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EMPIRICAL LIKELIHOOD-BASED INFERENCE IN CONDITIONAL MOMENT
RESTRICTION MODELS

YUICHI KITAMURA, GAUTAM TRIPATHI, AND HYUNGTAIK AHN

Abstract. This paper proposes an asymptotically efficient method for estimating models with con-

ditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator

(MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the

information implied by the conditional moment restrictions into our empirical likelihood-based proce-

dure. This yields a one-step estimator which avoids estimating optimal instruments. Our likelihood

ratio-type statistic for parametric restrictions does not require the estimation of variance, and achieves

asymptotic pivotalness implicitly. The estimation and testing procedures we propose are normalization

invariant. Simulation results suggest that our new estimator works remarkably well in finite samples.

1. Introduction

Estimation of econometric models via moment restrictions has been extensively investigated in
the literature. Perhaps the most popular technique for estimating models under unconditional moment
restrictions is Hansen’s (1982) Generalized Method of Moments (GMM). Recently, some alternatives
have been suggested by Qin and Lawless (1994), Kitamura and Stutzer (1997), and Imbens, Spady,
and Johnson (1998). All these estimators are based on unconditional moment restrictions.

Economic theory, however, often provides conditional moment restrictions. A leading example
is the theory of dynamic optimizing agents with time-separable utility. This theory typically pre-
dicts implications in terms of martingale differences. GMM and its variants can handle such models,
because a conditional moment restriction can be used to derive a set of unconditional moment restric-
tions using instrumental variables (IV’s) that are arbitrary measurable functions of the conditioning
variables. However, it is advantageous to efficiently use the information contained in the conditional
moment restrictions for better statistical inference. Earlier in the literature, Amemiya (1974) de-
rived the optimal instrumental variables for conditional moment models with homoscedastic errors.
Chamberlain (1987) allowed heteroscedasticity of unknown form and showed that the semiparametric
efficiency bound for conditional moment restriction models is attained by the optimal IV estimator.
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The implementation of the above efficient estimation concepts has been discussed, among oth-
ers, by Robinson (1987) and Newey (1990, 1993). Robinson and Newey use nonparametric methods
to estimate the optimal instruments. Such a procedure yields an asymptotically efficient estimator
under quite general and flexible conditions. It can be viewed as a feasible version of Chamberlain’s
efficient estimator. Although the feasible optimal IV estimator possesses good asymptotic properties
in terms of its generality, nonparametric estimation of optimal instruments may require very large
samples, thereby affecting the finite sample performance of the feasible estimator.

This paper extends the method of empirical likelihood, introduced by Owen (1988, 1990,1991),
to the estimation of conditional moment models. Our approach is similar to the one taken by Robinson
and Newey in that it uses a nonparametric method to allow for maximal generality. However, it
circumvents the problem of the nonparametric estimation of the optimal instruments. By using a
localized version of empirical likelihood we derive a new estimator that achieves the semiparametric
efficiency bound automatically; i.e. without estimating the optimal instruments explicitly.

Empirical likelihood is a useful tool of finding estimators, constructing confidence regions, and
testing hypotheses. It competes very convincingly with other methods, such as the bootstrap. It
is quite general and its applications can be found in a wide range of areas. See, for instance, the
review papers by Owen (1995) and Hall and LaScala (1990). In particular, Qin and Lawless (1994)
demonstrated that empirical likelihood extends to unconditional moment restriction model with iid
samples and that it yields an efficient estimator. Imbens (1993) and Imbens, Spady, and Johnson
(1998) discuss similar methods. Kitamura (1997b) showed the weak consistency of the maximum
empirical likelihood estimator and further extended the Qin and Lawless approach to weakly dependent
data series.

The framework of empirical likelihood is natural and appealing. While it is a nonparametric
procedure, it has likelihood-theoretic foundations. Many desirable features of parametric likelihood
methods carry over to empirical likelihood. For example, MELE is transformation invariant. A non-
parametric analogue of Wilks’ theorem also holds: by taking the difference between the constrained
and unconstrained empirical loglikelihood and multiplying it by −2, we obtain the empirical likeli-
hood ratio statistic (ELR) that converges to a χ2 distribution. This point has an important practical
implication; namely, ELR-based tests achieve asymptotic pivotalness without explicit studentiza-
tion. “Implicit pivotalness” may be useful when estimating the variance for studentization is difficult
(Chen 1996). This feature is particularly attractive when applying the bootstrap, where pivoting is
theoretically important (Beran 1988) but may lead to poor results in practice due to the difficulty of
estimating the variance. See, for instance, Fisher, Hall, Jing, and Wood (1996) and Kitamura (1997a).

ELR has other interesting and potentially useful theoretical properties. For example, as shown
by DiCiccio, Hall, and Romano (1991), ELR is Bartlett-correctable. Also, Kitamura (2000) recently
showed that ELR tests have an optimal power property in terms of a Hoeffding (1963) type asymptotic
efficiency criterion. See Hall (1990) for other desirable properties of empirical likelihood.

Our approach builds upon the empirical likelihood method for unconditional moment models
discussed above, though our goal is to achieve efficiency gain by exploiting the conditional moment
restriction E{g(z, θ0)|x} = 0, where x denotes the vector of conditioning variables. The estimation
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strategy follows a two-step method. In the first step we fix θ and obtain the localized version of
empirical likelihood at each realization of x under the conditional moment restriction E{g(z, θ)|x} = 0.
These are used to construct a global profile likelihood function. In the second step we maximize the
profile likelihood from the first step to obtain an estimate of θ0. More details on this procedure are
provided in the next section.

In this paper we show that our approach uses information from the conditional moments effec-
tively, and allows us to obtain an estimate for θ0 that achieves the semiparametric efficiency bound.
This approach emerges naturally as an extension of the classical likelihood paradigm, and is theoreti-
cally quite appealing. It seems to be useful in practice as well. For example, as mentioned before, our
method has the implicit pivotalness that can be important in a situation where the estimation of the
asymptotic variance is difficult.

Before we close this section, let us mention additional papers which may also be related to our
investigation. In an independent study Brown and Newey (1998) investigate the same class of condi-
tional moment models as ours. They consider the bootstrap for a conventional optimal instrumental
variables estimator such as Newey’s. They propose to resample data series according to a distribution
estimate obtained from the local empirical likelihood, evaluated at the optimal instrumental variables
estimator in question. Their approach seems to be promising, but their goal is quite different from ours
in that they considered the bootstrap of conventional estimators, whereas we propose to construct a
new efficient estimator. Following Brown and Newey’s suggestion, it should be interesting to examine
the performance of the bootstrap for our estimator.

LeBlanc and Crowley (1995) propose to use local empirical likelihood to estimate a “condi-
tional functional.” However, the class of models they consider is narrower than ours, because they
only examine regression functionals. They do not provide formal results on the consistency and as-
ymptotic normality as we do, nor do they note that the local empirical likelihood estimator achieves
the semiparametric efficiency bound. Donald, Imbens, and Newey (2001) develop an interesting em-
pirical likelihood-based estimator for conditional moment restriction models. As Donald et al note,
their approach is very different from ours in that their estimator achieves the semiparametric efficiency
bound by letting the dimension of the unconditional moments grow with sample size. The impact
of having high dimensional moment conditions on the finite sample performance of their estimator
remains to be seen.

Zhang and Gijbels (2001) independently develop a methodology close to ours. They consider
parametric and nonparametric regression models, whereas we consider parametric conditional moment
models that nest regression as a special case. Unlike us, they rule out unbounded regressors by
assuming that the conditioning variables x are compactly supported such that the density of x is
bounded away from zero on its support. Furthermore, their identification relies on the following
condition (in our notation): inf‖θ−θ0‖≥δ ‖Eg(z, θ)‖ 6= 0 for any δ > 0. For this condition to hold,
g(z, θ) cannot be a regression residual. For instance, their identification condition does not cover the
example we consider in Section 5. To identify the regression function through such an unconditional
moment restriction, an appropriate instrument vector has to be specified. But a part of our original
motivation was to avoid using arbitrary instruments. Finally, we develop a likelihood ratio-type test
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for parametric hypotheses and give a formal derivation of its asymptotic distribution. We also provide
extensive simulation results. These results have not been provided by any of the papers cited above.

A word on notation. If V is a matrix, ‖V ‖ =
√
tr(V V ′) denotes its Frobenius norm. This

reduces to the usual Euclidean norm in case V happens to be a vector. By a “vector” we mean a
column vector. We do not make any notational distinction between a random vector and the value
taken by it. The difference should be clear from the context. Unless mentioned otherwise, all limits
are taken as n ↑ ∞. The qualifier “with probability one” is abbreviated as “w.p.1”.

2. The Estimator

Let {xi, zi}ni=1 be a random sample in Rs × Rd. x is continuously distributed with Lebesgue
density h, while z can be continuous, discrete, or mixed. Θ is a compact subset of Rp and g(z, θ) :
Rd ×Θ → Rq is a vector of known functions. We consider the conditional moment restriction

(2.1) E{g(z, θ0)|x} = 0 w.p.1,

where θ0 ∈ int(Θ) is the true parameter value. The goal is to efficiently estimate θ0 under (2.1). This
setup has numerous applications. See, for instance, Newey (1993). In particular, it may be used to
model the linear or nonlinear conditional mean regression: Let z = (x, y), where x is the vector of
explanatory variables and y denotes the response variable. g(z, θ0) is then simply the deviation of y
from E(y|x); i.e. g(z, θ0) = y−E(y|x) = y−G(x, θ0) where G is known. More generally, we can apply
this setup to separable models of the type g(z, θ0) = ε, where ε is a vector of unobserved errors. The
nonlinear simultaneous equations model studied in Amemiya (1977) takes this form.

Notice that g(z, θ0) is not correlated with any function of x in (2.1). Therefore, for a matrix
of instrumental variables v(x, θ0), (2.1) implies the unconditional moment restriction

(2.2) E{v(x, θ0)g(z, θ0)} = 0.

An interesting question is to find a v which yields an asymptotically efficient estimator of θ0. Let1

D(x, θ) = E{∂g(z,θ)∂θ |x} and V (x, θ) = E{g(z, θ)g′(z, θ)|x}. As shown in Chamberlain (1987), the
asymptotic variance of any n1/2-consistent regular estimator of θ0 in (2.1) cannot be smaller than
I−1(θ0), where I(θ0) = E{D′(x, θ0)V −1(x, θ0)D(x, θ0)} denotes the minimal Fisher information for
estimating θ0 under (2.1). Using standard GMM theory, we can show that the lower bound I−1(θ0)
is achieved by an optimal IV estimator which uses v∗(x, θ0) = D′(x, θ0)V −1(x, θ0) as the instruments
in (2.2). But because θ0 is unknown, as are usually the functional forms of D and V , an estimator
using the “optimal instrument” v∗ is infeasible. Newey (1993) proposed a feasible method of moments
estimator which uses a preliminary estimator of θ0 and estimates v∗ nonparametrically. Under certain
regularity conditions, Newey shows that his estimator is asymptotically efficient. However, in practice
it is often difficult to find a well-behaved estimate of v∗. As a result, the feasible method of moments
estimator can perform poorly.

In this paper we propose an alternative, yet asymptotically efficient, estimation technique which
avoids estimating the optimal instruments. Our approach relies on the localized empirical likelihood.

1We denote the q × p Jacobian matrix of the partial derivatives of g(z, θ) with respect to θ as ∂g(z,θ)
∂θ

.



5

We use positive weights wij =
K(

xi−xj
bn

)∑n
j=1K(

xi−xj
bn

)

def
= Kij∑n

j=1Kij
to carry out the localization. For the sake

of notational convenience, the dependence of wij and Kij upon n is suppressed. The kernel function
K is chosen to satisfy Assumption 3.3, and the bandwidth bn is a null sequence of positive numbers
such that nbsn ↑ ∞2. In a bn neighborhood of xi, wij assigns smaller weights to those xj ’s which are
farther away from xi.

Let pij be the probability mass placed at (xi, zj) by a discrete distribution that has support on
{x1, . . . , xn}× {z1, . . . , zn}. The reader can interpret pij as the conditional probability Pr{z = zj |x =
xi}. We start our estimation procedure by using the weights wij to obtain a “smoothed” log-likelihood∑n

i=1

∑n
j=1wij log pij . Next, for each θ ∈ Θ we concentrate out the pij ’s by solving

(2.3)

max
pij

n∑
i=1

n∑
j=1

wij log pij

s.t. pij ≥ 0,
n∑
j=1

pij = 1,
n∑
j=1

g(zj , θ)pij = 0, for i, j = 1, . . . , n.

(2.3) can be conveniently solved by using Lagrange multipliers. The Lagrangian is3

L(θ) =
n∑
i=1

n∑
j=1

wij log pij −
n∑
i=1

µi(
n∑
j=1

pij − 1)−
n∑
i=1

λ′i

n∑
j=1

g(zj , θ)pij ,

where µ1, . . . , µn are the multipliers for the second set of constraints, and {λi ∈ Rq : i = 1, . . . , n} the
Lagrange multipliers for the third set of constraints. It is easily verified that the solution to (2.3) is

(2.4) p̂ij =
wij

1 + λ′ig(zj , θ)
,

where, for each θ ∈ Θ, λi solves4

(2.5)
n∑
j=1

wijg(zj , θ)
1 + λ′ig(zj , θ)

= 0, i = 1, . . . , n.

Using (2.4), we define the smoothed empirical loglikelihood (SEL) at θ as

SEL(θ) =
n∑
i=1

n∑
j=1

Ti,nwij log p̂ij =
n∑
i=1

n∑
j=1

Ti,nwij log{ wij
1 + λ′ig(zj , θ)

},

where λi solves (2.5), and Ti,n is a sequence of trimming functions which have been incorporated
in the smoothed log-likelihood to deal with a technical problem. Ti,n will be defined shortly. Our
“maximum smoothed empirical likelihood estimator” of θ0 is defined as

(2.6) θ̂ = argmax
θ∈Θ

SEL(θ).

2Additional restrictions on the choice of bn are described in Assumption 3.7.
3Since the objective function depends upon pij only through log pij , the constraint pij ≥ 0 does not bind.
4λi is shorthand for λ(xi, θ). Its dependence upon θ is suppressed to reduce notation, and should not cause any

confusion. However, when necessary, we explicitly write λi as λi(θ) to ensure that our arguments are unambiguous.
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As noted above, the objective function SEL(θ) involves a trimming function. To see why
trimming is necessary, let ĥ(xi) = 1

nbsn

∑n
j=1Kij denote the Nadaraya-Watson estimate of h(xi) and

write wij = Kij/(nb
s
n)

ĥ(xi)
. The presence of the density estimate in the denominator means that the local

log-empirical likelihood
∑n

j=1wij log p̂ij may be ill-behaved for x’s lying in the tails of h. This is the
well-known “denominator problem” associated with kernel estimators. Different authors have used
different approaches to deal with this problem. For instance, Robinson (1987) and Newey (1993)
choose to avoid this problem altogether by using nearest neighbor estimators. However, since kernel
estimators are mathematically and practically tractable, we retain them in this paper and deal with
the denominator problem by trimming away small values of ĥ(xi). In this paper we use the indi-
cator function Ti,n = I{ĥ(xi) ≥ bτn} to do the trimming, where the trimming parameter τ ∈ (0, 1).
Lemma D.4 shows that if bn and τ are chosen appropriately, Ti,n

p−→ 1 as n ↑ ∞. Tripathi and Kita-
mura (2000) use a version of SEL which is trimmed over a fixed set to obtain a specification test for
the validity of the conditional moment restriction E(z|x) = 0.

Implementing our estimator is straightforward. From (2.5), it is easily seen that

(2.7) λi = argmax
γ∈Rq

n∑
j=1

wij log(1 + γ′g(zj , θ)).

This is a well behaved optimization problem since the objective function is globally concave and can
be solved by a simple Newton-Raphson numerical procedure. Once the λi’s are calculated, θ̂ can be
obtained by maximizing SEL(θ), which is equivalent to maximizing

−
n∑
i=1

n∑
j=1

Ti,nwij log{1 + λ′ig(zj , θ)} = −
n∑
i=1

Ti,n max
γ∈Rq

n∑
j=1

wij log{1 + γ′g(zj , θ)}

with respect to θ ∈ Θ. This “outer loop” minimization can be carried out using a numerical optimiza-
tion procedure.

Finally, we comment upon a normalization-invariance property of θ̂. Let A(xi, θ) be a q × q

matrix which, for each θ ∈ Θ, is nonsingular w.p.1. The null set on which A(xi, θ) is singular may
depend upon θ. Obviously, the conditional mean restriction in (2.1) remains unaltered if g(z, θ0) is
replaced by A(x, θ0)g(z, θ0). A nice feature of θ̂ is that it is invariant to such normalizations since the
normalization factor A(xi, θ) is simply absorbed into λi ≡ λ(xi, θ) in (2.4). Note that the two-step
estimators proposed in Robinson (1987) and Newey (1993) do not share this normalization-invariance
property.

