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Abstract

Omnibus tests for various nonparametric hypotheses are developed using the

empirical likelihood method. These include tests for symmetry about zero, changes

in distribution, independence and exponentiality. The approach is to localize the

empirical likelihood using a suitable "time" variable implicit in the null hypothesis

and then form an integral of the log-likelihood ratio statistic. The asymptotic null

distributions of these statistics are established. In simulation studies, the proposed

statistics are found to have greater power than corresponding Cramer-von Mises

type statistics.

1 Introduction

We develop an approach to omnibus hypothesis testing based on the empirical likelihood

method. This method is known to be desirable and natural for deriving nonparametric

and semiparametric confidence regions for mostly finite dimensional parameters, see Owen

(2000) for a bibliography of over 120 papers on the topic. Just a few of these papers,

however, consider problems of simultaneous inference, and none as far as we know has

made a detailed study of omnibus hypothesis testing beyond the case of a simple null

hypothesis.
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Our approach is based on localizing the empirical likelihood using one or more "time"

variables implicit in the given null hypothesis. An omnibus test statistic is then con

structed by integrating the log-likelihood ratio over those variables. We consider the pro

posed procedure to be potentially more efficient than corresponding, often used, Cramer

von Mises type statistics. Four nonparametric problems will be studied in this way: testing

for symmetry about zero, testing for a change in distribution, testing for independence

and testing for exponentiality. These classical problems have been extensively studied in

the literature, but use of the empirical likelihood approach in such contexts appears to

be new.

We first recall the case of a simple null hypothesis. Given i.i.d. observations Xl, ... ,Xn

with distribution function F, consider Ho : F = Fo, where Fo is a completely specified

(continuous) distribution function. Define the localized empirical likelihood ratio

R(x) = sup{L(F) : F(x) = Fo(x)} ,

sup{L(F)}

where L(F) = rr=l (F(Xi ) - F(Xi - )). The empirical distribution function Fn attains the

supremum in the denominator, and the supremum in the numerator is attained by putting

mass Fo(x)j (nFn(x)) on each observation :S x and mass (1 - Fo(x)) j (n (1 - Fn(.T))) on

each observation> x. This easily leads to

Fo(x) 1 - Fo(x)
log R(x) = nFn(x) log -(-) + n (1 - Fn(x)) log _ 17 ( )

Fn x 1 En X

and, provided 0 < Fo(x) < 1,

n(Fn(x) - Fo(x)? D 2

-2IogR(x) = F
o
(x)(l _ Fo(x)) + op(l) -----*Xl

(1.1 )

under Ho. This is a special case of the classical Wilks's theorem.

For an omnibus test (consistent against any departure from Ho), however, we need

to look at -2 log R(x) simultaneously over a range of x-values. Taking the integral with

respect to Fo, leads to the statistic

Tn = -2I: logR(x) dFo(x).

If instead of integrating in Tn, we took the supremum over all x, we obtain essentially

the statistic of Berk and Jones (1979), who showed that their statistic is more efficient

in Bahadur's sense than any weighted Kolmogorov-Smirnov statistic. Li (2000) has in

troduced an extension of Berk and Jones's approach for a composite null hypothesis that

F belongs to a parametric family of distributions. In that case, R(x) = Re(x) for a pa

rameter e, and Li suggests replacing the unknown e in Berk and Jones's statistic by its

maximum likelihood estimator under the null hypothesis.
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Clearly Tn is distribution-free and its small sample null distribution can be approxi

mated easily by simulation. Moreover, from (1.1) and a careful application of empirical

process theory, it can be shown (cf. the proof of Theorem 1) that

To ~ 11

B
2

(t) dt
n 0 t(l - t)

under Ho, where B is a standard Brownian bridge. Under Ho, Tn IS asymptotically

equivalent to the Anderson-Darling statistic

A ~ = n100

(Fn(x) - Fo(x)? dFo(x)
-00 Fo(x)(l - Fo(x))

and the limit distribution may be calculated using a series representation of Anderson

and Darling (1952).

We investigate statistics of the form Tn for a variety of nonparametric hypotheses

beyond the case of a simple null hypothesis. Testing for symmetry around zero can be

handled using F( -x) = 1 - F(x-) and localizing at x > O. To test for exponentiality,

we localize using the memoryless property of the exponential distribution. Our method

also applies to the two-sample problem, and, more generally, to the nonparametric change

point problem; in that case, we localize at (x, t) where t is the proportion of observation

time before the changepoint. Testing for independent components in a bivariate distri

bution function F can be handled using F(x, y) = F(x, oo)F(oo, y), with localization at

(x, y).
The paper is organized as follows. In Sections 2-5 we examine the four nonparametric

testing problems mentioned above and derive likelihood ratio test statistics of the form

Tn. Using empirical process techniques, we derive the limiting distribution of Tn in each

case. Section 6 contains simulation results comparing the small sample performance of

each Til with a corresponding Cramer-von Mises type statistic, Section 7 is discussion,

and proofs are collected in Section 8. Tables of selected critical values for Tn are given in

the Appendix.

