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1. Introduction

When comparing survival patterns between two treatment groups in a random-
ized clinical trial (RCT), it is often of interest to examine whether there is
a uniformly higher survival function in one of the groups. For example, in a
recent RCT involving patients with severe alcoholic hepatitis, the objective is
to compare a combination therapy of prednisolone plus N-acetylcysteine with
prednisolone alone. Testing whether the combination therapy has a consistently
higher/lower survival probability (throughout the follow-up period) addresses
the issue directly, as opposed to the practice of using an omnibus alternative
(i.e., any difference between the survival functions), or using the log-rank test
which detects ordered hazards instead of ordered survival functions. This pa-
per develops such a testing procedure that allows us to establish an ordering
between two survival curves uniformly over time.

Our approach is framed in terms of the classical notion of stochastic ordering.
A survival function S1 is said to be stochastically larger than another survival
function S2 if S1(t) ≥ S2(t) for all t ≥ 0, and denoted S1 � S2. When in addition
there is strict inequality for some t, it is denoted S1 � S2. Here and in the sequel
we implicitly assume that t ≥ 0 is further restricted to a given follow-up period
[t1, t2], a common practice in simultaneous inference of survival functions in
censored data [see, e.g., 3, 33].

Notice that the parameter space for (S1, S2) can be split into four separate
hypotheses: H0 : S1 = S2, H1 : S1 � S2, H

′
1 : S2 � S1, and Hc : S1(u) > S2(u)

for some u ≥ 0, S1(v) < S2(v) for some v ≥ 0, i.e., crossing survival functions.
The problem then is to test the null hypothesis H0 ∪Hc versus the alternative
H1 ∪ H ′

1 of stochastic ordering based on independent right-censored random
samples from S1 and S2. Our proposed approach is to combine a test that the
survival functions do not cross,

Hc versus H0 ∪H1 ∪H ′
1, (1)

with a test of stochastic ordering,

H0 versus H1 ∪H ′
1 (2)
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under the assumption of no crossing. If the first test does not reject Hc, we
terminate the procedure and conclude no evidence for H0 ∪H1 ∪H ′

1, the cases
of equal and stochastically ordered survival functions. If the first test rejects Hc,
we proceed to the second test of stochastic ordering. The composite procedure
concludes the alternative of stochastic ordering if both of these tests reject. We
will show in Section 2.3 that the family-wise error rate of the combined procedure
can be controlled at the same alpha level as the individual tests. Also, if prior
information precludes the possibility of a crossing (e.g., when comparing survival
probability of early- and late-stage cancer patients), one can skip testing (1).

A feature of our proposed composite procedure is that it can be adapted
easily to utilize prior information on the direction of stochastic ordering. This
can result in more powerful testing than simply reading a simultaneous (two-
sided) confidence band for the difference S1 − S2 on [t1, t2]. For example, when
comparing survival curves between patients with early-stage (S1) and late-stage
(S2) cancer diagnoses, it is not biologically plausible to consider S1 ≺ S2. We
could utilize such prior information by testing only a one-sided alternative (see
(3)) as H ′

1 is not reasonable, providing greater power. In contrast, the usual
confidence bands correspond to two-sided tests and can have lower power in
testing one-sided alternatives. We could construct a one-sided confidence band
for this purpose. But then the band alone cannot test for absence of a crossing,
and a two-step method as our composite procedure is still needed.

Our test for the absence of a crossing (1) is a straightforward adaptation of a
simultaneous confidence band for the difference S1−S2 on [t1, t2], which crosses
the time axis when the survival functions cross. The most challenging part of
the problem is to produce a test of (2), or even more simply for the one-sided
alternative

H0 : S1 = S2 versus H1 : S1 � S2. (3)

This test is tractable, however, given that S1 and S2 do not cross, since in that
case it suffices to detect whether S1(t) > S2(t) at some t. Developing this second
test constitutes the main part of the paper. A test of the two-sided alternative
in (2) is then easily constructed using the union-intersection principle applied
to the two one-sided test statistics for H1 and H ′

1 (i.e., (3) in each direction).

Commonly used two-sample tests for censored data include the log-rank test
and weighted Kaplan–Meier (WKM) tests [34], and these tests can be one-sided
or two-sided. The log-rank test is based on an integrated weighted difference
between hazard functions, and is thus designed to detect ordered hazards instead
of more general stochastic ordering. Other tests based on weighted differences
between hazard functions, such as the K-class of weighted log-rank statistics
[17, 16], also share this property. The WKM class of tests targets stochastically
ordered alternatives by estimating an integrated weighted difference between
survival functions, but such test statistics depend on an ad hoc weight function
that needs to be specified throughout follow-up.

We derive our procedure for testing (3) using the empirical likelihood (EL)
method. EL involves forming a ratio of two nonparametric likelihoods subject to
constraints on the parameters of interest. The method originates with Thomas
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and Grunkemeier [35], who constructed pointwise confidence intervals for sur-
vival functions from right-censored data. EL has also been used to provide
confidence regions for parameters defined by estimating equations [29, 30], in
numerous censored and uncensored settings. EL enjoys many appealing proper-
ties: highly accurate confidence regions, self-studentization and the possibility of
Bartlett correctability. There is also evidence that EL-based tests have optimal
power [see, e.g., 21]. On the other hand, order restricted inference is known to
be challenging for EL [see, e.g., 30, Ch. 10], and much less has been done in this
direction. El Barmi [12] explored EL tests for order-restricted hypotheses of the
form g(η) ≤ 0, where g is some smooth function and η is a finite-dimensional
parameter specified by estimating equations [see also 38]. Other recent contri-
butions in this direction have been made by Andrews and Guggenberger [2]
and Canay [5]. As for order restrictions on distribution functions, El Barmi
and McKeague [13] studied EL-based tests for stochastic ordering, while Davi-
dov et al. [7] investigated EL-based tests for likelihood ratio ordering under
a semiparametric biased sampling model. However, these tests are limited to
uncensored data.

As already mentioned, the main part of our proposed procedure is an EL-
test for one-sided stochastic ordering (3). The idea is to construct a localized EL
statistic for Ht

0 : S1(t) = S2(t) versus H
t
1 : S1(t) > S2(t) at each given t . The key

step in this construction is to recast the stochastic ordering constraint into an
inequality involving a single Lagrange multiplier. Then the proposed test rejects
H0 for large values of the maximally selected EL statistic. A maximally selected
test statistic is used (as opposed to integral-type) because it is more sensitive
to local differences between the survival functions. Kolmogorov–Smirnov type
test statistics (not based on EL) for stochastic ordering have been proposed by
El Barmi and Mukerjee [14] and Davidov and Herman [8]. Besides localization,
another possible approach might be to use the full nonparametric likelihood
[10, 31] and compute its ratio under S1 � S2 versus S1 = S2. However, we find
the localization approach to be much more tractable. The localization approach
has been used in Einmahl and McKeague [11], Davidov and Herman [9] and
El Barmi and McKeague [13] for testing various nonparametric hypotheses,
except they considered an integral type test statistic and restricted attention to
uncensored data. Park et al. [32] proposed a localized NPMLE under stochastic
ordering (for right-censored data), but its asymptotic distribution is not known,
so it is unclear how a formal test could be developed using their approach.