3. Large Sample Theory

In this section we present some asymptotic results for the maximum smoothed empirical like-
lihood estimator of θ0 defined in (2.6). In addition to the previously defined symbols, the following
notation is also used in the rest of the paper: Sa = {ξ ∈ Ra : ‖ξ‖ = 1} is the unit sphere in Ra,
x(i) denotes the ith component of the vector x, and M (ij) is the (i, j)th element of a matrix M .
∇θ (the subscript indicates that differentiation is with respect to θ) is the gradient operator; i.e.
∇θg(z, θ) = ∂g′(z,θ)

∂θ , where ∂g′(z,θ)
∂θ denotes the transpose of ∂g(z,θ)

∂θ . Obviously, ∇θg(z, θ) is a p × q
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matrix. If f(θ) is scalar valued, then the gradient ∇θf(θ) is a p× 1 vector while the Hessian ∇θθf(θ)
is a p× p matrix.

The following regularity conditions help us in doing asymptotic analysis.

Assumption 3.1. For each θ 6= θ0 there exists a set Xθ ⊆ Rs such that Pr{x ∈ Xθ} > 0, and
E{g(z, θ)|x} 6= 0 for every x ∈ Xθ. �

Assumption 3.1 guarantees the identification of θ0. It differs from the identification condition
in Newey (1993) because here we provide a proof of the consistency of a fully iterative estimation
procedure based on a global parameter search, while Newey considers an estimator obtained from one
Newton-Raphson iteration using a preliminary consistent estimate.

Assumption 3.2. E{supθ∈Θ ‖g(z, θ)‖m} <∞ for some m ≥ 8. �

m = 8 is used in the proof of Lemma B.6.

Assumption 3.3. For x = (x(1), . . . , x(s)), let K(x) = Πs
i=1κ(x

(i)). Here κ : R → R is a continuously
differentiable pdf with support [−1, 1]. κ is symmetric about the origin, and for some a ∈ (0, 1) is
bounded away from zero on [−a, a]. �

K belongs to the class of second order product kernels. Since these kernels are employed to
estimate probabilities, the use of kernels with order greater than two is ruled out. Furthermore, the
nonnegativity of K is also explicitly used several times. See, for instance, the proof of Lemma B.1.
Continuous differentiability of K allows us to use the uniform convergence rates for kernel estimators in
Ai (1997). The requirement that K be bounded away from zero on a closed ball centered at the origin,
allows us to use the consistency result of Devroye and Wagner (1980) in the proof of Lemma B.2.

Assumption 3.4. Assume that:

(i) 0 < h(x) ≤ supx∈Rs h(x) <∞, h ∈ C2(Rs), and supx∈Rs ‖∇xxh(x)‖ <∞.
(ii) E‖x‖1+% <∞ for some % > 0.
(iii) θ 7→ g(z, θ) is continuous on Θ w.p.1, and E{supθ∈Θ ‖

∂g(z,θ)
∂θ ‖} <∞.

(iv) (θ, x) 7→ ‖∇xx{E[g(l)(z, θ)|x]h(x)}‖ is uniformly bounded on Θ× Rs for 1 ≤ l ≤ q. �

Uniform boundedness of h and its second derivatives along with (ii) is used, for instance, in
the proofs of Lemmas B.3 and D.8. (iii) and (iv) are useful when showing the consistency of θ̂.

Assumption 3.5. There exists a closed ball B0 around θ0 such that for 1 ≤ i, r ≤ q and 1 ≤ j, k ≤ p:

(i) θ 7→ D(x, θ) and θ 7→ V (x, θ) are continuous on B0 w.p.1.
(ii) inf(ξ,x,θ)∈Sq×Rs×B0

ξ′V (x, θ)ξ > 0 and sup(ξ,x,θ)∈Sq×Rs×B0
ξ′V (x, θ)ξ <∞.

(iii) supθ∈B0
|∂g

(i)(z,θ)

∂θ(j)
| ≤ d(z) and supθ∈B0

|∂
2g(i)(z,θ)

∂θ(j) ∂θ(k) | ≤ l(z) hold w.p.1 for some real valued functions
d(z) and l(z) such that Edη(z) <∞ for some η ≥ 4, and El(z) <∞.

(iv) sup(x,θ)∈Rs×B0
‖∇xx{D(ij)(x, θ)h(x)}‖ <∞.

(v) sup(x,θ)∈Rs×B0
‖∇xx{V (ir)(x, θ)h(x)}‖ <∞. �

(i), (ii), and (iii) imply θ 7→ I(θ) is continuous on B0. By (ii), sup(x,θ)∈Rs×B0
‖V −1(x, θ)‖ <∞

and sup(x,θ)∈Rs×B0
E{‖g(z, θ)‖2|x} <∞. These facts are used in the proofs. In (iii), existence of d(z)

ensures that E‖D(x, θ0)‖η <∞. η = 4 is used in the proof of Theorem 3.2. (iv) and (v) are used, for
instance, in the proofs of Lemma B.5 and Lemma B.6 respectively.
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Assumption 3.6. When solving (2.5) for λ1, . . . , λn, we only search over the set {γ ∈ Rq : ‖γ‖ ≤
c̄n−1/m} for some c̄ > 0. �

This is similar to Assumption 4.2(b) of Newey and Smith (2000). Since the λi’s converge to
zero under (2.1), when solving (2.5) for λ1, . . . , λn it is reasonable to search for the solution in some
neighborhood of the origin. Because Pr{max1≤j≤n supθ∈Θ ‖g(zj , θ)‖ = o(n1/m)} = 1 as n ↑ ∞ by
Lemma D.2, restricting the λi’s to a n−1/m-neighborhood of the origin ensures that

(3.1) Pr{ max
1≤i,j≤n

sup
θ∈Θ

|λ′ig(zj , θ)| = o(1)} = 1 as n ↑ ∞.

This, for instance, is used in the proof of Theorem 3.2. Note that we only need Assumption 3.6 to
establish the asymptotic normality of θ̂. We prove consistency of θ̂ without using Assumption 3.6.

Finally, the following assumption collects the conditions on %, τ , and bn under which our
consistency and asymptotic normality results hold.

Assumption 3.7. Let τ ∈ (0, 1), % ≥ 1.5/m+1/4, bn ↓ 0, and β ∈ (0, 1) such that: n1−βb
( η+2

η−2
) s
2

n ↑ ∞,
n1−2β−2/mb2s+4τ

n ↑ ∞, n%b2τn ↑ ∞, n%−1/ηbτn ↑ ∞, and n%−2/mbτn ↑ ∞. �

τ < 1 is required in the proof of Lemma D.5, and % ≥ 1.5/m + 1/4 is used in the proof of

Theorem 3.2. bn ↓ 0 and nbsn ↑ ∞, the latter following when n1−βb
( η+2

η−2
) s
2

n ↑ ∞, are standard conditions
on the bandwidth to ensure consistency of kernel estimators. The parameter β appears because we
are using uniform convergence rates for kernel estimators due to Ai (1997).

We are now ready to present our findings. The first result shows that θ̂ is consistent.

Theorem 3.1. Let Assumptions 3.1–3.5 and 3.7 hold. Then θ̂
p−→ θ0.

Next comes asymptotic normality.

Theorem 3.2. Let Assumptions 3.1–3.7 hold. Then n1/2(θ̂ − θ0)
d−→ N(0, I−1(θ0)).

I−1(θ0) coincides with the efficiency bound in Chamberlain (1987) for estimating θ0 under
(2.1). Therefore, θ̂ is asymptotically efficient.

4. Hypothesis Testing

We now consider testing restrictions on θ0. While it is straightforward to define an analog
of the Wald test by using an estimate of I−1(θ0), obtaining good estimates of I(θ0) can be difficult.
Furthermore, explicit studentization destroys “implicit pivotalness”, which is one of the attractive
features of empirical likelihood. A more natural approach which fully exploits the pseudo-likelihood
character of our methodology is to construct an analog of the conventional parametric likelihood ratio
test. In the parametric likelihood framework, Wilks’s theorem enables us to conduct asymptotic χ2

inference based on the likelihood ratio test. We extend Wilks’s theorem to models with conditional
moment restrictions.

Suppose we want to test the parametric restriction H0 : R(θ0) = 0 against H1 : R(θ0) 6= 0,
where R(θ0) is a r × 1 vector and r ≤ p. The constrained version of θ̂ is

θ̂R = argmax
θ∈Θ

SEL(θ) s.t. R(θ) = 0,
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where SEL(θ) was defined earlier. A SEL version of the likelihood ratio statistic for testing H0 is then

LRn = 2{SEL(θ̂)− SEL(θ̂R)}.

To get some intuition behind the limiting behavior of LRn, consider testing the simple hypoth-
esis H∗

0 : θ0 = θ̄ against H∗
1 : θ0 6= θ̄, where θ̄ is known. The restricted estimator is now θ̂R = θ̄, and

LRn reduces to LRn = 2{SEL(θ̂)− SEL(θ̄)}. Taylor expand SEL(θ̄) around θ̂ to get

SEL(θ̄) = SEL(θ̂) + (θ̄ − θ̂)′∇θSEL(θ̂) +
1
2
(θ̄ − θ̂)′∇θθSEL(θ∗)(θ̄ − θ̂),

for some θ∗ between θ̄ and θ̂. But from (2.6) we know ∇θSEL(θ̂) = 0, and Lemma C.1 shows that
‖ − ∇θθSEL(θ∗)/n − I(θ0)‖ = op(1). Therefore, by Theorem 3.2 it is straightforward to see that

2{SEL(θ̂)− SEL(θ̄)} d−→ χ2
p under H∗

0. To handle the general case, we make the following assumption.

Assumption 4.1. R : Θ → Rr is twice continuously differentiable and ∂R(θ0)
∂θ has rank r. �

The asymptotic distribution of LRn is then given by the following result.

Theorem 4.1. Let Assumptions 3.1–4.1 hold. Then LRn
d−→ χ2

r under H0.

We can also invert LRn to construct asymptotically valid confidence intervals. For example, if
one is interested in constructing a confidence interval for the jth component of θ0, treating the other
components as nuisance parameters, an approximate (1− α) level confidence interval is given by

{θ(j) : min
θ(1),...,θ(j−1),θ(j+1),...θ(p)

2[SEL(θ̂)− SEL(θ)] ≤ uα},

where uα satisfies P (χ2
1 ≥ uα) = α. As in Qin and Lawless (1994) and Kitamura and Stutzer (1997), it

is also possible to construct Lagrange Multiplier and Wald-type statistics, although these alternatives
are less attractive because LRn achieves pivotalness without requiring the estimation of variance.

It is straightforward to see that confidence intervals based on LRn are invariant to nonsingular
transformations of the moment conditions. They also automatically satisfy natural range restric-
tions. See a related discussion by Owen (1990, Section 3.2) for models with unconditional moment
restrictions. Empirical likelihood has other nice theoretical properties such as Bartlett correctability
and GNP-optimality at least in unconditional moment models. It is reasonable to expect that some
of these features would carry over to the smoothed empirical likelihood approach considered here,
although it is a technically challenging task to establish them rigorously.

Finally, it is also useful to note that even though SEL(θ) was obtained on nonparametric consid-
erations, it behaves very much like a parametric likelihood. This can be seen from Theorem 3.2, which
shows that maximizing SEL(θ) leads to an asymptotically efficient estimator of θ0. Additional sup-
port is provided by Lemma C.1, which demonstrates that the “observed information” −∇θθSEL(θ̂)/n
converges in probability to I(θ0), the minimal Fisher information for estimating θ0 in (2.1).

5. Monte Carlo Experiment

We now compare our estimator with some competitors using a Monte Carlo experiment. This
experiment also provides some guidance regarding the choice of bandwidth for our estimator in prac-
tice. Our simulation design basically follows Cragg (1983). This design, also used in Newey (1993), is
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a linear model with heteroscedastic errors; namely,

(5.1) yi = β1 + β2xi + ui, ui = εi

√
0.1 + 0.2xi + 0.3x2

i .

Here the true β1 = β2 = 1, ln(xi) ∼ N(0, 1), εi ∼ N(0, 1), and xi and εi are independent. The
number of replications is set to 500. Simulation results not reported here show that the performance
of our estimator is relatively insensitive to the choice of the trimming parameter τ . Hence in this
experiment we set Ti,n = 1 for each i; i.e. we do not trim ĥ when computing our estimator. Fol-
lowing Newey (1993), we also report estimates for β1 and β2 using ordinary least squares (OLS),
(infeasible) generalized least squares (GLS), and feasible GLS (FGLS). Note that FGLS requires the
knowledge of the functional form of the heteroscedasticity, while GLS requires perfect knowledge of
the heteroscedasticity function.

The label “k-NN” denotes Newey’s semiparametric efficient IV estimator where the heteroscedas-
ticity function is estimated by nearest neighbor methods. For details about FGLS and “k-NN”, the
reader is referred to Newey (1993). The label “kernel” refers to an estimator similar to “k-NN,” the
only difference being that Nadaraya-Watson estimators are used in place of nearest neighbor estima-
tors. Interestingly, “kernel” works favorably compared with “k-NN,” as mentioned below. The final
estimator we consider is the new estimator (2.6), denoted by “SEL”.

In general, comparing semiparametric estimators is tricky since they depend on the choice
of nonparametric techniques (e.g., nearest neighbor or kernel), as well as the choice of bandwidth
parameters. Calculating “kernel” is therefore useful, because it enables us to compare a Newey type
semiparametric estimator with our estimator using the same nonparametric regression methodology.

Newey’s semiparametric IV estimator (with nearest neighbor or kernel) and our estimator
depend on the choice of the number of nearest neighbors (denoted by kn in the tables in Appendix E)
or the bandwidth (bn). The tables contain results with reasonable range of kn’s and bn’s. Also, the
rows labeled “automatic” are obtained by choosing k and bn by a cross-validation procedure suggested
in Newey (1993).

Following Newey (1993), we use infeasible GLS as our baseline. “Ratio RMSE,” for example,
refers to the ratio of the RMSE of an estimator relative to that of GLS. For each estimator, the first
(second) row corresponds to the estimate for β1 (β2). The results for OLS, FGLS, and “k-NN” in the
tables match Newey (1993)’s simulation results with a reasonable degree of accuracy.

Tables 1 and 2 show results for n = 50. OLS is clearly inefficient, and FGLS works well, given
the small sample size. The performance of “k-NN” and “kernel” is in between OLS and FGLS, although
“kernel” works slightly better than “k-NN.” SEL is as flexible as “k-NN” and “kernel” in terms of the
treatment of heteroscedasticity, but its performance is better than these two. Notice that this good
relative performance of SEL holds at each bn over the range of bandwidths considered here. Naturally,
SEL continues to work best among the three semiparametric estimators when cross-validation is used.
For example, “Ratio RMSE” of SEL for β2 is 1.22, whereas for “k-NN” and “kernel” it is 1.59 and 1.57,
respectively. With n = 100 (Tables 3 and 4), all of the semiparametric estimators (“k-NN”, “kernel”,
and SEL) behave well, though the performance of SEL is still considerably better than the other two.
With n = 200 (Tables 5 and 6), SEL works remarkably well. After cross-validation, its RMSE and
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MAE are only 9.5% larger than those for GLS. Recall that SEL achieves this excellent performance
without using any knowledge of the optimal IV. It should also be noted that SEL is robust with
respect to the choice of bandwidth. For instance, “Ratio RMSE” of SEL for β2 is between 1.09 and
1.25 (i.e., an efficiency loss of 9% to 25%). The other estimators sometimes have large “Ratio RMSE”
depending upon the bandwidth. In summary, our empirical likelihood-based estimator performs very
well, at least within Cragg’s simulation design considered here. Even though the performance of the
estimators varies with the choice of bandwidth, SEL outperforms other estimators uniformly over the
range of bandwidths used in our experiment.

6. Conclusion

In this paper we show how to extend the empirical likelihood methodology to estimate models
with conditional moment restrictions. By using a localized version of empirical likelihood, we obtain
a new normalization-invariant estimator that achieves the semiparametric efficiency bound automat-
ically; i.e. without estimating the optimal instruments explicitly. The smoothed empirical likelihood
approach also lends itself naturally to hypothesis testing. In particular, we propose a likelihood ratio
type statistic for testing parametric restrictions. This statistic does not require the estimation of
any variance term and we demonstrate that it achieves asymptotic pivotalness implicitly. Finally,
we carry out a Monte Carlo experiment to examine the efficacy of our estimator in finite samples.
Simulation results show that our estimator works remarkably well in practice when compared with
some competing estimators. �

Appendix A. Proofs of Main Results

Notation. Henceforth, the letter c denotes a generic constant which may vary from case to case.
Furthermore, B(θ, ε) denotes an open ball of radius ε centered at θ, V̂ (xi, θ) =

∑n
j=1wijg(zj , θ)g

′(zj , θ),
Ω̂(xi, θ) = 1

nbsn

∑n
j=1Kijg(zj , θ)g′(zj , θ), Ω(xi, θ) = V (xi, θ)h(xi), Kmax = supx∈[−1,1]s K(x), Sn = {x ∈

Rs : ‖x‖ ≤ n}, T̂i,n = Ti,nh(xi)/ĥ(xi), Ii,n = I{xi ∈ Sn}, Ici,n = 1− Ii,n, g∗(z) = supθ∈Θ ‖g(z, θ)‖, and

∇θg
′(z, θ) = ∂g(z,θ)

∂θ . The qualifier “with probability approaching one” is abbreviated as “w.p.a.1”. �

Proof of Theorem 3.1. Our consistency proof utilizes the approach developed in Kitamura (1997b)
and Kitamura and Stutzer (1997). Recall that θ̂ maximizes the objective function

Gn(θ) =
1
n

n∑
i=1

n∑
j=1

−Ti,nwij log(1 + λ′i(θ)g(zj , θ)).

