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We study statistical inference for the derivative of the nonparametric regression function using local

linear model based empirical likelihood. We first derive a normal equation for the derivative through

the local linear model and use this equation to construct an empirical likelihood for the derivative. We

show that the limiting distribution of the empirical likelihood ratio is a scaled �21 distribution rather

than the usual (unscaled) �21 distribution. We use this limiting distribution to construct pointwise

confidence intervals for the derivative. Such empirical likelihood ratio confidence intervals are easier

to obtain than the normal approximation based confidence intervals. A small simulation study also

suggests that they are more accurate.

Keywords: derivative function; empirical likelihood; local linear fitting; nonparametric regression

function; normal approximation

1. Introduction

Let (X 1, Y1), (X 2, Y2), . . . , (X n, Yn) be independently and identically distributed copies of

a bivariate random variable (X , Y ). The nonparametric regression function m(x) is

m(x) ¼ E(Y jX ¼ x):

Statistical inference for the regression function m(x) is an important problem and there is a

considerable amount of work in the literature on this topic. This work includes Mack and

Silverman (1982), Müller (1988), Härdle (1990) and Wand and Jones (1995) on kernel

methods; Stone (1977), Cleveland (1979), Tsybakov (1986) and Fan and Gijbels (1996) on

local polynomial methods; Wahba (1977), Eubank (1988), Green and Silverman (1994) and

Stone et al. (1997) on spline methods; and Donoho and Johnstone (1994), Ogden (1997),

Efromovich (1999), Vidakovic (1999) and Luan and Xie (2001) on Fourier methods and

wavelet methods.

The derivatives of the regression function are also of interest for many reasons. For

example, in fitting growth curves, Müller (1988) has argued that the first derivative (speed)

and the second derivative (spurt) of the height as functions of age are important quantities
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to be studied. Also, the optimal bandwidth for estimating the regression function depends

on higher derivatives of m(x) when using the ‘plug-in’ rules for the bandwidth selection.

Estimation of the derivatives has been studied by a number of authors: Gasser and Müller

(1984) and Georgiev (1984) considered estimating the derivatives using the usual kernel

method; Ruppert and Wand (1994) estimated the derivatives based on locally weighted

least-squares fitting; Welsh (1996) proposed a robust estimation method for the derivatives

in a general heteroscedastic regression model; Efromovich and Samarov (2000) considered

the estimation of the integral of squared regression derivatives; Zhou and Wolfe (2000)

provided a spline estimation for the regression derivatives; and Lai and Chu (2001)

proposed a new kernel estimator for the derivatives by using global smoothing parameters.

It is desirable to have a confidence interval to accompany a point estimator, and usually a

confidence interval is easily obtained through the asymptotic normality of the point

estimator. For the nonparametric regression function and its derivative, however, the

construction of confidence intervals is difficult. The local linear estimators for m(x) and

m9(x), for example, have many advantages and are easy to use (Fan and Gijbels 1996).

Nevertheless, it is difficult to construct confidence intervals using their asymptotic

normality, although in theory this is possible (Masry and Fan 1997). Indeed, their

asymptotic normal distributions involve the marginal density function of X , the conditional

variance of Y given x, and the derivatives of the regression function m(x), all of which

need to be estimated before normal approximations can be applied to construct the

confidence intervals. The need to estimate these functions makes the computation quite

involved. Recent work by Chen and Qin (2000) has provided a practical method for

computing the confidence interval for m(x) at any fixed x. Their approach combines the

method of empirical likelihood with the local linear model to yield an empirical likelihood

ratio confidence interval for m(x). The computation of this interval does not require the

estimation of the density function, conditional variance function and derivative functions.

The method of empirical likelihood was first introduced by Owen (1988; 1990). It has many

advantages over other nonparametric methods. The most important is that it studentizes

internally, thereby eliminating the need for a pivot. This makes the empirical likelihood

ratio confidence interval for m(x) much easier to use than the normal approximation based

interval. Chen and Qin (2000) also found that the coverage error of the empirical likelihood

ratio confidence interval for m(x) is of the same order throughout the support of m(x). This

is a significant improvement over the normal approximation based confidence interval which

has a larger order of coverage error near the boundary.

The construction of the confidence interval for m9(x) is also a challenging problem due to

the difficulties mentioned above. In spite of the fact that there are now multiple methods

for point estimation of m9(x), there seems to be no easy method for constructing confidence

intervals for m9(x). Inspired by Chen and Qin (2000), this paper proposes an empirical

likelihood ratio confidence interval for m9(x) based on the local linear model. It is not

obvious how one should formulate an empirical likelihood for m9(x). Through local

linear fitting, we first show that m9(x) satisfies a normal equation whose components are

readily available (see Section 2). This allows us to construct an empirical likelihood for

m9(x) by using these components which do not need to be estimated. The limiting

distribution of the resulting empirical likelihood ratio for m9(x) is shown to be a scaled �21
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instead of the usual �21. The limiting distribution is then used to construct the empirical

likelihood confidence interval for m9(x). The resulting confidence interval for m9(x) is

practical and easy to compute, complementing the point estimator given by the local linear

model.