Various ways of formulating EL in right-censored data settings have been
proposed. The standard approach for censored data [35, 23] maximizes the cen-
sored data likelihood subject to contraint(s) on the parameter of interest. Wang
and Jing [37] instead used the nonparametric likelihood for uncensored data and
plug-in of the Kaplan–Meier (KM) estimator of the censoring distribution. We
use the former approach as it is tractable and more natural in our setting. There
are in fact two different versions of EL for censored data, namely the binomial
and Poisson versions [see, e.g., 26]. We utilize the binomial version.

The paper is organized as follows. In Section 2.1 we set up the general frame-
work and notation to be used throughout the paper. The main focus of our
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procedure, the two-sample test for stochastic ordering, is developed in Section
2.2. The first part of our procedure, the test that the survival functions do not
cross, is then discussed in Section 2.3. Related tests are discussed in Section 2.4:
stochastic ordering in the null hypothesis, a test for crossing survival functions,
and an integral type statistic. Section 3 presents the results of a simulation
study: the proposed two-sample EL test is shown to outperform the log-rank
and WKM tests under different stochastically ordered alternatives, including
alternatives with crossing hazards. We have also shown the effectiveness of our
combined procedure in ruling out Hc when testing for stochastic ordering. Ap-
plication of the proposed test to the RCT mentioned earlier is given in Section
4, and some concluding remarks are placed in Section 5.

2. EL tests for stochastic ordering under right censorship

2.1. Preliminaries

We introduce notation for the one-sample setup, then add a further subscript j
indicating the j-th sample (j = 1, 2) for the two-sample case in the corresponding
notation. Let Xi and Ci for i = 1, . . . , n be i.i.d. from unknown survival func-
tions S and G, respectively; only min (Xi, Ci) and I(Xi ≤ Ci) are observed. The
lifetimes Xi and the censoring times Ci are assumed to be independent. Also,
S(0) = G(0) = 1. Order the uncensored lifetimes as 0 < T1 < . . . < Tm < ∞.
For each Ti (i = 0, . . . ,m) , let ri be the number alive just before Ti, di be the
number of deaths at Ti and hi be the hazard at Ti. Let N(t) be the number
of observed lifetimes that are less than or equal to t. Then the nonparamet-
ric likelihood (depending on the unknown survival function) supported on the
observed lifetimes is proportional to

L(S) ≡
m∏
i=1

hdi
i (1− hi)

ri−di (4)

for hi ∈ [0, 1]. The NPMLE for S(t), namely the KM estimator Ŝ(t) =
∏

i≤N(t)(1

−di/ri), is asymptotically normal with variance S2(t)σ2(t), where σ2(t) = −
∫ t

0
dS(u)/{S(u)S(u−)G(u−)}. This variance can be consistently estimated by the
well-known Greenwood formula, Ŝ2(t)σ̂2(t), where σ̂2(t) = n

∑
i≤N(t)[di/{ri

(ri − di)}].
For the two-sample case, the nonparametric likelihood (denoted as L(S1, S2))

is proportional to L(S1)L(S2) by independence between the two samples. The
sample proportion nj/n is assumed to converge to some pj > 0, where n =
n1 + n2. The σ̂2(t) now equals the weighted average n{σ̂2

1(t)/n1 + σ̂2
2(t)/n2},

consistently estimating σ2
1(t)/p1 + σ2

2(t)/p2.

2.2. Two-sample test for stochastic ordering

Now we develop the main part of our combined procedure, the two-sample test
for stochastic ordering. As described in the Introduction, we focus on the one-
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sided test for (3), then construct a test of the two-sided alternative in (2) using
the union-intersection principle applied to the two one-sided test statistics for
H1 and H ′

1 (i.e., (3) in each direction).

Consider the “local” hypotheses Ht
0 : S1(t) = S2(t) versus H

t
1 : S1(t) > S2(t)

for a given t, and the EL ratio

R(t) =
sup {L(S1, S2) : S1(t) = S2(t)}
sup {L(S1, S2) : S1(t) ≥ S2(t)}

, (5)

where we use the conventions sup ∅ = 0 and 0/0 = 1. Note that the numera-
tor and denominator of R(t) maximize L(S1)L(S2) over (h11, . . . , hm11, h12, . . . ,
hm22 ) ∈ [0, 1]m (m = m1 +m2) subject to the constraints

∏
i≤N1(t)

(1− hi1) = or ≥
∏

i≤N2(t)

(1− hi2) , (6)

respectively. We solve this constrained maximization problem using the Karush–
Kuhn–Tucker (KKT) method [4], a generalization of the Lagrange method that
allows inequality constraints. As the constraints are placed only on the lifetimes
up to t, the terms after t turn out to be the same in both the numerator and
denominator and thus cancel out. Also, for some t the maximum is attained
on the boundary of the constraint set, in which case R(t) = 1. Specifically, in
Appendix A we establish the following expression for the EL ratio:

R(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, λ̂ ≥ 0,

2∏
j=1

∏
i≤Nj(t)

ĥ
dij

ij

(
1− ĥij

)rij−dij

h̄
dij

ij

(
1− h̄ij

)rij−dij
, λ̂ < 0,

(7)

where h̄ij = dij/rij , ĥij = dij/(rij + (−1)j−1λ̂), and the Lagrange multiplier

λ̂ is determined by the equality in (6) with hij replaced by ĥij . Here we have

suppressed the dependence of λ̂ and ĥij on t.

Based on the above expression, we can derive large sample properties of the
local EL test statistic, −2 logR(t). This is done by approximating −2 logR(t)
via a Taylor expansion as a function of the difference between log Ŝ1(t) (recall
from Section 2.1 that Ŝ(t) is the KM estimator) and log Ŝ2(t). We then make use
of asymptotic properties of Ŝj(t) (j = 1, 2) to establish the weak convergence
of −2 logR(t). The asymptotic null distribution turns out to be chi-bar square
Namely, for t such that 0 < S0(t) < 1 and Gj(t) > 0 for j = 1, 2,

−2 logR(t)
d−→Z2

+

under Ht
0, where Z ∼ N(0, 1) and Z+ = max(Z, 0). This result can be used to

test the local hypotheses Ht
0 versus Ht

1.
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To test for the alternative of stochastic ordering, we propose the following
maximally selected EL statistic:

Kn = sup
t∈[t1,t2]

{−2 logR(t)} , (8)

where 0 < t1 < t2 < ∞ are to be specified. We suppress the dependence of Kn

on t1 and t2. Guidance on the choice of [t1, t2] is provided later.
Our first result gives the asymptotic null distribution of Kn (see Appendix

B for the proof).

