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EMPIRICAL LIKELIHOOD-BASED INFERENCE
UNDER IMPUTATION FOR MISSING RESPONSE DATA1

BY QIHUA WANG AND J. N. K. RAO

Chinese Academy of Science and Carleton University

Inference under kernel regression imputation for missing response data
is considered. An adjusted empirical likelihood approach to inference for
the mean of the response variable is developed. A nonparametric version
of Wilks’ theorem is proved for the adjusted empirical log-likelihood ratio
by showing that it has an asymptotic standard chi-squared distribution, and
the corresponding empirical likelihood confidence interval for the mean
is constructed. With auxiliary information, an empirical likelihood-based
estimator is defined and an adjusted empirical log-likelihood ratio is derived.
Asymptotic normality of the estimator is proved. Also, it is shown that the
adjusted empirical log-likelihood ratio obeys Wilks’ theorem. A simulation
study is conducted to compare the adjusted empirical likelihood and the
normal approximation methods in terms of coverage accuracies and average
lengths of confidence intervals. Based on biases and standard errors, a
comparision is also made by simulation between the empirical likelihood-
based estimator and related estimators. Our simulation indicates that the
adjusted empirical likelihood method performs competitively and that the use
of auxiliary information provides improved inferences.

1. Introduction. For making statistical inference on the mean of a response
variable, it is typically assumed that all the responses in the sample are available.
This may not hold true in many practical situations and some responses may be
missing for various reasons such as unwillingness of some sampled units to supply
the desired information, loss of information caused by uncontrollable factors,
failure on the part of the investigator to gather correct information and so forth.
In fact, missing responses are common in opinion polls, market research surveys,
mail enquiries, socioeconomic investigations, medical studies and other scientific
experiments. In such circumstances, the usual inferential procedures for complete
data sets cannot be applied directly. A common method is to impute a value for
each missing response in order to achieve a complete data set and then apply
standard statistical methods.
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Some commonly used imputation methods for missing responses (or nonre-
sponses) include linear regression imputation [Yates (1933); Healy and Westma-
cott (1956)], kernel regression imputation [Cheng (1994)], nearest neighbor im-
putation [Chen and Shao (2000)] and ratio imputation [Rao (1996)]. Other usual
imputation methods include random imputation [Rao and Shao (1992); Little and
Rubin (1987)] and sequential imputation [Kong, Liu and Wong (1994)].

Let X be a d-dimensional vector of factors and let Y be a response variable
influenced by X. In practice, one often obtains a random sample of incomplete
data

(Xi, Yi, δi), i = 1,2, . . . , n,(1.1)

where all the Xi ’s are observed, and δi = 0 if Yi is missing; otherwise δi = 1.
Cheng (1994) applied kernel regression imputation to estimate the mean of Y ,
say θ . Let m(x) = E[Y |X = x], let K be a kernel function and let hn be a
bandwidth sequence that decreases to 0 as n increases to ∞. Then m(x) can be
estimated by

m̂n(x)=
∑n

i=1 δiYiK((x −Xi)/hn)∑n
i=1 δiK((x −Xi)/hn)

.(1.2)

Because Em(Xi) = EYi , Cheng (1994) imputed missing Yi by m̂n(Xi) and
estimated θ by

θ̂n = 1

n

n∑
i=1

(
δiYi + (1 − δi)m̂n(Xi)

)
.(1.3)

Under the assumption that some Y values may be missing at random (MAR),
Cheng (1994) established the asymptotic normality of a trimmed version of θ̂n and
gave a consistent estimator of its asymptotic variance. This result can be used to
perform interval estimation and hypothesis testing on θ . However, a competitive
method of constructing confidence intervals for θ is the empirical likelihood
method, introduced by Owen (1988). It has many advantages over normal
approximation-based methods and the bootstrap for constructing confidence
intervals [Hall (1992); Hall and La Scala (1990)]. For example, the empirical
likelihood confidence intervals do not have a predetermined shape, whereas
confidence intervals based on the asymptotic normality of an estimator have a
symmetry implied by asymptotic normality. Also, empirical likelihood confidence
intervals respect the range of the parameter: if the parameter is positive, then the
confidence interval contains no negative values. Another preferred characteristic is
that the empirical likelihood confidence interval is transformation respecting; that
is, an empirical likelihood confidence interval for φ(θ) is given by φ applied to
each value in the confidence interval for θ . For the complete data setting, empirical
likelihood methods have been studied extensively by many authors, including
Owen (1988, 1990, 1991), DiCiccio, Hall and Romano (1991), Chen (1993, 1994),
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Chen and Qin (1993), Chen and Hall (1993), Kolaczyk (1994), Kitamura (1997),
Qin (1993), Qin and Lawless (1994) and Wang and Jing (1999). The original idea
of empirical likelihood dates back at least to Hartley and Rao (1968), in a sample
survey context, and Thomas and Grunkemeier (1975).

The main purpose of this article is to extend the empirical likelihood method to
the missing response problem considered by Cheng (1994) and make inferences
on the mean of response Y . Our main idea is to first impute the missing Y -values
by the kernel regression imputation and then construct a complete data empirical
likelihood for θ from the imputed data set as if they were indepedent and
identically distributed (i.i.d.) observations. However, the imputed data are not
i.i.d. As a consequence, the empirical log-likelihood ratio under imputation is
asymptotically distributed as a scaled chi-square variable. Also, the empirical log-
likelihood ratio cannot be applied directly to make statistical inference on θ . This
motivates us to adjust the empirical log-likelihood ratio such that the adjusted log-
likelihood ratio is asymptotically distributed as a standard chi-square variable. It
should be noted that Adimari (1997) used the empirical likelihood method to make
inference under random censorship and obtained an analogous result.

Another attractive feature of the empirical likelihood is that it can be used to
make sharper inferences when some auxiliary information is available [Hartley
and Rao (1968); Owen (1991); Zhang (1997)]. For our problem, some population
characteristics of covariates X may be known in practice. For example, one may
know the mean of X or that the distribution of X is symmetric about a known
constant. By making effective use of the known auxiliary information on X and the
empirical likelihood method, we propose an empirical likelihood-based estimator
of θ , which has a smaller asymptotic variance than θ̂n, and some truncated
versions of it. Also, we obtain an adjusted empirical likelihood ratio with auxiliary
information and apply it to construct confidence intervals for θ .

The rest of this paper is organized as follows. In Section 2, an adjusted
empirical log-likelihood ratio is derived and its asymptotic distribution is shown
to be a standard chi-square. In Section 3, we define an empirical likelihood-based
estimator of θ with auxiliary information and an adjusted empirical log-likelihood
ratio, which is proved to be asymptotically distributed as a standard chi-square. In
Section 4, a simulation study is conducted to compare the finite sample properties
of the proposed empirical likelihood methods with normal approximation methods
based on different estimators in terms of coverage accuracy and average length of
confidence intervals. Based on bias and standard error, a comparison is also made
between the empirical likelihood-based estimator and related estimators such as
different trimmed versions of θ̂n. Proofs of theorems are relegated to the Appendix.

2. An adjusted empirical log-likelihood. Throughout this paper, we make
the missing at random (MAR) assumption. The MAR assumption implies that
δ and Y are conditionally independent given X. That is, P (δ = 1|Y,X) =
P (δ = 1|X). The MAR assumption may be reasonable in many practical situations
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[see Little and Rubin (1987), Chapter 1]. Let m(x) = E[Y |X = x] and Ỹi =
δiYi+(1−δi)m(Xi). Then, under MAR, EỸi = θ if θ is the true parameter. Hence,
the problem of testing whether θ is the true parameter is equivalent to testing
whether EỸi = θ for i = 1,2, . . . , n. By Owen (1991), this may be done using
the empirical likelihood. Let p1,p2, . . . , pn be nonnegative numbers summing to
unity. Then the empirical log-likelihood ratio, evaluated at θ , is defined by

ln(θ) = −2 max∑n
i=1 piỸi=θ,

∑n
i=1 pi=1

n∑
i=1

log(npi).(2.1)

If θ is the true parameter, ln(θ) can be shown to be asymptotically distributed
as a standard chi-square. However, the empirical log-likelihood ratio ln(θ) cannot
be used directly to make inferences on θ since it contains the unknown m(·) and
hence θ is not identifiable. To resolve this problem, a natural way is to replace
m(·) in ln(θ) by the kernel regression estimator m̂n(·) defined by (1.2). However,
to avoid technical diffculties due to small values in the denominator of m̂n(·), we
define an estimated empirical log-likelihood ratio by replacing m(·) in ln(θ) with
a truncated version of m̂n(·) instead of m̂n(·). The truncation technique used here
is slightly different from that used in Cheng (1994), but makes it easier to develop
asymptotic theory.