2 Testing for symmetry

Much has been written on testing symmetry of a distribution around either a known

or unknown point of symmetry, some recent contributions being Diks and Tong (1999),

Mizushima and Nagao (1998), Ahmad and Li (1997), Modarres and Gastwirth (1996),

Nikitin (1996a), and Dykstra, Kochar and Robertson (1995). Early papers include Butler

(1969), Orlov (1972), Rothman and Woodroofe (1972), Srinivasan and Godio (1974), Hill

and Baa (1977) and Lockhart and McLaren (1985).

l\lany of the papers cited above consider the case of a known point of symmetry and

use a Cramer-von Mises type test statistic. We also assume that the point of symmetry
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is known, so without loss of generality it is assumed to be zero. Let Xl, ... ,Xu be i.i.d.

with continuous distribution function F. The null hypothesis of symmetry about zero is

Ho : F(-x) = 1- F(x-), for all x> O.

The local likelihood ratio statistic

R(x) = sup{L(F) : F(-x) ~ 1- F(x-)} , x> 0

sup{L(F)}

is easily shown to be given by

Fn(-x) + 1 - Fn(x-) Fn(-:r) + 1 - Fn(x-)
10gR(x) = nFn(-x) log 2F

n
(-x) +n(1-Fn(x-)) log 2(1-F

n
(:r-)) ,

where Olog(ajO) = O. Consider as test statistic

Tn = -21OOI0gR(x)d{Fn(X)-Fn(-X)}

-2100

log R(x) dGn(x)

where Gn is the empirical distribution function of the IXil. Alternatively, we may write

2 n

Tn = -- L:logR(IXil)·
n

i=l

Clearly, Tn is distribution-free; selected critical values are provided in Table AI. The limit

distribution of Tn is given by the following result.

Theorem 1 Let F be continuous. Then, under Ho

1
1 W2(t)
---dt

o t

where W is a standard Wiener process.

3 Testing for a changepoint

The nonparametric changepoint testing problem has an extensive literature; recent con

tributions include Gombay and Jin (1999), Aly (1998), Aly and Kochar (1997), Ferger

(1994, 1995, 1996, 1998), McKeague and Sun (1996), and Szyszkovvicz (1994). \Ve con

sider the non-sequential (retrospective) situation with "at most one change", sec, e.g.,

Csorgo and Horvath (1987) and Hawkins (1988).
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Let Xl, .. _,Xn be independent, and assume that for some T E {2, ... ,n} and some

continuous distribution functions F, G

with T, F and G unknown. We wish to test the null hypothesis of no changepoint,

Ho : F = G. Define the local likelihood ratio test statistic

R( )
= sup{L(F,G,T): F(x) = G(X),T = [nt] + 1}t, x __

sup{L(F, G, T) : T = [nt] + 1}

for lin::; t < 1 and x E lR, with

7-1 n

L(F, 0, T) = II(F(Xi ) - F(Xi -)) II(O(Xi ) - O(Xi - )).

i=l i=7

Set nJ = [ntl, n2 = n - [ntl, and let FIn and F2n be the empirical distribution functions of

the first nl observations, and last n2 observations, respectively. Let Fn be the empirical

distribution function of the full sample, so Fn(x) = (nlFln(x) + n2F2n(x))ln. Then

log R(t, x) =

(3.1)

where 0 log(aI0) = o. Consider as test statistic

Tn = _2/1

joologR(t,X)dFn(X)dt
lin -00

2 n /1
-~ L log R(t, Xi) dt.

i=l lin

Clearly, Tn is distribution-free; selected critical values are provided in Table A2. The

limit distribution of Tn is given by the following result. Let Wo be a 4-sided tied-down

Wiener process on [0, IF defined by Wo(t, y) = W(t, y) - tW(l, y) - yW(t, 1) +tyW(I, 1),

where VV is a standard bivariate Wiener process.

Theorem 2 Let F and G be continuous. Then, under Ho

Tn~ 1111

Wbt, y) dy dt.
o 0 t(1 - t)y(1 - y)

It should be noted that the two-sample problem can be handled in a similar but easier
way_

5



4 Testing for independence

The wide variety of tests for independence has been surveyed by Martynov (1992, Section

12). Here we consider a test for the independence of two random variables.