Theorem 1. Suppose H0 holds and the common survival function S0 is con-
tinuous. For t1 and t2 satisfying S0(t1) < 1 and S0(t2)Gj(t2) > 0 for j = 1, 2,

Kn
d−→ sup

x∈[x1,x2]

{
B2

+(x)

x(1− x)

}
,

where B is a standard Brownian bridge on [0, 1], B+ = max(B, 0), xj = b(tj)
for j = 1, 2, and b(t) = σ2(t)/{1 + σ2(t)}.

To implement the test, we pre-specify one of the intervals [t1, t2] or [x1, x2] =
[b(t1), b(t2)] and determine the other via b(t) or b−1(x) = inf{t : b(t) ≥ x}.
However, b is unknown, so one of the two intervals has to be estimated.

We can choose [t1, t2] based on the smallest and the largest observed lifetimes
[see, e.g., 3] or some other biological considerations [33], and then estimate
[x1, x2] (by [x̂1, x̂2] say). But we cannot tabulate critical values in advance,
because [x̂1, x̂2] varies across different data sets. In this case, instead of using
the tabulated critical values, R code supplied in a supplementary file [6] can be
used to compute the critical value based on [x̂1, x̂2].

On the other hand, pre-determining [x1, x2] allows “universal” critical values,
and this is the approach we take. Both the choice of [x1, x2] and details of
implementation will be provided in the next subsection.

2.2.1. Calibrating the test

This section discusses issues in calibrating the test. The first one is the choice
of [x1, x2]. Secondly, having chosen [x1, x2], we explain how to estimate [t1, t2]
and implement the proposed EL test. Justification for this calibration procedure
will be provided in Appendix C, where a statistic K∗

n is defined for Kn with
estimated [t1, t2]. Critical values for the test are then obtained via simulation in
Section 3.

The choice of [x1, x2] is important because the interval width can affect power
of the EL test. In a similar context, this issue has been discussed by Davidov
and Herman [8]; they proposed a (non-EL-based) test of stochastic ordering for
uncensored data via localization, and point out that a narrower [x1, x2] gives
smaller critical values, but may fail to capture deviations (from H0) outside the
interval. We have investigated their recommendation [x1, x2] = [0.2, 0.8] in a
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simulation study (see Section 3 and Table 4), and found that the performance
is not very sensitive to the choice of x2, so our preference is to choose x2 close
to 1 to utilize the local statistics on the right tail. Our simulation study (in
Section 3) shows that the choice x1 = 0.2 and x2 = 0.98 performs well in terms
of balancing power and accuracy, and this is what we recommend in practice.

Having specified [x1, x2], we need to estimate [t1, t2]. Under suitable condi-

tions on b−1, tl can be consistently estimated by b̂−1(xl) = inf{t : b̂(t) ≥ xl} for
l = 1, 2, where

b̂(t) =
σ̂2(t)

1 + σ̂2(t)

is a consistent estimator of b(t). We can then compute K∗
n accordingly, based

on the estimates t̂1 and t̂2. To ensure stability of K∗
n in small samples, we con-

sider only values of −2 logR(t) inside the interval formed by the smallest and the
largest observed lifetimes, [max(T11, T12),min(Tm11, Tm22)]. Such restriction has
been used in simultaneous inference of survival functions in censored data [see,
e.g., 3]. This leads to considering only t ∈ [max(t̂1, T11, T12),min(t̂2, Tm11, Tm22)].
Note that this modification makes no difference asymptotically, since [max(T11,

T12),min(Tm11, Tm22)] ⊃ [b̂−1(x1), b̂
−1(x2)] eventually.

2.2.2. Two-sided testing

The above one-sided test for stochastic ordering has an immediate extension to
a two-sided test for (2), as needed for the second part of the composite testing
procedure described in the Introduction. The two-sided alternative in (2) is the
union of the two one-sided alternatives (S1 � S2 or S2 � S1). Based on the
union-intersection principle, the test statistic is the maximum of the two one-
sided test statistics. The asymptotic null distribution of this test statistic is
supx∈[x1,x2][B

2(x)/{x(1 − x)}], where B is a standard Brownian bridge, as in
Theorem 1. The test can therefore be calibrated in much the same way as we
did for the one-sided test.

2.3. Crossing survival functions

As explained in the Introduction, if there is no prior information that excludes
the possibility of crossing survival functions, we conduct the first part of our
combined testing procedure. It calls for a consistent test of (1), and this can
be done using a 100(1 − α)% simultaneous confidence band for the difference
S1 − S2, and showing that the asymptotic level of the resulting test is bounded
above by α. The follow-up interval [t1, t2] to be used in this connection will
be specified in a later section. A band for the ratio S1/S2 could be used in a
similar fashion [see, e.g., the EL band given by 24], but here for simplicity we
only consider the difference approach.

Consider the random multiplier bootstrap band Bn for S1 −S2 developed by
Parzen et al. [33]. Intuitively, the data would support the presence of crossing



Likelihood tests for stochastic ordering under right censorship 2519

(Hc) when the lower boundary of Bn is > 0 at some time point (implying
S1(u) > S2(u) for some u ≥ 0), and its upper boundary is < 0 at another time
point (implying S1(v) < S2(v) for some v ≥ 0). Therefore, the opposite should
lead to rejection of the null hypothesis Hc of a crossing: if the lower boundary
of Bn is ≤ 0 or its upper boundary ≥ 0.

Note that Bn is centered on the difference Ŝ1 − Ŝ2 of the KM estimators,
and the results of Parzen et al. [33] imply (under the same conditions assumed
here) that it has coverage P (S1 − S2 ∈ Bn) → 1 − α, and maximal width
Mn = Op(1/

√
n). This leads to an asymptotic level α test as follows. Under

Hc, there exist u, v ≥ 0 such that S1(u)− S2(u) = supt{S1(t)− S2(t)} > 0 and
S1(v) − S2(v) = inft{S1(t) − S2(t)} < 0. Let ε = min{S1(u) − S2(u),−S1(v) +
S2(v)} > 0. Clearly Hc is not rejected in the event that S1 − S2 ∈ Bn and
Mn < ε, so

P (Hc rejected) ≤ P (S1 − S2 /∈ Bn) + P (Mn ≥ ε) → α.

To obtain the family-wise error of conducting this test of (1) along with the
test for stochastic ordering (2), we appeal to the partitioning principle of Finner
and Strassburger [15]. This principle holds when the null hypotheses are disjoint
(in our case Hc and H0 are indeed disjoint), and shows that the level of each
test can be chosen to be the same as the desired family-wise error rate (α).