Let

ĝn(x)= (nhdn)
−1

n∑
i=1

δiK

(
x −Xi

hn

)
and ĝbn(x)= max{ĝn(x), bn}

for some positive constant sequence bn tending to zero. The truncated version
of m̂n(x) is then defined by

m̂bn(x)= m̂n(x)ĝn(x)

ĝbn(x)
.

Further, let Ŷin = δiYi + (1 − δi)m̂bn(Xi). Then the estimated empirical log-
likelihood ratio is defined as

l̂n(θ) = −2 max∑n
i=1 piŶin=θ,

∑n
i=1 pi=1

n∑
i=1

log(npi).(2.2)

By using the Lagrange multiplier method, when min1≤i≤n Ŷin < θ <

max1≤i≤n Ŷin, the optimal value of pi satisfying (2.2) can be shown to be

pi = 1

n

1

1 + λn(Ŷin − θ)
,

where λn is the solution of the equation

1

n

n∑
i=1

Ŷin − θ

1 + λn(Ŷin − θ)
= 0.(2.3)
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This yields

l̂n(θ)= 2
n∑
i=1

log
(
1 + λn(Ŷin − θ)

)
.(2.4)

Compared to the standard empirical log-likelihood ratio, the main difference
is that the Ŷin’s in (2.4) are not independent and identically distributed. Hence,
the asymptotic distribution of l̂n(θ) is not a standard chi-square. Actually, l̂n(θ)
is asymptotically distributed as a scaled chi-square variable with one degree of
freedom. Theorem 2.1 states this result.

THEOREM 2.1. Under the assumptions listed in the Appendix [except (C.A)],
if θ is the true parameter, we have

l̂n(θ)
L−→ V (θ)

Ṽ (θ)
χ2

1 ,(2.5)

where χ2
1 is a standard χ2 variable with one degree of freedom,

V (θ)=E

[
σ 2(X)

P (X)

]
+ Var[m(X)](2.6)

and

Ṽ (θ) =E[P (X)σ 2(X)] + Var[m(X)](2.7)

with σ 2(X)= Var(Y |X) and P (X)= P (δ = 1|X).

Clearly, (2.5) is equivalent to

ln,ad(θ)= r(θ)l̂n(θ)
L−→ χ2

1 ,(2.8)

where r(θ) = Ṽ (θ)/V (θ). If one can define a consistent estimator, say rn(θ),
of r(θ), an adjusted empirical log-likelihood ratio is then defined as

l̂n,ad(θ) = rn(θ)l̂n(θ)(2.9)

with adjustment factor rn(θ). It readily follows from (2.8) and (2.9) that

l̂n,ad(θ)
L→ χ2

1 when θ is the true parameter.
We now provide a consistent estimator rn(θ) of r(θ) under kernel regres-

sion imputation. Let f̂n(x) = (nhdn)
−1∑n

i=1 K((x − Xi)/hn) and f̂bn(x) =
max{f̂n(x), bn}. Write

Ŝ
2
n(x) =

∑n
i=1 K((x −Xi)/hn)δiY

2
i∑n

i=1 K((x −Xi)/hn)δi
,

P̂n(x) =
∑n

i=1 K((x −Xi)/hn)δi∑n
i=1 K((x −Xi)/hn)
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and

V̂n(θ)= n−1
n∑

i=1

(
σ̂ 2
bn
(Xi)

P̂bn(Xi)
+ m̂2

bn
(Xi)

)
− θ2,(2.10)

where

σ̂ 2
bn
(x)= Ŝ

2
n(x)ĝn(x)

ĝbn(x)
− m̂2

bn
(x), P̂bn(x)= P̂n(x)f̂n(x)

f̂bn(x)
.

Then, using Lemma A.2 and (A.46) from the Appendix, a consistent estimator
of r(θ) is given by

rn(θ) = Ṽn(θ)

V̂n(θ)
,

where

Ṽn(θ)= n−1
n∑

i=1

(Ŷin − θ)2.(2.11)

Using the adjustment factor rn(θ), we get the following theorem.

THEOREM 2.2. Under the assumptions listed in the Appendix [except (C.A)],
l̂n,ad(θ) has an asymptotic χ2

1 distribution if θ is the true parameter. That is,

P
(
l̂n,ad(θ) ≤ cα

)= 1 − α + o(1),

with P (χ2
1 ≤ cα)= 1 − α.

REMARK 2.1. The results of Theorems 2.1 and 2.2 are valid for any suitable
imputation method that leads to Ŷin’s satisfying the properties in Lemmas A.1–A.5
of the Appendix after rn(θ) is defined accordingly.

Clearly, Theorem 2.2 can be used to construct confidence intervals for θ . Let

In,α = {θ ′ : l̂n,ad(θ
′)≤ cα}.

Then, by Theorem 2.2, In,α gives an approximate confidence interval for θ with
asymptotically correct coverage probability 1 − α; that is,

P (θ ∈ In,α)= 1 − α + o(1).

Recalling the definition of r(θ) in (2.8), it is easy to see that r(θ) = 1 when
P (δ = 1|X = x) = 1. In this case, the adjusted empirical log-likelihood ratio
reduces to the standard empirical log-likelihood ratio. Actually, one can regard
r(θ) as a measure of loss of information due to missing responses. Note from (2.6)
and (2.7) that Ṽ (θ) ≤ V (θ) and hence r(θ) ≤ 1.
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3. Empirical likelihood-based methods with auxiliary information. We
assume that auxiliary information on X of the form EA(X) = 0 is available,
where A(·) = (A1(·), . . . ,Ar(·))τ , r ≥ 1, is a known vector (or scalar) function,
for example, when the mean or median of X is known in the scalar X case.

To use the auxiliary information, we first maximize
n∏

i=1

p̃i(3.1)

subject to
∑n

i=1 p̃i = 1,
∑n

i=1 p̃iA(Xi) = 0. Provided that the origin is inside the
convex hull of A(X1), . . . ,A(Xn), by the method of Lagrange multipliers, we get

p̃i = 1

n

1

1 + ζ τn A(Xi)
,

where ζn is the solution of the following equation:

1

n

n∑
i=1

A(Xi)

1 + ζ τn A(Xi)
= 0.(3.2)

An empirical likelihood-based estimator (ELBE) of θ is then defined by

θ̂n,AU = 1

n

n∑
i=1

δiYi + (1 − δi)m̂bn(Xi)

1 + ζ τn A(Xi)
.(3.3)

3.1. Normal approximation-based confidence intervals. Theorem 3.1 estab-
lishes the asymptotic normality of the ELBE estimator θ̂n,AU .

THEOREM 3.1. Under all the conditions listed in the Appendix, if θ is the true
parameter, we have

√
n(θ̂n,AU − θ)

L−→N
(
0,VAU(θ)

)
,

where

VAU(θ)= V (θ)− V ′(θ)

with

V ′(θ) =E
(
(m(X)− θ)A(X)

)τ (
EA(X)Aτ(X)

)−1
E
(
(m(X)− θ)A(X)

)
and V (θ) given by (2.6).

REMARK 3.1. θ̂n,AU remains asymptotically normal for any suitable imputa-
tion method that leads to Ŷin’s satisfying Lemma A.1 and some properties such as
(A.50) and (A.54).