The rest of this paper is organized as follows. In Section 2, we describe the method of

local linear fitting and derive the normal equation for m9(x). Then we construct the

empirical likelihood for m9(x) based on the normal equation and give the limiting

distribution of the empirical likelihood ratio. In Section 3, we present some simulation

results to compare the empirical likelihood method with the normal approximation based

method. Proofs of the main theorems are given in Section 4.

2. Empirical likelihood for the derivative of the regression
function via local linear fitting

2.1. Local linear regression

A regression function is commonly used to describe a general relationship between an

explanatory variable X and a response variable Y . The basic idea of smoothing is to use a

local average of the data near x to construct estimators for m(x) at x. Because the

regression function m(x) satisfies

m(x) ¼ argmin
a

E (Yi � a)2jX ¼ x
� �

,

it can be estimated by

bmmK (x) ¼ argmin
a

Xn
i¼1

Yi � að Þ2K X i � x

h

� �
,

where K(�) denotes a non-negative weight function and h the smoothing parameter which

determines the size of the neighbourhood of x. This leads to the kernel estimator of m(x):

bmmK (x) ¼

Xn
i¼1

YiK (X i � x)=hð Þ

Xn
i¼1

K (X i � x)=hð Þ
:

If K(�) is sufficiently smooth, the derivative of bmmK (x) may be used as an estimator for m9(x).

Although the kernel estimators are known to have nice properties, such as simplicity,

flexibility, consistency and asymptotic normality, they have some disadvantages – for

example, boundary problems (Fan 1993; Fan and Gijbels 1996) and the dependence of the

asymptotic bias on the derivative of the marginal density. To remedy these problems, Fan

(1993) proposed a local linear fit to the regression function. Assuming that m9(x) exists and

noting that m(X ) � m(x)þ m9(x)(X � x) � aþ b(X � x) in a small neighbourhood of a
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point x, the local linear estimators for m(x) and m9(x) at a fixed x are defined as the

solutions to the following problem:

min
a,b

Xn
i¼1

Yi � a� b(X i � x)ð Þ2K X i � x

h

� �
:

It follows that the local linear estimators baa ¼ bmm(x) and bbb ¼ bmm9(x) for m(x) and m9(x) satisfy

the normal equations

XTWX
� �

� ¼ XTWy, (1)

where � ¼ (a, b)T and

X ¼
1 (X 1 � x)

..

. ..
.

1 (X n � x)

0B@
1CA, y ¼

Y1

..

.

Yn

0B@
1CA, W ¼ diag Kh(X i � x)ð Þ, Kh(t) ¼ K(t=h)=h:

Upon solving (1) for a and b, we obtain the following equivalent normal equations:

1

n

Xn
i¼1

sn2 �
X i � x

h
sn1

� �
Kh(X i � x) Yi � að Þ ¼ 0, (2)

1

n

Xn
i¼1

sn1 �
X i � x

h
sn0

� �
Kh(X i � x) Yi � b(X i � x)ð Þ ¼ 0, (3)

where

snj ¼
1

n

Xn
i¼1

X i � x

h

� � j

Kh(X i � x), j ¼ 0, 1, � � �

Noting that equation (3) for b ¼ m9(x) does not involve unknown quantities except for m9(x)

itself, it can be used to construct an empirical likelihood for m9(x).

2.2. Local linear model based empirical likelihood for m9(x)

To construct an empirical likelihood, let pb ¼ (pb1, . . . , pbn) be a probability vector, that is,Pn
i¼1 pbi ¼ 1 and pbi > 0 for all i. For 1 < i < n, we define

eWWbi ¼ sn1 �
X i � x

h
sn0

� �
Kh(X i � x), (4)

Wbi ¼ eWWbi Yi � b(X i � x)ð Þ: (5)

Based on normal equation (3), we define the empirical likelihood for the derivative of the

regression function evaluated at the true value b ¼ m9(x) as
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L(b) ¼ sup
Yn
i¼1

pbi :
X

pbi ¼ 1,
Xn
i¼1

pbiWbi ¼ 0

( )
:

By the Lagrange multiplier, we have

pbi ¼
1

n
1þ ºbWaif g�1

, i ¼ 1, . . . , n,

where ºb is the solution of

1

n

Xn
i¼1

Wbi

1þ ºbWbi

¼ 0: (6)

Noting that
Qn

i¼1 pbi, subject to
Pn

i¼1 pbi ¼ 1, attains its maximum n�n at pbi ¼ n�1, we

define the empirical likelihood ratio at b as

R(b) ¼
Yn
i¼1

(npbi) ¼
Yn
i¼1

f1þ ºbWbig�1,

and define the corresponding empirical log-likelihood ratio as

l(b) ¼ 2
Xn
i¼1

log f1þ ºbWbig, (7)

where ºb is the solution of (6).