Let Xl, ... , X n be i.i.d. bivariate random vectors with distribution function F and

continuous marginal distribution functions F l and F2 . We wish to test the null hypothesis

of independence:

Ho : F(x,y) = Fl (x)F2 (y), for all x,y E R

Define the local likelihood ratio test statistic

R( )
= sup{L(F): F(x, y) = Fl (x)F2 (y)}

x,y _
sup{L(F)}

for (x, y) E ~2, with L(F) = TI7=1 P({Xi}), where P is the probability measure corre

sponding to F. Then

I R( ) - Pc (A ) I Fln (x)F2n (y) Pc (A ) I Fln (x)(l - F2n (.y))
og x, y - n n 11 og P

n
(.4

ll
) + n n 12 og P

n
(A

12
)

+
P (A ) I (1 - Fln (x))F2n (y) P (A ) I (1 - Fln (x))(l - F2n (:lJ))

n n 21 og P
n
(A

2l
) + n n 22 og P

n
(A

22
)

where Pn is the empirical measure, FIn and F2n are the corresponding marginal distribu

tion functions, and

All (-00, x] x (-00, y],

A 12 (-oo,x] X (y,oo),

A2l (.1:,00) X (-00, y],

A22 (x, 00) x (y, 00).

Consider as test statistic:

Clearly, Tn is distribution-free; selected critical values are provided in Table A3. The

limit distribution of Tn is given by the following result.

Theorem 3 Let F l , F2 be continuous. Then, under H o

Tn~llll W5(u,v) dudv
o 0 u(l-u)v(l-v)

where Wo is a 4-sided tied-down Wiener process on [0, 1j2.

The limit distribution above agrees with that in the changepoint problem.
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5 Testing for exponentiality

In this section we develop a likelihood ratio based test for exponentiality motivated by the

mellloryiess property of the exponential distribution. Cramer-von Mises type tests based

on this property have been proposed by Angus (1982) and Ahmad and Alwasel (1999);

we refer to these papers for references to the earlier literature.

Let X I, ... ,Xn be i.i.d. non-negative random variables with distribution function F,

F(O-) = 0, and survival function S = 1 - F. Consider the null hypothesis

Ha:5(x) = exp( -Ax), x ~ 0 for some A > O.

The local likelihood ratio statistic based on the memoryless property of the exponential

distribution is

R(x, y)

for x > 0, Y > 0, where

sup{L(S): S(x + y) = S(x)S(y)}

sup{L(S)}

n

L(5) = IT(S(Xi -) - S(Xi )).

i=I

Let F H denote the empirical distribution function. It follows by a straightforward calcu

lation that

n (1 - a) n (a - b) nb (1 - a) nab
log R(:r:, y) = NIlog N + N2 10g + N3 10g N + N4 10g N

I N 2 3 4

where NI = nFn(:r 1\ y), N2 = n(Fn(x V y) - Fn(x 1\ y)), N3 = n(Fn(x + y) - Fn(x V y)),
N4 = n(l - Fn(x + y)), and

N 2 +N3 +2N4
a = --..,------,--

n + N 3 + N4 '

COllsider as test statistic

Tn = -21=1= log R(x, y)5.2
e->-(x+

y
) dx dy,

with 5. = n/ 2 : ~ = ] Xi' This statistic is distribution-free (under Ha, its distribution does

not depend on the parameter A). Selected critical values for Tn obtained by simulation

are displayed in Table A4.

The asymptotic null distribution of Tn is given in the following result. Based on this

result, selected critical values for the large sample case are presented in the last row of

Table A4. Comparison of Tables Al-4 shows that the convergence of Tn is much slower

here than in the previous sections.

Theorem 4 Under Ha,

Tn~2 til st {B(st) _ B(s) _ B(t)}2 dsdt,
Ja t (1 - s) (1 + t) st s t

when> B is a standard Brownian bridge.

7



6 Simulation results

In this section we present simulation results comparing the small sample performance of

the proposed likelihood ratio statistic Tn with that of a corresponding Cramer--von Mises

type statistic Cn. In each case the powers are based on 10,000 samples, and exact critical

values are used (see the Appendix for the Tn critical values).

For the symmetry test, we compared Tn with

Cn = n100

{I - Fn(x-) - Fn(_X)}2 dGn(x),

cf. Rothman and Woodroofe (1972). The alternatives are N(0.3, 1) and chi-squared cen

tered about the mean.