By Cheng (1994) and Lemma A.1 of the Appendix, V (θ) is the asymptotic
variance of θ̂n, the truncated version θ̄n and the truncated version of θ̂n due to
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Cheng (1994), say θ̃n, where θ̄n and θ̃n are defined to be θ̂n with m̂n(·) replaced,
respectively, by m̂bn(·) and

m̂n(·)I
[

n∑
j=1

K

( · −Xj

hn

)
δj ≥ cnh

−1
n logn

]

with trimming coefficient cn. It follows from Theorem 3.1 that the ELBE, θ̂n,AU ,
has smaller asymptotic variance and hence is asymptotically more efficient than
θ̂n, θ̃n and θ̄n.

REMARK 3.2. It is seen from the expression for V ′(θ) in Theorem 3.1 that the
amount of reduction from the asymptotic variance of θ̂n, θ̃n and θ̄n to that of θ̂n,AU ,
in the presence of auxiliary information on X, does not depend on the response
probability function P (x). This may be due to the fact that X is not missing and
hence the amount of reduction due to use of auxiliary information on X does not
depend on the missing rate of Y .

Let

V ′
n,AU =

(
1

n

n∑
i=1

((
m̂bn(Xi)− θ̂n,AU

)
Aτ (Xi)

))(1

n

n∑
i=1

A(Xi)A
τ (Xi)

)−1

×
(

1

n

n∑
i=1

((
m̂bn(Xi)− θ̂n,AU

)
A(Xi)

))
.

By the “plug-in” method, we obtain consistent estimators of the asymptotic
variance V (θ) of θ̂n, θ̃n and θ̄n as Vn = V̂n(θ̂n), Ṽn = V̂n(θ̃n) and V̄n = V̂n(θ̄n),
respectively, and of the asymptotic variance VAU(θ) of θ̂n,AU as

Vn,AU = V̂n(θ̂n,AU)− V ′
n,AU,(3.4)

where V̂n(·) is as defined in (2.10). The above results give the following normal
approximation–based confidence intervals for θ : θ̂n ± u1−α/2V

1/2
n /

√
n, θ̃n ±

u1−α/2Ṽ
1/2
n /

√
n, θ̄n ± u1−α/2V̄

1/2
n /

√
n and θ̂n,AU ± u1−α/2V

1/2
n,AU/

√
n, where

u1−α/2 is the 1 − α/2 percentile point of the standard normal distribution.

REMARK 3.3. An important issue in the context of kernel regression is the
selection of an appropriate bandwidth sequence hn. For θ̂n,AU , a possible method
is to choose both hn and bn as the values for which the mean square error is
minimal. Unfortunately, the mean square error of θ̂n,AU is difficult to calculate
since θ̂n,AU is obtained from both (3.2) and (3.3) and it is difficult to solve (3.2).
However, it is noted that θ is a global mean functional and hence the n1/2-rate
asymptotic normality of θ̂n,AU indicates that a proper choice of hn and bn specified
in conditions (C.hnbn) and (C.hn) of the Appendix depends only on the second-
order term of the mean square error if θ̂n,AU is uniformly square integrable. That
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is, the n1/2-rate asymptotic normality of θ̂n,AU implies that E(θ̂n,AU − θ)2 =
VAU(θ)/n + r(hn, bn) with r(hn, bn) = o(n−1) when θ̂n,AU is uniformly square
integrable. This shows that the selection of hn and bn might not be so critical in
terms of the n1/2-rate asymptotic normality and the mean square error of θ̂n,AU .
This differs from nonparametric curve estimation in which the optimal choice of
the smoothing parameter is required to achieve the optimal rate of convergence. If
the remainder term r(hn, bn) could be calculated, we suggest taking bn as small as
possible. One way of doing this is to start with some preliminary guess of bn, use
this to select hn as the value for which the remainder term is minimal, then take a
final bn by minimizing the remainder term again.

3.2. Adjusted empirical likelihood confidence intervals. In what follows, we
propose an adjusted empirical likelihood method to construct confidence intervals
for θ when auxiliary information is available. The problem is to maximize

n∏
i=1

p̄i(3.5)

subject to
∑n

i=1 p̄i = 1,
∑n

i=1 p̄iA(Xi)= 0 and
∑n

i=1 p̄i(Ŷin − θ)= 0.

Let hni(θ) = (Aτ (Xi), Ŷin − θ)τ . Then, provided that the origin is inside the
convex hull of points hn1(θ), . . . , hnn(θ), the method of Lagrange multipliers may
be used to show that the solution is given by

p̄in = 1

n

1

1 + ητnhni(θ)
,

where ηn satisfies

1

n

n∑
i=1

hni(θ)

1 + ητnhni(θ)
= 0.(3.6)

Hence, the empirical log-likelihood ratio may be defined as

l̂n,AU (θ) = −2
n∑

i=1

log(np̄in)= 2
n∑

i=1

log
(
1 + ητnhni(θ)

)
.(3.7)

Let

Vn1(θ) = 1

n

n∑
i=1

A(Xi)A
τ (Xi), Vn2(θ)= 1

n

n∑
i=1

A(Xi)(Ŷin − θ),

Vn3(θ) = 1

n

n∑
i=1

A(Xi)(m̂bn(Xi)− θ)

and

Vn1,AU(θ)=
(
Vn1(θ), Vn2(θ)

V τ
n2(θ), Ṽn(θ)

)
and Vn2,AU(θ)=

(
Vn1(θ), Vn3(θ)

V τ
n3(θ), V̂n(θ)

)
,
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where Ṽn(θ) and V̂n(θ) are defined in (2.11) and (2.10), respectively. Further, let

Wn1,AU(θ) =
(

1√
n

n∑
i=1

hni(θ)

)τ
V−1
n1,AU(θ)

(
1√
n

n∑
i=1

hni(θ)

)

and

Wn2,AU(θ)=
(

1√
n

n∑
i=1

hni(θ)

)τ
V−1
n2,AU(θ)

(
1√
n

n∑
i=1

hni(θ)

)
.

It can be shown that

l̂n,AU (θ) =Wn1,AU(θ)+ op(1).

Also, by the asymptotic normality of 1√
n

∑n
i=1 hni(θ), it can be proved that

Wn1,AU(θ) is asymptotically distributed as a weighted sum of independent chi-
square variables, χ2

1,i , with weights wi for 1 ≤ i ≤ r + 1 being the eigenvalues

of V−1
1,AU(θ)V2,AU(θ), where V1,AU(θ) = P limn Vn1,AU(θ) and V2,AU(θ) =

P limn Vn2,AU (θ). This proves that l̂n,AU (θ)
L→ ∑r+1

i=1 wiχ
2
1,i . Unfortunately, this

result cannot be applied to make statistical inference directly since the weights
are unknown. Naturally, we hope to adjust l̂n,AU (θ), just like adjusting l̂n(θ) in
Section 2, by examining the leading term in the asymptotic expansion of l̂n,AU (θ)
such that the adjusted empirical log-likelihood ratio has asymptotically a standard
chi-squared distribution.

By examining the leading term of l̂n,AU (θ), we define an adjusted empirical
log-likelihood function l̂ad,AU (θ) as

l̂ad,AU (θ) = Wn2,AU(θ)

Wn1,AU(θ)
l̂n,AU(θ).(3.8)

THEOREM 3.2. Under all the conditions listed in the Appendix, l̂ad,AU (θ) is
asymptotically χ2

r+1 if θ is the true parameter.

REMARK 3.4. The result of Theorem 3.1 is valid for any suitable imputation
method that leads to (Aτ (Xi), Ŷin)

τ satisfying Lemma A.5(b) and properties
similar to those of Lemmas A.1–A.4.

Similarly to Theorem 2.1, the result of Theorem 3.2 can be used to construct
a confidence interval for θ . It may be noted that l̂ad,AU (θ) reduces to l̂ad(θ) in
Section 2 in the case of no auxiliary information.

REMARK 3.5. If the empirical maximum likelihood estimator (EMLE) of θ
based on l̂n,AU (θ) exists, one may consider the statistic

l̃n,AU(θ) = l̂n,AU (θ)− l̂n,AU (θ̃n,AU),
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to construct a confidence interval, where θ̃n,AU is the EMLE. l̃n,AU (θ) can
be proved to be asymptotically distributed as a scaled chi-square with one
degree of freedom. Just like l̂n,AU (θ), l̃n,AU (θ) cannot be applied to make
statistical inferences directly since the scaled chi-square contains an unknown
scale parameter. However, we can adjust l̃n,AU (θ) such that the adjusted statistic
has asymptotically a standard chi-square distribution. Unfortunately, we found that
the EMLE sometimes was not available by simulation. It does not seem to be easy
to prove the existence of the EMLE. Here, we do not investigate l̃n,AU (θ) further.

