-0) > Ell'



(ii) We will estimate 7 by solving L (7, ) = é . Now 7 < ras. Furthermore

0=n(L (r)-L(7))

-3 G T _pe )
i=1

and by (6) and (7)

-3 G . E(e ™)) - (r, -T) z xo 2%
j=1 =1 !

Hence

VO n(T)

(10) Ja(ry -7) = sl—m

By prop. 2 and 3(iii) vA(r, - 7) 2 9(0,7%) where 42 = o2(r)/E}Xe ™ if 27 € int L. o
The quantity 7 can be consistently estimated by

{L(2r) -1 /2

Ta =

-L’( o)

1/2
_ 1800027 - ) /

Sl ,n(Tn)

in view of proposition 3; hence almost surely AR

With & denoting the standard normal distribution function, let z af2 be the
percentile point for which &(z a /2) =1- g » 0 < @ < 1. Then by the above construction
we get an asymptotic confidence interval for 7if 27 €int I :

li 711 711 »
im P{r, -za/255157n+za/2£}=1-a. .

n- o



_ eV
7] ()"

(iii) The approximation (9) of P[Y > y] depends upon C := which is itself

estimated by

Ty
e

0= - T
7 L ()

From proposition 1 and standard arguments C_ - C almost surely. We should like to

find the limiting distribution of va (C_ - C). Now

C .C= e eTny
T L)) (L)

or

r RS < g (Tn'T)
(11) e V. T (L (L (7 ) (C - C) = 7, (-L (7)) - o(-L'(7))'e d .

Abbreviate the left hand side by In. By a one term Taylor expansion we can write

0

y(r,-7)
e n n

(12)

y
= 1+y(1'n-‘r)e

where (7 -7)_< 0 < (7 -7) 4 Hence

0
(13) L =7 (L) - AL (D) - my(r - (L () e

= (ry - (L (O + 1 {(L (7)) - (L7 (7))

- 1y(7y - T)(-L'(T))'eyon :



However
r-1
(1) (Lg(r)) - (L = [-Lg () + LI B (Ly(ry) (L ()
=R {L"(7) - Li(7)}

where

R, := :EZ (-L’('r))r'l'tSi,n(‘rn) (L)Yt =r

almost surely. In turn
n -7_X.
n{L'(r)-L;l(-rn)}=_zl(xje 27J . E(xe X))
J: -
n -7X -m_(j)X.
=3 (Xje =l

R n
FoE(Xe ™)) () £ X%
=1 =1 1

by relying on (6). Hence by (3) and (8)
(15) VAL (7) - Ly(rp )l = Wy o (7) - ¥y - 7)S, (77) -

Combination of (13), (14) and (15) yields

0
"V I = a(r, - 7){(1 - 1yey (L (D) - Tansz’n(Tn,T)} + TanWI’n(T).

We also replace v(7 - 7) by its value given by (10). It follows that ya I, is of the form

(1) L= U W (1) + VoW, ()




where

0 .
Uy = {(1-mye ML) - ryRySy ((rHS) o(r?)

By proposition 3, almost surely

U_ U= {(1 - )L (7)) - REQC ) Elxe ™)

and V_ -V := 7R where R = r(-L’(r))r'l. Rewrite (16) in the form

-7X. X.
"h —w/fl:ljil U 1B ™) +vixe I -Exe ™))

(U U)W (1) + (V- V)W (1)

then proposition 4 can be applied a number of times. We ultimately find

AL 20,8

where
& = Var|(U + VX)e™X] .

Returning to Cn - C we obtain

¥a(c_ - ) Zomo,8)

where

& = SV AL ()M

by another application of proposition 4.



3. CHERNOFF BOUNDS

Assume ¢ > 0. Let s < 0. Then for y > 0, L(s) = [§ e™*dF(x) 2 3 e SXdF(x) »
ey P[X > y)l. Hence we get the Chernoff bound

PX>y]¢< inf e7YL(s).

-0<s<0
This means that
(17) P[X > y] < e™VL(7)
where
(18) yL(7) + L’(r) =0.