Let f (x) be the marginal density function of X , and

� 2(x) ¼ var(Y jX ¼ x), � j ¼
ð1
�1

u jK(u)du, � j ¼
ð1
�1

u jK2(u)du:

In order to derive the asymptotic distribution of l(b), we need the following conditions:

Condition 1. The kernel function K(�) is bounded with a bounded support [�1, 1].

Condition 2. f (�) and � 2(�) are continuous at x, and m(�) has a continues second derivative

at x.

Theorem 1. Assume that EjY js , 1 for some s . 2 and that Conditions 1 and 2 hold. If

n ! 1, h ! 0, and nh5 ! 0, then the limiting distribution of l(m9(x)) is a scaled chi-square

distribution with one degree of freedom; that is,

r � l(m9(x)) !L �21, (8)

where the scaling constant r is

r ¼ 1þ m2(x)

� 2(x)
:

We remark that the main condition, nh5 ! 0, is also necessary for (8) when
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C0(x) � m(2)(x) f 2(x) �1�2 � �0�3ð Þ 6¼ 0:

This can be readily seen from the proof of Theorem 1. Further, in deriving the empirical

likelihood confidence region for the regression function m(x), Chen and Qin (2000) defined

the empirical log-likelihood ratio at the true value a ¼ m(x) as

l(a) ¼ 2
Xn
i¼1

log f1þ ºaWaig,

where ºa is the solution of

1

n

Xn
i¼1

Wai

1þ ºaWai

¼ 0,

with

Wai ¼ eWWai Yi � að Þ, eWWai ¼ sn2 �
X i � x

h
sn1

� �
Kh(X i � x):

We would arrive at the same formulation for l(a) if we were to define the empirical

likelihood for m(x) based on the normal equation (2) for a. Under the conditions that

EjY js , 1 for a real number s > 4 and h ¼ o n�1=5
� �

, they obtained the limiting distribution

of l(a), which is a chi-square distribution with one degree of freedom.

The empirical likelihood defined above is for E( bmm9(x)) ¼ m9(x)þ bias, rather than for

m9(x). To convert to the empirical likelihood for m9(x), one can either correct the bias

explicitly by direct estimation, or reduce the bias by undersmoothing. Hall (1992) showed

that better coverage accuracy is achieved by the undersmoothing method (see also Chen and

Qin 2000). We use the latter method in this paper. Instead of the usual chi-square

distribution, the limiting distribution of l(b) for m9(x) is a scaled chi-square distribution.

The scaling constant is the consequence of the difference between ~�� 2
b(x) and � 2

b(x) (see

Lemmas 1 and 2 in Section 3). In order to apply Theorem 1, we need to find a consistent

estimate of the scaling constant r. In principle, plugging any consistent estimators for m(x)

and � 2(x) into the expression for r will produce a consistent estimator. Here, we use

err ¼ 1þ bmm2(x)

�̂� 2(x)
,

where bmm(x) is the local linear estimator of m(x), and �̂� 2(x) is the local linear estimator Æ̂Æ of

� 2(x) defined by

Æ̂Æ, �̂�
� �

¼ argmin
Æ,�

Xn
i¼1

brri � Æ� �(X i � x)ð Þ2W X i � x

hb

� �
,

where brri ¼ Yi � bmm(X i)ð Þ2, W (�) is a known weight function, and hb is a bandwidth. bmm(x) and
�̂� 2(x) are efficient estimators for m(x) and � 2(x), respectively. See Fan (1993), Fan and Yao

(1998) and Ruppert et al. (1997). Thus err is a suitable estimator for r.

We now examine the convergence property of err. We need the following conditions.
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Condition 3. f (x) � � 2(x) . 0 for a given x, and the function E(Y k jX ¼ x) is continuous at x

for k ¼ 3, 4. Further, m(2)(z) and � (2)(z) � d2f� 2(z)g=dz2 are uniformly continuous on an

open set containing the point x.

Condition 4. E Y 4(1þ�)
� �

, 1, where � 2 [0, 1) is a constant.

Condition 5. K(�) is a symmetric density function; W (�) is a symmetric density function with

a bounded support on the real line; K(�), W (�) and f (�) are Lipschitz of order 1.

Conditions 3–5 are the conditions Fan and Yao (1998) used to derive the asymptotic

distribution of �̂� 2(x).