Table 1. Power comparison of tests for symmetry. Levels 0: = 0.05 for n = 50, and

0: = 0.01 for n = 100.

Alternative

N(0.3,1)

centered xi
centered x ~

centered x ~

n = 50

0.539 0.516

0.893 0.732

0.505 0.433

0.322 0.307

n = 100

0.629 0.600

0.988 0.872

0.647 0.495

0.332 0.297

For the changepoint test, we compared Tn with

Cn = n j1 roo {F1n (x) _ F2n (X)}2 dFn(x) dt,
lin .J-oo

d. Csorgo and Horvath (1988).

Table 2. Power comparison of tests for a changepoint, n = 50, 0: = 0.05.

F

N(O,l)
unif(O,l)

exp(l)

exp(l)

G

N(O, 16)

unif( .3,1.3)

exp(2)

exp(3)

T = 11

0.210 0.129

0.512 0.446

0.236 0.229

0.506 0.479

T = 21

0.735 0.356

0.837 0.661

0.418 0.333

0.789 0.68:3

For the test of independence, we compared Tn with

Cn = n .l:I: {Fn(x, y) - F1n (x)F2n (y)}2dF1n (x)dF2n (y),

cf. Deheuvels (1981) or Martynov (1992, Section 12). The alternatives are bivariate

normal with correlation p, and (U, (3U + V), where U, V are iid uniform on (0,1), for

various values of p and {3.
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Table 3. Power comparison of tests for independence at level a = 0.05.

Alternative

p = 0.4

p = 0.5

{3 = 0.5

{3 = 0.6

n = 20

0.357 0.341

0.550 0.520

0.437 0.389

0.573 0.523

n = 50

0.761 0.728

0.937 0.915

0.904 0.826

0.974 0.935

For the test of exponentiality, we compared Tn with

cf. Angus (1982). We used levels a = 0.10 for n = 20, and a = 0.05 for n = 30. The

alternatives \vere chi-squared, log-normal and Weibull. The log-normal distribution with

corresponding normal parameters p, = 0 and (J is denoted LN ((J); the Weibull distribution

with scale parameter 1 and shape parameter c is denoted Weibull(c).

Table 4. Power comparison of tests for exponentiality.

Alternative

x ~
LN(0.8)

LN(1.0)

Weibull(1.5)

n = 20

0.675 0.624

0.638 0.560

0.227 0.181

0.619 0.588

n = 30

0.717 0.678

0.696 0.618

0.201 0.144

0.666 0.638

The proposed statistics show consistent improvement over the corresponding Cramer

von Mises statistics in all cases.

7 Discussion

\iVe have developed a rather general localized empirical likelihood approach for testing cer

tain composite nonparametric null hypotheses. We use integral type statistics to establish

appropriate limit results. These statistics are somewhat related to Anderson-Darling type

statistics, but have the advantage that the implicitly present weight function is automat

ically determined by the empirical likelihood. Clearly our tests are consistent (against

all fixed alternatives). The proofs of our main results (see the next section) require del

icate arguments concerning weighted empirical processes to handle "edge" effects in the

localized empirical likelihood.
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Our approach is tractable in the four cases we have examined because the null hy

pothesis is expressed in terms of a relatively simple functional equation involving the

distribution function(s). Another example in which our approach appears to be useful is

in testing bivariate symmetry. More complex null hypotheses, however, might be difficult

to handle via our localized empirical likelihood technique. In that sense the goodness-of-fit

tests for parametric models in Li's (2000) extension of Berk and Jones (1979) are comple

mentary to the present paper (but in contrast with our approach the limit distribution

is intractable). However, in the case of testing for exponentiality our test is simpler and

more natural. For that case both Li's and our approach can be extended to randomly

censored data. Li's approach is not applicable to the other cases we considered.

An interesting direction for future research would be to investigate the Bahadur effi

ciency of Tn. Nikitin (1996a, 1996b) has studied the Bahadur efficiency of various types

of sup-norm statistics in the contexts of testing for symmetry and exponentiality, but it

is not clear how to handle statistics of the form Tn.