(i) The complete monotonicity of L implies that 111:‘1—, is decreasing for s > -0. Hence

-L’(7)/L(7) > -L’(0) =: pif 7 < 0. Hence we restrict attention in (17) toy > 4.

(ii) We estimate 7 by solving yLo(7,) + Li(7) = 0. Now, as before T, o T as.

Furthermore

0=n{yL (ry) + Ly(7;)} - a{yL(r) + L’(r)}

n -r_X. n -7 X.
=y % (e Y _Ee™y) . 3 (X;e J_Exe™y).
j=1 j=1

By (6) and a little algebra we obtain

Yvo’n("') -W, ,n(T)

(19) Vi (ry-1)= ySl n(Tnif) - S2 n(Tn’T)

n

— ‘71(0,7?)




where

_Var((y - X)e” %)
EX(X(y - X)e ™)

As before a consistent estimator for 'y% and an asymptotic confidence interval for

T, Can be constructed.

(iii) We estimate the Chernoff bound C := e™YL(7) by the sample statistic

TnY . .
C :=e n L (rp). Asin (11) using (12)

(e, -0) = eY(Tn'T)

L (7y) - L(7)
yo
= {L,(r,) - L(N} + Ly(r)e "y(ry-7).
Now yn(L (7)) - L(7)) = WO,n(T) - (- T)Sl,n(rn’T) so that

i y®
vae™(C, - C) = val(ry - M{ye "Li(r)-S; (m,,1)}+ Wo (7).
Introducing (19) into this expression yields after easy algebra

’/ﬁ(cn -C) = UaWo n(T) + VW, n(T)

where

2 ¥

yo,
u =e1_yye L(r) S2 n(‘rn,‘r)as oY TL(T L) _.y
n ysl,n(Tn’T) S2,n( T) LT‘-(-))—]:S'()')‘_Y - =

i1,



and

v,
V =e Sl,n(rn’T) - ye Ly(y) as., o7y L (7) - zL!TQ =V
n ysl,n(Tn’T) - S2,n(Tn’T) -yL’(7) - T)

Note however that by (18) y2L(1-) = -yL’(7) so that U = e’Y while V = 0. Hence

Vi(C, - €) 2 (0,2 o2(r)).

4. THE CLASSICAL RUIN PROBLEM

Assume that F is the distribution of claim sizes {X;}] with EX = 4 in an

insurance context where claims arrive according to a Poisson process {N(t),t > 0} with
intensity A. Starting with initial reserve x > 0 and with incoming payments in the time
interval [0,t] equal to t, the company accumulates the risk reserve

Y(t)=x+t-1.q§;)xi.

The probability of non-ruin with initial reserve x is then

W(x) := P{inf Y(t) > 0} .
>0

It can be shown (see Takics (1967,p.150) Feller (1971,p.377) or Buhlmann
(1970, p. 144)) that, if the expected claims paid per unit time p := Ap < 1, then

W(x) = 30 (1- p)o"F ()

n=
where F is the equilibrium distribution corresponding to F, i.e.

F(x) =3 /3 [L- F(y)dy .




13.

Clearly

L(s) = {1 - L(s)}/us .
The famous Lundberg-Cramér ruin estimate is given by

(20) 1-Wx)v—22Pl ™  xag
plT||L(7)]

where L(7) = % .

(i) Note first that 7 < 0 since p < 1; the existence of 7 clearly depends on the condition

L(-0) > % or L(-0) > 1+ % . We rewrite (20) somewhat. Consider h(s) :=

sL’(s) - L(s); then h’(s) = sL"(s) which is negative for s < 0. Hence for 7 < 0,
h(r) = 7L’(7) - L(7) > h(0) = -1.
Now in (20) L’(7) = {-7L’(7) -1 + L(r)}/;nj2 < 0 so that (20) is replaced by

(21) . 1-W(x)~—L= ™
L@ -5

where we used L(7) = %or L(r)=1- -} :
. . . Tn
(ii) We estimate 7 by 7, solution of L (7 ) =1-. Hence