Theorem 2. Assume Conditions 1–5 hold. If we select h ¼ o n�1=5
� �

and hb ¼ O n�1=5
� �

, then

err � r ¼ Op n�2=5
� �

:

To compute err, we need to first estimate the variance function � 2(x). A referee pointed

out that care must be taken to ensure that the estimate is positive. In practice, we can use

the algorithm proposed by Fan and Yao (1998) to select the bandwidth hb for the variance

function estimation, which usually leads to reliable, positive estimates. Further, to guarantee

the positivity, we can take �̂� 2(x) ¼ max Æ̂Æ, n�1ð Þ. It is easily seen from the proof of

Theorem 2 in Section 4 that this adjustment does not change the conclusion of Theorem 2.

Finally, the empirical likelihood ratio confidence interval for m9(x) at any fixed x can be

constructed as follows:

RÆ(b) ¼ fb : err � l(b) < cÆg, (9)

where cÆ is the 100(1� Æ)th quantile of �21. By Theorems 1 and 2, RÆ(b) is an approximate

confidence interval for m9(x) ¼ b with an asymptotically correct coverage probability 1� Æ.
That is,

P(m9(x) 2 RÆ(b)) ¼ 1� Æþ o(1):

3. Simulation study

In this section, we conduct two simulation studies to investigate the finite-sample

performance of the empirical likelihood (EL) intervals for m9(x). For comparison, the

following normal approximation (NA) based intervals for m9(x) (Masry and Fan 1997) is

also included in the study:

bmm9(x)þ 1

2
bmm (2)(x)B1h

� �
� z1�Æ=2

V1�̂� 2(x)

nh3 bff (x)
 !1=2

,

where bmm9(x), bmm(2)(x), �̂� 2(x) and bff (x) are consistent estimates for m9(x), m(2)(x), � 2(x) and

f (x), respectively. For example, m9(x) and m(2)(x) can be estimated by the local polynomial
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regression method (Fan and Gijbels 1996), and f (x) can be estimated by the usual kernel

density estimation method. z1�Æ=2 is the (1� Æ=2)th quantile of the standard normal

distribution, and

B1 ¼
�0�3 � �1�2
�0�2 � �21

, V1 ¼
�0(�0�2 � �1�1)� �1(�0�1 � �1�0)

(�0�2 � �21)
2

:

The regression model considered in the simulation is given by

Yi ¼ sin (X i)þ � (X i) � �i, i ¼ 1, 2, . . . , n:

where the X i are drawn from the uniform distribution U [0, 1], the conditional standard

deviation function � (x) is chosen to be 0:5 exp(x), and the errors �i are generated from a

standard normal distribution. The biweight kernel

K(x) ¼ 15

16
1� x2
� �2

, jxj < 1,

is chosen as the kernel function. Two bandwidths, h ¼ 5(n log n)�1=5 and h ¼ 3n�1=3, are

selected as the reference bandwidths for comparing the coverage probabilities of the EL

intervals and the NA intervals for m9(x); in order to compare the coverage properties over a

wide range of bandwidth, 40 equally spaced bandwidth values centred around each reference

bandwidth were used to calculate the two intervals.

In the first simulation study, the sample size n ranges from 50 to 200 and x is fixed at

0.5. Figures 1 and 2 display the graphs for the coverage probability and interval length

(width) of the EL and NA intervals for m9(x). The two curves in, say, the upper left-hand

plot in Figure 1 were generated as follows. For each simulated random sample of size

n ¼ 50, 95% EL and NA intervals were computed using all 40 values of the bandwidth,

resulting in 40 confidence intervals of each type. This was repeated 1000 times using 1000

random samples, which led to 1000 95% confidence intervals of each type at each of the 40

values of the bandwidth. Then, at each value of the bandwidth, the coverage probability of

the EL interval was approximated using the proportion of the 1000 EL intervals constructed

with this bandwidth that contain m9(x). This proportion, when plotted against the value of

the bandwidth, gave rise to the EL curve in the plot. The NA curve was generated similarly.

The average length of the 1000 confidence intervals was also computed and plotted against

the bandwidth.

On the relative coverage accuracy, we note that for h ¼ 5(n log n)�1=5 (Figure 1), the

coverage probabilities of the EL intervals are quite close to the nominal level 0.95, while

those for the NA intervals are substantially lower, even for samples of size 200. The EL

intervals performed much better. The poor accuracy of the NA intervals may have partly

been the consequence of having to estimate m9(x), m(2)(x), � 2(x) and f (x). For h ¼ 3n�1=3

(Figure 2), the coverage probabilities of NA intervals are substantially lower than the

nominal level for samples of size 50 but they become more accurate for larger samples.

Nevertheless, the EL intervals still outperform the NA intervals.