4. Simulation results. We considered five approaches for constructing confi-
dence intervals in the presence of missing response (or nonresponse): the adjusted
empirical likelihood method suggested in Section 2; normal approximation meth-
ods based on θ̃n, θ̄n and θ̂n,AU ; and the adjusted empirical likelihood method, in-
troduced in Section 3, with auxiliary information. We do not consider θ̂n because
the denominator of m̂n(·) becomes zero sometimes and hence it can behave poorly
for small or moderate sample sizes.

A simulation study was conducted to compare the five methods in terms of
coverage accuracies and average lengths of confidence intervals based on them.
Also, we compared θ̄n with θ̃n and θ̂n,AU in terms of their biases and standard
errors.

The simulation used the model Y = 3.2X2 − 5.4X + √|X|ε with X simulated
from the normal distribution with mean 1 and variance 1 or the corresponding
truncated normal with truncation constant 4, and ε generated from the standard
normal distribution. The kernel function of order 2 was taken as K(t) = 1

2 , |t| ≤ 1,
and the bandwidth as 3

2n
−1/3. For the calculation of θ̃n and θ̄n, both bn and cn

were taken as n−1/6 logn. We considered the following three response probability
functions P (x)= P (δ = 1|X = x) under the MAR assumption.

Case 1. P (δ = 1|X = x) = 0.8 + 0.2|x − 1| if |x − 1| ≤ 1, and = 0.95
elsewhere.

Case 2. P (δ = 1|X = x) = 0.9 − 0.2|x − 1| if |x − 1| ≤ 4, and = 0.1
elsewhere.

Case 3. P (δ = 1|X = x)= 0.6 for all x.

For each of the three cases, we generated 5000 Monte Carlo random samples
of size n = 30, 60 and 100. For nominal confidence level 1 − α = 0.95, using the
simulated samples, we evaluated the coverage probabilities and average lengths
of the confidence intervals, which are reported in Tables 1 and 2. From the 5000
simulated values of θ̃n, θ̄n and θ̂n,AU , we computed the biases and standard errors
of the three estimators. These simulation results are reported in Table 3.
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TABLE 1
Empirical coverages of the confidence intervals on θ under different missing functions P(x) and

sample sizes n when nominal level is 0.95

P(x) n AEL AELA NA(θ̃n) NA(θ̄n) NA(θ̂n,AU )

P1(x) 30 0.9234 0.9387 0.9122 0.9122 0.9002
60 0.9411 0.9452 0.9356 0.9356 0.9298

100 0.9466 0.9490 0.9445 0.9445 0.9413
P2(x) 30 0.9130 0.9365 0.9075 0.9075 0.8861

60 0.9362 0.9413 0.9298 0.9298 0.9186
100 0.9439 0.9517 0.9409 0.9409 0.9386

P3(x) 30 0.9129 0.9184 0.8728 0.8728 0.8242
60 0.9318 0.9381 0.9220 0.9220 0.9050

100 0.9421 0.9518 0.9307 0.9307 0.9232

Our simulation results for the case of normal X agree with those for the
truncated normal X case. Our regularity conditions in the Appendix are satisfied
for the latter case, and it is interesting that the results remain valid for the normal
X case though it is not easy for us to prove the normal distribution to satisfy
Assumption (C.gmbn) for the polynomial model considered above.

For convenience, in what follows AEL and AELA denote the adjusted empirical
likelihood confidence intervals based on Theorems 2.2 and 3.2, respectively, and
NA(θ̃n), NA(θ̄n) and NA(θ̂n,AU) denote the corresponding normal approximation
confidence intervals defined in Section 3. The auxiliary information EX = 1 was
used when we calculated the empirical coverages and average lengths of AELA
and NA(θ̂n,AU) confidence intervals in Tables 1 and 2.

TABLE 2
Average lengths of the confidence intervals on θ under different missing functions P(x) and sample

sizes n when nominal level is 0.95

P(x) n AEL AELA NA(θ̃n) NA(θ̄n) NA(θ̂n,AU )

P1(x) 30 0.9000 0.7200 1.0624 1.0624 0.8047
60 0.6400 0.5100 0.7733 0.7733 0.5851

100 0.5200 0.3800 0.5855 0.5855 0.4529
P2(x) 30 0.9400 0.8300 1.1465 1.1465 0.8652

60 0.7300 0.6100 0.8687 0.8687 0.6340
100 0.5700 0.4500 0.6102 0.6102 0.5039

P3(x) 30 1.1200 0.9200 1.2156 1.2156 0.9288
60 0.8100 0.6500 0.9375 0.9375 0.6953

100 0.6300 0.5100 0.6588 0.6588 0.5488
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From Tables 1 and 2, we have the following observations.

1. In the case where no auxiliary information is available, AEL performs better
than NA(θ̃n) and NA(θ̄n) because the associated confidence intervals have
uniformly higher coverage accuracies and shorter average lengths.

2. For the case when auxiliary information is available, we observe that the
empirical coverage levels for the confidence intervals based on AELA are closer
to the nominal level than those based on NA(θ̂n,AU ). Also, the average lengths
of the confidence intervals based on AELA are uniformly shorter than those
based on NA(θ̂n,AU ).

3. AELA obviously outperforms AEL, which does not use the auxiliary informa-
tion, and hence also all the normal approximation methods in terms of coverage
accuracies and average lengths of confidence intervals.

4. NA(θ̂n,AU ) has lower coverage accuracy, but shorter average length, than the
other normal approximation methods. This could be explained by the fact that
the estimator θ̂n,AU has larger bias and smaller standard error (see Table 3).

5. NA(θ̃n) and NA(θ̄n) have the same coverage accuracy and average length of
confidence interval for the cases considered here.

6. All the empirical coverage accuracies increase and the average lengths decrease
as n increases. Also, the coverage accuracies and average lengths depend on
the response probability function P (x). In Case 1, all the methods generally
perform better than in the other two cases. This could be explained by the
fact that EP1(X) ≈ 0.9, EP2(X) ≈ 0.74 and EP3(X) = 0.6, where P1(x),
P2(x) and P3(x) are the response probability functions for Cases 1, 2 and 3,
respectively; that is, Case 1 has the lowest missing rate and Case 3 has the
highest missing rate.

TABLE 3
Biases and standard errors (SE) of θ̃n, θ̄n and θ̂n,AU under different missing functions P(x) and

different sample sizes n

Bias SE

P(x) n θ̃n θ̄n θ̂n,AU θ̃n θ̄n θ̂n,AU

P1(x) 30 −0.0177 −0.0177 −0.0193 0.0928 0.0928 0.0614
60 −0.0092 −0.0092 −0.0127 0.0418 0.0418 0.0311

100 −0.0046 −0.0046 −0.0049 0.0254 0.0254 0.0139
P2(x) 30 −0.1186 −0.1186 −0.1292 0.0974 0.0974 0.0711

60 −0.0916 −0.0916 −0.0945 0.0505 0.0505 0.0342
100 −0.0693 −0.0693 −0.0733 0.0311 0.0311 0.0214

P3(x) 30 −0.0933 −0.0933 −0.1010 0.1232 0.1232 0.0848
60 −0.0582 −0.0582 −0.0622 0.0592 0.0592 0.0435

100 −0.0431 −0.0431 −0.0426 0.0369 0.0369 0.0250
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From Table 3, we have the following observations.

(i) Biases and standard errors decrease as n increases. Also, the standard
errors increase with the missing rate.

(ii) θ̃n and θ̄n have generally slightly smaller bias than θ̂n,AU . However, their
standard errors (SE) are approximately 1.5 times as large as those of θ̂n,AU
irrespective of the choice of P (x). This result is in agreement with the fact noted
in Remark 3.2.