For a constant c̃ ∈ (0, 1), define Cn = {z : supθ∈Θ ‖g(z, θ)‖ ≤ c̃n1/m} and gn(z, θ) = I{z ∈ Cn}g(z, θ).
Define u(x, θ) = E[g(z, θ)|x]/‖E[g(z, θ)|x]‖ with the convention that 0/0 = 0. Let qn(x, z, θ) =
− log(1 + n−1/mu′(x, θ)gn(z, θ)), fδ(x, z, θ) = supθ∗∈B(θ,δ) u

′(x, θ∗)g(z, θ∗), f(x, z, θ) = u′(x, θ)g(z, θ)
and H(θ, δ) = E[fδ(x, z, θ)]/3. Note limδ↓0 fδ(x, z, θ) ≥ f(x, z, θ) for all x, z and θ. This and the
Monotone Convergence Theorem imply that

lim
δ↓0

3H(θ, δ) = lim
δ↓0

E[fδ(x, z, θ)] = E[lim
δ↓0

fδ(x, z, θ)] ≥ E[f(x, z, θ)],
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where the last term is bounded by

Ef(x, z, θ) = E[u′(x, θ)g(z, θ)] ≥ E[{I{x ∈ Xθ}‖E[g(z, θ)|x]‖].

But by Assumption (3.1), E[{I{x ∈ Xθ}‖E[g(z, θ)|x]‖] > 0 at each θ 6= θ0. Therefore, for sufficiently
small δ, H(θ, δ) > 0 at each θ 6= θ0. By the mean value theorem, for some t ∈ (0, 1),

(A.1) qn(x, z, θ) = −n−1/mu′(x, θ)g(z, θ) +Rn(t),

where Rn(t) = n−1/mu′(x, θ)g(z, θ)(1−I{z ∈ Cn})+ n−2/m‖u′(x,θ)gn(z,θ)‖2
2(1−tn−1/mu′(x,θ)gn(z,θ))2

. By repeated applications
of the Cauchy-Schwarz inequality,

(A.2) |Rn(t)| ≤ n−1/m sup
θ∈Θ

‖g(z, θ)‖(1− I{z ∈ Cn}) +
1

2(1− c̃)2
n−2/m sup

θ∈Θ
‖g(z, θ)‖2.

Therefore E|n1/mRn(t)| can be made arbitrarily small by choosing large enough n; in particular,
we can find an integer n(θ, δ) such that E|n1/mRn(t)| ≤ H(θ, δ) for all n ≥ n(θ, δ). By (A.1), for
sufficiently small δ,

n1/mE sup
θ∗∈B(θ,δ)

qn(x, z, θ∗) ≤ −3H(θ, δ) + E|n1/mRn(t)| ≤ −2H(θ, δ) < 0,

at each θ 6= θ0 for all n > n(θ, δ). By the compactness of Θ, we can find a finite number of open balls

B(θk, δ) that cover Θδ
def
= Θ\B(θ0, δ) and also satisfy

(A.3) n1/mE[ sup
θ∗∈B(θk,δ)

qn(x, z, θ∗)] ≤ −2Hk(δ), n ≥ nk(δ),

for Hk(δ) = H(θk, δ), nk(δ) = n(θk, δ), and k = 1, ...,K. Now define qn(x, θ) = E[qn(x, z, θ)|x]. Then

E[ sup
θ∗∈B(θk,δ)

qn(x, θ∗)] ≤ E[E[ sup
θ∗∈B(θk,δ)

qn(x, z, θ∗)|x]] = E[ sup
θ∗∈B(θk,δ)

qn(x, z, θ∗)],

which means that (A.3) continues to hold if we replace qn(x, z, θ∗) with qn(x, θ∗). With this result
and a pointwise weak law of large numbers, there exists a large enough n̄k = n̄k(δ) such that

Pr{ 1
n

n∑
i=1

sup
θ∗∈B(θk,δ)

qn(xi, θ∗) > −n−1/mHk(δ)} < δ/(2K), k = 1, ...,K,

for all n > n̄k(δ). These K inequalities imply that

Pr{ sup
θ∗∈Θδ

1
n

n∑
i=1

qn(xi, θ∗) > −n−1/mH(δ)} < δ/2, H(δ) = min
k
Hk(δ),

for all n ≥ n̄(δ) = maxk n̄k(δ). Applying Lemma D.4 to this we obtain

Pr{ sup
θ∗∈Θδ

1
n

n∑
i=1

Ti,nqn(xi, θ∗) > −n−1/mH(δ)} < δ/2
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eventually. By Lemma D.2, max1≤j≤n supθ∗∈B(θ,δ) ‖g(zj , θ∗)‖ = o(n1/m) w.p.1 as n ↑ ∞. This justifies
the use of g in place of gn after the second equality below (almost surely) for sufficiently large n:

sup
θ∗∈Θδ

1
n

n∑
i=1

Ti,nqn(xi, θ∗) = sup
θ∗∈Θδ

1
n

n∑
i=1

n∑
j=1

Ti,nwijqn(xi, zj , θ∗) + op(n−1/m)

= sup
θ∗∈Θδ

1
n

n∑
i=1

n∑
j=1

−Ti,nwij log(1 + n−1/mu′(xi, θ∗)g(zj , θ∗)) + op(n−1/m)

≥ sup
θ∗∈Θδ

1
n

n∑
i=1

n∑
j=1

−Ti,nwij log(1 + λ′i(θ
∗)g(zj , θ∗)) + op(n−1/m)

= sup
θ∗∈Θδ

Gn(θ∗) + op(n−1/m),

where the first equality follows from Lemma B.8, and the inequality follows from the optimality of
λi’s (see (2.7)). We conclude that

(A.4) Pr{ sup
θ∈Θ\B(θ0,δ)

Gn(θ) > −n−1/mH(δ)} < δ/2 eventually.

Next, we evaluate Gn at the true value θ0. Note that max1≤i≤n Ti,n‖λi(θ0)‖ = op(
√

nβ

nbs+2τ
n

) +

op( 1
n%−1/m ) follows by (B.4). Use Lemma B.3 to obtain

Gn(θ0) ≥ − 1
n

n∑
i=1

n∑
j=1

Ti,nwij log(1 + λ′i(θ0)g(zj , θ0)) ≥ − 1
n

n∑
i=1

Ti,nλ′i(θ0)
n∑
j=1

wijg(zj , θ0)

= {op(

√
nβ

nbs+2τ
n

) + op(
1

n%−1/m
)} {op(

√
nβ

nbs+2τ
n

) + op(
1

n%−1/m
)} def= op(d2

n).

Therefore,

(A.5) Pr{Gn(θ0) < −d2
nH(δ)} < δ/2 eventually.

Under our conditions n1/md2
n ↓ 0. Thus by (A.4) and (A.5), for any δ > 0 there exists a positive

integer n0(δ) such that Pr{θ̂ ∈ B(θ0, δ)} ≥ 1− δ for all n > n0(δ). The proof is complete. �

Proof of Theorem 3.2. The first order condition for (2.6) is ∇θSEL(θ̂) = 0. By a Taylor expansion,

(A.6) 0 = n−1/2∇θSEL(θ0) +
1
n
∇θθSEL(θ∗)n1/2(θ̂ − θ0)

for some θ∗ between θ̂ and θ0. From (C.1), −∇θSEL(θ0) =
∑n

i=1

∑n
j=1

Ti,nwij [∇θg(zj ,θ0)]λi(θ0)
1+λ′i(θ0)g(zj ,θ0)

. Thus by

Lemma B.1 we can write −n−1/2∇θSEL(θ0) = n−1/2Â+ n−1/2
∑n

i=1

∑n
j=1

Ti,nwij∇θg(zj ,θ0)ri
1+λ′i(θ0)g(zj ,θ0)

, where

Â
def
=

n∑
i=1

Ti,n {
n∑
j=1

wij
1 + λ′i(θ0)g(zj , θ0)

∂g′(zj , θ0)
∂θ

}V̂ −1(xi, θ0) {
n∑
j=1

wijg(zj , θ0)}.

Now we can use (3.1) to show that

(A.7) max
1≤i,j≤n

sup
θ∈Θ

1
|1 + λ′ig(zj , θ)|

= O(1) holds w.p.1 as n ↑ ∞.
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Thus by (A.7) and Assumption 3.5(iii)

‖
n∑
i=1

n∑
j=1

Ti,nwij∇θg(zj , θ0)ri
1 + λ′i(θ0)g(zj , θ0)

‖ = O(1) max
1≤i≤n

Ti,n‖ri‖
n∑
i=1

n∑
j=1

d(zj)wij ,

where the O(1) term does not depend upon i, j, or θ ∈ Θ. Hence by Lemma B.1 and Lemma D.6

n−1/2‖
n∑
i=1

n∑
j=1

Ti,nwij∇θg(zj , θ0)ri
1 + λ′i(θ0)g(zj , θ0)

‖ = op(

√
n2β+2/m

nb2s+4τ
n

) + op(
1

n2%−3/m−1/2
) = op(1),

since
√

n2β+2/m

nb2s+4τ
n

↓ 0 and % ≥ 1.5/m+ 1/4 under our conditions. It follows that

(A.8) −n−1/2∇θSEL(θ0) = n−1/2Â+ op(1).

Next, write Â = A+ ∆, where

A
def
=

n∑
i=1

Ti,n(
n∑
j=1

wij
∂g′(zj , θ0)

∂θ
)V̂ −1(xi, θ0) (

n∑
j=1

wijg(zj , θ0)), and(A.9)

∆
def
=

n∑
i=1

Ti,n(
n∑
j=1

wij{
∂g′(zj ,θ0)

∂θ

1 + λ′i(θ0)g(zj , θ0)
− ∂g′(zj , θ0)

∂θ
}) V̂ −1(xi, θ0)(

n∑
j=1

wijg(zj , θ0)).

Observe that ‖∆‖ is majorized by

n∑
i=1

Ti,n
n∑
j=1

wij‖
∂g(zj ,θ0)

∂θ

1 + λ′i(θ0)g(zj , θ0)
−∂g(zj , θ0)

∂θ
‖ max

1≤i≤n
Ti,n‖V̂ −1(xi, θ0)‖ max

1≤i≤n
Ti,n‖

n∑
j=1

wijg(zj , θ0)‖.

Since supxi∈Rs ‖V −1(xi, θ0)‖ <∞ by Assumption 3.5(ii), max1≤i≤n ‖V̂ −1(xi, θ0)‖ = Op(1) follows by
Lemma B.7. Hence by (A.7) and Assumption 3.5(iii)

‖ ∆√
n
‖ = Op(1) max

1≤i≤n
Ti,n‖

n∑
j=1

wijg(zj , θ0)‖
1√
n

n∑
i=1

Ti,n
n∑
j=1

wij‖
∂g(zj ,θ0)

∂θ

1 + λ′i(θ0)g(zj , θ0)
− ∂g(zj , θ0)

∂θ
‖

= Op(1) max
1≤i≤n

Ti,n‖
n∑
j=1

wijg(zj , θ0)‖
1√
n

n∑
i=1

Ti,n‖λi(θ0)‖
n∑
j=1

wijd(zj)g∗(zj)

= Op(
√
n) max

1≤i≤n
Ti,n‖

n∑
j=1

wijg(zj , θ0)‖(
1
n

n∑
i=1

Ti,n‖λi(θ0)‖2)1/2(
1
n

n∑
i=1

n∑
j=1

d2(zj)g2
∗(zj)wij)

1/2,

where the last equality follows by Cauchy-Schwarz and Jensen. Since η ≥ 4, by Lemma D.6 it follows
that

∑n
i=1

∑n
j=1 d

2(zj)g2
∗(zj)wij = Op(n). Hence by Lemma B.3 and (B.4)

‖ ∆√
n
‖ = op(

√
n2β

nb2s+4τ
n

) + op(
1

n2%−2/m−1/2
) = op(1),

which implies that n−1/2Â = n−1/2A+ op(1). Thus (A.8) becomes

(A.10) −n−1/2∇θSEL(θ0) = n−1/2A+ op(1).
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By (A.10), Lemma C.1, and the continuity of θ 7→ I(θ) on B0, (A.6) implies that

0 = −n−1/2A+ op(1) + {I(θ0) + op(1)}n1/2(θ̂ − θ0)

= −n−1/2A+ I(θ0)n1/2(θ̂ − θ0) + op(n1/2‖θ̂ − θ0‖) + op(1).

Therefore,

(A.11) n1/2(θ̂ − θ0) = −I−1(θ0)n−1/2A+ op(1).

Since n−1/2A
d−→ N(0, I(θ0)) by Lemma B.2, the desired result follows. �

Proof of Theorem 4.1. The basic idea behind this proof is outlined in Amemiya (1985, Section
4.5.1). Since ∂R(θ0)

∂θ has rank r, it must contain a nonsingular r×r submatrix. Relabeling if necessary,
we can assume without loss of generality that [ ∂R(θ0)

∂θ(p−r+1)
...

∂R(θ0)

∂θ(p) ]r×r is the aforementioned submatrix.

Define α = (θ(1), . . . , θ(p−r)) and α0 = (θ(1)
0 , . . . , θ

(p−r)
0 ). By the implicit function theorem, there exists

a neighborhood N of θ0, an open set U ⊆ Rp−r containing α0, and a twice continuously differentiable
function φ : U → Rr, such that {θ ∈ N : R(θ) = 0} = {(α, φ(α)) : α ∈ U}. Hence if we let
R̃(α) = [ α

φ(α) ], then any θ ∈ N can be expressed as θ = R̃(α) for some α ∈ U . In particular,
θ0 = R̃(α0). Note that R̃ is twice continuously differentiable function from U → Rp, and DαR̃(α0)
has rank p− r. Letting

(A.12) α̂ = argmax
α∈U

SEL(R̃(α)),

it follows that θ̂R = R̃(α̂). Because (A.12) is unconstrained, it can be handled in the same manner as
(2.6). In particular, since

(A.13) n1/2(θ̂ − θ0) = −I−1(θ0)
1√
n

n∑
t=1

v∗(xt, θ0)g(zt, θ0) + op(1)

follows from (A.11), (B.5), and (B.6), we can also show that

n1/2(α̂− α0) = −[E{D′
α(x, R̃(α0))V −1(x, R̃(α0))Dα(x, R̃(α0)}]−1

× 1√
n

n∑
t=1

D′
α(xt, R̃(α0))V −1(xt, R̃(α0)) g(zt, R̃(α0)) + op(1),

where Dα(x, R̃(α0)) = E{∂g(z,R̃(α0))
∂α |x} = D(x, θ0)

∂R̃(α0)
∂α ; i.e.

(A.14) n1/2(α̂− α0) = −[
∂R̃′(α0)
∂α

I(θ0)
∂R̃(α0)
∂α

]−1∂R̃
′(α0)
∂α

1√
n

n∑
t=1

v∗(xt, θ0)g(zt, θ0) + op(1).

By a Taylor expansion, SEL(θ̂)−SEL(θ0) = −1
2(θ̂−θ0)′∇θθSEL(θ∗)(θ̂−θ0) holds for some θ∗ between θ̂

and θ0. Similarly, using∇αSEL(R̃(α̂)) = 0, SEL(θ0)−SEL(R̃(α̂)) = 1
2(α̂−α0)′∇ααSEL(R̃(α∗))(α̂−α0)

holds for some α∗ between α0 and α̂. Thus we get that

(A.15) LRn = n1/2(θ̂ − θ0)′{−n−1∇θθSEL(θ∗)}n1/2(θ̂ − θ0)

− n1/2(α̂− α0)′{−n−1∇ααSEL(R̃(α∗))}n1/2(α̂− α0).



16 KITAMURA, TRIPATHI, AND AHN

Henceforth, let εn
def
= 1√

n

∑n
t=1 v∗(xt, θ0)g(zt, θ0). Using (A.13) and Lemma C.1, it is easy to see that

(A.16) n1/2(θ̂ − θ0)′{−n−1∇θθSEL(θ∗)}n1/2(θ̂ − θ0) = ε′nI
−1(θ0)εn + op(1).