The relative (average) length of the two types of confidence intervals is also of interest.

For h ¼ 5(n log n)�1=5 (Figure 1), the EL intervals are only slightly longer than the NA

intervals but their coverage probabilities are substantially better. For h ¼ 3n�1=3 (Figure 2),
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Figure 1. Coverage probability and interval length of 95% confidence intervals for m9(x) at x ¼ 0:5;
h ¼ 5(n log n)�1=5.

Derivative of the nonparametric regression function 723



sample size 50 sample size 50

C
ov

er
ag

e

0.5

0.7

0.9

EL
NA

0.75 0.80 0.85 0.90

Le
ng

th

0.4

0.8

1.2

EL
NA

0.75 0.80 0.85 0.90

sample size 100 sample size 100

C
ov

er
ag

e

0.70

0.85

0.600.55 0.700.65

Le
ng

th

0.4

0.8

1.2

0.55 0.60 0.65 0.70

BandwidthBandwidth

Bandwidth Bandwidth

sample size 200 sample size 200

C
ov

er
ag

e

0.500.45 0.55 0.60

Le
ng

th

Bandwidth Bandwidth

1.00

0.80
0.4

0.8

1.2

0.90

1.00

0.500.45 0.55 0.60

Figure 2. Coverage probability and interval length of 95% confidence intervals for m9(x) at x ¼ 0:5;
h ¼ 3n�1=3.
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the NA intervals are much longer but their coverage probabilities are only comparable to or

lower than that of the EL intervals. This suggests that the EL intervals are superior even

when both the length and coverage probability are considered. Figure 3 further confirms this

observation.

To examine the boundary effects, in the second simulation study, x is fixed at the

boundary point 1 and the sample size is set to 100. Figure 3 displays the graphs for the

simulated coverage probability and average interval length of the EL and NA intervals for

m9(x). For this example, the EL intervals do not seem to have a boundary effect; their

coverage probabilities are slightly lower at the boundary than at the middle of the range, but

the difference is quite small. The average length of the intervals is also about the same at

both locations. The NA intervals, on the other hand, show a clear boundary effect; their

interval length curves at the boundary are quite different from those for the middle of the

range. Other cases involving different boundary point and sample size combinations have

also been examined. They also revealed little boundary effect for the EL intervals and a

clear boundary effect for the NA intervals.

Finally, bandwidth selection for confidence intervals for m9(x) is also an interesting

problem, and currently work is still continuing to identify the optimal bandwidth.

Nevertheless, it is worth noting that while the performance of the NA intervals depends

critically on the bandwidth, the EL intervals are less sensitive to the bandwidth selection.
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Figure 3. Coverage probability and interval length of 95% confidence intervals for m9(x) at x ¼ 1;

Sample size n ¼ 100. (a) h ¼ 5(n log n)�1=5. (b) h ¼ 3n�1=3.
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This is a particularly important advantage in the absence of a method for optimal

bandwidth selection for confidence intervals.

4. Proofs of theorems

In this section, we give the proofs of Theorems 1 and 2. We need the following lemmas.

Lemma 1. Assume that Conditions 1 and 2 hold. If h ¼ Op(n
�1=5), then

(nh)1=2
1

n

Xn
i¼1

Wbi � ˜

 !
�!L N (0, � 2

b(x)),

where

˜ ¼ h2

2
C0(x)

and

� 2
b(x) ¼ � 2(x) f 3(x) �21�0 � 2�0�1�1 þ �20�2

� �
:

Proof. Let

Anj ¼
1

n

Xn
i¼1

X i � x

h

� � j

Kh(X i � x)(Yi � m(X i)), j ¼ 0, 1:

We have the following decompositions:

1

n

Xn
i¼1

Wbi ¼ sn1 � An0 � sn0 � An1 þ sn1 �
1

n

Xn
i¼1

Kh(X i � x) m(X i)� a� b(X i � x)ð Þ

� sn0 �
1

n

Xn
i¼1

X i � x

h
Kh(X i � x) m(X i)� a� b(X i � x)ð Þ:

Since the regression is conducted in the neighbourhood of jX i � xj < h, by Taylor’s

expansion,

m(X i) ¼ aþ b(X i � x)þ 1

2
m(2)(x)(X i � x)2 þ o p(h

2): (10)

Hence we have

1

n

Xn
i¼1

Wbi ¼ (sn1, �sn0) � (An0, An1)
T þ h2

2
m(2)(x) sn1sn2 � sn0sn3ð Þ þ o p(h

2), (11)

where (An0, An1)
T stands for the transpose of (An0, An1). By the central limit theorem, any

linear combination of An0 and An1 is asymptotically normal distributed. In particular,
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ffiffiffiffiffiffi
nh

p
(An0, An1)

T �!L N (0, � 2(x) f (x)S) (12)

where

S ¼ �0 �1
�1 �2

� �
:

Noting that snj �!
p

f (x)� j for j ¼ 0, 1, 2, then Lemma 1 follows from Slutsky’s theorem, (11)

and (12). h

Lemma 2. Under Conditions 1 and 2, we have

h

n

Xn
i¼1

W 2
bi �!

p
~�� 2
b(x),

where ~�� 2
b(x) ¼ � 2(x)þ m2(x)ð Þ f 3(x) �21�0 � 2�0�1�1 þ �20�2

� �
.