(iii) The bias and SD of θ̃n and of θ̄n are about the same under the cases
considered here.

We have simulated other models such as Y = 5 exp(−3X)+ ε, where X and ε

have standard exponential and normal distributions, respectively, and the bivariate
normal model that (X,Y ) is distributed normally with mean vector µ= (1,1) and
covariance matrix

2 =
(

1 0.5

0.5 1

)
.

The kernel function and bandwidth were taken to be the same as before. The above
model with exponential X satisfies our condition (C.gmbn), and the simulation
results for the model are similar to those reported before. This can be seen from
Table 4. We used auxiliary information EX = 1 when we calculated empirical
coverages for AELA and NA(θ̂n,AU ) confidence intervals in Table 4.

Other bandwidths such as Cn−1/3 for C = (0.5,1,2) produced similar results,
with hn = 3

2n
−1/3 generally performing better than the other bandwidths in terms

of the coverage accuracy of confidence intervals. The choice of the trimming
constants bn and cn seems not so sensitive with regard to coverage accuracy and
interval length though it is important. When bn and cn were taken to be n−1/7,
n−1, n−2 and n−10, results similar to Tables 1–3 were obtained. When bn and cn
were taken to be n−1/10, n−1/20 or n−1/30, all the methods performed poorly,
especially the normal approximation methods. For example, based on the model

TABLE 4
Empirical coverages (EC) and average lengths (AL) of confidence intervals on θ under different

missing functions P(x) and sample size n = 60 when nominal level is 0.95 and Y = 5 exp(−3X)+ ε

with X and ε distributed as standard exponential and normal distributions, respectively

P(x) n AEL AELA NA(θ̃n) NA(θ̄n) NA(θ̂n,AU )

P1(x) EC 0.9526 0.9480 0.9428 0.9428 0.9391
AL 0.6400 0.5600 0.8274 0.8274 0.6195

P2(x) EC 0.9630 0.9382 0.9384 0.9384 0.9082
AL 0.6900 0.5800 0.8743 0.8743 0.6237

P3(x) EC 0.9652 0.9357 0.9364 0.9364 0.9012
AL 0.7500 0.6100 0.9056 0.9056 0.6578
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used for Tables 1 and 2, the coverage probabilities of AEL, AELA, θ̃n, θ̄n and
θ̂n,AU are 0.7751, 0.8845, 0.3511, 0.5720 and 0.6191 when n = 30, bn = n−1/10,

cn = n−1/10, P (x)= P1(x) and the nominal level is 0.95.

5. Concluding remarks. Our paper considered empirical likelihood infer-
ence on the mean of response Y when Y is missing at random. Clearly, it is useful
to extend these results to inference on the cumulative distribution function F(t)

of Y . To make the corresponding inference on F(t), we can define the correspond-
ing adjusted empirical likelihood functions and estimators of the distribution func-
tion of Y with Y and θ replaced by I [Y ≤ t] and F(t) in l̂n,ad(θ), l̂ad,AU (θ), θ̂n, θ̃n
and θ̄n, respectively, for any fixed t . Further, we can develop empirical likelihood
inference for the quantiles of F(t). We plan to study these problems in a separate
paper.

APPENDIX

Assumptions and proofs of theorems. Denote by f (·) the probability density
of X and let σ 2(X) = Var(Y |X). Define P (x) = P (δ = 1|X = x) and g(x) =
P (x)f (x). Let ‖a‖ =∑ |ai| for any vector a, where ai is the ith component of a.
To prove Theorems 2.1, 2.2, 3.1 and 3.2, the following assumptions are needed.

(C.P) (i) P (x) has bounded partial derivatives up to order k(> d) almost
surely.

(ii) infx P (x) > 0.

(C.f) f (x) has bounded partial derivatives up to order k(> d) almost surely.

(C.m) m(x) has bounded partial derivatives up to order k(> d) almost surely.

(C.Y) EY 2 <∞.

(C.gmbn)
√
nE[(1 − δ)|m(X)|I [g(X) < bn]] → 0.

(C.K) (i) The kernel function K is a bounded kernel function with bounded
support and bounded variation.

(ii) K(·) is a kernel of order k(> d).

(C.hn) (i) nh2d
n (b2

n ∧ (log logn)−1)→ ∞.
(ii) nh2k

n /b2
n → 0.

(C.hnbn) hkn/b
2
n → 0.

(C.A) E{A(X)Aτ (X)} is a positive definite matrix.

REMARK A.1. When supx |m(x)| < ∞, (C.gmbn) is implied by
P (g(X) < bn)= o(n−1/2). Condition (C.gmbn) is satisfied for the two cases stud-
ied in the simulation study: (i) truncated normal X and polynomial m(X); (ii) stan-
dard exponential X and m(X) proportional to exp(−aX) for a > 0 such that
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√
nb1+a

n → 0 [since it can be proved that
√
nE[(1 − δ)|m(X)|I [g(X) < bn]] =

O(
√
nb1+a

n ) in case (ii)]. In the simulation of Section 4, a was taken to be 3.
This is to assure that the bn used in our simulation satisfies

√
nb1+a

n → 0. Also,
conditions (C.K), (C.hn) and (C.hnbn) are standard conditions for nonparametric
regression problems and they are satisfied for the dimension d of X, kernel K(t),
bandwidth hn and truncation constant bn used in the simulation study of Secton 4.

The following lemma is useful for proving Theorems 2.1, 2.2, 3.1 and 3.2.

LEMMA A.1. Under the assumptions of Theorem 2.1, if θ is the true
parameter, we have

1√
n

n∑
i=1

(Ŷin − θ)
L−→N

(
0,V (θ)

)
,

where

V (θ)=E

[
σ 2(X)

P (X)

]
+ Var

(
m(X)

)
with σ 2(X)= Var(Y |X).

REMARK A.2. Lemma A.1 gives the asymptotic normality result for the
truncated version θ̄n of θ̂n, which is defined in Section 3.1. For the truncated
version θ̃n, Cheng (1994) obtained the same asymptotic result.

PROOF OF LEMMA A.1. Let

gbn(x)= max{g(x), bn} and mbn(x)= m(x)g(x)

gbn(x)
.

It is easy to see that

1√
n

n∑
i=1

(Ŷin − θ) = √
n(Rn + Sn + Tn +Un),(A.1)

where

Rn = n−1
n∑

i=1

(
m(Xi)− θ

)
,

Sn = n−1
n∑

i=1

δi
(
Yi −m(Xi)

)
,

Tn = n−1
n∑

i=1

(1 − δi)
(
m̂bn(Xi)−mbn(Xi)

)
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and

Un = −n−1
n∑

i=1

(1 − δi)
(
m(Xi)−mbn(Xi)

)
.

Recalling the definition of mbn(·), for any ε > 0 we have

P (
√
n|Un|> ε) ≤ P

(
1√
n

n∑
i=1

(1 − δi)|m(Xi)|I [g(Xi) < bn]> ε

)
(A.2)

≤ ε−1√nE
(
(1 − δ)|m(X)|I [g(X) < bn])→ 0

by condition (C.gmbn), that is, Un = op(n
−1/2).

Since Rn and Sn are means of independent and identically distributed random
variables, the main task is to study Tn. Next, we show that Tn can be represented
as a mean of i.i.d. random variables plus a remainder with order o(n−1/2), that is,

Tn = n−1
n∑

j=1

δj
(
Yj −m(Xj )

)1 − P (Xj )

P (Xj)
+ op(n

−1/2).(A.3)

If (A.3) holds, then (A.1), (A.2) and (A.3) together prove Lemma A.1 by the central
limit theorem and some direct computations.

Let

ηn(x) = (nhdn)
−1

n∑
j=1

δj
(
Yj −m(Xj )

)
K

(
x −Xj

hn

)
,

ζn(x) = (nhdn)
−1

n∑
j=1

δj
(
m(Xj )−m(x)

)
K

(
x −Xj

hn

)
,

:n(x) = ĝn(x)− g(x)

and

:bn(x)= ĝbn(x)− gbn(x).