2.4. Related tests

2.4.1. Stochastically ordered null

We have developed our test for stochastic ordering (3) under the null hypothesis
S1 = S2 and under the assumption that S1 and S2 do not cross. Here we describe
how our approach can be extended to the stochastically ordered null hypothesis
S1 � S2 under the same assumption (i.e., testing H0∪H ′

1 versus H1). The local
EL ratio is

R′(t) =
sup {L(S1, S2) : S1(t) ≤ S2(t)}

sup {L(S1, S2)}
,

where the denominator maximizes over the union of the local (null and alter-
native) hypotheses and results in no constraint on S1(t) and S2(t). Since the
KM estimator is the NPMLE, if Ŝ1(t) ≤ Ŝ2(t) the numerator of R′(t) coin-
cides with the unconstrained maximum and thus equals the denominator. If
Ŝ1(t) > Ŝ2(t), it can be shown that the numerator attains its maximum on the
boundary S1(t) = S2(t) of the constraint set (using log-concavity of (4)). We
then have

R′(t) =

⎧⎪⎨
⎪⎩
1, Ŝ1(t) ≤ Ŝ2(t),

sup {L(S1, S2) : S1(t) = S2(t)}
sup {L(S1, S2)}

, Ŝ1(t) > Ŝ2(t).
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Thus R′(t) = R(t) by (7), since λ̂ ≥ 0 is the same as Ŝ1(t) ≤ Ŝ2(t) by Appendix
A. Hence Kn does not change under this broader null hypothesis. The same
calibration method can be used to obtain an asymptotic level α test because

P (Kn > cα|S1 � S2) ≤ P (Kn > cα|S1 = S2) → α,

where cα is the upper α-quantile of the limiting distribution in Theorem 1.

2.4.2. Detecting crossing survival functions

In some applications it can be of interest to test for crossing survival func-
tions, i.e., reversing the null and alternative hypotheses in (1). This can be
done by carrying out the one-sided test of Section 2.2 in both possible direc-
tions. The reason is here the parameter space for the one-sided tests allows
for crossing, so that the test of Section 2.2 is interpreted instead as testing
S1(t) ≤ S2(t) for all t versus S1(t) > S2(t) for some t, based on Section 2.4.1
and the union-intersection principle. If both tests reject, then there is evidence
of crossing survival functions. Then, using the intersection-union principle, we
take the minimum of the two one-sided test statistics as the test statistic. The
R code (provided online) for implementing the one-sided test is readily adapted
for this purpose, with critical values obtained from simulating

min

[
sup

x∈[x1,x2]

{
B2

−(x)

x(1− x)

}
, sup
x∈[x1,x2]

{
B2

+(x)

x(1− x)

}]
,

where B− is the negative part of the Brownian bridge B.

2.4.3. An integral type statistic

An integral type EL statistic could be developed as well, as an extension of the
integrated statistics provided by El Barmi and McKeague [13] for uncensored
data. However, it is challenging to find a suitable integrator that (a) is inter-
pretable, (b) leads to an easily calibrated test. For example, a direct extension
of their integrator F̂ to the censored case (i.e., using the Kaplan–Meier esti-
mates), as far as we know, will not lead to an asymptotically distribution free
test statistic as our Lemma 3; so this extension does not satify criterion (b).

We have also tried using the following test statistic:∫ t2

t1

{−2 logR(t)} d
(

σ̂2(t)

1 + σ̂2(t)

)
,

with the very unintuive integrator σ̂2(t)/(1+ σ̂2(t)). The integrator is chosen so
that the limiting distribution ∫ x2

x1

{
B2

+(x)

x(1− x)

}
dx
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Table 1

Critical values for K∗
n for selected x1, x2 and α.

x1 0.1 0.15 0.2
x2\α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0.975 11.822 8.255 6.648 11.672 8.074 6.489 11.542 7.953 6.365
0.98 11.912 8.329 6.720 11.758 8.159 6.556 11.619 8.028 6.442
0.985 11.996 8.415 6.807 11.851 8.253 6.658 11.739 8.131 6.532

is the same as the asymptotic null distribution in El Barmi and McKeague [13]
with the [x1, x2] restriction. However, the integrator is weighting the local EL
statistics in a way that is difficult to interpret (criterion (a) violated), and is
rather ad hoc and needs to be specified throughout follow-up, just like the WKM
class of tests.

Due to the undesirable properties of these integrated statistics, we do not
pursue this direction further. In comparison, our proposed maximally selected
EL statistic does not need to be weighted throughout follow-up and the test is
easily calibrated.

3. Simulation study

In this section, we report the results of a simulation study to evaluate various
aspects of the proposed method. We start with the second (i.e., main) step in
the combined procedure. We restrict our attention to one-sided tests, but results
for the two-sided tests are similar. We first tabulate selected critical values, and
then compare the performance of K∗

n with the (one-sided) log-rank and WKM
tests in terms of accuracy and power. Finally we assess the performance of the
combined procedure under models of equal and crossing survival functions, and
most importantly, stochastic ordering.

3.1. Critical values and accuracy

Quantiles of the limiting distribution in Lemma 3 of Appendix C are used as
critical values for K∗

n. These are computed by simulation based on 100,000 repli-
cations of standard Brownian bridge over a fine grid on [0, 1] (100,000 equidistant
points), for selected values of x1 and x2 (see Table 1).

To compute empirical significance levels, we simulate lifetimes from the piece-
wise exponential distribution displayed as solid line in upper left panel of Figure
1. We consider exponential censoring distribution: G1 = G2 = Exp(θ), where
θ is chosen to give a censoring rate (CR) of 10% or 25%. Our one-sided EL
statistic (K∗

n) is compared with the one-sided log-rank statistic. Another class
of tests for comparison is the one-sided WKM, and we follow recomendations of
Pepe and Fleming [34] and select the WKM statistic with the pooled variance
estimator and the weight function denoted by ŵc(t) in their paper.

Results on the size of our EL test are given in Table 2, where we use [x1, x2] =
[0.2, 0.98]. The test is slightly conservative in small samples but approaches
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Table 2

Empirical significance levels based on 10,000 replications.

CR group α = 0.05 α = 0.01
size K∗

n log-rank WKM K∗
n log-rank WKM

10%
50 0.040 0.057 0.055 0.007 0.013 0.011
80 0.041 0.052 0.054 0.008 0.010 0.010
200 0.045 0.051 0.048 0.009 0.011 0.011

25%
50 0.037 0.057 0.054 0.006 0.012 0.012
80 0.041 0.051 0.056 0.008 0.009 0.010
200 0.046 0.054 0.050 0.010 0.010 0.011

the nominal level as the sample size increases. Such conservativeness has been
seen in other maximal deviation-type statistics for stochastic ordering [8]. The
empirical significance levels of the one-sided log-rank test and the WKM test
under the same settings are closer to the nominal level, but sometimes on the
anticonservative side.