A little algebra reveals that

∇ααSEL(R̃(α)) =
∂R̃′(α)
∂α

∇θθSEL(R̃(α))
∂R̃(α)
∂α

+
p∑

k=1

∇ααR̃
(k)(α)

∂SEL(R̃(α))
∂θ(k)

.

Thus we can use Lemmas C.1, C.6, and the twice continuously differentiability of R̃, to show that

−n−1∇ααSEL(R̃(α∗)) =
∂R̃′(α0)
∂α

I(θ0)
∂R̃(α0)
∂α

+ op(1).

Hence by (A.14),

(A.17) n1/2(α̂− α0)′{−n−1∇ααSEL(R̃(α∗))}n1/2(α̂− α0)

= ε′n
∂R̃(α0)
∂α

[
∂R̃′(α0)
∂α

I(θ0)
∂R̃(α0)
∂α

]−1∂R̃
′(α0)
∂α

εn + op(1).

Using (A.16) and (A.17), (A.15) reduces to LRn = [I−1/2(θ0)εn]′M [I−1/2(θ0)εn] + op(1), where

M = Ip×p − I1/2(θ0)
∂R̃(α0)
∂α

[
∂R̃′(α0)
∂α

I(θ0)
∂R̃(α0)
∂α

]−1∂R̃
′(α0)
∂α

I1/2(θ0).

M is a symmetric idempotent matrix of rank r, and I−1/2(θ0)εn
d−→ N(0p×1, Ip×p) by the CLT. There-

fore, LRn
d−→ χ2

r by the continuous mapping theorem. �

Appendix B. Auxiliary Results for Estimation

Lemma B.1. Let Assumptions 3.2–3.5 hold. For some β ∈ (0, 1) and bn ↓ 0 let n1−β−2/mbs+2τ
n ↑ ∞,

n%−2/m ↑ ∞, and n1−βb
( m+4

m−4
) s
2

n ↑ ∞. Then Ti,nλi(θ0) = Ti,nV̂ −1(xi, θ0)
∑n

j=1wijg(zj , θ0) + Ti,nri,
where max1≤i≤n Ti,n‖ri‖ = op(n

β+1/m

nbs+2τ
n

) + op( 1
n2%−3/m ).

Proof of Lemma B.1. Since λi(θ0) solves (2.5),

0 =
n∑
j=1

wijg(zj , θ0)
1 + λ′i(θ0)g(zj , θ0)

=
n∑
j=1

wijg(zj , θ0)
1 + λ′i(θ0)g(zj , θ0)

=
n∑
j=1

wijg(zj , θ0){1− λ′i(θ0)g(zj , θ0) +
(λ′i(θ0)g(zj , θ0))

2

1 + λ′i(θ0)g(zj , θ0)
}

=
n∑
j=1

wijg(zj , θ0)− V̂ (xi, θ0)λi(θ0) +
n∑
j=1

wijg(zj , θ0)(λ′i(θ0)g(zj , θ0))
2

1 + λ′i(θ0)g(zj , θ0)
.

By Lemma B.6, max1≤i≤n Ti,n‖V̂ (xi, θ0) − V (xi, θ0)‖ = op(1). Since infxi∈Rs,α∈Sq α′V (xi, θ0)α >

0 by Assumption 3.5(ii), infxi∈Rs,α∈Sq α′V̂ (xi, θ0)α is also bounded away from zero w.p.a.1. Thus
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Ti,nV̂ (xi, θ0) is invertible w.p.a.1. Consequently,

(B.1) Ti,nλi(θ0) = Ti,nV̂ −1(xi, θ0)
n∑
j=1

wijg(zj , θ0) + Ti,nV̂ −1(xi, θ0)r1,i,

where r1,i =
∑n

j=1
wijg(zj ,θ0)(λ′i(θ0)g(zj ,θ0))2

1+λ′i(θ0)g(zj ,θ0)
. (2.5) also shows that

(B.2) Ti,n
n∑
j=1

wij(λ′i(θ0)g(zj , θ0))
2

1 + λ′i(θ0)g(zj , θ0)
= Ti,n

n∑
j=1

wijλ
′
i(θ0)g(zj , θ0).

Hence, as 1 + λ′i(θ0)g(zj , θ0) ≥ 0 (because p̂ij ≥ 0),

Ti,n‖r1,i‖ ≤ max
1≤j≤n

‖g(zj , θ0)Ti,n‖
n∑
j=1

wijλ
′
i(θ0)g(zj , θ0) = o(n1/m)Ti,n

n∑
j=1

wijλ
′
i(θ0)g(zj , θ0),

where the equality follows from Lemma D.2, and the o(n1/m) term does not depend upon i, j, or
θ ∈ Θ. Thus by Lemma B.3

(B.3) Ti,n‖r1,i‖ = Ti,n‖λi(θ0)‖o(n1/m){op(

√
nβ

nbs+2τ
n

) + op(
1

n%−1/m
)},

where the op terms do not depend upon i. Next, let λi(θ0) = ρiξi, where ρi ≥ 0 and ξi ∈ Sq. Since

0 ≤ 1 + λ′i(θ0)g(zj , θ0) ≤ 1 + ρi‖g(zj , θ0)‖
Lemma D.2= 1 + ρio(n1/m),

(B.2) becomes Ti,nρi

1+ρio(n1/m)
≤ Ti,n

∑n
j=1 wijξ

′
ig(zj ,θ0)

ξ′iV̂ (xi,θ0)ξi
Using Lemma B.6 and the fact that ξ′iV (xi, θ0)ξi is

bounded away from zero on (xi, ξi) ∈ Rs × Sq, it follows that

max
1≤i≤n

Ti,nρi
1 + ρio(n1/m)

= op(

√
nβ

nbs+2τ
n

) + op(
1

n%−1/m
).

But as
√

nβ+2/m

nbs+2τ
n

↓ 0 and 1
n%−2/m ↓ 0 under our assumptions, we can solve for ρi to obtain

(B.4) max
1≤i≤n

Ti,nρi = op(

√
nβ

nbs+2τ
n

) + op(
1

n%−1/m
).

Therefore, by (B.3), max1≤i≤n Ti,n‖r1,i‖ = op(n
β+1/m

nbs+2τ
n

)+op( 1
n2%−3/m ). Since max1≤i≤n Ti,n‖V̂ −1(xi, θ0)‖ =

Op(1) by Lemma B.7, (B.1) can be written as Ti,nλi(θ0) = Ti,nV̂ −1(xi, θ0)
∑n

j=1wijg(zj , θ0)+Ti,nr2,i,
where max1≤i≤n Ti,n‖r2,i‖ = op(n

β+1/m

nbs+2τ
n

) + op( 1
n2%−3/m ). The desired result follows. �

Lemma B.2. Let Assumptions 3.2–3.5 hold. Furthermore, for some β ∈ (0, 1) and bn ↓ 0 assume

that max{ nβ

nb
3s/2+2τ
n

, b
2
n
bτn
, 1
n%−1/ηbτn

, 1
n%−2/mbτn

, n exp(−nb
2(s+τ)
n

8K2
max

)} ↓ 0. Then n−1/2A
d−→ N(0, I(θ0)), where A

is defined in (A.9).
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Proof of Lemma B.2. Since A is a p×1 vector, we use the Cramér-Wold device to prove asymptotic
normality. Let ζ ∈ Sp be arbitrary. Then

ζ ′A =
n∑
i=1

Ti,n {
n∑
j=1

wijζ
′∂g

′(zj , θ0)
∂θ

}V̂ −1(xi, θ0){
n∑
j=1

wijg(zj , θ0)}

=
n∑
i=1

n∑
j=1

n∑
t=1

Ti,nwijζ ′
∂g′(zj , θ0)

∂θ
V̂ −1(xi, θ0)witg(zt, θ0)

=
n∑
t=1

ζ ′{
n∑
i=1

Ti,n(
n∑
j=1

wij
∂g′(zj , θ0)

∂θ
)V̂ −1(xi, θ0)wit}g(zt, θ0) =

n∑
t=1

ζ ′v̂∗(xt, θ0)g(zt, θ0),

where the p×q matrix v̂∗(xt, θ0) =
∑n

i=1 Ti,n {
∑n

j=1wij
∂g′(zj ,θ0)

∂θ }V̂ −1(xi, θ0)wit, and the third equality
follows upon changing the order of summation. Recall that v∗(xt, θ0) denotes the matrix of optimal
instruments. It is apparent that v̂∗(xt, θ0) estimates v∗(xt, θ0). Now write

(B.5) ζ ′A =
n∑
t=1

ζ ′v∗(xt, θ0)g(zt, θ0) +
n∑
t=1

{ζ ′v̂∗(xt, θ0)− ζ ′v∗(xt, θ0)}g(zt, θ0).

By the CLT, n−1/2
∑n

t=1 ζ
′v∗(xt, θ0)g(zt, θ0)

d−→ N(0, ζ ′I(θ0)ζ). Hence we are done if we can show that

(B.6) n−1/2
n∑
t=1

{ζ ′v̂∗(xt, θ0)− ζ ′v∗(xt, θ0)}g(zt, θ0) = op(1).

To show (B.6), we proceed as follows. First, let τn,1
def
= max{

√
nβ

nb
3s/2+2τ
n

, b
2
n
bτn
, 1
n%−1/ηbτn

, 1
n%−2/mbτn

}. By

Lemma B.5, Ti,n
∑n

j=1wijζ
′ ∂g′(zj ,θ0)

∂θ = Ti,nζ ′D′(xi, θ0)
h(xi)

ĥ(xi)
+ r′a,i, where ra,i is a q × 1 vector such

that max1≤i≤n ‖ra,i‖ = Op(τn,1). By Lemma B.7, Ti,nV̂ −1(xi, θ0) = Ti,nV −1(xi, θ0) + Rb,i where Rb,i
is a q × q matrix such that max1≤i≤n ‖Rb,i‖ = Op(τn,1). Hence

ζ ′v̂∗(xt, θ0) =
n∑
i=1

{Ti,nζ ′D′(xi, θ0)
h(xi)

ĥ(xi)
+ r′a,i} × {Ti,nV −1(xi, θ0) +Rb,i}wit

=
n∑
i=1

T̂i,nζ ′v∗(xi, θ0)wit +
n∑
i=1

T̂i,nζ ′D′(xi, θ0)Rb,iwit +
n∑
i=1

Ti,nr′a,iV −1(xi, θ0)wit +
n∑
i=1

r′a,iRb,iwit.

Since supxi∈Rs ‖V −1(xi, θ0)‖ < ∞ and
∑n

i=1wit = 1, max1≤t≤n ‖
∑n

i=1 Ti,nr′a,iV −1(xi, θ0)wit‖ =
Op(τn,1). Similarly, max1≤t≤n ‖

∑n
i=1 ra,iRb,iwit‖ = Op(τ2

n,1). Therefore, it follows that

(B.7) max
1≤t≤n

‖ζ ′v̂∗(xt, θ0)−
n∑
i=1

T̂i,nζ ′v∗(xi, θ0)wit −
n∑
i=1

T̂i,nζ ′D′(xi, θ0)Rb,iwit‖ = Op(τn,1).
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We are now ready to show (B.6). Let

δ̂′a(xt) = ζ ′v̂∗(xt, θ0)−
n∑
i=1

T̂i,nζ ′v∗(xi, θ0)wit −
n∑
i=1

T̂i,nζ ′D′(xi, θ0)Rb,iwit,

δ̂′b(xt) =
n∑
i=1

ζ ′v∗(xi, θ0)wit − ζ ′v∗(xt, θ0), δ̂′c(xt) =
n∑
i=1

(T̂i,n − 1)ζ ′v∗(xi, θ0)wit,

δ̂′d(xt) =
n∑
i=1

ζ ′D′(xi, θ0)Rb,iwit, and δ̂′e(xt) =
n∑
i=1

(T̂i,n − 1)ζ ′D′(xi, θ0)Rb,iwit,

and observe that

(B.8) n−1/2
n∑
t=1

{ζ ′v̂∗(xt, θ0)− ζ ′v∗(xt, θ0)}g(zt, θ0) =
∑

k∈{a,b,c,d,e}

n−1/2
n∑
t=1

δ̂′k(xt)g(zt, θ0).

Define U = {ξ ∈ Rq s.t. ‖ξ‖ ≤ 1}. Pick ε > 0 and let M1,ε denote a positive number that
may depend upon ε. The appropriate M1,ε will be determined later on. Since (B.7) shows that
Pr{max1≤t≤n ‖τ−1/2

n,1 δ̂a(xt)‖ > 1} = o(1), we have

Pr{|n−1/2
n∑
t=1

τ
−1/2
n,1 δ̂′a(xt)g(zt, θ0)| > M1,ε}

≤ Pr{|n−1/2
n∑
t=1

τ
−1/2
n,1 δ̂′a(xt)g(zt, θ0)| > M1,ε, max

1≤t≤n
‖τ−1/2
n δ̂a(xt)‖ ≤ 1}+ o(1)

≤ Pr{sup
ξ∈U

|n−1/2
n∑
t=1

ξ′g(zt, θ0)| > M1,ε}+ o(1),

where the last inequality follows because max1≤t≤n ‖τ−1/2
n,1 δ̂a(xt)‖ ≤ 1 implies that τ−1/2

n,1 δ̂a(x1), . . . ,

τ
−1/2
n,1 δ̂a(xn) are elements of U . In short, letting an = n−1/2

∑n
t=1 g(zt, θ0), we have shown that

Pr{|n−1/2
∑n

t=1 τ
−1/2
n,1 δ̂′a(xt)g(zt, θ0)| > M1,ε} ≤ Pr{supξ∈U |ξ′an| > M1,ε} + o(1). From Cauchy-

Schwarz, |ξ′an| ≤ ‖ξ‖ · ‖an‖ ≤ ‖an‖. Therefore, by Chebychev,

(B.9) Pr{|n−1/2
n∑
t=1

τ
−1/2
n,1 δ̂′a(xt)g(zt, θ0)| > M1,ε} ≤ E‖an‖2/M2

1,ε + o(1).

But since E‖g(z, θ0)‖2 <∞ and E{g′(zt, θ0)g(zr, θ0)} = 0 for t 6= r,

E‖an‖2 =
1
n
{
n∑
t=1

Eg′(zt, θ0)g(zt, θ0) +
n∑
t=1

n∑
r=1,r 6=t

Eg′(zt, θ0)g(zr, θ0)} = O(1).

So for large enough M1,ε, (B.9) reduces to Pr{|n−1/2
∑n

t=1 τ
−1/2
n,1 δ̂′a(xt)g(zt, θ0)| > M1,ε} ≤ ε + o(1).

Since ε was arbitrary, this means that n−1/2
∑n

t=1 τ
−1/2
n,1 δ̂′a(xt)g(zt, θ0) = Op(1). Hence as τn,1 ↓ 0,

(B.10) n−1/2
n∑
t=1

δ̂′a(xt)g(zt, θ0) = op(1).
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Next, we show that n−1/2
∑n

t=1 δ̂
′
b(xt)g(zt, θ0) = op(1). Since E{δ̂′b(xt)g(zt, θ0)δ̂′b(xr)g(zr, θ0)} = 0 for

t 6= r, by Cauchy-Schwarz we have

(B.11) E{n−1/2
n∑
t=1

δ̂′b(xt)g(zt, θ0)}2 ≤ 1
n

n∑
t=1

{
√

E‖δ̂b(xt)‖4
√

E‖g(zt, θ0)‖4}.

Devroye and Wagner (1980, Theorem 1, Page 232) show that if f : Rs → R is a Borel measurable
function such that E|f(x)|a <∞ for some a ≥ 1 and the kernel K satisfies Assumption 3.3, then

(B.12) E|
n∑
i=1

f(xi)wij − f(xj)|a → 0 as n ↑ ∞.

By the cr-inequality, ‖δ̂b(xt)‖4 ≤ q
∑q

l=1{
∑n

i=1[ζ
′v∗(xi, θ0)](l)wit − [ζ ′v∗(xt, θ0)](l)}4. Furthermore,

E{[ζ ′v∗(xt, θ0)](l)}4 ≤ E‖v∗(xt, θ0)‖4 ≤ cE‖D(xt, θ0)‖4 < ∞ because supxi∈Rs ‖V −1(xi, θ0)‖ < ∞ by
Assumption 3.5(ii) and E‖D(xt, θ0)‖η < ∞ (for η ≥ 4) by Assumption 3.5(iii). Thus the conditions
of Devroye and Wagner are satisfied, and we can use (B.12) to show E‖δ̂b(xt)‖4 = o(1). Since
E‖g(zt, θ0)‖4 <∞, (B.11) reduces to E{n−1/2

∑n
t=1 δ̂

′
b(xt)g(zt, θ0)}2 = o(1). Hence,

(B.13) n−1/2
n∑
t=1

δ̂′b(xt)g(zt, θ0) = op(1).

Next, we show that n−1/2
∑n

t=1 δ̂
′
e(xt)g(zt, θ0) = op(1). By Lemma D.5

max
1≤i≤n

|T̂i,n − 1| = Op(τn,2), τn,2
def
= max{

√
nβ

nbs+2τ
n

,
b2n
bτn
,

1
n%bτn

, n exp(−nb
2(s+τ)
n

8K2
max

)}.