Then

Tn = n−1
n∑

i=1

(1 − δi)
ηn(Xi)

gbn(Xi)
+ n−1

n∑
i=1

(1 − δi)
ζn(Xi)

gbn(Xi)

+ n−1
n∑

i=1

(1 − δi)
m(Xi):n(Xi)

gbn(Xi)
− n−1

n∑
i=1

(1 − δi)
m(Xi)g(Xi):bn(Xi)

g2
bn
(Xi)

(A.4)

− n−1
n∑

i=1

(1 − δi)
(m̂n(Xi)ĝn(Xi)−m(Xi)g(Xi)):bn(Xi)

g2
bn
(Xi)

+ n−1
n∑

i=1

(1 − δi)
m̂n(Xi)ĝn(Xi):

2
bn
(Xi)

g2
bn
(Xi)ĝbn(Xi)

:=
6∑

i=1

Tni.
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To prove (A.3), we show that

Tn1 = n−1
n∑

j=1

δj
(
Yj −m(Xj )

)1 − P (Xj)

P (Xj)
+ op(n

−1/2),(A.5)

Tn3 + Tn4 = op(n
−1/2)(A.6)

and

Tni = op(n
−1/2), i = 2,5 and 6.(A.7)

(a) First, we prove (A.5). Observe that

Tn1 = n−1
n∑

j=1

δj
(
Yj −m(Xj )

) 1

hdn

∫
(1 − P (x))f (x)

gbn(x)
K

(
x −Xj

hn

)
dx

+ n−1
n∑

j=1

δj
(
Yj −m(Xj )

)( 1

nhdn

n∑
i=1

(1 − δi)
K((Xi −Xj)/hn)

gbn(Xi)

(A.8)

− h−d
n

∫
(1 − P (x))f (x)

gbn(x)
K

(
x −Xj

hn

)
dx

)
:= Tn11 + Tn12.

For Tn11, we have

Tn11 = n−1
n∑

j=1

δj
(
Yj −m(Xj )

) ∫ 1 − P (Xj + hnu)

P (Xj + hnu)
K(u)du

+ n−1
n∑

j=1

δj
(
Yj −m(Xj )

) 1

hdn

∫
(1 − P (x))(g(x)− gbn(x))

gbn(x)P (x)

(A.9)

×K

(
x −Xj

hn

)
dx

:= τn1 + τn2.

Conditions (C.P)(i) and (C.P)(ii) imply that ρ(x) = (1 − P (x))/P (x) has partial
derivatives up to order k almost surely. Applying Taylor’s expansion for ρ(x), and
conditions (C.K) and

√
nhkn → 0, which is implied by (C.hn)(ii), we get

τn1 = n−1
n∑

j=1

δj
(
Yj −m(Xj )

)1 − P (Xj )

P (Xj )
+ op(n

−1/2).(A.10)

Noting that |g(x) − gbn(x)| = 0 when g(x) ≥ bn and using arguments similar to
those used in the proof of (A.10), we have

E[√nτn2]2 = E

[
σ 2(X)

(1 − P (X)
)2

P 2(X)
I [g(X) < bn]

]
+O(h2k

n )(A.11)
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by (C.K), (C.P)(i) and (C.f). Equation (A.11) proves

τn2 = op(n
−1/2)(A.12)

by (C.P)(ii) and (C.Y).
Standard arguments can be used to prove

Tn12 = op(n
−1/2).

This, together with (A.8), (A.9), (A.10) and (A.12), proves (A.5).
(b) Next we prove (A.6). Let

Qn(Xi)= (1 − δi)m(Xi)[gbn(Xi)ĝn(Xi)− g(Xi)ĝbn(Xi)]
g2
bn
(Xi)

.

It is easy to observe that

Tn3 + Tn4 = 1

n

n∑
i=1

Qn(Xi)

= 1

n

n∑
i=1

Qn(Xi)I [g(Xi) < bn, ĝn(Xi) < bn]

+1

n

n∑
i=1

Qn(Xi)I [g(Xi)≥ bn, ĝn(Xi) < bn](A.13)

+1

n

n∑
i=1

Qn(Xi)I [g(Xi) < bn, ĝn(Xi)≥ bn]

:= Jn1 + Jn2 + Jn3.

Note that gbn(Xi) = bn, |gbn(Xi)ĝn(Xi) − g(Xi)ĝbn(Xi)| = bn|ĝn(Xi) − g(Xi)|
and |ĝn(Xi) − g(Xi)| < 2bn as 0 ≤ g(Xi) < bn, −bn ≤ ĝn(Xi) < bn. Hence, we
have

|Jn1| ≤ 2

n

n∑
i=1

(1 − δi)|m(Xi)|I [g(Xi) < bn]

+1

n

n∑
i=1

Qn(Xi)I [g(Xi) < bn, ĝn(Xi) <−bn](A.14)

:= Jn11 + Jn12.

By the Markov inequality and condition (C.gmbn), we get
√
n|Jn11| p→ 0. On the

other hand, for any ε > 0, P (
√
n|Jn12| > ε) ≤ P (supx |ĝn(x) − g(x)| > bn) → 0

by the fact that g(·) is a nonnegative function and conditions (C.hn)(i) and
(C.hnbn). This together with (A.14) proves

√
n|Jn1| p→ 0.(A.15)
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Noting that |gbn(Xi)ĝn(Xi) − g(Xi)ĝbn(Xi)| ≤ bng(Xi) as g(Xi) > bn and
ĝn(Xi) < bn and using gbn(Xi)≥ bn and gbn(Xi)≥ g(Xi), we get

|Jn2| ≤ 1

n

n∑
i=1

(1 − δi)|m(Xi)|I [g(Xi) ≥ 2bn, ĝn(Xi) < bn]
(A.16)

+ 1

n

n∑
i=1

(1 − δi)|m(Xi)|I [g(Xi) < 2bn] := Jn21 + Jn22.

By (C.gmbn), it follows that Jn22 = op(n
−1/2). For any ε > 0, P (

√
n|Jn21| > ε)≤

P (supx |ĝn(x) − g(x)| > bn) → 0 by conditions (C.hn)(i) and (C.hnbn). This
proves

Jn2 = op(n
−1/2).(A.17)

Similarly to (A.17), we can prove

Jn3 = op(n
−1/2).(A.18)

Relations (A.13), (A.15), (A.16), (A.17) and (A.18) together prove (A.6).
(c) It remains to prove (A.7). By Taylor’s expansion for m(·) and g(·), we get

E[ζn(Xi)|Xi ]
=
∫ (

m(Xi + hnu)−m(Xi)
)
g(Xi + hnu)K(u)du(A.19)

=
∫
Pn(u)k(u) du+ hkn

∫
Rn(ξ,u)K(u)du, 0 < ξ < 1,

where Pn(u) is a polynominal of degree k−1 on u and hence
∫
Pn(u)K(u)du= 0

by (C.K), and Rn(ξ,u) is the kth remainder of the Taylor expansion and satisfies∫
Rn(ξ,u)K(u)du<∞ by (C.K). This together with (A.19) proves that

E[ζn(Xi)|Xi] ≤ chkn, i = 1,2, . . . , n.(A.20)

By the derivative mean value theorem, it follows that

E
[(
ζn(Xi)−E[ζn(Xi)|Xi ])2|Xi

]
≤ 1

nh2d
n

∫ (
m(x)−m(Xi)

)2
K2

(
Xi − x

hn

)
g(x) dx

≤ 1

nh2d−2
n

∫ (‖x −Xi‖
hn

)2

K2
(
Xi − x

hn

)
g(x) dx(A.21)

≤ c

nhd−2
n

∫
‖u‖2K2(u)g(Xi − hnu)du

≤ cg(Xi)

nhd−2
n

+ o

(
1

nhd−2
n

)
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by (C.P)(i) and (C.f). By some complicated calculations, it follows that

2

n

∑
k �=l

E

{
(1 − δk)(1 − δl)

×
[
(ζn(Xk)−E[ζn(Xk)|Xk])(ζn(Xl)−E[ζn(Xl)|Xl])

gbn(Xk)gbn(Xl)

]}

≤ n(n− 1)

n2

c

nh2d
n b2

n

+ n(n− 1)(n− 2)

n3

ch2k
n

b2
n

.