8 Proofs

Proof of Theorem 1 Let 0 < E < 1 and define Xc > 0 by F( -xc)

F(x c -) = 1 - E/2. It suffices to show that as n ---- 00

l x
e

v 11 W
2 (t)

Tin = -2 10gR(x)dGn(x)----+ --dt,
Oct

and

T2n = -2100

log R(x) dGn(x) = Op(JE)
Xe

E/2. Hence

(8.1 )

(8.2)

uniformly in E, see Billingsley (1968, Theorem 4.2). First consider Tin- By a Taylor

expansion it readily follows that

n 2( 1 1)10gR(x)=--{-Fn(-x)+I-Fn(x-)} F(- )+ _ (_) +op(l)
8 n x 1 Fn·T

uniformly over 0 < x ::; xc' Set Vi = F(Xi ) and let r n be the empirical distribution

function of the Vi. Then,

10



( f n(F ~ -x)) + 1 _ f n (~( x)_ )) d{fn(F (x)) - f n(F (- x))} + 0 p(1)

/

1/2 n
- {-fn(t) + 1- f n((l- t)_)}2

. E/2 4

(fn
1
(t) + 1 _ fn(t1 _ t)-)) d{fn(t) - f n(l - t)} + op(l)

= ~ t/
2

{In(t - f n(t)) + In((l - t) - f n((l - t)-)} 2

4.1E/2

(f
n

1
(t) + 1- f

n
(t1- t)-)) d{fn(t) - f n(1- t)} + op(l), (8.3)

where we used the change of variable t = F( -x). Now assume (without changing nota

tion) that a Skorohod construction holds, i.e.

sup IJn(fn(t) - t) - B(t)1 ---+ 0 a.s.
o::;t9

w h e n ~ B is a Brownian bridge. The leading term in (8.3) can then be expressed as

~ t/2
{-B(t) - B(l - t)}2 d{fn(t) _ f n(l - t)} + 0(1) a.s. (8.4)

2.1E / 2 t

By the Helly-Bray theorem the main expression in (8.4) converges a.s. to

/

.1/2 {-B(t) - B(l - t)P V 11
/

2
W 2(2t) 11 W 2(t)

--'-----------'--------'----------'---'-- dt = dt = dt .
. E/2 t E/2 t E t

This settles (8.1).

Decompose T2n into

T2n = _2.!':f
n

VX£ logR(x) dGn(x) -2 i ~ x £ logR(x)dGn(x) = T3n +T4n ,

where lJ;l = min(-X1:n, X n:n) and X i :n denotes the ith order statistic. Using Ilog(l +y)
yl ::; 2y2 for y :::: -1/2, we find that

n (1 1)Ilog R(.r)I ::; -(-Fn(-x) + 1 - Fn(x- ))2 () + ()
2 Fn -x 1 - Fn x-

for all T. This leads to (d. (8.3))

T3n ::; r /2 { an (t) + an ((1 _ t) _ )} 2

.IF( - Vn )I\E:/2

(fn
1
(t) + 1- f

n
(t1- t)-)) d(fn(t) - f n(1- t)), (8.5)
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where an(t) = -v01(fn(t) - t). The following sequences are bounded in probability:

Ian ((1 - t) - )I
sup 1/4 '

O<t<1 t
t

sup ,
l-Un:n<t<11- f n ((l- t)-)

in the case of the first two by the Chibisov-O'Reilly theorem, and the last two by Shorack

and Wellner (1986, p. 404). Using these bounds inside the integrand of (8.5), and noting

that F( - Vn) 2: max(U1:n,1 - Un:n), we obtain

l
E

/
2 1

T3n = Op(l) ~ / 2 d(fn(t) - f n (1- t)) = Op( y'E),
o t

where the last equality follows using integration by parts and sUPO<t<1 f n(t)/t = Op(l),

see, e.g., Shorack and Wellner (1986, p. 345).

Finally consider T4n . Note that R(x) is invariant under a sign-change of the 0 bserva

tions Xi' Thus it suffices to evaluate T4n in the case that Fn(Vn) = 1, which holds either

for the original observations or for the sign-changed observations. This gives

uniformly in c. The last equality can be seen by noticing that the number of IXil greater

than Vn is bounded above by a geometric random variable with parameter 1/2. 0

Proof of Theorem 2 Write Ui = F (Xi) and let fIn, f 2n and f n be the corresponding

empirical distribution functions. Let 0 < c < 1/2. It suffices to show that as n -? 00

and

v
-----+

_21 1-11

-

0

logR(t,Q(y)) dfn(y) dt

1
1-

1
1-0 nT2(t y)

o , dy dt
o 0 t(l-t)y(l-y)

(8.6)

(8.7)

uniformly in c. First consider TIn' By a Taylor expansion it readily follows that uniformly

for c ::; t, y ::; 1 - c

-2log R(t, Q(y)) = nt(l - t)(f1n (y) - f 2n (y))2

(
1-t + t ) (l+o(l))+op(l).