MLy(r)) -L(n} = (7-7)

or with (6) and the usual algebra

W T
(22) (e -1 =0 D g
Sl,n ( Tn’T) D)




. ' -1
(iif) To estimate the probability of non-ruin we put C = ¢"™*{-L’(7) - %:} and C =

ThX 1 -1
e " {-Ly(r))-x} - Then

I, :=e™[Ly(r,) + TIL'(7) + J)(C, - ©)
can be rewritten by (12) in the form
1 0nx
I, =Lp(ry) -L(7) - (v, - T)(L*(7) + I)xe

with the usual operations and (22) we obtain

VL= U Wy (1) - Wy o (7)

where
, 1 0nx
U = SZ,n(Tn’T) - (L(7) + X)xe as., L"(r) _ U
— . - E 1 - — .
n Sl,n(Tn’T) -%‘- L'(7) + X
Hence
v(C, - €) 2 (o, ¢3)
where

4
¢ =™ Var{(U - X)e XYL (r) + 3 .

5. THE COMPOUND POISSON DISTRIBUTION

Starting with a similar setup as in the previous exampie one can derive an

asymptotic expression for the distribution of the totality of claims incurred up to




: N )S t)
time t, i.e. X(t) = X;. Under a number of weak conditions it was shown in
i=1 |
Embrechts, Jensen e.a. (1985) that

W[e-At[I - L(T)] - e-At]

e
(23) P{X(t) >y} T , Y00
where
(24) AtL/(r) =y

(i) It is clear that we require y > pAt to obtain 7 < 0. We also write z = y/(At) for
brevity.

(ii) Again 7 is estimated by the solution of L (7 ) = -z. As before

_ vl,n(r) b‘ 2
\/E(Tn ',T) = S2,n(Tn’T) + 9N(0,£7)
.
o3(7)
wher §2 = 1 .
IRRNTETe
Y, AL (7))
(iii) Put C = ery(eML(T) -11) and C_ = e’ (e -11)
(D@ ) Ei(r)?
and

1
2
I =7 (L"(r)Ly(,)) e"’y(Cn -C).

We use the identity ya - yb = (a-b)/(va + vb) and a further Taylor expansion

AtQ

eMLn(T“)- = ML(7) ML (r) -L(7le  *



where

min(L_(7,),L(7)) ¢ 0, <max(L (r,),L(7)).

After tedious calculations we arrived at the following expression

Jﬂln =U, 0 n(r) +V W 1’n(r) + anz’n(‘r)

where

At
. AML(7) .
Un = -TAte ./I:"l 5 a8, 7ite JL'(7) =: U,

8 A0
Vg i= {85 1 (Y VT (ML) 1)1 - ve B+ e %S} (7o)
7 (e/\tL(T) 1)
VIR + VT a7

0_+AtQ
_ rxtye ot (W (1) - V(7 - IS, (7,7}

28 e A 1 4 )y - L () 1)——‘-13(,1)_, }=

using (24), and

_ r (MU ) s HeME(D) g

"I + V) 2/L"(7)

As before we arrive at

Vi(C, - €) 2 (0,€2)



where

&= (—2—;::—))2\’3.1’{(U + VX + wxHe ™y .

6. THE COMPOUND POLYA DISTRIBUTION

In Embrechts, Jensen e.a. (1985) the compound Pbdlya distribution was
approximated as well; here

PO x) = T (I )

where k > 1.
Under weak conditions it was shown that

k -k k k
(5) P>yl K s ) ) ), veoo

where
AL/(r) = y{1 + g [1- L(7]}.

(i) Since y - o we can assume that y > pt so that the increasing function
1+ Iti[l - L(s)] (with value 1 at s = 0) intersects the decreasing function - % L’ (s)

(with value E;-} at s = 0) at some value 7 < 0.

We simplify the notation somewhat by introducing the constants

k
z=% . a=(g3p »b=f

(i) Again 7 is defined by -Lp(ry) =z + bl -L (7, )} where -L’(7) = z + b[1 - L(7)]}

defines 7. Hence elimination of z yields

17.