This, together with (A.20) and (A.21), proves that

E[√nTn2]2 = 1

n
E

[
n∑

i=1

(1 − δi)
ζn(Xi)−E[ζn(Xi)|Xi]

gbn(Xi)

+
n∑

i=1

(1 − δi)
E[ζn(Xi)|Xi]

gbn(Xi)

]2

≤ 2

n

n∑
i=1

E

[
E[(ζn(Xi)−E[ζn(Xi)|Xi])2|Xi]

g2
bn
(Xi)

]

+ 2

n

∑
k �=l

E

{
(1 − δk)(1 − δl)

(A.22)

×
[
(ζn(Xk)−E[ζn(Xk)|Xk])(ζn(Xl)−E[ζn(Xl)|Xl])

gbn(Xk)gbn(Xl)

]}

+ 2
n∑
i=1

E

[
E2(ζn(Xi)|Xi)

g2
bn
(Xi)

]

≤ c

nhd−2
n bn

+ cnh2k
n

b2
n

+ n(n− 1)

n2

c

nh2d
n b2

n

+ n(n− 1)(n− 2)

n3

ch2k
n

b2
n

+ o

(
1

b2
nnh

d−2
n

)
→ 0

by (C.hn). This proves the case of i = 2 in (A.7).
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Finally, we prove the case of i = 5 in (A.7). The case of i = 6 in (A.6) can be
proved similarly. For Tn5, we have

−Tn5 = 1

n

n∑
i=1

(1 − δi)
ηn(Xi):bn(Xi)

g2
bn
(Xi)

+ 1

n

n∑
i=1

(1 − δi)
ζn(Xi):bn(Xi)

g2
bn
(Xi)

(A.23)

+ 1

n

n∑
i=1

(1 − δi)
m(Xi):n(Xi):bn(Xi)

g2
bn
(Xi)

:= Tn51 + Tn52 + Tn53,

where :n(Xi)= ĝn(Xi)− g(Xi). It is easy to observe that

|Tn51| ≤
(

1

n

n∑
i=1

(1 − δi)

∣∣∣∣ ηn(Xi)

g2
bn
(Xi)

∣∣∣∣
)

sup
x

|:bn(x)|.(A.24)

Standard arguments can be used to prove that

1

n

n∑
i=1

(1 − δi)

∣∣∣∣ ηn(Xi)

g2
bn
(Xi)

∣∣∣∣=Op

(
(nhdn)

−1/2

b2
n

)
(A.25)

and

sup
x

|:bn(x)| ≤ sup
x

|:n(x)| =Op((nh
d
n)

−1/2)+Op(h
k
n).(A.26)

Hence, by (A.24)–(A.26) we get

Tn51 = op(n
−1/2),(A.27)

by (C.hn) and (C.hnbn).
Note that

|Tn52| ≤ 1

n

n∑
i=1

(1 − δi)

∣∣∣∣ ζn(Xi)

g2
bn
(Xi)

∣∣∣∣ sup
x

|:bn(x)|.(A.28)

By the proof of (A.7) with i = 2 and (A.26), we have

|Tn52| = op(n
−1/2).(A.29)

For Tn53, we have

|Tn53| ≤ b−2
n

(
sup
x

|:n(x)|
)2 1

n

n∑
i=1

(1 − δi)|m(Xi)|.(A.30)

By (A.26) and condition (C.hn), it follows that

Tn53 = op(n
−1/2).(A.31)
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Equations (A.23), (A.27), (A.29) and (A.31) together prove (A.7) with i = 5. The
case of i = 6 in (A.6) can be proved similarly. �

LEMMA A.2. Under (C.P), (C.f), (C.m), (C.Y) and (C.K), if nhdnbn → ∞,
hn → 0 and θ is the true parameter, then

1

n

n∑
i=1

(Ŷin − θ)2 p→ Ṽ (θ),(A.32)

where Ṽ (θ)= E[P (X)σ 2(X)] + Var(m(X)
)

with σ 2(X) defined in Lemma A.1.

PROOF. Using some arguments similar to those used in the proof of Lem-
ma A.1, we can prove Lemma A.2. �

LEMMA A.3. Let Ŷ(n) = max1≤i≤n |Ŷin|. If EY 2 <∞, then

Ŷ(n) = op(n
1/2).

PROOF. By Owen (1990), max1≤i≤n |Yi | = o(n1/2) when EY 2 <∞. Hence

Ŷ(n) ≤ max
1≤i≤n |Yi| + max

1≤i≤n |m̂bn(Xi)|
(A.33)

≤ max
1≤i≤n |m̂bn(Xi)−mbn(Xi)| + max

1≤i≤n |mbn(Xi)| + op(n
1/2).

Clearly

Em2
bn
(X)≤Em2(X)≤E

[
E[Y 2|X]]=EY 2 <∞.(A.34)

Hence, by Lemma 3 of Owen (1990), we have

max
1≤i≤n |mbn(Xi)| = op(n

1/2) and max
1≤i≤n |m(Xi)| = op(n

1/2).(A.35)

Standard arguments can be used to prove that max1≤i≤n |m̂bn(Xi)−mbn(Xi)| =
op(n

1/2). This together with (A.33) and (A.35) proves Lemma A.3. �

LEMMA A.4. Under the conditions of Lemmas A.1 and A.2, we have

λn =Op(n
−1/2).

PROOF. By Lemma A.1, it follows that

1

n

n∑
i=1

Ŷin =Op(n
−1/2).

This, together with Lemma A.2, proves Lemma A.4 using the same arguments
used in the proof of (2.14) in Owen (1990). �
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LEMMA A.5. Under assumptions (C.P), (C.f), (C.m), (C.Y), (C.K), (C.hn)
and (C.hnbn), if θ is the true parameter, we have the following:

(a) min1≤i≤n Ŷin < θ < max1≤i≤n Ŷin with probability tending to 1 when
n→ ∞.

(b) (0τ , θ)τ is inside the convex hull of points (Aτ (X1), Ŷ1n)
τ , . . . , (Aτ (Xn),

Ŷnn))
τ with probability tending to 1.

PROOF. We first prove (a). It is easy to see that

P (Ŷn < θ) = P (Y < θ, δ = 1)+ P
(
m̂n(X) < θ, δ = 0

)
(A.36)

≥ P (Y < θ, δ = 1),

where Ŷn = δY + (1 − δ)m̂bn(X). By (C.Y) and Lemma 2 of Owen (1990), it
follows that P (Y < θ) > 0. P (Y < θ) is continuous on θ from the left. Hence,
there exists ε0 > 0 such that P (Y < θ−ε0) > 0. Let I (A) be the indicator function
of a certain event A. Then, by the MAR assumption (see Section 2) and (C.P)(ii),
we get

P (Y < θ − ε0, δ = 1) = E{E[I (Y < θ − ε0, δ = 1)|X,Y ]}
= E{I (Y < θ − ε0)P (δ = 1|X,Y )}
= E{I (Y < θ − ε0)P (δ = 1|X)}
≥ P (Y < θ − ε0) inf

x
P (δ = 1|X = x) > 0.

This, together with (A.36), proves that

P (Ỹ < θ − ε0)≥ P (Y < θ − ε0, δ = 1) > 0,(A.37)

where Ỹ = δY + (1 − δ)m(X). Similarly, we have

P (Ỹ > θ + ν0)≥ P (Y > θ + ν0, δ = 1) > 0(A.38)

for some ν0 > 0. Relations (A.37) and (A.38) then prove that

P

(
min

1≤i≤n Ŷin ≥ θ

)
= P (Ŷ1n ≥ θ, . . . , Ŷnn ≥ θ)

≤ P (|Ŷ1n − Ỹ1| + Ỹ1 ≥ θ, . . . , |Ŷnn − Ỹn| + Ỹ1 ≥ θ)

≤ P

(
Ỹ1 ≥ θ − ε0, . . . , Ỹn ≥ θ − ε0,

max
1≤i≤n |m̂bn(Xi)−m(Xi)| ≤ ε0

)
(A.39)

+ P

(
max

1≤i≤n |m̂bn(Xi)−m(Xi)|> ε0

)
≤ P n(Ỹ ≥ θ − ε0)+ o(1)

= (
1 − P (Ỹ < θ − ε0)

)n + o(1)→ 0, n→ ∞.
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Similarly we have, by (A.38),

P

(
max

1≤i≤n Ŷin ≤ θ + ν0

)
≤ P n(Ỹ ≤ θ + ν0)+ o(1)(A.40)

= (
1 − P (Ỹ > θ + ν0)

)n + o(1)→ 0, n→ ∞.