f 1n (y)(1- f 1n (y)) f 2n (y)(1- f 2n (y))

12



So instead of TIn we consider

ll-1
1

-C: nt(l - t)(f1n(y) - f 2n (y))2

(
l_-_t__ + t ) dfn(y)dt.

f 1n (y)(1- f1n(y)) f 2n (y)(1- f 2n (y))

Set 1 " ~ , ( t , y) = ynt(l - t)(f1n(y) - f 2n (y)). From Csorgo and Horvath (1987), see also

McKeague and Sun (1996), it follows that there exists a sequence {WO,n} of 4-sided tied

down Wiener processes such that

(

(10gn)3/4)
P sup IYn(t,y) - WO,n(t,Y)1 > A 1/4 ::; Bn-

a

n-1/2<t,y<1_n-1/2 n

for all 0 > 0, where A = A(o) and B are constants. Hence it suffices to consider

j.l-C:/I-C: lv.2 (t y) ( 1 - t t)
O,n , + dfn(Y) dt

. c: . c: t(l - t) f 1n (y)(1 - f1n(y)) f 2n (y)(1 - f 2n (y))

D /l-j.l-C: W5,n(t, y) df ( ) dt + 0 (1)
t(l - t) n Y p,

. c: c:

which implies (8.6) by the Helly-Bray theorem.

It remains to prove (8.7). We will only consider the relevant region of the unit square

where in addition both Y and t are less than or equal to ~ ' i.e., we assume ~ ::; t ::; c and

o< y :s; ~' or, ~ ::; t :s; ~ and 0 < Y ::; c. Denote this L-shaped region by Ac:. The other

regions can be handled in the same way, by symmetry. We prove that

Jto 10gR(t,Q(y))dfn(y)dt = Op(JE). (8.8)

< n2/5 10gn,

< n2/5 10gn,

Vve will split, in turn, the region Ac: into several subregions. First we consider the case

where ~ ::; t :s; nI/5 and nI/8 ::; y ::; ~. Note that in this region

I
f n(Y) I

n1f1n(y) log f1n(y)

I
n1(1- fln(Y)) log 1- f n ~ Y ) ) I

1 - fIn Y

and with arbitrarily high probability, for large n

In2f 2n (Y) log ~:~;) I < 12n2(fn(Y) - f 2n (y)) I

12n~nl (f1n(y) - f 2n (y)) I ::; 2n2/5
,

I

n2(1- f2n(Y)) log 1 - fn~Y)) I < 2n2/5
.

1 - f 2n Y

13



Hence with high probability, for large 17,

1 1 1

l
n3/512 ln3/5 3logn

I log R(t, Q(y)) Idfn(y) dt ::::; 317,2/5 log 17, dt ::::; 1/5 ----7 O.
1 1 1 17,
~ n~8 ~

Now consider the region n;/8 ::::; t ::::; ~ and 0 < y ::::; n;/5' In this region we have with high

probability, for large 17,

< 217,2/5 log 17"

Hence with high probability, for large 17,

1 • 1 1

12 1n3
/

5 [n 3
/

5 6logn
I logR(t,Q(y))1 dfn(y)dt ::::; 5n2

/
5 logndfn(y)::::; 1/5 ----7 O.

_1_0 0 17,
n 3 / 8 •

Next consider the region ~ ::::; t ::::; n;/8 and 0 < y ::::; n31/8' In this region

and with high probability, for large 17,

< 217,5/8 log 17"

Hence

rn
31

/ 81)/8 417,5/8 log 17, 4log 17,

Jl 0 IlogR(t,Q(y))ldfn(y)dt::::; 17,3/4 ::::; 17,1/8 ----70.
n

In order to handle the remaining part of Ac; we need two lemmas. The first one follows

rather easily from Inequality 2 on pp. 415-416 of Shorack and Wellner (1986).
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Lemma 1 Let 0 < an, bn :::; 1/2 with nanbn ---t 00 as n ---t 00. Then for any c5 > 0

The second lemma follows directly from Kom16s, Major and Tusnady (1975), in a

similar but easier way than in Csorgo and Horvath (1987).

Lemma 2 Under the same conditions as Lemma 1, there exists a sequence {WO,n} of

4-sided tied-down Wiener processes such that

sup sup
an :St:S1-an bn :Sy:S1-bn

IYn(t,y) - Wo,n(t,Y)I~O
(t(1 - t)y(1 - y))1/4 .