Hence max1≤i≤n ‖(T̂i,n − 1)Rb,i‖ = Op(τn,1τn,2). As τn,3
def
= τn,1τn,2 ↓ 0 under our assumptions, it

follows that Pr{max1≤i≤n ‖τ−1/2
n,3 (T̂i,n−1)Rb,i‖ > 1} = o(1). Now define V = {R ∈ Rq×q s.t. ‖R‖ ≤ 1}

to be the set of all q × q matrices with norm bounded by unity. Pick ε > 0, and let M2,ε denote a
positive number that may depend upon ε. Since max1≤i≤n ‖τ−1/2

n,3 (T̂i,n − 1)Rb,i‖ ≤ 1 implies that

τ
−1/2
n,1 (T̂1,n − 1)Rb,1 ∈ V, . . . , τ−1/2

n,1 (T̂n,n − 1)Rb,n ∈ V, following the argument for δ̂a we have

Pr{|n−1/2
n∑
t=1

τ
−1/2
n,3 δ̂′e(xt)g(zt, θ0)| > M2,ε}

≤ Pr{|n−1/2
n∑
t=1

τ
−1/2
n,3 δ̂′e(xt)g(zt, θ0)| > M2,ε, max

1≤i≤n
‖τ−1/2
n,3 (T̂i,n − 1)Rb,i‖ ≤ 1}+ o(1)

≤ Pr{sup
R∈V

|n−1/2
n∑
t=1

n∑
i=1

ζ ′D′(xi, θ0)Rg(zt, θ0)wit| > M2,ε}+ o(1).

For convenience, let d̂′t =
∑n

i=1 ζ
′D′(xi, θ0)wit. Since |tr(AB)| ≤ ‖A‖ ‖B‖ and ‖R‖ ≤ 1,

|
n∑
t=1

n∑
i=1

ζ ′D′(xi, θ0)Rg(zt, θ0)wit| = |tr R
n∑
t=1

n∑
i=1

g(zt, θ0)ζ ′D′(xi, θ0)wit| ≤ ‖
n∑
t=1

g(zt, θ0)d̂′t‖.
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Hence by Chebychev, it follows that

(B.14) Pr{|n−1/2
n∑
t=1

τ
−1/2
n,3 δ̂′e(xt)g(zt, θ0)| > M2,ε} ≤

E‖
∑n

t=1 g(zt, θ0)d̂
′
t‖2

nM2
2,ε

+ o(1).

But as ‖
∑n

t=1 g(zt, θ0)d̂
′
t‖2 = tr{

∑n
t=1 g(zt, θ0)d̂

′
t}{

∑n
t=1 d̂tg

′(zt, θ0)}, we have

‖
n∑
t=1

g(zt, θ0)d̂′t‖2 =
n∑
t=1

d̂′td̂t g
′(zt, θ0)g(zt, θ0) +

n∑
t=1

n∑
r=1,r 6=t

d̂′td̂r g
′(zt, θ0)g(zr, θ0).

Now E{d̂′td̂r g′(zt, θ0)g(zr, θ0)} = 0 when r 6= t, because E{g(zt, θ0)|xt} = 0 and the observations are
independent. Hence by Cauchy-Schwarz and the fact that E‖g(zt, θ0)‖4 <∞,

E‖
n∑
t=1

g(zt, θ0)d̂′t‖2 =
n∑
t=1

E{‖d̂t‖2 ‖g(zt, θ0)‖2} ≤ c

n∑
t=1

√
E‖d̂t‖4.

Since ‖d̂t‖4 ≤
∑n

i=1 ‖D(xi, θ0)‖4wit by Jensen’s inequality and E‖D(xi, θ0)‖4 < ∞ by assumption,
Lemma D.6 shows that E‖d̂t‖4 <∞. Therefore, E‖

∑n
t=1 g(zt, θ0)d̂

′
t‖2 = O(n), and (B.14) reduces to

Pr{|n−1/2
n∑
t=1

τ
−1/2
n,3 δ̂′e(xt)g(zt, θ0)| > M2,ε} ≤ ε+ o(1) for large enough M2,ε.

Since ε was arbitrary and τn,3 ↓ 0, this immediately implies that

(B.15) n−1/2
n∑
t=1

δ̂′e(xt)g(zt, θ0) = op(1).

Using the same argument we can also show that

(B.16) n−1/2
n∑
t=1

δ̂′c(xt)g(zt, θ0) = op(1) and n−1/2
n∑
t=1

δ̂′d(xt)g(zt, θ0) = op(1).

(B.8), (B.10), (B.13), (B.15), and (B.16) show that (B.6) holds. The desired result follows. �

Lemma B.3. Let Assumptions 3.2–3.4 hold. Assume that bn ↓ 0 and n1−βb
( m+2

m−2
)s

n ↑ ∞ for some
β ∈ (0, 1). Then max1≤i≤n Ti,n‖

∑n
j=1wijg(zj , θ0)‖ = op(

√
nβ

nbs+2τ
n

) + op( 1
n%−1/m ).

Proof of Lemma B.3. Decompose

Ti,n‖
n∑
j=1

wijg(zj , θ0)‖ ≤ max
1≤i≤n

Ti,n‖
n∑
j=1

wijg(zj , θ0)‖ Ii,n + max
1≤i≤n

Ti,n‖
n∑
j=1

wijg(zj , θ0)‖ max
1≤i≤n

Ici,n.

By Lemma D.3 and Lemma D.7, max1≤i≤n Ici,n = op( 1
n% ) and supxi∈Rs ‖

∑n
j=1wijg(zj , θ0)‖

w.p.1
=

o(n1/m) as n ↑ ∞. Therefore, max1≤i≤n Ti,n ‖
∑n

j=1wijg(zj , θ0)‖ max1≤i≤n Ici,n = op( 1
n%−1/m ). Next,

pick any ε > 0, cn ↓ 0, and observe that

Pr{max
1≤i≤n

Ti,n ‖
n∑
j=1

wijg(zj , θ0)‖ Ii,n > εcn} ≤ Pr{ sup
xi∈Sn

Ti,n ‖
n∑
j=1

wijg(zj , θ0)‖ > εcn}.
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Using the definition of Ti,n, it follows that

Pr{ sup
xi∈Sn

Ti,n ‖
n∑
j=1

wijg(zj , θ0)‖ > εcn} ≤ Pr{ sup
xi∈Sn

‖ 1
nbsn

n∑
j=1

Kijg(zj , θ0)‖ > εcnb
τ
n}.

Now let 1 ≤ l ≤ q and fix xi ∈ Sn. Define ϕ(xi, xj , zj) = g(l)(zj , θ0)Kij/bsn. Under Assumptions 3.2,
3.3, and 3.4, it can be easily verified that5:

(a) bsn |ϕ(xi, xj , zj)| ≤ c‖g(zj , θ0)‖, and E‖g(zj , θ0)‖m <∞ for m > 2;
(b) bs+1

n ‖∂ϕ(xi,xj ,zj)
∂xi

‖ ≤ c ‖g(zi, θ0)‖, and E‖g(zi, θ0)‖ <∞;
(c) E{b2sn ϕ2(xi, xj , zj)} ≤ c bsn.

Thus the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

sup
xi∈Sn

| 1
nbsn

n∑
j=1

Kijg(l)(zj , θ0)| = op(

√
nβ

nbsn
)

holds if n1−βb
( m+2

m−2
)s

n ↑ ∞ for some β ∈ (0, 1). Hence Pr{supxi∈Sn
‖ 1
nbsn

∑n
j=1Kijg(zj , θ0)‖ > εcnb

τ
n} ≤ ε

if cn =
√

nβ

nbs+2τ
n

. This shows that max1≤i≤n Ti,n ‖
∑n

j=1wijg(zj , θ0)‖ Ii,n = op(
√

nβ

nbs+2τ
n

). The desired
result follows. �

Lemma B.4. Let Assumptions 3.3 and 3.4 hold. Assume that bn ↓ 0 and n1−βbsn ↑ ∞ for some

β ∈ (0, 1). Then max1≤i≤n |ĥ(xi)− h(xi)| = op(
√

nβ

nbsn
) +O(b2n) + op( 1

n% ).

Proof of Lemma B.4. Observe that

max
1≤i≤n

|ĥ(xi)− h(xi)| ≤ max
1≤i≤n

|ĥ(xi)− h(xi)| Ii,n + max
1≤i≤n

|ĥ(xi)− h(xi)| Ici,n

≤ sup
xi∈Sn

|ĥ(xi)− h(xi)|+ sup
xi∈Rs

|ĥ(xi)− h(xi)| max
1≤i≤n

Ici,n.

Fix xi ∈ Sn and define ϕ(xi, xj) = Kij/bsn. Under Assumptions 3.3 and 3.4, it is easily verified that:
(a) bsn |ϕ(xi, xj)| ≤ c; (b) bs+1

n ‖∂ϕ(xi,xj)
∂xi

‖ ≤ c; and (c) E{b2sn ϕ2(xi, xj)} ≤ c bsn. Thus the sufficient

conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and supxi∈Sn
|ĥ(xi)−Eĥ(xi)| = op(

√
nβ

nbsn
)

provided n1−βbsn ↑ ∞ for some β ∈ (0, 1). Since supxi∈Rs ‖∇xxh(xi)‖ < ∞ by assumption, we also

have supxi∈Rs |Eĥ(xi)− h(xi)| = O(b2n). Hence supxi∈Sn
|ĥ(xi)− h(xi)| = op(

√
nβ

nbsn
) +O(b2n), provided

n1−βbsn ↑ ∞ for some β ∈ (0, 1). From Prakasa Rao (1983, Page 185) we know that supxi∈Rs |ĥ(xi)−
h(xi)|

a.s.−−→ 0 if logn
nbsn

↓ 0, while Lemma D.3 shows max1≤i≤n Ici,n = op( 1
n% ). Therefore, supxi∈Rs |ĥ(xi)−

h(xi)| max1≤i≤n Ici,n = op( 1
n% ) provided logn

nbsn
↓ 0. The desired result follows. �

Lemma B.5. Let Assumptions 3.2–3.5 hold. Let bn ↓ 0 and n1−βb
( η+2

η−2
) s
2

n ↑ ∞ for some β ∈ (0, 1).
Then max1≤i≤n supθ∈B0

Ti,n‖
∑n

j=1
∂g(zj ,θ)
∂θ wij−D(xi, θ)

h(xi)

ĥ(xi)
‖ = op(

√
nβ

nb
3s/2+2τ
n

)+O( b
2
n
bτn

)+op( 1
n%−1/ηbτn

).

5(a) and (b) are obvious. To show (c), notice that since supxj∈Rs E{‖g(zj , θ0)‖2|xj} < ∞ by Assumption 3.5(ii), we

have E{b2s
n ϕ2(xi, xj , zj)} ≤ cE{E[‖g(zj , θ0)‖2|xj ]K2

ij} ≤ cEK2
ij ≤ cbs

n; i.e., (c) follows.
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Proof of Lemma B.5. Observe that Ti,n‖
∑n

j=1
∂g(zj ,θ)
∂θ wij −D(xi, θ)

h(xi)

ĥ(xi)
‖ ≤ (1), where

(1) = max
1≤i≤n

sup
θ∈B0

Ti,n
bτn

‖ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij −D(xi, θ)h(xi)‖.

Write (1) ≤ (1)A + (1)B, where

(1)A = max
1≤i≤n

sup
θ∈B0

Ti,n
bτn

‖ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij −D(xi, θ)h(xi)‖Ii,n,

(1)B = max
1≤i≤n

sup
θ∈B0

Ti,n
bτn

‖ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij −D(xi, θ)h(xi)‖Ici,n.

Let us examine (1)B first. Define (1)B1 = ‖ 1
nbsn

∑n
j=1

∂g(zj ,θ)
∂θ Kij − D(xi, θ)h(xi)‖, and observe that

(1)B ≤ max1≤i≤n supθ∈B0

(1)B1

bτn
·max1≤i≤n Ici,n. But since supxi∈Rs h(xi) <∞,

max
1≤i≤n

sup
θ∈B0

(1)B1 ≤ c{ sup
xi∈Rs

1
nbsn

n∑
j=1

sup
θ∈B0

‖∂g(zj , θ)
∂θ

‖Kij + max
1≤i≤n

sup
θ∈B0

‖D(xi, θ)‖}.

By Lemma D.8, supxi∈Rs
1
nbsn

∑n
j=1 supθ∈B0

‖∂g(zj ,θ)
∂θ ‖Kij = o(n1/η) holds w.p.1 as n ↑ ∞. More-

over, since E{supθ∈B0
‖D(xi, θ)‖η} < ∞ by Assumption 3.5(iii), as in Lemma D.2 we can show that

max1≤i≤n supθ∈B0
‖D(xi, θ)‖ = o(n1/η) holds w.p.1 as n ↑ ∞. Hence (1)B = o(n

1/η

bτn
) max1≤i≤n Ici,n =

op( 1
n%−1/ηbτn

) by Lemma D.3. Next, use the triangle inequality to write (1)A ≤ (1)A1+(1)A2

bτn
, where

(1)A1 = sup
(θ,xi)∈B0×Sn

‖ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij − E{ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij}‖,

(1)A2 = sup
(θ,xi)∈B0×Sn

‖E{ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij} −D(xi, θ)h(xi)‖.

Now under Assumption 3.5(iv), it is straightforward to show that

sup
(θ,xi)∈B0×Rs

‖E{ 1
nbsn

n∑
j=1

∂g(zj , θ)
∂θ

Kij} −D(xi, θ)h(xi)‖ = O(b2n).

As Sn ⊂ Rs, this yields (1)A2 = O(b2n). Let 1 ≤ l ≤ p, 1 ≤ r ≤ q, and ∂g(lr)(zj ,θ)
∂θ denote the (l, r)th

element of the q×p Jacobian matrix ∂g(zj ,θ)
∂θ . To find the rate at which (1)A1 goes to zero in probability,

it suffices to determine the rate for

sup
(θ,xi)∈B0×Sn

| 1
nbsn

n∑
j=1

∂g(lr)(zj , θ)
∂θ

Kij − E{ 1
nbsn

n∑
j=1

∂g(lr)(zj , θ)
∂θ

Kij}|.

To do so, we use a result of Ai (1997) on the uniform consistency of kernel estimators over compact

but expanding sets. Fix (θ, xi) ∈ B0 × Sn and define ϕ(θ, xi, xj , zj) = ∂g(lr)(zj ,θ)
∂θ Kij/bsn. Under

Assumptions 3.3, 3.4, and 3.5, it can be easily shown that6:

6(a) and (b) are straightforward. (c) follows by Cauchy-Schwarz and the fact that η ≥ 4.
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(a) bsn |ϕ(θ, xi, xj , zj)| ≤ c d(zj), and Edη(zj) <∞ for η > 2;
(b) bs+1

n ‖∂ϕ(θ,xi,xj ,zj)

∂( θxi
)

‖ ≤ c {d(zj) + bnl(zj)}, and the RHS has finite expectation;

(c) E{b2sn ϕ2(θ, xi, xj , zj)} ≤ c b
s/2
n .

Thus the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

sup
(θ,xi)∈B0×Sn

| 1
nbsn

n∑
j=1

∂g(lr)(zj , θ)
∂θ

Kij − E{ 1
nbsn

n∑
j=1

∂g(lr)(zj , θ)
∂θ

Kij}| = op(

√
nβ

nb
3s/2
n

)

provided n1−βb
( η+2

η−2
) s
2

n ↑ ∞ for some β ∈ (0, 1). This implies (1)A1 = op(
√

nβ

nb
3s/2
n

). Combining the

results for (1)A1 and (1)A2, we have (1)A = op(
√

nβ

nb
3s/2+2τ
n

) +O( b
2
n
bτn

). Hence using the result for (1)B,

(1) = op(
√

nβ

nb
3s/2+2τ
n

) +O( b
2
n
bτn

) + op( 1
n%−1/ηbτn

). The desired result follows. �

Lemma B.6. Let Assumptions 3.2–3.5 hold. If bn ↓ 0 and min{n1−βb
( m+4

m−4
) s
2

n , n1−βbsn} ↑ ∞ for some
β ∈ (0, 1), then max1≤i≤n supθ∈B0

Ti,n‖V̂ (xi, θ)− V (xi, θ)‖ = op(
√

nβ

nb
3s/2+2τ
n

) +O( b
2
n
bτn

) + op( 1
n%−2/mbτn

).

Proof of Lemma B.6. By the triangle inequality

max
1≤i≤n

sup
θ∈B0

Ti,n‖V̂ (xi, θ)− V (xi, θ)‖ ≤ (I) + (II), where

(I) = max1≤i≤n supθ∈B0

Ti,n

bτn
‖Ω̂(xi, θ) − Ω(xi, θ)‖, (II) = max1≤i≤n supθ∈B0

Ti,n

bτn
‖V (xi, θ)‖ |ĥ(xi) −

h(xi)|. Write (I) ≤ (I)A + (I)B, where

(I)A = max
1≤i≤n

Ti,n
bτn

‖Ω̂(xi, θ)− Ω(xi, θ)‖ Ii,n, (I)B = max
1≤i≤n

Ti,n
bτn

‖Ω̂(xi, θ)− Ω(xi, θ)‖ Ici,n.