L/(r) - Li(r.) = b{L(r) - L (7)}

By now the calculations are routine; we obtain

wl,n(t) + wa,n(t)

alry - =5 L (r,7) + b5 7

D 2
» 9(0,K
1n n’T) ( )

where

K2 = Var{(X + b)e "X}/E2{X(X + b)e’ ™).

Tny

k k
(iii) Put C = f;yr {(ﬁm) -a},C_ = anT {('Lx'jfn)) -a}, and

=Ty
I =e"77rr (C, -C).
Again, very much like in the Pascal case, we find
va In = UnWO,n(T) + vnWl,n(T)

where
Il)-Ull{s2,!l(7-n"r) + bsl,n(Tn’T)} = [(r;%"_')')k ) a] - y"eyon [(Pii_n)')k - a]

- 1'1-2)k k-1 f(r WL/ k-1-m
S L (R e () ()

25 (1 y1)|(pEy) 3] llf;zkr;;](fl :

‘(

=: £ UE[X(X + b)e™]




and

VolSar) + 8yl o= [ o] v iy -]

T(_z)k k-1 ’ My, k-1-m
-bS T ,T T (L r
l,n( n’ )[L’(T)Ll'l(Tn)}k me0 ( n(Tn)) (L"(7)

k k
_a_._._s._. (1 - y'r) [(L—r(—).zr ) - a] + ___k_bﬁ_}_ =: VE[X(X + b)e-TX]'

[-L ()]
Hence
va(c_ - ) 2 m(o,x?)
where
K2 = 2V var{(U + VX)e ™} .
7. REMARKS

As mentioned in the summary, the relationship

N
(25) P{Z X, >y}~ oy, L(r).L(7),...) =:¢

1=

where ¢(7,L(7),...) = 0, holds for y -+ @. On top of this first approximation we replaced
the right hand side of (25) by

‘pn = dy)Tn,Ln(Tn))Ll’I(Tn)"")
where Ln was the empirical version of L and where T, Was the sample version of the

solution of the equation ¥(7_,L (7 ),...) = 0. The reader could wonder how accurate the

superimposed approximations will be.

19.



To evaluate the accuracy of (25) in itself is an important but hard problem. In
some cases the proof of (25) is easy, like in the Chernoff bounds; however more typically
the proof depends on deep theorems from the theory of stochastic processes or on
intricate procedures from asymptotic analysis. Hence a second order term or even a
series expansion would be desirable. Let us remark that for the compound Pélya and for
the compound Poisson case, second and higher order terms are available in Embrechts,
Jensen e.a. (1985).

A systematic sfudy of the accuracy of the empirical version oy in evaluating ¢ is

an entirely different issue, depending heavily upon simulation studies. As a simple test
case we evaluated the Chernoff bound for the exponential distribution with mean 1.
Then L(s) = (1+s)'1; giveny > 1, 7= y'l-l andC=eV L(r) =y el'y; also I = (-1,0).
After substantial simulation we could only conclude that the problem is far from trivial.
For small y-values the accuracy was always found to be sufficient even though we
encountered systematic bias; for large values of y however the accuracy is far less
satisfying.
Here are some of our temporary conclusions : .
(i) In many examples L(s) and its derivatives have a vertical asymptote at s = o ; as a
result the solution of the implicit equation -¢v(1-n,Ln(-rn),...) = 0 for 7 induces

systematic bias. Also the numerical procedure (bisection, Newton-Raphson,...)
influences the accuracy but to a lesser extent.

(ii) In all of our examples we made heavy use of proposition 2; a requirement for its
applicability was however that 27 > 0. In our simulation example, y values greater
than 2 caused large fluctuations in the estimation of 7 and C. Moreover, the
larger y, the closer we get to the singularity of the function L(s).

(iii) Presumably the most important reason for the eventual poor behavior of the sample
version 7, is this : the empirical functions L o(s) are determined by the positive

sample values Xl,Xz,...,Xn; in all our formulae however we use the extrapolated
values of L_(s) for s < 0; moreover the latter function is entire for every n while L(s)

has a singularity at ¢ < 0.

20.
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