\lVe are now prepared to present the remainder of the proof of Theorem 2. Consider

the region n;/5 :::; t :::; E and n;/8 :::; Y :::; ~. We have by a Taylor expansion and Lemma 1

that with high probability, uniformly over this region, for large n

IlogR(t,Q(Y))1
< (fn(y) - f 1n (y))2 + (fn(y) - f 2n (y)?

n1
f1n (y)(1- f 1n (y)) n2

f2n (y)(1- f 2n (y))

n1n~ (f 1n (y) - f 2n (y))2 n2ni (f 1n (y) - f 2n (y)?

---;:Zf1n (y)(1- f 1n (y)) + ---;:Zf2n (y)(1- f 2n (y))'

Vve only continue with the first term of this sum; the second one is somewhat easier to

deal with. By Lemma 1, with high probability and uniformly over the region, the first

term is bounded above by

2Y;(t,y) y < 3Y;(t,y) = 3 (Yn(t,y))2 1 .

ty f 1n (y) - ty (ty)1/4 (ty)1/2

But by Lemma 2

j,e ri ( Yn (t, y) ) 2 1 () D

. ~1~)_~1~ (ty)1/4 (ty)1/2 dfn y dt
,,:l/d n3/8

f
r

e ri ( Wo(t y)) 2 1
~ __l (t )~/4 (t )1/2 dfn(y) dt
n3/5 n 3/ 8 y y

+op(1)

1
0: 1

Op(1) 1/2 dt + op(1) = Op(JE).
° t

Finally it remains to consider the region n;/8 :::; t :::; ~ and n;/5 :::; y :::; E. This region,

however, can be treated in the same way and yields another term of order 0 p ( vIE). Hence

(8.7) is proved, D
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Proof of Theorem 3 The proof is somewhat similar to the changepoint case. Set

Xi = (XiI, X i2 ) and denote the empirical distribution function of the (F1(X il ), F2(Xi2 ))

by Gn, with marginals GIn and G2n . Under Ho, the distribution of (F1(.Xi1 ), FAXi2 )) is

uniform on the unit square. Write Ql, Q2 for the quantile functions corresponding to F1,

F2 . Let 0 < c < 1/2. It suffices to show that as n -+ ()()

(8.9)

and

(8.10)

(8.11)

uniformly in c. First consider TIn' By a Taylor expansion it readily follows that uniformly

for c :s; u, v :s; 1 - c (replacing (x, y) by (Ql(U), Q2(V)) in the definition of the Ajk )

n(Pn(Au )Pn(A22 ) - Pn(AI2)Pn(A2d)2 + op(I)

u(I - u)v(I - v)

n(Pn(An ) - G1n (71)G2n (V))2 (1)---'----'-----:---'--------:-----:----'-----:----'---- + 0 p
u(I - u)v(I - v)

(CYn(u,v) - VCYln(U) - UCY2n(.V))2 (1)---'----'----'--------- + 0 p ,

u(I - u)v(I - v)

with CYn(u, v) = Vfi(Gn(u, v) - uv), CYln(U) = Vfi(G 1n (u) - u), CY2n(.U) = Vfi(G2n (v) - v),

o< u, v < 1. So instead of TIn we consider

which, by standard empirical process theory and a multivariate version of the ReIly-Bray

theorem, converges in distribution to

l
1

-
ct-c (B(u, v) - vB(.u, 1) - uB(l, V))2 du dv,

c Jc u(I - u)v(I - v)

where B is a standard bivariate Brownian bridge: a centered Gaussian process with

covariance structure EB(u, v)B(u, v) = (uAu)(vAv) -uvuv, 0 < U, 'IL, v, V < 1. Observing

that

{B(u, v) - vB(u, 1) - uB(l, v), ('II, v) E (0, 1)2},'g{WO(ll, v), ('II, v) E (0, I)2},

completes the proof of (8.9).
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It remains to prove (8.10). We will only consider integration over the region

Be = {(u,V) E (0,1?:0 < u ~ E,O < V ~ 1/2, or,O < u ~ 1/2,0 < V ~ E},

because of symmetry arguments, cf. the way we handled Ae in the changepoint case.

Because of a further symmetry argument, namely the symmetry in u and V, we will further

restrict ourselves to the following three regions which clearly cover {(u, v) E Be: U ~ V}:

2 1 1 1
B e ,l = {(u,v) E (0,1) :0 < u ~ n3/ 5 ' n 3/ S ~ V ~ "2}'

B e ,2 = {(u,v) E (0,1)2:0 < u ~ V ~ n;/S}'

2 1 II}
B e ,3 = {(u, V) E (0,1) : n3/ 5 < u ~ E, n3/ 8 ~ V ~ "2 .