Because sup(xi,θ)∈Rs×B0
‖V (xi, θ)‖ <∞ and supxi∈Rs h(xi) <∞,

sup
(xi,θ)∈Rs×B0

‖Ω̂(xi, θ)− Ω(xi, θ)‖ ≤ sup
xi∈Rs

1
nbsn

n∑
j=1

sup
θ∈Θ

‖g(zj , θ)‖2Kij + c.

Since E{supθ∈Θ ‖g(z, θ)‖2}m/2 <∞, from Lemma D.8 we know that if logn
nbsn

↓ 0, then

sup
xi∈Rs

1
nbsn

n∑
j=1

‖g(zj , θ)‖2Kij
w.p.1
= o(n2/m) as n ↑ ∞.

Hence using Lemma D.3, it follows that (I)B = op(n
2/m

n%bτn
) if logn

nbsn
↓ 0. Next write (I)A ≤ (I)A1+(I)A2

bτn
,

where (I)A1 = sup(xi,θ)∈Sn×B0
‖Ω̂(xi, θ)−EΩ̂(xi, θ)‖, and (I)A2 = sup(xi,θ)∈Sn×B0

‖EΩ̂(xi, θ)−Ω(xi, θ)‖.
Fix xi ∈ Sn, and for 1 ≤ l, r ≤ q define ψ(θ, xi, xj , zj) = g(l)(zj , θ)g(r)(zj , θ)Kij/bsn. Under Assump-
tions 3.2–3.5, it is easy to verify that:

(a) bsn|ψ(θ, xi, xj , zj)| ≤ c supθ∈Θ ‖g(zj , θ)‖2, E{supθ∈Θ ‖g(zj , θ)‖2}m/2 <∞ and m
2 > 2;

(b) bs+1
n ‖∂ψ(θ,xi,xj ,zj)

∂( θxi
)

‖ ≤ c{supθ∈Θ ‖g(zj , θ)‖2 + bn supθ∈Θ ‖g(zj , θ)‖ supθ∈B0
‖∂g(zj ,θ)

∂θ ‖}, and the right

hand side has finite expectation;
(c) E{b2sn ψ2(θ, xi, xj , zj)} < c b

s/2
n if E{supθ∈Θ ‖g(zj , θ)‖8} <∞.
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Thus the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

sup
(xi,θ)∈Sn×B0

|Ω̂(lr)(xi, θ)− E{Ω̂(lr)(xi, θ)}| = op(

√
nβ

nb
3s/2
n

)

if n1−βb
( m+4

m−4
) s
2

n ↑ ∞ for some β ∈ (0, 1). Under Assumption 3.5(iii), it is straightforward to show

sup
(xi,θ)∈Rs×B0

‖EΩ̂(lr)(xi, θ)− Ω(lr)(xi, θ)‖ = O(b2n),

and it follows that (I)A = op(
√

nβ

nb
3s/2+2τ
n

) +O( b
2
n
bτn

). Combined with the result for (I)B, we have

(B.17) (I) = op(

√
nβ

nb
3s/2+2τ
n

) +O(
b2n
bτn

) + op(
n2/m

n%bτn
).

Finally, since sup(xi,θ)∈Rs×B0
‖V (xi, θ)‖ <∞ by Assumption 3.5(iv), by Lemma B.4

(B.18) (II) = op(

√
nβ

nbs+2τ
n

) +O(
b2n
bτn

) + op(
1

n%bτn
)

if logn
nbsn

↓ 0 and n1−βbsn ↑ ∞ for some β ∈ (0, 1). The desired result follows by (B.17) and (B.18). �

Lemma B.7. max1≤i≤n Ti,n‖V̂ −1(xi, θ0)−V −1(xi, θ0)‖ = op(
√

nβ

nb
3s/2+2τ
n

)+O( b
2
n
bτn

)+op( 1
n%−2/mbτn

) under
conditions of Lemma B.6.

Proof of Lemma B.7. For convenience, let op(
√

nβ

nb
3s/2+2τ
n

) + O( b
2
n
bτn

) + op( 1
n%−2/mbτn

)
def
= Op(an). By

Lemma B.6, max1≤i≤n supα∈Sq Ti,n|α′V̂ (xi, θ0)α−α′V (xi, θ0)α| = Op(an). Also, (α, xi) 7→ α′V (xi, θ0)α
is bounded away from zero on Sq × Rs by Assumption 3.5(ii). Hence by Lemma D.1,

max
1≤i≤n

sup
α∈Sq

Ti,n|
1

α′V̂ (xi, θ0)α
− 1
α′V (xi, θ0)α

| = Op(an).

Thus for any ξ ∈ Sq, max1≤i≤n supα∈Sq Ti,n| (α′ξ)2

α′V̂ (xi,θ0)α
− (α′ξ)2

α′V (xi,θ0)α | = Op(an). Therefore,

max
1≤i≤n

Ti,n| sup
α∈Sq

(α′ξ)2

α′V̂ (xi, θ0)α
− sup
α∈Sq

(α′ξ)2

α′V (xi, θ0)α
| = Op(an).

Since V̂ (xi, θ0) is invertible w.p.a.1, max1≤i≤n Ti,n|ξ′V̂ −1(xi, θ0)ξ − ξ′V −1(xi, θ0)ξ| = Op(an). The
desired result follows as ξ ∈ Sq was arbitrary. �

Lemma B.8. Let Assumptions 3.2–3.4 hold. Furthermore, for some β ∈ (0, 1) and bn ↓ 0 as-
sume that max{ nβ

nb
3s/2+2τ
n

, b
2
n
bτn
, 1
nρbτn

} ↓ 0. Then recalling the notation defined in proof of Theorem 3.1,

supθ∈Θδ
| 1n

∑n
i=1

∑n
j=1 Ti,nwijqn(xi, zj , θ)− 1

n

∑n
i=1 Ti,nqn(xi, θ)| = op(n−1/m).
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Proof of Lemma B.8. By (A.1) and the fact that ‖u(xi, θ)‖ ≤ 1,

n1/m sup
θ∈Θδ

| 1
n

n∑
i=1

n∑
j=1

Ti,nwijqn(xi, zj , θ)−
1
n

n∑
i=1

Ti,nqn(xi, θ)|

≤ sup
θ∈Θδ

1
n

n∑
i=1

Ti,n‖
n∑
j=1

wijg(zj , θ)− E{g(zi, θ)|xi}}‖

+ n1/m sup
θ∈Θδ

| 1
n

n∑
i=1

n∑
j=1

Ti,nwijRn(t)−
1
n

n∑
i=1

Ti,nE{Rn(t)|xi}|.

Using (A.2) and the fact that max1≤j≤n I{zj 6∈ Cn} = o(1), it is straightforward to show

n1/m sup
θ∈Θδ

| 1
n

n∑
i=1

n∑
j=1

Ti,nwijRn(t)−
1
n

n∑
i=1

Ti,nE{Rn(t)|xi}| = op(1).

Letting (A) = supθ∈Θδ

1
n

∑n
i=1 Ti,n‖

∑n
j=1wijg(zj , θ)− E{g(zi, θ)|xi}}‖, it follows that

(B.19) n1/m sup
θ∈Θδ

| 1
n

n∑
i=1

n∑
j=1

Ti,nwijqn(xi, zj , θ)−
1
n

n∑
i=1

Ti,nqn(xi, θ)| ≤ (A) + op(1).

By the triangle inequality (A) ≤ (A1) + (A2), where

(A1) =
1
bτn

sup
θ∈Θδ

1
n

n∑
i=1

Ti,n‖
1
nbsn

n∑
j=1

Kijg(zj , θ)− E{g(zi, θ)|xi}h(xi)‖,

(A2) =
1
bτn

sup
θ∈Θδ

1
n

n∑
i=1

Ti,n‖E{g(zi, θ)|xi}‖ |ĥ(xi)− h(xi)|

≤ 1
bτn

max
1≤i≤n

|ĥ(xi)− h(xi)|
1
n

n∑
i=1

E{ sup
θ∈Θδ

‖g(zi, θ)‖ |xi}.

But 1
n

∑n
i=1 E{supθ∈Θδ

‖g(zi, θ)‖ |xi} = Op(1). Thus by Lemma B.4,

(A2) = op(

√
nβ

nbs+2τ
n

) +O(
b2n
bτn

) + op(
1

nρbτn
) = op(1)

under our conditions. Now to (A1). By the triangle inequality (A1) ≤ (A1a) + (A1b), where

(A1a) =
1
bτn

sup
θ∈Θδ

1
n

n∑
i=1

Ti,n‖
1
nbsn

n∑
j=1

Kijg(zj , θ)− E{g(zi, θ)|xi}h(xi)‖Ii,n,

(A1b) =
1
bτn

sup
θ∈Θδ

1
n

n∑
i=1

Ti,n‖
1
nbsn

n∑
j=1

Kijg(zj , θ)− E{g(zi, θ)|xi}h(xi)‖Ici,n.
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Using Lemmas D.3 and D.9, it follows that

(A1b) ≤
c

bτn
max
1≤i≤n

Ici,n{
1
n

n∑
i=1

1
nbsn

n∑
j=1

Kij sup
θ∈Θδ

‖g(zj , θ)‖+
1
n

n∑
i=1

E[ sup
θ∈Θδ

‖g(zi, θ)‖ |xi]}

= op(
1

nρbτn
){Op(1) +Op(1)} = op(1),

because 1
nρbτn

↓ 0 by assumption. To handle (A1a), note that

(A1a) ≤
1
bτn

sup
(θ,xi)∈Θδ×Sn

‖ 1
nbsn

n∑
j=1

Kijg(zj , θ)− E{ 1
nbsn

n∑
j=1

Kijg(zj , θ)}‖

+
1
bτn

sup
(θ,xi)∈Θδ×Sn

‖E{ 1
nbsn

n∑
j=1

Kijg(zj , θ)} − E{g(zi, θ)|xi}h(xi)‖.

Under Assumption 3.4(iv), it is straightforward to show that

sup
(θ,xi)∈Θ×Rs

‖E{ 1
nbsn

n∑
j=1

Kijg(zj , θ)} − E{g(zi, θ)|xi}h(xi)‖ = O(b2n).

As b2−τn ↓ 0 by assumption, it follows that

(A1a) ≤
1
bτn

sup
(θ,xi)∈Θδ×Sn

‖ 1
nbsn

n∑
j=1

Kijg(zj , θ)− E{
n∑
j=1

Kijg(zj , θ)}‖+ o(1).

Now fix (θ, xi) ∈ Θδ × Sn and define ψ(θ, xi, xj , zj) = g(l)(zj , θ)Kij/bsn for 1 ≤ l ≤ q. Under Assump-
tions 3.2, 3.3, and 3.4, it is straightforward to verify that:

(a) bsn|ψ(θ, xi, xj , zj)| ≤ c supθ∈Θ ‖g(zj , θ)‖, E{supθ∈Θ ‖g(zj , θ)‖m} <∞ and m > 2;
(b) bs+1

n ‖∂ψ(θ,xi,xj ,zj)

∂( θxi
)

‖ ≤ c{supθ∈Θ ‖g(zj , θ)‖+ bn supθ∈Θ ‖
∂g(zj ,θ)
∂θ ‖}, and RHS has finite expectation;

(c) E{b2sn ψ2(θ, xi, xj , zj)} < c b
s/2
n .

Therefore, the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

sup
(θ,xi)∈Θδ×Sn

‖ 1
nbsn

n∑
j=1

Kijg(zj , θ)− E{ 1
nbsn

n∑
j=1

Kijg(zj , θ)}‖ = op(

√
nβ

nb
3s/2
n

)

provided n1−βb
( m+2

m−2
) s
2

n ↑ ∞ for some β ∈ (0, 1). But since
√

nβ

nb
3s/2+2τ
n

↓ 0 under our conditions,

(A1a) = op(

√
nβ

nb
3s/2+2τ
n

) + o(1) = op(1).

Together with the result for (A1b), this implies that (A1) = op(1). Hence (A) ≤ (A1) + (A2) = op(1),
and the desired result follows from (B.19). �
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Appendix C. Auxiliary Results for Hypothesis Testing

Lemma C.1. Let Assumptions 3.2–3.7 hold. Then supθ∈B0
‖ − 1

n∇θθSEL(θ)− I(θ)‖ = op(1).

Proof of Lemma C.1. Observe that

SEL(θ) =
n∑
i=1

n∑
j=1

Ti,nwij log{wij
n
} −

n∑
i=1

n∑
j=1

Ti,nwij log{1 + λ′i(θ)g(zj , θ)},

where λi(θ) solves (2.5). Since
∑n

j=1
wijg(zj ,θ)

1+λ′ig(zj ,θ)
= 0 for all θ ∈ Θ,

(C.1) −∇θSEL(θ) =
n∑
i=1

n∑
j=1

Ti,nwij [∇θg(zj , θ)]λi(θ)
1 + λ′i(θ)g(zj , θ)

.

Hence we can write −∇θθSEL(θ) = T1(θ) + T2(θ) + T3(θ), where

T1(θ) = −
n∑
i=1

n∑
j=1

Ti,nwij [∇θ{λ′i(θ)g(zj , θ)}]λ′i(θ)∇θg
′(zj , θ)

[1 + λ′i(θ)g(zj , θ)]2
,

T2(θ) =
n∑
i=1

n∑
j=1

Ti,nwij [∇θλi(θ)]∇θg
′(zj , θ)

1 + λ′i(θ)g(zj , θ)
, T3(θ) =

n∑
i=1

n∑
j=1

Ti,nwij
1 + λ′i(θ)g(zj , θ)

q∑
k=1

[∇θθg
(k)(zj , θ)]λ

(k)
i (θ).

The desired result follows by Lemma C.2, Lemma C.3, and Lemma C.4. �

Lemma C.2. Let Assumptions 3.2–3.7 hold. Then supθ∈B0
‖T1(θ)

n ‖ = op(1).

Proof of Lemma C.2. Since ∇θ{λ′i(θ)g(zj , θ)} = [∇θg(zj , θ)]λi(θ) + [∇θλi(θ)]g(zj , θ), we can write
T1(θ) = T1,a(θ) + T1,b(θ), where

T1,a(θ) = −
n∑
i=1

n∑
j=1

Ti,nwij
[1 + λ′i(θ)g(zj , θ)]2

[∇θg(zj , θ)]λi(θ)λ′i(θ)∇θg
′(zj , θ),

T1,b(θ) = −
n∑
i=1

n∑
j=1

Ti,nwij
[1 + λ′i(θ)g(zj , θ)]2

[∇θλi(θ)]g(zj , θ)λ′i(θ)∇θg
′(zj , θ).

By Assumptions 3.5(ii) and 3.6, supθ∈B0
‖T1,a(θ)‖ ≤ o(1)

∑n
i=1

∑n
j=1wijd

2(zj), where the o(1) term
does not depend upon i, j, or θ ∈ Θ. Hence supθ∈B0

‖T1,a(θ)/n‖ = op(1) follows by Lemma D.6. Simi-
larly, by supθ∈B0

‖T1,b(θ)‖ ≤ o(1) supθ∈B0

∑n
i=1 Ti,n‖∇θλi(θ)‖

∑n
j=1wijd(zj) and the Cauchy-Schwarz

and Jensen inequalities,

sup
θ∈B0

‖
T1,b(θ)
n

‖ = o(1){ sup
θ∈B0

1
n

n∑
i=1

Ti,n‖∇θλi(θ)‖2}1/2{ 1
n

n∑
i=1

n∑
j=1

wijd
2(zj)}1/2 = op(1)

from (C.2) and Lemma D.6. The desired result follows. �

Lemma C.3. Let Assumptions 3.2–3.7 hold. Then supθ∈B0
‖T2(θ)

n − I(θ)‖ = op(1).

Proof of Lemma C.3. By (C.5)

T2(θ)
n

=
1
n

n∑
i=1

T̂i,n[∇θλi(θ)]D(xi, θ)+
1
n

n∑
i=1

T̂i,n[∇θλi(θ)]E{d(zi)|xi}R2,i(θ)+
1
n

n∑
i=1

Ti,n[∇θλi(θ)]R3,i(θ),
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where max1≤i≤n supθ∈B0
‖R2,i(θ)‖ = op(1) and max1≤i≤n supθ∈B0

‖R3,i(θ)‖ = op(1). Under our as-
sumptions, max1≤i≤n T̂i,n = Op(1) and sup(xi,θ)∈Rs×B0

‖V −1(xi, θ)‖ <∞. So by Lemma C.5,

(C.2) sup
θ∈B0

1
n

n∑
i=1

Ti,n‖∇θλi(θ)‖2 = Op(1) and sup
θ∈B0

1
n

n∑
i=1

Ti,n‖∇θλi(θ)‖ = Op(1).