Together (A.38) and (A.40) prove (a).
Next, we prove (b). Let Ẑin = (Aτ (Xi), Ŷin)

τ , i = 1,2, . . . , n, and let β =
(0τ , θ)τ . By Lemma 2 of Owen (1990) and arguments similar to those used in
the proof of (a), we can prove that min1≤i≤n γ ′Ẑin < γ ′β < max1≤i≤n γ ′Ẑin with
probability tending to 1 for any γ ∈C, where C is the set of unit vectors in Rr+1.
This implies that there exists a vector α = (α1, α2, . . . , αn)

τ with
∑n

i=1 αi = 1
and αi ≥ 0, i = 1,2, . . . , n, such that γ ′β = ∑n

i=1 αi(γ
′Ẑin) = γ ′(∑n

i=1 αiẐin)

with probability tending to 1 for any γ ∈ C . Since γ is arbitrary, it follows that
β =∑n

1=1 αiẐin with probability tending to 1. This proves (b). �

PROOFS OF THEOREMS 2.1 AND 2.2. By Lemma A.5(a) and the Lagrange
multiplier method, (2.3) and (2.4) are obtained from (2.2). Applying Taylor’s
expansion to (2.4), we get

l̂n(θ)= 2
n∑
i=1

{
λn(Ŷin − θ)− 1

2 [λn(Ŷin − θ)]2}+ op(1)(A.41)

by Lemmas A.2–A.4.
By (2.3), we get

0 =
n∑

i=1

(Ŷin − θ)

1 + λn(Ŷin − θ)

=
n∑

i=1

[(Ŷin − θ)] −
n∑

i=1

λn(Ŷin − θ)2 +
n∑

i=1

λ2
n(Ŷin − θ)3

1 + λn(Ŷin − θ)
.

This implies

n∑
i=1

λn(Ŷin − θ) =
n∑

i=1

[λn(Ŷin − θ)]2 + op(1)(A.42)

and

λn =
(

n∑
i=1

(Ŷin − θ)2

)−1 n∑
i=1

(Ŷin − θ)+ op(n
−1/2)(A.43)

by Lemmas A.2–A.4.
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Equations (A.41), (A.42) and (A.43) together yield

l̂n(θ)= Ṽ−1
n (θ)

[
1√
n

n∑
i=1

(Ŷin − θ)

]2

+ op(1).(A.44)

This, together with Lemmas A.1 and A.2, proves Theorem 2.1.
Recalling the definition of l̂n,ad(θ), by (A.44) we get

l̂n,ad(θ)=
(

1√
n

n∑
i=1

Ŷin − θ√
V̂n(θ)

)2

+ op(1).(A.45)

Using arguments similar to those used in the proofs of Lemmas A.1 and A.2,
we can prove

V̂n(θ)
p→ V (θ),(A.46)

where V (θ) is defined in Lemma A.1.
Hence, (A.45), (A.46) and Lemma A.1 together prove Theorem 2.2. �

PROOF OF THEOREM 3.1. By (C.A) and Lemma 2 of Owen (1990), the origin
is inside the convex hull of A(X1), . . . ,A(Xn). Hence, the solution of (3.2) exists.
Similarly to (A.43), by (3.2) we get

ζn =
(
n−1

n∑
i=1

A(Xi)A
τ (Xi)

)−1(
1

n

n∑
i=1

A(Xi)

)
+ op(n

−1/2).(A.47)

Applying Taylor’s expansion to (3.3), by (A.47) it follows that

θ̂n,AU = 1

n

n∑
i=1

Ŷin −
(

1

n

n∑
i=1

ŶinA
τ (Xi)

)(
1

n

n∑
i=1

A(Xi)A
τ (Xi)

)−1

(A.48)

×
(

1

n

n∑
i=1

A(Xi)

)
+ op(n

−1/2).

Also, the law of large numbers implies that

1

n

n∑
i=1

A(Xi)A
τ (Xi)

p→EA(X)Aτ(X).(A.49)

Next, we prove

1

n

n∑
i=1

ŶinA
τ (Xi)

p→E
[(
m(X)− θ

)
Aτ(X)

]
.(A.50)
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The left-hand side of (A.50) can be decomposed as

1

n

n∑
i=1

ŶinA
τ (Xi) = 1

n

n∑
i=1

δi
(
Yi −m(Xi)

)
Aτ(Xi)

+ 1

n

n∑
i=1

(1 − δi)
(
m̂bn(Xi)−mbn(Xi)

)
Aτ(Xi)

+ θ

n

n∑
i=1

Aτ (Xi)+ 1

n

n∑
i=1

(
m(Xi)− θ

)
Aτ(Xi)(A.51)

− 1

n

n∑
i=1

(1 − δi)
(
m(Xi)−mbn(Xi)

)
Aτ(Xi)

:= Rn1 +Rn2 +Rn3 +Rn4 +Rn5.

By the law of large numbers and the MAR assumption, it follows that Rn1
p→

E[δ(Y − m(X))Aτ (X)] = 0,Rn3
p→ 0 and Rn4

p→ E[(m(X) − θ)Aτ (X)]. Using

the same arguments as in proving (A.3), we can prove Rn2
p→ 0. By (A.2), we have

Rn5
p→ 0. This proves (A.50). From (A.48)–(A.50), we get

θ̂n,AU = 1

n

n∑
i=1

Ŷin −E
[(
m(X)− θ

)
Aτ(X)

](
E
(
A(X)Aτ (X)

))−1

(A.52)

×
(

1

n

n∑
i=1

A(Xi)

)
+ op(n

−1/2).

Let Ān = 1
n

∑n
i=1 A(Xi). By (A.1) and (A.2), it follows that

Cov

(
1√
n

n∑
i=1

(Ŷin − θ),
1√
n

n∑
i=1

A(Xi)

)

= Cov(
√
nRn,

√
nĀn)+ Cov(

√
nSn,

√
nĀn)(A.53)

+ Cov(
√
nTn,

√
nĀn)+ Cov(

√
nUn,

√
nĀn).

Standard arguments and calculations can be used to get Cov(
√
nRn,

√
nĀn) =

E(A(X)(m(X) − θ)) and Cov(
√
nSn,

√
nĀn) = 0. Using some of the arguments

employed in the proof of Lemma A.1, we can prove Cov(
√
nTn,

√
nĀn) → 0. By

(C.Y) and (C.A), the dominated convergence theorem can be used to prove that
Cov(

√
nUn,

√
nĀn)=E((1 − δ)‖m(X)A(X)‖I [g(X) < bn])→ 0. This proves

Cov

(
1√
n

n∑
i=1

(Ŷin − θ),
1√
n

n∑
i=1

A(Xi)

)
−→E[A(X)(m(X)− θ)].(A.54)
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Hence, by (A.52), (A.54), Lemma A.1 and the central limit theorem, Theorem
3.1 is then proved. �

PROOF OF THEOREM 3.2. By Lemma A.1, the central limit theorem and
(A.54), it follows that

1√
n

n∑
i=1

hni(θ)
L−→N

(
0,V2,AU(θ)

)
,

where

V2,AU(θ) =
V1(θ), V3(θ)

V τ
3 (θ), V (θ)


with V1(θ) = EA(θ)Aτ(θ), V3(θ) = E[A(X)(m(X) − θ)] and V (θ) defined in
Lemma A.1.

By (A.46), (A.49) and (A.50), we get

Vn2,AU(θ)
p→ V2,AU(θ).(A.55)

By Lemma A.5(b), (3.6) and (3.7) can be obtained from (3.5). Hence, argu-
ments similar to those used for Theorems 2.1 and 2.2 can be used to prove
Theorem 3.2. �
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