3.2. Power comparisons

In this section, we compare the small sample power of the proposed test with
the one-sided WKM and log-rank tests. Two models of lifetime distributions
are considered, both with piecewise-constant hazards. In Model A, the hazard
functions cross while the survival functions still remain stochastically ordered
(see Figure 1, first column). In this case, the one-sided log-rank test can fail to
detect the difference between the survival curves because it is designed to detect
ordered hazards. In Model B, the two groups have different hazards initially but
the same hazard later on, so the difference between the survival functions grad-
ually wears off (see Figure 1, second column). This is a common phenomenon
which is also seen in our real data example in Section 4. For both models, we
consider exponential and uniform censoring distributions: G1 = G2 = Exp(θ1)
or Uniform(0, c1), with θ1 or c1 chosen to give a CR of 10% or 25% for group 1.

Results are given in Table 3 for K∗
n using [x1, x2]=[0.2, 0.98]. Note that K∗

n

outperforms the other tests in all the cases considered, especially in the crossing
hazards scenario (Model A). The much lower power of WKM in Model A is
surprising, because this test were shown to work well under crossing hazard al-
ternatives in some previous simulation examples [34]. The superior performance
of our test may be due to two factors: first, our test is based on nonparametric
likelihood, so it can be expected to be more powerful than tests that depend
on an ad hoc weight function; second, we are using a maximal deviation-type
statistic, rather than a weighted average, so our test may be more sensitive to
local differences in the survival functions.

We have also investigated power under proportional hazards configurations,
and our test closely matches the performance of the log-rank and WKM tests
(see supplementary tables). These results show that for stochastically ordered
alternatives, the proposed EL test can compete effectively with the log-rank and
WKM tests, especially when the hazard functions cross.
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Fig 1. The piecewise exponential survival functions (top row) and the hazard functions (bot-
tom row) in Model A (first column): S1 (solid) and S2 (dashed), and in Model B (second
column): S1 (solid) and S2 (dashed).

Table 4 gives size and power for various choices of x1 and x2 reflecting light or
heavy truncation. It is clear from the last two rows that light truncation on the
left results in both poor accuracy and power compared with the top row, which
corresponds to our recommendation [x1, x2]=[0.2, 0.98]. Yet the performance is
not very sensitive to the choice of x2, so our preference is to choose x2 close to
1 in order to reduce truncation.

3.3. Combined procedure

Finally we conducted simulations for the combined procedure described in the
Introduction: (1) testing the survival functions do not cross, and (2) testing
stochastic ordering under the assumption of no crossing. The goal is to see
if the combined procedure has good performance under models of equal and
crossing survival functions, and most importantly, stochastic ordering.
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Table 3

Power at α = 0.05 based on 10,000 replications. Model A: survival functions as in Figure
1, upper left panel. Model B: survival functions as in Figure 1, upper right panel.

model group test exp. censoring unif. censoring
size 10% 25% 10% 25%

Model A

50
K∗

n 0.851 0.833 0.849 0.834
log-rank 0.318 0.379 0.314 0.373
WKM 0.328 0.391 0.330 0.431

80
K∗

n 0.975 0.968 0.975 0.971
log-rank 0.416 0.503 0.415 0.501
WKM 0.426 0.507 0.433 0.569

Model B

50
K∗

n 0.689 0.672 0.688 0.676
log-rank 0.625 0.659 0.621 0.650
WKM 0.521 0.583 0.521 0.613

80
K∗

n 0.876 0.862 0.877 0.869
log-rank 0.782 0.815 0.784 0.812
WKM 0.660 0.729 0.675 0.775

Table 4

Size and power for various choices of x1 and x2 based on 10,000 replications, α = 0.05,
n1 = n2 = 50, and exponential censoring with censoring rate 10%. Model A: survival
functions as in Figure 1, upper left panel. Model B: survival functions as in Figure 1,

upper right panel. For size, only the solid survival functions are used.

x1 x2 critical size power
value Model A Model B Model A Model B

0.2 0.98 8.028 0.040 0.040 0.851 0.689
0.2 0.8 6.879 0.037 0.039 0.890 0.703
0.02 0.98 8.829 0.029 0.028 0.806 0.628
0.02 0.8 8.048 0.023 0.025 0.838 0.612

Table 5

Proportion of decisions from the combined procedure based on 10,000 replications, α = 0.05,
n1 = n2 = 80, and exponential censoring with censoring rate 10%. Model A: survival

functions as in Figure 1, upper left panel. Model A.0: solid survival function in Figure 1,
upper left panel. Model C: survival functions as in Figure 2.

Decision Model A.0 Model A Model C
Crossing 0 0.007 0.996
Equality 0.960 0.046 0.000
Stochastic ordering 0.040 0.947 0.004

Three models of lifetime distributions are considered: the one from Section
3.1 under H0, the Model A from Section 3.2 under H1, and a new Model C under
Hc (see Figure 2). Decisions are labeled as “crossing” if Hc is not rejected in
testing (1), “equality” if Hc is rejected but H0 is not rejected in testing (2), and
“stochastic ordering” if both Hc and H0 are rejected. The empirical proportion
of decisions from the combined procedure is then reported.

The results are summarized in Table 5. Our combined procedure is effective in
correctly identifying H0, Hc and most importantly, H1. The results from Model
A, in particular, shows the ability of our combined procedure to rule out Hc in
testing for stochastic ordering.
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Fig 2. The piecewise exponential survival functions in Model C: S1 (solid) and S2 (dashed).

4. Application

A RCT for treatment of severe alcoholic hepatitis [28] is analyzed. The data
are obtained by digitizing the published KM curves and reconstructing survival
and censoring information using the algorithm developed by Guyot et al. [18].
The purpose of the trial was to assess whether a combination therapy of pred-
nisolone plus N-acetylcysteine is better than prednisolone alone (the currently
recommended treatment). A total of 174 patients were randomized to taking
the combination (n1 = 85) or only prednisolone (n2 = 89), and the primary
endpoint is their 6-month survival. The KM curves (see the top panel of Figure
3) suggest a stochastic ordering between the two groups.

The case of crossing survival functions is precluded via a rejection of Hc in
testing (1) in our composite procedure. Application of the one-sided EL test
indicates that the combination therapy group has stochastically larger survival
pattern than patients receiving only prednisolone (K∗

n = 10.36, p = 0.018). In
comparison, the WKM and the one-sided log-rank tests yield p-values of 0.021
and 0.037, respectively. Examining the cumulative hazards plot (see the bottom
panel of Figure 3), we can see that the slopes (i.e. hazards) of the two curves only
differ noticeably during the initial 40 days. Such a scenario of an initial hazard
difference has been considered in Model B of Section 3.2, where we show our
EL test is better adapted to detecting a difference between the two treatment
groups.