Use (C.2) and Cauchy-Schwarz to obtain supθ∈B0
‖T2(θ)

n − 1
n

∑n
i=1 T̂i,n[∇θλi(θ)]D(xi, θ)‖ = op(1).

Applying the Cauchy-Schwarz and Jensen inequalities to Lemma C.5 once again,

sup
θ∈B0

‖ 1
n

n∑
i=1

T̂i,n[∇θλi(θ)]D(xi, θ)−
1
n

n∑
i=1

T̂2
i,nD

′(xi, θ)V −1(xi, θ)D(xi, θ)‖ = op(1).

Therefore, as max1≤i≤n |T̂2
i,n − 1| = op(1) by Lemma D.5,

sup
θ∈B0

‖T2(θ)
n

− 1
n

n∑
i=1

D′(xi, θ)V −1(xi, θ)D(xi, θ)‖ = op(1).

Since supθ∈B0
‖ 1
n

∑n
i=1D

′(xi, θ)V −1(xi, θ)D(xi, θ) − I(θ)‖ = op(1) by a uniform WLLN7, the desired
result follows. �

Lemma C.4. Let Assumptions 3.3, 3.5, and 3.6 hold. Then supθ∈B0
‖T3(θ)

n ‖ = op(1).

Proof of Lemma C.4. By Assumptions 3.5(iii) and 3.6, supθ∈B0
‖T3(θ)‖ ≤ o(1)

∑n
i=1

∑n
j=1wijl(zj),

where the o(1) term does not depend upon i, j, or θ ∈ Θ. The desired result follows by Lemma D.6. �

Lemma C.5. Let Assumptions 3.2–3.7 hold. Then for each i and θ ∈ B0 we can write

Ti,n∇θλ
′
i(θ) = T̂i,nV −1(xi, θ)D(xi, θ) + T̂i,nM1,i(θ)D(xi, θ) + T̂i,nE{d(zi)|xi}M2,i(θ)

+M3,i(θ)
n∑
j=1

d(zj)wij +M4,i(θ),

where M1,i is a q × q matrix such that max1≤i≤n supθ∈B0
‖M1,i(θ)‖ = op(1), and M2,i, M3,i, M4,i are

q × p matrices such that max1≤i≤n supθ∈B0
‖Mk,i(θ)‖ = op(1) for k = 2, 3, 4.

Proof of Lemma C.5. From (2.5), we know that λi(θ) solves
∑n

j=1
wijg(zj ,θ)

1+λ′i(θ)g(zj ,θ)
= 0 for all θ ∈ Θ.

Differentiating this identity with respect to θ and rearranging,

(C.3)
n∑
j=1

wijg(zj , θ)g′(zj , θ)
[1 + λ′i(θ)g(zj , θ)]2

∇θλ
′
i(θ) =

n∑
j=1

wij∇θg
′(zj , θ)

1 + λ′i(θ)g(zj , θ)
−

n∑
j=1

wijg(zj , θ)λ′i(θ)∇θg
′(zj , θ)

[1 + λ′i(θ)g(zj , θ)]2
.

Let us simplify (C.3). First, by Assumption 3.6

‖
n∑
j=1

wijg(zj , θ)g′(zj , θ)
[1 + λ′i(θ)g(zj , θ)]2

− V (xi, θ)‖ ≤ O(1)‖V̂ (xi, θ)− V (xi, θ)‖+ o(1)‖V (xi, θ)‖,

7See, for example, Newey and McFadden (1994, Lemma 2.4, Page 2129).
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where the O(1) and o(1) terms do not depend upon i, j, or θ ∈ Θ. Since sup(xi,θ)∈Rs×B0
‖V (xi, θ)‖ <∞

by Assumption 3.5(ii), Lemma B.6 shows that

max
1≤i≤n

sup
θ∈B0

Ti,n‖
n∑
j=1

wijg(zj , θ)g′(zj , θ)
[1 + λ′i(θ)g(zj , θ)]2

− V (xi, θ)‖ = op(1).

Therefore, by Assumption 3.5(ii), we can write

(C.4) Ti,n{
n∑
j=1

wijg(zj , θ)g′(zj , θ)
[1 + λ′i(θ)g(zj , θ)]2

}−1 = Ti,nV −1(xi, θ) +R1,i(θ),

where R1,i is a q × q matrix such that max1≤i≤n supθ∈B0
‖R1,i(θ)‖ = op(1). Next, by Assumption 3.6

‖
n∑
j=1

wij∇θg
′(zj , θ)

1 + λ′i(θ)g(zj , θ)
−D(xi, θ)

h(xi)

ĥ(xi)
‖ ≤ O(1)‖

n∑
j=1

wij∇θg
′(zj , θ)−D(xi, θ)

h(xi)

ĥ(xi)
‖

+ o(1)‖D(xi, θ)‖
h(xi)

ĥ(xi)
,

where the O(1) and o(1) terms do not depend upon i, j, or θ ∈ Θ. As ‖D(xi, θ)‖ ≤ E{d(zi)|xi} by
Assumption 3.5(iii), we have

Ti,n‖
n∑
j=1

wij∇θg
′(zj , θ)

1 + λ′i(θ)g(zj , θ)
−D(xi, θ)

h(xi)

ĥ(xi)
‖ = O(1) max

1≤i≤n
sup
θ∈B0

Ti,n‖
n∑
j=1

wij∇θg
′(zj , θ)−D(xi, θ)

h(xi)

ĥ(xi)
‖

+ o(1)T̂i,nE{d(zi)|xi}.

Hence using Lemma B.5, we can write

(C.5) Ti,n
n∑
j=1

wij∇θg
′(zj , θ)

1 + λ′i(θ)g(zj , θ)
= T̂i,nD(xi, θ) + T̂i,nE{d(zi)|xi}R2,i(θ) +R3,i(θ),

where R2,i and R3,i are q × p matrices such that we have max1≤i≤n supθ∈B0
‖R2,i(θ)‖ = op(1) and

max1≤i≤n supθ∈B0
‖R3,i(θ)‖ = op(1). Finally, by Assumption 3.5(iii) and 3.6

‖
n∑
j=1

wijg(zj , θ)λ′i(θ)∇θg
′(zj , θ)

[1 + λ′i(θ)g(zj , θ)]2
‖ ≤ o(1)

n∑
j=1

d(zj)wij ,

where the o(1) term does not depend upon i, j, or θ ∈ Θ. Hence we can write

(C.6)
n∑
j=1

wijg(zj , θ)λ′i(θ)∇θg
′(zj , θ)

[1 + λ′i(θ)g(zj , θ)]2
= R4,i(θ)

n∑
j=1

d(zj)wij ,

where R4,i is a q×p matrix such that max1≤i≤n supθ∈B0
‖R4,i(θ)‖ = op(1). By (C.4), (C.5), and (C.6),

(C.3) can be written as

Ti,n∇θλ
′
i(θ) = {Ti,nV −1(xi, θ) +R1,i(θ)}{T̂i,nD(xi, θ) + T̂i,nE[d(zi)|xi]R2,i(θ) +R3,i(θ)

+R4,i(θ)
n∑
j=1

d(zj)wij}.
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The desired result follows by sup(xi,θ)∈Rs×B0
‖V (xi, θ)‖ <∞ and the properties of R1,i, . . . , R4,i. �

Lemma C.6. Let Assumptions 3.3, 3.5, and 3.6 hold. Then supθ∈B0
‖∇θSEL(θ)

n ‖ = op(1).

Proof of Lemma C.6. Using (C.1), Assumption 3.6, and Assumption 3.5(iii), it is easily seen that
supθ∈B0

‖∇θSEL(θ)‖ ≤ o(1)
∑n

i=1

∑n
j=1wijd(zj), where the o(1) term does not depend upon i, j, or

θ ∈ Θ. Hence the desired result follows by Lemma D.6. �

Appendix D. Other Useful Results

Lemma D.1. Let an and bn be sequences of positive numbers such that an, bn ↓ 0. rn is a sequence of
functions such that supx |rn(x) − r(x)| = Op(an) and supx |r(x)| < ∞. sn is a sequence of functions
such that supx |sn(x)−s(x)| = Op(bn) and infx |s(x)| > 0. Then supx |

rn(x)
sn(x)−

r(x)
s(x) | = Op(max{an, bn}).

Proof of Lemma D.1. See Tripathi and Kitamura (2000, Lemma C.1). �

Lemma D.2. If E{supθ∈Θ ‖g(z, θ)‖m} <∞, then Pr{max1≤j≤n supθ∈Θ ‖g(zj , θ)‖ = o(n1/m)} = 1 as
n ↑ ∞.

Proof of Lemma D.2. Our proof is based on the idea described in Owen (1990, Lemma 3). Let
ε > 0. Since

∑∞
n=1 Pr{[supθ∈Θ ‖g(z1, θ)‖]m/εm ≥ n} ≤ E[supθ∈Θ ‖g(z1, θ)‖]m/εm, it follows that∑∞

n=1 Pr{[supθ∈Θ ‖g(z1, θ)‖]m/εm ≥ n} <∞. But since the random vectors z1, . . . , zn are identically
distributed, we have

∑∞
n=1 Pr{[supθ∈Θ ‖g(zn, θ)‖]m/εm ≥ n} < ∞. Therefore, by Borel-Cantelli

the event {[supθ∈Θ ‖g(zn, θ)‖]m/εm ≥ n} happens infinitely often w.p.0. Equivalently, the event
{supθ∈Θ ‖g(zn, θ)‖/ε < n1/m} happens for all but finitely many n w.p.1. Since n1/m eventually
exceeds the largest element in the finite collection of supθ∈Θ ‖g(zk, θ)‖/ε’s that exceed k1/m, we get
that Pr{max1≤j≤n supθ∈Θ ‖g(zj , θ)‖ < n1/mε} = 1 for large enough n. The desired result follows
because ε can be chosen arbitrarily small. �

Lemma D.3. Let x1, . . . , xn be identically distributed random vectors such that E‖x1‖1+δ < ∞ for
some δ ≥ 0 and define Ici,n = I{‖xi‖ > n}. Then max1≤i≤n Ici,n = op( 1

nδ ).

Proof of Lemma D.3. Since E‖xi‖1+δ < ∞ implies that E{‖xi‖1+δ I(‖xi‖ > n)} = o(1) as n ↑ ∞,
we have n1+δ Pr{‖xi‖ > n} < E{‖xi‖1+δ I(‖xi‖ > n)} = o(1). Thus Pr{‖xi‖ > n} = o(n−(1+δ)) for
each i because x1, . . . , xn are identically distributed. Therefore, using the fact that max1≤i≤n Ici,n ≤∑n

i=1 Ici,n, E{max1≤i≤n Ici,n} ≤
∑n

i=1 Pr{‖xi‖ > n} = o(n−δ). The desired result follows. �

Lemma D.4. Let Assumptions 3.3 and 3.4 hold. If bn ↓ 0 and nbsn ↑ ∞, then max1≤i≤n |Ti,n − 1| =
Op(n exp{−nb

2(s+τ)
n

8K2
max

}).

Proof of Lemma D.4. Pick ε > 0 and let Mε denote a positive number which may depend upon ε.
We will see later how to choose Mε. Because max1≤i≤n |Ti,n − 1| ≤

∑n
i=1 |Ti,n − 1|,

(D.1) Pr{max
1≤i≤n

|Ti,n − 1| > Mε} ≤
1
Mε

n∑
i=1

Pr{ĥ(xi) < bτn}
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follows by Chebychev’s inequality. Since ĥ ≥ 0,

Pr{ĥ(xi) < bτn} ≤ Pr{|ĥ(xi)− E[ĥ(xi)|xi]| > bτn}+ Pr{|E[ĥ(xi)|xi]| < 2bτn}

≤ Pr{|ĥ(xi)− E[ĥ(xi)|xi]| > bτn}+ Pr{ sup
xi∈Rs

|E[ĥ(xi)|xi]| < 2bτn}.

Under Assumption 3.4 we can show supxi∈Rs |E[ĥ(xi)|xi] − h(xi)| ≤ c(b2n + 1
n + 1

nbsn
), which implies

supxi∈Rs h(xi) ≤ c(b2n+ 1
n + 1

nbsn
)+supxi∈Rs E[ĥ(xi)|xi]. Since supxi∈Rs h(xi) > 0, bn ↓ 0, and nbsn ↑ ∞,

Pr{ sup
xi∈Rs

E[ĥ(xi)|xi] < 2bτn} ≤ Pr{ sup
xi∈Rs

h(xi) ≤ c(b2n +
1
n

+
1
nbsn

) + 2bτn} = 0

for large enough n. Hence when n is large enough, (D.1) reduces to

(D.2) Pr{max
1≤i≤n

|Ti,n − 1| > Mε} ≤
1
Mε

n∑
i=1

Pr{|ĥ(xi)− E[ĥ(xi)|xi]| > bτn}.

Now let yij = Kij − E{Kij |xi} and note that: (i) conditional on xi the random variables yi1, . . . , yin
are mutually independent, (ii) E{yij |xi} = 0, and (iii) |yij | ≤ 2Kmax for 1 ≤ i, j ≤ n. Therefore,

Pr{|ĥ(xi)− E[ĥ(xi)|xi]| > bτn} = Pr{|
n∑
j=1

yij | > nbs+τn } ≤ 2 exp{−nb
2(s+τ)
n

8K2
max

},

where the last inequality follows from an application of Hoeffding’s inequality8. Using this result,
for large enough n, (D.2) becomes Pr{max1≤i≤n |Ti,n − 1| > Mε} ≤ 2n exp{−nb

2(s+τ)
n

8K2
max

}M−1
ε . Thus

for large enough n, Pr{max1≤i≤n |Ti,n − 1| > n exp{−nb
2(s+τ)
n

8K2
max

}2
ε} ≤ ε follows on replacing Mε by

n exp{−nb
2(s+τ)
n

8K2
max

}2
ε . Since ε was arbitrary, the desired result follows. �

Lemma D.5. Let Assumptions 3.3 and 3.4 hold. Assume that bn ↓ 0 and n1−βbsn ↑ ∞ for some

β ∈ (0, 1). Then for T̂i,n
def
= Ti,nh(xi)/ĥ(xi),

max
1≤i≤n

|T̂i,n − 1| = op(

√
nβ

nbs+2τ
n

) +O(
b2n
bτn

) + o(
1

n%bτn
) +Op(n exp{−nb

2(s+τ)
n

8K2
max

})

max
1≤i≤n

|T̂2
i,n − 1| = op(

√
nβ

nbs+4τ
n

) +Op(
b2n
b2τn

) + op(
1

n%b2τn
) +Op(n exp{−nb

2(s+τ)
n

8K2
max

}).

Proof of Lemma D.5. Since

|T̂i,n − 1| = |Ti,n{h(xi)− ĥ(xi)}
ĥ(xi)

+ Ti,n − 1| ≤ 1
bτn
|ĥ(xi)− h(xi)|+ |Ti,n − 1|,

the first result follows by Lemma B.4 and Lemma D.4. Similarly,

|T̂2
i,n − 1| ≤ 1

b2τn
|ĥ2(xi)− h2(xi)|+ |Ti,n − 1| = 1

b2τn
|ĥ(xi)− h(xi)| |ĥ(xi) + h(xi)|+ |Ti,n − 1|,

8The usual statement of Hoeffding’s inequality (see, for instance, Pollard (1984, Appendix B)) requires that the

summands be mutually independent with zero mean. However, it is easy to verify that Hoeffding’s inequality also holds

when the summands are conditionally independent with zero conditional mean. See, for example, Devroye, Györfi, and

Lugosi (1996, Section 9.1).
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and the second result also follows by Lemma B.4 and Lemma D.4. �

Lemma D.6. Let f(z) be a real valued function such that E|f(z)| <∞, and let Assumption 3.3 hold.
Then E{

∑n
j=1 |f(zj)|wij} ≤ cE|f(z1)|, where the constant c only depends upon the kernel.

Proof of Lemma D.6. Follows directly from Devroye and Wagner (1980, Lemma 2, Page 233). �

Lemma D.7. Let f(z) be a real valued function such that E|f(z)|a <∞ for a > 0, and let Assump-
tion 3.3 hold. Then Pr{supxi∈Rs |

∑n
j=1 f(zj)wij | = o(n1/a)} = 1 as n ↑ ∞.

Proof of Lemma D.7. Observe that |
∑n

j=1 f(zj)wij | ≤ max1≤j≤n |f(zj)|. The desired result now
follows by Lemma D.2. �

Lemma D.8. Let f(z) be a real valued function such that E|f(z)|a <∞ for a > 0, and let Assump-
tions 3.3–3.4 hold. If bn ↓ 0 and logn

nbsn
↓ 0, then Pr{supxi∈Rs | 1

nbsn

∑n
j=1 f(zj)Kij | = o(n1/a)} = 1 as

n ↑ ∞.