We almost immediately obtain along the lines of the changepoint case

where we (again) used that

(8.12)

IPn(A l1 ) - G1n (u)G2n (v)1

= IPn (A 21 ) - (1 - G1n (u) )G2n (v) I

IPn(A l1 ) - G1n(u)(I- G2n (v))1

IPn(A22 ) - (1- G1n (u))(1 - G2n (v))I.

Moreover, here and in the sequel of the proof we use that, uniform over certain classes of

rectangles (the A jk ), Pn / P converges to 1 in probability. This follows from, e.g., Chapters

2 and 3 of Einmahl (1987).

For Cu, v) E B e ,3 it rather easily follows that with arbitrarily high probability, uniformly

over B e ,:3' for large 'n,

I log R(Q1 (u), Q2 (v)) I

d. (8.11). This yields that indeed

and this, in conjunction with (8.12), yields (8.10).

17
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Proof of Theorem 4 The quantile function of F is Q(u) = -log(1 - u)/).., so we have

11r (~)2 .
Tn =-4 ala logR(Q(u),Q(v)) ~ ( ( l - u ) ( l - v ) ) ~ - l d u d v ,

and it suffices to show that

Tin -4 [-Of logR(Q(u), Q(v)) G) 2 ((1 - u)(l - V))~-l dud?!

~ 211
-£r1

-£ st {B(st) _ B(s) _ B(t)}2 ds dt (8.13)
£ It (1 - s) (1 + t) st s t

and

(8.14)

uniformly in a< c < 1/2.

First consider (8.13). With Sn(u) = 1 - Fn(Q(u)), by a Taylor expansion

-2logR(Q(u),Q(v)) = n(Sn(U)Sn(V)-Sn(U+V-Uv))2(I+op (I)) (8.15)
u(1 - u)(1 - v)(2 - v)

uniformly for c ::; u ::; v ::; 1 - c. vVriting

Sn(u)Sn(v) - Sn(u + V - uv) = Sn(u)(Sn(v) - (1 - v)) + (Sn('u) - (1 - 'u))(1 - v)

+ ((1 - u)(1 - v) - Sn(1- (1 - u)(1- v)))

and using the weak convergence of the uniform empirical process to a standard Brownian

bridge B, we see that the r.h.s. of (8.15) converges weakly on c ::; 1J, ::; v ::; 1 - c to

((1- u)(-B(v)) - B(u)(I- v) + B(I- (1- u)(I- V)))2

u(1 - u)(I- v)(2 - v)

v ( - (1 - u)B(I- v) - (1 - v)B(I- u) + B((1 - u)(l- 0)))2

u(1 - u)(1 - v)(2 - v)
(8.16)

Thus, using the change of variables s = 1 - u, t = 1 - v, and noting that ~ ~ ) . . , we see

that (8.13) follows directly from (8.15) and (8.16).

The proof of (8.14) follows along the lines of the previous proofs, in particular the proof

of the changepoint case. We only note here that results for weighted empirical processes

indexed by intervals, especially Theorem 3.3 in Einmahl (1987), are used to complete the

proof. D
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Appendix

The following tables provide selected critical values for the four proposed test statistics

Tn. The values are based on 100,000 samples in each case.

Table AI. Test for symmetry.

Percentage points

n 90% 95% 97.5% 99%

10 2.620 3.392 4.272 5.393

15 2.477 3.325 4.195 5.317

20 2.428 3.271 4.138 5.306

30 2.360 3.154 3.989 5.160

50 2.295 3.081 3.902 5.027

100 2.254 3.041 3.880 5.005

150 2.231 3.002 3.836 4.967

Table A2. Test for a changepoint.

Percentage points

n 90% 95% 97.5% 99%

10 1.420 1.667 1.899 2.141

15 1.496 1.756 2.024 2.355

20 1.529 1.804 2.074 2.423

30 1.556 1.832 2.111 2.485

Table A3. Test for independence.

Percentage points

n 90% 95% 97.5% 99%

10 1.535 1.792 2.020 2.283

15 1.572 1.841 2.103 2.442

20 1.575 1.852 2.126 2.485

50 1.581 1.861 2.154 2.553
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Table A4. Test for exponentiality.

Percentage points

n 90% 95% 97.5% 99%

10 0.521 0.734 0.969 1.322

15 0.676 0.906 1.148 1.524

20 0.787 1.004 1.242 1.578

30 0.951 1.155 1.370 1.681

60 1.179 1.390 1.611 1.911

120 1.308 1.522 1.747 2.043

300 1.408 1.631 1.855 2.160

00 1.467 1.679 1.895 2.192
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