Nguyen-Khac et al. [28] actually used the two-sided log-rank test and reported
a p-value of 0.07. They concluded that the combination therapy does not im-
prove the 6-month survival. In contrast, our two-sided EL test shows that the
two treatment groups are significantly different and there is a uniformly higher
survival function in one of the groups (p = 0.036, computed by the supplemen-
tary R program that implements the two-sided EL test). In this case the EL test
shows a more significant result that leads to a completely different conclusion
than the log-rank test.
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Fig 3. Estimates of survival functions (top) and cumulative hazards (bottom) for prednisolone
plus N-acetylcysteine (solid line) versus prednisolone alone (dashed line).

5. Discussion

We have developed a class of EL-based tests for both one- and two-sided stochas-
tically ordered alternatives under right censoring. The procedure involves first
checking that the survival functions do not cross. The proposed test statistic
for one-sided stochastic ordering is a maximally selected local EL statistic and
is shown to be asymptotically distribution-free. The test statistic for two-sided
stochastic ordering is taken as the maximum of the two one-sided test statistics.
A simulation study shows that our test can be much more powerful than the
log-rank and WKM tests under alternatives with crossing hazards. We applied
our test to a RCT involving patients with severe alcoholic hepatitis and found
a more significant result than the log-rank and WKM tests.

Our test statistics utilize a data-dependent interval [t1, t2], much like the
data-dependent weight-function used in integral-type tests based on hazard or
survival functions. Such restriction has been used in simultaneous inference of
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survival functions in censored data [see, e.g., 27, 3, 33], such as Nair’s equal
precision confidence band [27] and empirical likelihood based confidence band
[20]. This cannot be avoided in procedures that are (asymptotically) based on
standardized statistics, as far as we know. However, in contrast to methods that
rely on the selection of a complete weight function throughout follow-up (e.g.,
the WKM test), it is actually much easier and more transparent to select just
the two tuning parameters (x1 and x2) needed in our case. Although t1 and t2
could be specified using a data-dependent rule (such as 5% of the data in each
tail), this approach would have the disadvantage of needing tailor-made critical
values for each dataset. In this case, instead of using the tabulated critical values
in Table 1, one can use the supplementary R code to compute a critical value
based on [x̂1, x̂2].

Our test targets stochastically ordered alternatives through construction of
a nonparametric likelihood ratio (EL). It can be expected to be more power-
ful than commonly used two-sample tests that either are not tailored for such
alternatives or depend on an ad hoc weight function. When combined with a
test for the absence of a crossing (1), it provides more information about the
nature of the difference between S1 and S2 compared to the omnibus alternative
S1 �= S2, in which case the functional parameters S1 and S2 may be ordered
in one direction at certain time points, but ordered in the reverse direction at
other time points.

Our central contribution is the development of the first EL-based test for
ordered survival functions in right-censored data settings, and we envision the
test to be useful in clinical trials, in reliability engineering, and health policy
applications. It would also be of interest to extend our approach to allow the
testing of stochastic ordering in k-sample censored data settings, and to explore
how it could be used for other types of ordering between distributions, such
as increasing convex ordering, likelihood ratio ordering and uniform stochastic
ordering (or hazard rate ordering). Another direction is to generalize our ap-
proach to cover the situation with left-truncation. This can be done by using
the empirical likelihood formulated in Li [22] (who considered the case of one
sample, two-sided situation at one time point only), although a full derivation
is well beyond the scope of this article.

Appendix A: Derivation of the local EL statistic

Here we derive the local EL ratio (7). First, we will obtain a closed-form expres-
sion for the denominator of (5) by the KKT method. After a log transformation,
the optimization problem becomes minimizing

−
2∑

j=1

mj∑
i=1

{dij(log hij) + (rij − dij) log(1− hij)}

over (h11, . . . , hm11, h12, . . . , hm22) ∈ [0, 1]m (m = m1 + m2) subject to the
constraints
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∑
i≤N2(t)

log(1− hi2)−
∑

i≤N1(t)

log(1− hi1) ≤ 0.

Since the domain [0, 1]m is convex, the objective and constraint functions are
convex and differentiable, and Slater’s condition is satisfied, the KKT conditions
are necessary and sufficient for optimality. More specifically, the Lagrangian is
defined as a function L : [0, 1]m × R → R such that

L(h1, . . . , hm, λ)

≡−
2∑

j=1

mj∑
i=1

{dij(log hij) + (rij − dij) log(1− hij)}

+ λ

⎧⎨
⎩

∑
i≤N2(t)

log(1− hi2)−
∑

i≤N1(t)

log(1− hi1)

⎫⎬
⎭ .

The optimal solution is denoted as (ĥ1
11, . . . , ĥ

1
m11, ĥ

1
12, . . . , ĥ

1
m22, λ̂

1), with the
superscript indicating the correspondence of the denominator with H1. The
dependence of the solution on t is omitted here for simplicity but will appear in
the proof of Theorem 1 (see Appendix B) when the EL ratio is considered as a
process indexed by t. The optimal solution must satisfy the KKT conditions:

∇hL(ĥ11, . . . , ĥm11, ĥ12, . . . , ĥm22, λ̂
1) = 0, (9)∏

i≤N1(t)

(
1− ĥ1

i1

)
≥

∏
i≤N2(t)

(
1− ĥ1

i2

)
, (10)

λ̂1 ≥ 0, (11)

λ̂1

⎧⎨
⎩

∑
i≤N2(t)

log(1− ĥ1
i2)−

∑
i≤N1(t)

log(1− ĥ1
i1)

⎫⎬
⎭ = 0, (12)

which are known as stationarity, primal feasibility, dual feasibility, and comple-
mentary slackness, respectively. The stationarity condition yields ĥ1

ij = dij/rij
for i = Nj(t) + 1, . . . ,mj and

ĥ1
ij =

dij

rij + (−1)j−1λ̂1

for i = 1, . . . , Nj(t), for each j = 1, 2. Define Dj = maxi=1,...,Nj(t) (dij − rij).