Proof of Lemma D.8. By the triangle inequality,

sup
xi∈Rs

1
nbsn

n∑
j=1

|f(zj)|Kij ≤ max
1≤j≤n

|f(zj)|{ sup
xi∈Rs

|ĥ(xi)− h(xi)|+ sup
xi∈Rs

h(xi)}.

But under Assumptions 3.3 and 3.4, we can use the strong uniform consistency of ĥ(xi) (see, for
instance, Prakasa Rao (1983, Page 185)) to show supxi∈Rs |ĥ(xi) − h(xi)|

a.s.−−→ 0 if logn
nbsn

↓ 0. Fur-
thermore, h(xi) is uniformly bounded on Rs by assumption, and from Lemma D.2 we know that
max1≤j≤n |f(zj)| = o(n1/a) w.p.1 as n ↑ ∞. Therefore, supxi∈Rs

1
nbsn

∑n
j=1 |f(zj)|Kij = o(n1/a) holds

w.p.1 provided logn
nbsn

↓ 0. The desired result follows. �

Lemma D.9. Let f(z) be a real valued function such that E|f(z)|2 < ∞, and let Assumptions 3.3
and 3.4 hold. Then E{ 1

nbsn

∑n
j=1 |f(zj)|Kij} <∞.

Proof of Lemma D.9. Since 1
nbsn

∑n
j=1 |f(zj)|Kij =

∑n
j=1 |f(zj)|wij ĥ(xi),

1
nbsn

n∑
j=1

|f(zj)|Kij ≤
1
2
{[

n∑
j=1

|f(zj)|wij ]2 + ĥ2(xi)}
Jensen
≤ 1

2
{
n∑
j=1

|f(zj)|2wij + ĥ2(xi)}.

It is easily shown that Eĥ2(xi) <∞. Hence the desired result follows by Lemma D.6. �
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Appendix E. Simulation Results

Table 1. n = 50

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
OLS 0.4183 0.0154 0.4186 3.1837 0.2551 2.7950

0.3208 -0.0070 0.3209 2.1750 0.1991 2.0429
FGLS 0.1668 0.0054 0.1669 1.2696 0.1033 1.1316

0.2078 0.0033 0.2078 1.4085 0.1284 1.3177
GLS 0.1314 0.0054 0.1315 1.0000 0.0913 1.0000

0.1475 0.0022 0.1475 1.0000 0.0975 1.0000
k-NN automatic 0.2217 0.0112 0.2220 1.6884 0.1337 1.4648

0.2347 -0.0008 0.2347 1.5910 0.1494 1.5329
kn = 3 0.2545 0.0137 0.2549 1.9389 0.1566 1.7159

0.2311 -0.0049 0.2312 1.5669 0.1444 1.4816
kn = 6 0.2172 0.0121 0.2175 1.6543 0.1345 1.4738

0.2190 -0.0012 0.2190 1.4842 0.1360 1.3957
kn = 9 0.2097 0.0100 0.2100 1.5970 0.1253 1.3733

0.2212 0.0007 0.2212 1.4994 0.1331 1.3653
kn = 12 0.2111 0.0103 0.2114 1.6077 0.1231 1.3487

0.2248 0.0003 0.2248 1.5236 0.1335 1.3701
kn = 15 0.2147 0.0119 0.2151 1.6358 0.1262 1.3829

0.2306 -0.0012 0.2307 1.5633 0.1400 1.4370
kn = 18 0.2196 0.0132 0.2200 1.6736 0.1297 1.4211

0.2354 -0.0025 0.2354 1.5957 0.1463 1.5008
kn = 21 0.2231 0.0132 0.2235 1.6998 0.1296 1.4200

0.2394 -0.0029 0.2394 1.6228 0.1506 1.5457
kn = 24 0.2281 0.0117 0.2284 1.7373 0.1329 1.4567

0.2440 -0.0028 0.2440 1.6537 0.1562 1.6025
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Table 2. n = 50 (continued)

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
Kernel automatic 0.2093 0.0117 0.2096 1.5944 0.1354 1.4836

0.2314 -0.0033 0.2314 1.5685 0.1501 1.5402
bn = 0.1524 0.2296 0.0087 0.2298 1.7476 0.1463 1.6030

0.2329 0.0012 0.2329 1.5785 0.1465 1.5033
bn = 0.3049 0.1994 0.0099 0.1997 1.5189 0.1271 1.3927

0.2176 -0.0006 0.2176 1.4749 0.1392 1.4286
bn = 0.4573 0.1890 0.0101 0.1893 1.4395 0.1181 1.2936

0.2120 -0.0019 0.2121 1.4372 0.1385 1.4212
bn = 0.6097 0.1869 0.0102 0.1872 1.4237 0.1205 1.3202

0.2118 -0.0027 0.2118 1.4357 0.1384 1.4200
bn = 0.7622 0.1915 0.0105 0.1918 1.4588 0.1239 1.3573

0.2165 -0.0031 0.2165 1.4676 0.1408 1.4443
bn = 0.9146 0.2016 0.0108 0.2019 1.5358 0.1295 1.4188

0.2249 -0.0035 0.2250 1.5247 0.1467 1.5055
bn = 1.0670 0.2157 0.0113 0.2160 1.6425 0.1369 1.5003

0.2351 -0.0039 0.2351 1.5936 0.1524 1.5637
bn = 1.2195 0.2319 0.0117 0.2322 1.7664 0.1405 1.5399

0.2454 -0.0043 0.2454 1.6635 0.1620 1.6620
SEL automatic 0.1777 0.0078 0.1778 1.3525 0.1100 1.2047

0.1803 0.0001 0.1803 1.2218 0.1090 1.1186
bn = 0.1524 0.1957 0.0073 0.1959 1.4898 0.1285 1.4083

0.1996 0.0004 0.1996 1.3526 0.1297 1.3311
bn = 0.3049 0.1874 0.0073 0.1876 1.4266 0.1209 1.3241

0.1909 0.0006 0.1909 1.2938 0.1197 1.2279
bn = 0.4573 0.1803 0.0061 0.1804 1.3724 0.1121 1.2287

0.1834 0.0016 0.1834 1.2428 0.1136 1.1657
bn = 0.6097 0.1769 0.0049 0.1770 1.3463 0.1114 1.2200

0.1809 0.0028 0.1809 1.2260 0.1107 1.1363
bn = 0.7622 0.1710 0.0065 0.1711 1.3015 0.1100 1.2056

0.1754 0.0014 0.1754 1.1886 0.1123 1.1522
bn = 0.9146 0.1715 0.0076 0.1717 1.3058 0.1095 1.2000

0.1750 0.0004 0.1750 1.1863 0.1109 1.1384
bn = 1.0670 0.1747 0.0082 0.1749 1.3302 0.1099 1.2046

0.1766 -0.0002 0.1766 1.1969 0.1100 1.1285
bn = 1.2195 0.1797 0.0088 0.1799 1.3681 0.1110 1.2166

0.1796 -0.0007 0.1796 1.2170 0.1128 1.1574
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Table 3. n = 100

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
OLS 0.3735 0.0075 0.3735 4.0987 0.2084 3.4215

0.2693 -0.0039 0.2693 2.5979 0.1587 2.2635
FGLS 0.1192 0.0099 0.1196 1.3121 0.0751 1.2328

0.1471 -0.0057 0.1472 1.4201 0.0955 1.3627
GLS 0.0909 0.0064 0.0911 1.0000 0.0609 1.0000

0.1036 -0.0020 0.1037 1.0000 0.0701 1.0000
k-NN automatic 0.1568 0.0084 0.1571 1.7235 0.0814 1.3360

0.1690 -0.0028 0.1690 1.6307 0.1026 1.4628
kn = 3 0.2131 0.0110 0.2134 2.3416 0.1252 2.0549

0.1785 -0.0089 0.1787 1.7243 0.1238 1.7663
kn = 6 0.1577 0.0082 0.1579 1.7326 0.0960 1.5766

0.1529 -0.0053 0.1530 1.4763 0.1043 1.4884
kn = 10 0.1480 0.0077 0.1482 1.6266 0.0867 1.4229

0.1527 -0.0032 0.1527 1.4734 0.1004 1.4325
kn = 13 0.1475 0.0079 0.1477 1.6211 0.0802 1.3170

0.1557 -0.0024 0.1557 1.5022 0.0997 1.4221
kn = 16 0.1489 0.0067 0.1490 1.6353 0.0770 1.2641

0.1605 -0.0015 0.1605 1.5486 0.1026 1.4630
kn = 20 0.1538 0.0068 0.1540 1.6893 0.0813 1.3341

0.1662 -0.0017 0.1662 1.6031 0.1032 1.4715
kn = 23 0.1563 0.0066 0.1564 1.7160 0.0811 1.3321

0.1700 -0.0018 0.1700 1.6399 0.1023 1.4596
kn = 26 0.1596 0.0070 0.1597 1.7529 0.0823 1.3513

0.1733 -0.0024 0.1733 1.6719 0.1025 1.4623
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Table 4. n = 100 (continued)

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
Kernel automatic 0.1413 0.0099 0.1417 1.5543 0.0831 1.3638

0.1607 -0.0057 0.1608 1.5508 0.0993 1.4160
bn = 0.1327 0.1640 0.0122 0.1645 1.8047 0.1002 1.6458

0.1673 -0.0061 0.1674 1.6151 0.1139 1.6246
bn = 0.2654 0.1373 0.0096 0.1376 1.5102 0.0825 1.3549

0.1499 -0.0041 0.1500 1.4470 0.1005 1.4332
bn = 0.3981 0.1239 0.0091 0.1243 1.3636 0.0755 1.2403

0.1413 -0.0044 0.1413 1.3634 0.0912 1.3013
bn = 0.5308 0.1209 0.0089 0.1212 1.3298 0.0727 1.1941

0.1392 -0.0046 0.1393 1.3434 0.0900 1.2833
bn = 0.6635 0.1225 0.0089 0.1228 1.3477 0.0741 1.2163

0.1416 -0.0048 0.1417 1.3668 0.0915 1.3058
bn = 0.7962 0.1281 0.0090 0.1284 1.4090 0.0763 1.2520

0.1479 -0.0049 0.1480 1.4277 0.0932 1.3289
bn = 0.9289 0.1371 0.0091 0.1374 1.5072 0.0799 1.3117

0.1568 -0.0049 0.1568 1.5131 0.0965 1.3759
bn = 1.0616 0.1487 0.0091 0.1489 1.6342 0.0851 1.3972

0.1668 -0.0048 0.1669 1.6099 0.1050 1.4979
SEL automatic 0.1145 0.0086 0.1148 1.2596 0.0743 1.2202

0.1206 -0.0035 0.1207 1.1643 0.0769 1.0962
bn = 0.1327 0.1343 0.0106 0.1347 1.4777 0.0875 1.4358

0.1384 -0.0017 0.1384 1.3355 0.0909 1.2962
bn = 0.2654 0.1232 0.0094 0.1235 1.3554 0.0757 1.2433

0.1289 -0.0007 0.1289 1.2431 0.0831 1.1859
bn = 0.3981 0.1172 0.0083 0.1175 1.2893 0.0726 1.1912

0.1242 -0.0006 0.1242 1.1981 0.0771 1.1004
bn = 0.5308 0.1142 0.0084 0.1145 1.2561 0.0709 1.1643

0.1217 -0.0016 0.1217 1.1739 0.0768 1.0956
bn = 0.6635 0.1122 0.0083 0.1125 1.2343 0.0698 1.1461

0.1197 -0.0025 0.1198 1.1553 0.0753 1.0746
bn = 0.7962 0.1119 0.0084 0.1122 1.2316 0.0703 1.1534

0.1192 -0.0031 0.1192 1.1504 0.0743 1.0601
bn = 0.9289 0.1131 0.0086 0.1135 1.2450 0.0730 1.1991

0.1197 -0.0036 0.1198 1.1554 0.0740 1.0559
bn = 1.0616 0.1156 0.0088 0.1159 1.2718 0.0754 1.2376

0.1212 -0.0038 0.1213 1.1697 0.0776 1.1074
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Table 5. n = 200

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
OLS 0.3124 -0.0019 0.3124 4.6385 0.1676 3.4328

0.2216 0.0003 0.2216 2.9158 0.1325 2.5419
FGLS 0.0977 0.0053 0.0979 1.4529 0.0563 1.1544

0.1019 -0.0028 0.1019 1.3413 0.0661 1.2678
GLS 0.0673 0.0030 0.0674 1.0000 0.0488 1.0000

0.0760 -0.0011 0.0760 1.0000 0.0521 1.0000
k-NN automatic 0.1006 0.0037 0.1006 1.4941 0.0594 1.2163

0.1125 -0.0016 0.1125 1.4805 0.0708 1.3579
kn = 4 0.1414 0.0035 0.1415 2.1006 0.0931 1.9077

0.1238 -0.0012 0.1238 1.6285 0.0827 1.5867
kn = 8 0.1026 0.0033 0.1027 1.5245 0.0632 1.2948

0.1045 -0.0013 0.1045 1.3752 0.0695 1.3334
kn = 12 0.0959 0.0042 0.0960 1.4252 0.0583 1.1934

0.1026 -0.0025 0.1026 1.3501 0.0664 1.2734
kn = 16 0.0963 0.0047 0.0964 1.4313 0.0584 1.1957

0.1046 -0.0022 0.1046 1.3763 0.0655 1.2567
kn = 20 0.0969 0.0039 0.0970 1.4404 0.0565 1.1568

0.1071 -0.0020 0.1072 1.4101 0.0677 1.2981
kn = 24 0.0980 0.0040 0.0981 1.4566 0.0582 1.1928

0.1096 -0.0020 0.1097 1.4428 0.0703 1.3477
kn = 28 0.1001 0.0037 0.1001 1.4869 0.0598 1.2256

0.1126 -0.0016 0.1126 1.4822 0.0715 1.3712
kn = 32 0.1017 0.0033 0.1017 1.5100 0.0603 1.2363

0.1153 -0.0015 0.1153 1.5177 0.0731 1.4014
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Table 6. n = 200 (continued)

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
Kernel automatic 0.0899 0.0048 0.0900 1.3363 0.0627 1.2841

0.1043 -0.0033 0.1043 1.3729 0.0682 1.3082
bn = 0.1155 0.1122 0.0053 0.1123 1.6672 0.0639 1.3084

0.1169 -0.0020 0.1169 1.5381 0.0771 1.4781
bn = 0.2310 0.0918 0.0042 0.0919 1.3641 0.0544 1.1144

0.1009 -0.0021 0.1009 1.3279 0.0663 1.2719
bn = 0.3466 0.0834 0.0042 0.0836 1.2404 0.0530 1.0856

0.0941 -0.0027 0.0942 1.2389 0.0632 1.2122
bn = 0.4621 0.0808 0.0048 0.0810 1.2019 0.0520 1.0657

0.0920 -0.0033 0.0920 1.2111 0.0623 1.1944
bn = 0.5776 0.0803 0.0048 0.0805 1.1945 0.0534 1.0930

0.0922 -0.0035 0.0923 1.2144 0.0629 1.2072
bn = 0.6931 0.0818 0.0048 0.0819 1.2163 0.0564 1.1561

0.0947 -0.0034 0.0947 1.2464 0.0627 1.2027
bn = 0.8087 0.0854 0.0048 0.0855 1.2699 0.0592 1.2133

0.0992 -0.0034 0.0992 1.3057 0.0648 1.2426
bn = 0.9242 0.0910 0.0048 0.0911 1.3525 0.0626 1.2818

0.1053 -0.0034 0.1054 1.3862 0.0687 1.3169
SEL automatic 0.0777 0.0041 0.0778 1.1546 0.0528 1.0824

0.0831 -0.0022 0.0831 1.0941 0.0571 1.0947
bn = 0.1155 0.0910 0.0039 0.0910 1.3516 0.0600 1.2291

0.0944 -0.0009 0.0944 1.2426 0.0634 1.2165
bn = 0.2310 0.0868 0.0034 0.0868 1.2894 0.0566 1.1589

0.0897 -0.0010 0.0897 1.1797 0.0578 1.1077
bn = 0.3466 0.0827 0.0034 0.0827 1.2283 0.0554 1.1349

0.0869 -0.0012 0.0869 1.1435 0.0560 1.0742
bn = 0.4621 0.0800 0.0038 0.0801 1.1898 0.0518 1.0621

0.0847 -0.0016 0.0847 1.1147 0.0573 1.0984
bn = 0.5776 0.0781 0.0040 0.0782 1.1608 0.0506 1.0359

0.0834 -0.0018 0.0835 1.0982 0.0569 1.0917
bn = 0.6931 0.0772 0.0040 0.0773 1.1472 0.0498 1.0205

0.0829 -0.0020 0.0829 1.0906 0.0571 1.0942
bn = 0.8087 0.0771 0.0041 0.0772 1.1458 0.0512 1.0488

0.0828 -0.0021 0.0828 1.0893 0.0581 1.1137
bn = 0.9242 0.0778 0.0041 0.0779 1.1561 0.0539 1.1047

0.0831 -0.0022 0.0831 1.0940 0.0575 1.1035
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