Proof. The following decomposition is straightforward:

1

n

Xn
i¼1

W 2
bi ¼

1

n

Xn
i¼1

eWW 2
bi(Yi � m(X i))

2 þ 1

n

Xn
i¼1

eWW 2
bi m(X i)� a� b(X i � x)ð Þ2

þ a2

n

Xn
i¼1

eWW 2
bi þ

2a

n

Xn
i¼1

eWW 2
bi m(X i)� a� b(X i � x)ð Þ

þ 2

n

Xn
i¼1

eWW 2
bi Yi � m(X i)ð Þ m(X i)� b(X i � x)ð Þ

� J1 þ J2 þ a2J3 þ 2aJ4 þ 2J5: (13)

J1 can be further decomposed into

J1 ¼
1

n

Xn
i¼1

eWW 2
bi(Yi � m(X i))

2

¼ s2n1 �
1

n

Xn
i¼1

K2
h(X i � x)(Yi � m(X i))

2

þ s2n0 �
1

n

Xn
i¼1

X i � x

h

� �2

K2
h(X i � x)(Yi � m(X i))

2

� 2sn0sn1 �
1

n

Xn
i¼1

X i � x

h

� �
K2

h(X i � x)(Yi � m(X i))
2

� J11 þ J12 � 2J13:
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Using snj �!
p

f (x)� j ( j ¼ 0, 1, 2) once again and noticing that Kh(�) ¼ K(�=h)=h, we obtain

hJ11 ¼ �21 f
2(x) � E hK2

h(X 1 � x)(Y1 � m(X 1))
2

� 	
þ o p(1)

¼ �21 f
2(x) � E hK2

h(X 1 � x)� 2(X 1)
� 	

þ o p(1)

¼ �21�
2(x) f 3(x)

ð1
�1

K2(u)duþ o p(1)

¼ � 2(x) f 3(x)�21�0 þ o p(1),

hJ12 ¼ �20 f
2(x) � E h

X 1 � x

h

� �2

K2
h(X 1 � x)(Y1 � m(X 1))

2

" #
þ o p(1)

¼ �20 f
2(x) � E h

X 1 � x

h

� �2

K2
h(X 1 � x)� 2(X1)

" #
þ o p(1)

¼ �20�
2(x) f 3(x)

ð1
�1

u2K2(u)duþ o p(1)

¼ � 2(x) f 3(x)�20�2 þ o p(1):

Similarly,

hJ13 ¼ � 2(x) f 3(x)�0�1�1 þ o p(1):

Hence,

hJ1 ¼ � 2(x) f 3(x) �21�0 � 2�0�1�1 þ �20�2
� �

þ o p(1): (14)

For J2, we have

J2 ¼
1

n

Xn
i¼1

sn1 �
X i � x

h
sn0

� �2

K2
h(X i � x) m(X i)� a� b(X i � x)ð Þ2

¼ s2n1 �
1

n

Xn
i¼1

K2
h(X i � x) m(X i)� a� b(X i � x)ð Þ2

þ s2n0 �
1

n

Xn
i¼1

X i � x

h

� �2

K2
h(X i � x) m(X i)� a� b(X i � x)ð Þ2

� 2sn0sn1 �
1

n

Xn
i¼1

X i � x

h

� �
K2

h(X i � x) m(X i)� a� b(X i � x)ð Þ2:

Using (10), we obtain
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1

n

Xn
i¼1

X i � x

h

� � j

K2
h(X i � x)(m(X i)� a� b(X i � x))2

¼ 1

n

Xn
i¼1

X i � x

h

� � j

K2
h(X i � x)

1

2
m(2)(x)(X i � x)2 þ o p(h

2)

� �2

<
(m(2)(x))2h4

2n

Xn
i¼1

X i � x

h

� � jþ4

K2
h(X i � x)

þ o p(h
4) � 1

n

Xn
i¼1

X i � x

h

� � j

K2
h(X i � x)

¼ (m(2)(x))2h3

2
� E h

X1 � x

h

� � jþ4

K2
h(X1 � x)

" #
þ o p(1)

( )

þ o p(h
3) E h

X 1 � x

h

� � j

K2
h(X1 � x)