Since (ĥ1
11, . . . , ĥ

1
m11 , ĥ1

12, . . . , ĥ
1
m22) should be in the domain [0, 1]m, we have

that D1 ≤ λ̂1 ≤ −D2, where Dj ≤ 0 for j = 1, 2.
The numerator of R(t) can be handled in a similar fashion. Denoting the

optimal solution to the Lagrangian by (ĥ0
11, . . . , ĥ

0
m11, ĥ

0
12, . . . , ĥ

0
m22, λ̂

0), it turns

out ĥ0
ij has the same form as ĥ1

i,j but with λ̂1 replaced by λ̂0, and λ̂0 only needs

to satisfy D1 ≤ λ̂0 ≤ −D2 and∏
i≤N1(t)

(
1− ĥ0

i1

)
=

∏
i≤N2(t)

(
1− ĥ0

i2

)
. (13)
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Note that the estimated hazards after time t under no constraints, namely ĥv
ij

for v = 0, 1 and i = Nj(t) + 1, . . . ,mj , are the same in the numerator and
denominator, and so these terms cancel out. This leads to

R(t) =
2∏

j=1

∏
i≤Nj(t)

(
ĥ0
ij

)dij
(
1− ĥ0

ij

)rij−dij

(
ĥ1
ij

)dij
(
1− ĥ1

ij

)rij−dij
. (14)

We next further simplify R(t) by analyzing the relationship between λ̂0 and

λ̂1, namely by showing that λ̂1 = 0 when λ̂0 < 0 and λ̂1 = λ̂0 when λ̂0 ≥ 0.
Defining

aj(λ) ≡
∏

i≤Nj(t)

{
1− dij

rij + (−1)j−1λ

}

for j = 1, 2 and

a(λ) ≡ a1(λ)

a2(λ)
,

we can see that aj(0) = Ŝj(t), λ̂
0 satisfies a(λ̂0) = 1, and λ̂1 satisfies a(λ̂1) ≥ 1.

Notice that a(λ) is strictly increasing in λ on (D1,−D2), tending to 0 and ∞
as λ ↓ D1 and ↑ −D2, respectively. Also, condition (12) implies either λ̂1 = 0 or∑

i≤N2(t)

log(1− hi2)−
∑

i≤N1(t)

log(1− hi1) = 0 (15)

must hold, and since (15) is equivalent to λ̂1 = λ̂0, we obtain that λ̂1 is either

0 or λ̂0. These observations along with (10) and (11) imply the following:

Case 1: If λ̂0 < 0, then by (11) we have λ̂1 �= λ̂0. Since λ̂1 is either 0 or λ̂0, we

obtain that λ̂1 = 0.
Case 2: If λ̂0 > 0, then by monotonicity of a(λ) we have a(0) < 1. Suppose

λ̂1 = 0, then a(0) ≥ 1 by (10), which contradicts a(0) < 1. So we have

λ̂1 = λ̂0.
Case 3: If λ̂0 = 0, then because λ̂1 is either 0 or λ̂0, we can see that λ̂1 = λ̂0 =

0.

Then from (14) we have

R(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, λ̂0 ≥ 0,

2∏
j=1

∏
i≤Nj(t)

(
ĥ0
ij

)dij
(
1− ĥ0

ij

)rij−dij

(
dij

rij

)dij
(
1− dij

rij

)rij−dij
, λ̂0 < 0.

This is exactly (7). We use the simplified notation ĥij and λ̂ to replace ĥ0
ij and

λ̂0, respectively.
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Another version of (7) will be used in the proof of Theorem 1: replacing

λ̂0 ≥ 0 and λ̂0 < 0 in (7) by Ŝ1(t) ≤ Ŝ2(t) and Ŝ1(t) > Ŝ2(t), respectively.

This version is based on the equality of the events λ̂0 < 0 and Ŝ1(t) > Ŝ2(t),

which can be seen by noting that a(λ) is strictly increasing, a(λ̂0) = 1 and
a(0) = Ŝ1(t)/Ŝ2(t).

Appendix B: Proof of Theorem 1

We will need the following lemma giving an asymptotic expansion of the local-
ized EL statistic in terms of Ŝ1(t) and Ŝ2(t).

Lemma 2.

−2 logR(t) =
n

σ̂2(t)

{
log Ŝ1(t)− log Ŝ2(t)

}2

I
{
Ŝ1(t) > Ŝ2(t)

}
+Op(n

−1/2),

where the Op term holds uniformly in t over [t1, t2].

Proof. We first find the asymptotic order of λ̂(t) uniformly for t ∈ [t1, t2], then

we derive an asymptotic expansion of λ̂(t) uniformly for t ∈ [t1, t2]. Next, by a

Taylor series expansion, we approximate −2 logR(t) as a function of λ̂(t). Based
on the two expansions, we obtain the desired result.

First, we find the asymptotic order of the Lagrange multiplier λ̂(t). Since λ̂(t)
comes from the numerator of the EL ratio (5), it satisfies the equality constraint
(13). McKeague and Zhao [24] studied the same Lagrange multiplier derived
from optimizing the nonparametric likelihood under an equality constraint on
the ratio of two survival functions, so by their Lemma A.1,

λ̂(t) = Op(
√
n) (16)

uniformly for t ∈ [t1, t2].

Next we derive an asymptotic expansion of λ̂(t). The expansion is obtained
by Taylor expanding the l.h.s. of

∑
i≤N1(t)

log

{
1− di1

ri1 + λ̂(t)

}
−

∑
i≤N2(t)

log

{
1− di2

ri2 − λ̂(t)

}
= 0

and then rearranging terms. In detail, the j-th term (j = 1, 2) on the l.h.s., by
a similar argument in Hollander et al. [20, p. 225], has the expansion

log Ŝj(t) + Δj λ̂(t)
σ̂2
j (t)

nj
+Op(n

−1
j ),

where Δj = 1 for j = 1 and −1 for j = 2. Combining the two terms and using
nj/n → pj gives

log Ŝ1(t)− log Ŝ2(t) + λ̂(t)
σ̂2(t)

n
+Op(n

−1) = 0.
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Rearranging the terms, we have

λ̂(t) = − n

σ̂2(t)

{
log Ŝ1(t)− log Ŝ2(t) +Op(n

−1)
}
. (17)

Next, we find an asymptotic expansion of −2 logR(t) as a function of λ̂(t).
We begin, based on (7), by writing −2 logR(t) as

− 2
2∑

j=1

∑
i≤Nj(t)

[
(rij − dij) log

{
1 +

Δj λ̂(t)

rij − dij

}]

+ 2
2∑

j=1

∑
i≤Nj(t)

[
rij log

{
1 +

Δj λ̂(t)

rij

}]

times an indicator I(λ̂(t) < 0). The j-th term above, by a similar argument in
Li [23, p.102], has the expansion

λ̂2(t)
∑

i≤Nj(t)

dij
rij(rij − dij)

+Op(n
−1/2
j )

for j = 1, 2. Using nj/n → pj , and the fact that λ̂(t) < 0 is equivalent to

Ŝ1(t) > Ŝ2(t), we can combine the terms for j = 1, 2 and obtain

−2 logR(t) =

{
σ̂2(t)

λ̂2(t)

n
+Op(n

−1/2)

}
I
{
Ŝ1(t) > Ŝ2(t)

}
.

This and (17) give the desired result.

Remark. Lemma 2 shows that −2 logR(t) is asymptotically equivalent to squar-
ing the positive part of a scaled difference between the log of KM estimators
from the two samples. The inclusion of only the positive part of the difference
can be attributed to the stochastically ordered form of our alternative hypothe-
sis. We have compared the small sample performance of Kn and its counterpart
based on this squared difference (results not shown), and it turns out the latter
tends to be too conservative.

The advantage of using the EL approach, as opposed to a test statistic derived
from the first term in the expansion of Lemma 2, is that we expect higher-order
accuracy [cf. 19]. This is parallel to the parametric result in which the likelihood
ratio test is asymptotically equivalent to the Wald test, but the former has better
higher-order accuracy [see, e.g., 25].

We now complete the proof of Theorem 1.
We first obtain the weak convergence of −2 logR(t) as a process on [t1, t2],

based on Lemma 2 and large sample properties of the KM estimator. Then by
a transformation of the limiting process and the continuous mapping theorem,
we get the limiting distribution of Kn.
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To obtain the limit process of −2 logR(t), we begin by finding the weak
convergence of log Ŝ1 − log Ŝ2, as the asymptotic expansion of −2 logR(t) in
Lemma 2 suggests. For each j = 1, 2, it has been shown [see, e.g., 1, p.191 and
p.263] that

√
nj

(
log Ŝj − logSj

)
d−→Uj

as n → ∞ on D[0, t2], where Uj(t) is a Gaussian martingale with Uj(0) = 0 and
Cov(Uj(s), Uj(t)) = σ2

j (min(s, t)). Therefore, underH0, the continuous mapping
theorem implies

√
n
(
log Ŝ1 − log Ŝ2

)
d−→ U1√

p1
− U2√

p2
≡ U, (18)

where U(t) is a Gaussian martingale with U(0) = 0 and Cov(U(s), U(t)) =
σ2(min(s, t)).

Next, we establish the weak convergence of −2 logR(t). By (18) and the
continuous mapping theorem, we have

n
{
log Ŝ1(t)− log Ŝ2(t)

}2

I
{
Ŝ1(t) > Ŝ2(t)

}
d−→U2

+(t)

in D[t1, t2], where U+ = max(U, 0). Then by the uniform consistency of σ̂2(t)
with respect to σ2(t) and Slutsky’s Lemma, we have

n

σ̂2(t)

{
log Ŝ1(t)− log Ŝ2(t)

}2

I
{
Ŝ1(t) > Ŝ2(t)

}
d−→U2

+(t)

σ2(t)

in D[t1, t2]. This and Lemma 2 imply

− 2 logR(t)
d−→U2

+(t)

σ2(t)
(19)

in D[t1, t2].
Lastly, the asymptotic null distribution of Kn is obtained as follows. First

notice that
U(t)

1 + σ2(t)
and B

(
σ2(t)

1 + σ2(t)

)
are both zero mean Gaussian processes with the same covariance function, so
they have the same distribution. We then have U2

+(t)/σ
2(t) equal in distribution

to

B2
+

(
σ2(t)

1 + σ2(t)

) (
1 + σ2(t)

)2
σ2(t)

.

This, together with (18) and the continuous mapping theorem, implies that
supt∈[t1,t2] {−2 logR(t)} converges in distribution to

sup
t∈[t1,t2]

{
B2

+

(
σ2(t)

1 + σ2(t)

) (
1 + σ2(t)

)2
σ2(t)

}
.
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The result follows from noticing that the r.h.s. of the above is the same as

sup
x∈[x1,x2]

{
B2

+(x)

x(1− x)

}
,

where x1 = b(t1) and x2 = b(t2).

Appendix C: Validating the calibration procedure

The following result justifies the approach of pre-specifying [x1, x2] and estimat-
ing [t1, t2], as outlined in Section 2.2.1.

Lemma 3. Suppose S0 is continuous. Then under H0, for 0 < x1 < x2 < 1,

K∗
n

d−→ sup
x∈[x1,x2]

{
B2

+(x)

x(1− x)

}
,

provided b−1(·) is continuous at x1 and x2, where K∗
n is just Kn with t1 and

t2 replaced by t̂1 = max{b̂−1(x1), T11, T12} and t̂2 = min{b̂−1(x2), Tm11, Tm22},
respectively.

Proof. The idea is to obtain the joint convergence of −2 logR(t), t̂1 and t̂2, and
then to apply the continuous mapping theorem.

First, we show the weak convergence of −2 logR(t). We will apply (19) in
the proof of Theorem 1, but we need to translate the conditions to be in terms
of x1 and x2 instead of t1 and t2. Given 0 < x1 < x2 < 1 at which b−1(·) is
continuous, it suffices to show that t1 = b−1(x1) and t2 = b−1(x2) satisfy the
conditions S0(t1) < 1 and S0(t2)Gj(t2) > 0 for j = 1, 2. To show S0(t1) < 1,
we simply use b(t1) = x1 > 0, which implies σ2(t1) > 0 and thus S0(t1) < 1.
To show S0(t2)Gj(t2) > 0 for j = 1, 2, we argue by contradiction. Suppose
S0(t2)Gj(t2) = 0 for some j = 1, 2. Since b is continuous (by continuity of S0)
and nondecreasing, we can pick an ε < 1 − x2 and δ small enough such that
x2 ≤ b(t2 + δ) < x2 + ε < 1. Because b−1 is continuous at x2, there is no
“flat” of b around t2, and thus δ can be chosen so that b is strictly increasing in
[t2, t2 + δ]. This and S0(t2)Gj(t2) = 0 lead to b(t2 + δ) = 1, which contradicts
b(t2 + δ) < x2 + ε < 1. So we have S0(t2)Gj(t2) > 0 for j = 1, 2, as required.

Next, we show t̂j
P−→tj for j = 1, 2. The proof makes use of the theory of Z-

estimators [see, e.g., 36, Theorem 5.9]. Let Ψn(t) = b̂(t)− x1, Ψ(t) = b(t)− x1,
and Θ = [τ1, τ2] such that [t1, t2] ⊂ Θ ⊂ (0,∞). We already know Ψn(t1) =

op(1) and Ψ(t1) = 0. It suffices to show that supt∈Θ |Ψn(t)−Ψ(t)| P−→0 and
inft:|t−t1|≥ε |Ψ(t)| > 0 for all ε > 0. The former is implied by the uniform

consistency of σ̂2 (and thus b̂), and the latter by the continuity of b−1 at x1.

Therefore we have t̂1
P−→t1. The same argument applies to t̂2.

Lastly, the asymptotic null distribution of K∗
n is obtained as follows. From

the weak convergence of −2 logR(t) and t̂j
P−→tj for j = 1, 2, we have the joint
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convergence [−2 logR(t), t̂1, t̂2]
T d−→[U2

+(t)/σ
2(t), t1, t2]

T in D[t1, t2]×Θ2 [see,
e.g., 36, Theorem 18.10 (v)]. Then applying a similar argument in the last part
of the proof for Theorem 1 and the continuous mapping theorem, we get the
desired result.
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