" #
þ o p(1)

( )

¼ h3

2
� jþ4(m

(2)(x))2 f (x)þ o p(h
3)

¼ Op(h
3), j ¼ 0, 1, 2:

By snj �!
p

f (x)� j ( j ¼ 0, 1, 2), we have

J2 ¼ Op(h
3): (15)

For J3, we have

J3 ¼ s2n1 �
1

n

Xn
i¼1

K2
h(X i � x)þ s2n0 �

1

n

Xn
i¼1

X i � x

h

� �2

K2
h(X i � x)

� 2sn0sn1 �
1

n

Xn
i¼1

X i � x

h

� �
K2

h(X i � x):

Using snj �!
p

f (x)� j ( j ¼ 0, 1, 2), we have

hJ3 ¼ f 2(x)�21E hK2
h(X 1 � x)

� �
þ f 2(x)�20E h

X1 � x

h

� �2

K2
h(X1 � x)

 !

� 2 f 2(x)�1�0E h
X 1 � x

h

� �
K2

h(X1 � x)

� �
þ o p(1)

¼ f 3(x) �21�0 � 2�1�0�1 þ �20�2
� 	

þ o p(1): (16)
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By (10) and (16),

J4 ¼
1

n

Xn
i¼1

eWW 2
bi

1

2
m(2)(x)(X i � x)2 þ o p(h

2)

� �

<
1

2
jm(2)(x)jh2 � J3 þ o p(h

2) � J3

¼ Op(h): (17)

As for J5, we have

J5 ¼
1

n

Xn
i¼1

sn1 �
X i � x

h
sn0

� �2

K2
h(X i � x)(Yi � m(X i)) m(X i)� b(X i � x)ð Þ

¼ s2n1 �
1

n

Xn
i¼1

K2
h(X i � x)(Yi � m(X i)) m(X i)� b(X i � x)ð Þ

þ s2n0 �
1

n

Xn
i¼1

X i � x

h

� �2

K2
h(X i � x)(Yi � m(X i)) m(X i)� b(X i � x)ð Þ

� 2sn0sn1 �
1

n

Xn
i¼1

X i � x

h

� �
K2

h(X i � x)(Yi � m(X i)) m(X i)� b(X i � x)ð Þ:

Noting that

1

n

Xn
i¼1

X i � x

h

� � j

K2
h(X i � x)(Yi � m(X i)) m(X i)� b(X i � x)ð Þ

¼ E
X 1 � x

h

� � j

K2
h(X 1 � x)(Y1 � m(X1)) m(X 1)� b(X 1 � x)ð Þ

" #
þ o p(1)

¼ E
X 1 � x

h

� � j

K2
h(X 1 � x) m(X 1)� b(X1 � x)ð Þ(E(Y1jX1)� m(X1))

" #
þ o p(1)

¼ o p(1), j ¼ 0, 1, 2,

we obtain that

J5 ¼ o p(1): (18)

Finally, it follows from (13)–(18) that
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h

n

Xn
i¼1

W 2
bi ¼ hJ1 þ hJ2 þ a2hJ3 þ 2ahJ4 þ 2hJ5

¼ � 2(x)þ m2(x)
� �

f 3(x) �21�0 � 2�1�0�1 þ �20�2
� 	

þ o p(h)

¼ ~�� 2
b(x)þ o p(1):

The proof of Lemma 2 is thus complete. h

Proof of Theorem 1. From (6),

0 ¼ 1

n

Xn
i¼1

Wbi �
ºb
n

Xn
i¼1

W 2
bi

1þ ºbWbi

:

By Lemma 1,

jºbj
1þ jºbjmaxijWbij

� h
n

Xn
i¼1

W 2
bi <





 hnXn
i¼1

Wbi





 ¼ Op (n�1h)1=2 þ h3
� �

:

Note that the condition EjY js , 1 (s . 2) implies that

max
i
jWbij ¼ max

i
j eWWbi(Yi � b(X i � x))j ¼ o p n1=s

� �
: (19)

Then from Lemma 2 and a similar argument used in Owen (1991), it follows that

jºbj ¼ Op (n�1h)1=2 þ h3
� �

¼ Op n�3=5
� �

: (20)

Noticing that

Xn
i¼1

Wbi

1þ ºbWbi

¼
Xn
i¼1

Wbi 1� ºbWbi þ
(ºbWbi)

2

1þ ºbWbi

� �

¼
Xn
i¼1

Wbi � ºb
Xn
i¼1

W 2
bi þ

Xn
i¼1

Wbi ºbWbið Þ2

1þ ºbWbi

,

by (6), (19) and (20), we have that
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ºb ¼
Xn
i¼1

W 2
bi

 !�1Xn
i¼1

Wbi þ Op(º
2
b max

i
jWbij)

¼
Xn
i¼1

W 2
bi

 !�1Xn
i¼1

Wbi þ o p(n
�7=10)

¼ 1

n

Xn
i¼1

W 2
bi

 !�1
1

n

Xn
i¼1

Wbi � ˜

 !
þ ˜

n�1
Xn
i¼1

W 2
bi

þ o p(n
�7=10): (21)

Again by (6), we obtain that

0 ¼
Xn
i¼1

ºbWbi

1þ ºbWbi

¼
Xn
i¼1

(ºbWbi)�
Xn
i¼1

(ºbWbi)
2 þ

Xn
i¼1

(ºbWbi)
3

1þ ºbWbi

: (22)

By (19), (20) and Lemma 2,

Xn
i¼1

(ºbWbi)
3

1þ ºbWbi

¼ o p(1): (23)

It follows from (22) and (23) that

Xn
i¼1

ºbWbi ¼
Xn
i¼1

(ºbWbi)
2 þ o p(1):

Then applying Taylor’s expansion to (7), we have

l(b) ¼ 2
Xn
i¼1

log f1þ ºbWbig ¼ 2
Xn
i¼1

ºbWbi �
1

2
(ºbWbi)

2

� �
þ rn

¼ º2b
Xn
i¼1

W 2
bi þ rn,

with

jrnj < Cjºbj3 max
i
jWbij

Xn
i¼1

W 2
bi ¼ o p n�9=5þ1=s � (nh�1)

� �
¼ o p(1):

Therefore, by (21) and Lemmas 1 and 2, we have
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r � l(b) ¼ r � º2b
Xn
i¼1

W 2
bi þ o p(1)

¼
(nh)1=2 n�1

Xn
i¼1

Wbi � ˜

 !
� b(x)

0BBBB@
1CCCCA

2

� r � � 2
b(x)

n�1h
Xn
i¼1

W 2
bi

þ nh5C2
0(x)

4~�� 2
b(x)

þ nh5ð Þ1=2� b(x)C0(x)

~�� 2
b(x)

�
(nh)1=2 n�1

Xn
i¼1

Wbi � ˜

 !
� b(x)

0BBBB@
1CCCCAþ o p(1)

¼ �21 þ
nh5C2

0(x)

4~�� 2
b(x)

þ nh5ð Þ1=2� b(x)C0(x)

~�� 2
b(x)

� N þ o p(1)

where �21 is a chi-square random variable with one degree of freedom and N is a standard

normal random variable. Clearly, if h ¼ o n�1=5
� �

, then r � l(b)�!L �21. When C0(x) 6¼ 0,

r � l(b)�!L �21 if and only if h ¼ o n�1=5
� �

. The proof is thus complete. h

Proof of Theorem 2. Let

d ¼ h2

2
m(2)(x)B0, � 2

W ¼
ð
t2W (t)dt,

Łn ¼
h2b
2
� 2

W � (2)(x)
� �2þo h2 þ h2b

� �
:

We have

err � r ¼ � 2(x) bmm2(x)� �̂� 2(x)m2(x)

� 2(x)�̂� 2(x)

¼ � 2(x) bmm2(x)� �̂� 2(x)m2(x)

� 4(x)
1þ � 2(x)� �̂� 2(x)

�̂� 2(x)

� �
:

By the consistency of �̂� 2(x),

� 2(x)� �̂� 2(x)

�̂� 2(x)
¼ o p(1),

so we only need to show that � 2(x) bmm2(x)� �̂� 2(x)m2(x) ¼ Op n�2=5
� �

. Note that
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� 2(x) bmm2(x)� �̂� 2(x)m2(x)

¼ � 2(x) bmm(x)� m(x)� dð Þ2þ� 2(x)d d þ 2 bmm(x)� m(x)� dð Þð Þ

þ 2� 2(x)m(x) bmm(x)� m(x)� dð Þ þ 2� 2(x)m(x)d

� m2(x) �̂� 2(x)� � 2(x)� Łn

� �
� m2(x)Łn: (24)

Under Conditions 1–5, by Theorem 1 in Fan and Yao (1998),

�̂� 2(x)� � 2(x)� Łn ¼ Op (nhb)
�1=2

� �
¼ Op n�2=5

� �
:

By the asymptotic normality of bmm(x),
bmm(x)� m(x)� d ¼ Op (nh)�1=2

� �
¼ o p n�2=5

� �
(Tsybakov 1986; Masry and Fan 1997). Also, noting that Łn ¼ Op n�2=5

� �
and

d ¼ o p n�2=5
� �

, it follows from (24) that

�̂� 2(x)m2(x)� � 2(x) bmm2(x) ¼ Op n�2=5
� �

:

The proof is thus complete. h
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