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Abstract Estimating the endpoint of a distribution function is of interest in product
analysis and predicting the maximum lifetime of an item. In this paper, we propose
an empirical likelihood method to construct a confidence interval for the endpoint.
A simulation study shows the proposed confidence interval has better coverage accu-
racy than the normal approximation method, and bootstrap calibration improves the
accuracy.

Keywords Confidence interval · Coverage probability · Empirical likelihood
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1 Introduction

Suppose X1, . . . ,Xn are independent and identically distributed random variables
with distribution function F which has a finite right endpoint θ and satisfies

1 − F(x) = c(θ − x)α + o
(
(θ − x)α

)
(1.1)
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as x ↑ θ , where c > 0 and α > 0. Note that condition (1.1) implies that F is in the
domain of attraction of an extreme value distribution with a negative extreme value
index; see Chap. 1 of De Haan and Ferreira (2006) for details. This condition has been
employed in Hall (1982), and parameters c,α and θ specify the first-order approxi-
mation to the upper tail of the distribution function F . Based on this approximation,
an approximate likelihood can be formulated and maximum likelihood estimates for
parameters c,α, θ can be obtained as in Sect. 2.

Estimating the endpoint θ is of interest in production analysis and predicting the
maximum lifetime of an item. The cases of α > 2 and 0 < α ≤ 2 are respectively
called regular case and irregular case in the literature. Estimating the endpoint for the
regular case includes Athreya and Fukuchi (1997), Dekker et al. (1989), Hall (1982),
Hall and Wang (1999), Li and Peng (2009a, 2009b) and Loh (1984). For the irregular
case, studies include Aarssen and de Haan (1994), Falk (1994), Smith (1985, 1987),
Woodroofe (1974), Zhou (2009), Peng and Qi (2009).

In this paper, we concern with the construction of confidence intervals for θ un-
der the setup of regular case. Based on the asymptotic limit of some estimator for
the endpoint, a normal approximation confidence interval can be obtained via esti-
mating the asymptotic variance. In order to avoid estimating the asymptotic variance,
bootstrap method can be employed (see Athreya and Fukuchi 1997 and Li and Peng
2009a, 2009b). Here, we investigate the possibility of applying the empirical like-
lihood method. Like bootstrap and jackknife methods, empirical likelihood method
is a powerful nonparametric method in interval estimation and hypothesis test. Re-
cently, empirical likelihood method has been applied to extremes, see Einmahl and
Segers (2009) and Qi (2008). For overview of empirical likelihood methods, we refer
to Owen (2001). Some important features of empirical likelihood method include
Bartlett correction and self-normalization, i.e., without estimating the asymptotic
variance explicitly. A common way to formulate the empirical likelihood function
is via estimating equations as in Qin and Lawless (1994). In this paper, empirical
likelihood confidence intervals for the endpoint are constructed via estimating equa-
tions. And bootstrap calibration is proposed to improve the coverage accuracy. We
organize this paper as follows. Methodologies and results are given in Sect. 2. Sec-
tion 3 presents some finite sample investigation and real data analysis. Proofs are put
in Sect. 4.

2 Methodology and results

Let Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . ,Xn. Model (1.1) is a
semiparametric one since the remainder is not specified, and all the parameters of
interest reveal the upper tail properties of the distribution F . It is known in the liter-
ature that only a few largest observations should be employed in the estimation. For
this purpose, we define δi = I (Xi > u) for i = 1, . . . , n, where u is a high threshold.
When δi = 1, we can approximate the distribution function of Xi by 1 − c(θ − x)α .
When δi = 0, Xi is considered to be censored so that it does not account in the estima-
tion but the only information that the observation is below the threshold u is used in
formulating a likelihood function. This results in an approximate censored likelihood
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function for {(Xi, δi)}ni=1 as

n∏

i=1

{
cα(θ − Xi)

α−1}δi
{
1 − c(θ − u)α

}1−δi . (2.1)

Next we take the threshold u = Xn,n−k for some k such that k = k(n) → ∞ and
k/n → 0. Then (2.1) becomes

k∏

i=1

{
cα(θ − Xn,n−i+1)

α−1}{1 − c(θ − Xn,n−k)
α
}n−k

,

which results in the score equations

k∑

i=1

Ỹ i (c, α, θ) = 0,

where Ỹ i (c, α, θ) = (Ỹi1(c,α, θ), Ỹi2(c,α, θ), Ỹi3(c,α, θ))T with

Ỹi1(c,α, θ) = 1

c
− n − k

k

(θ − Xn,n−k)
α

1 − c(θ − Xn,n−k)α
,

Ỹi2(c,α, θ) = 1

α
+ log(θ − Xn,n−i+1) − n − k

k

c(θ − Xn,n−k)
α log(θ − Xn,n−k)

1 − c(θ − Xn,n−k)α
,

Ỹi3(c,α, θ) = α − 1

θ − Xn,n−i+1
− n − k

k

cα(θ − Xn,n−k)
α−1

1 − c(θ − Xn,n−k)α
.

Like Qin and Lawless (1994), we define the empirical likelihood function as

R̃n(c,α, θ) = sup

{
k∏

i=1

(kpi) : pi ≥ 0,

k∑

i=1

pi = 1,

k∑

i=1

pi Ỹ i (c, α, θ) = 0

}

.

Note that
∑k

i=1 pi Ỹ i (c, α, θ) = 0 is equivalent to
⎧
⎪⎨

⎪⎩

∑k
i=1 piỸi1(c,α, θ) = 0,

∑k
i=1 pi{Ỹi2(c,α, θ)/ log(θ − Xn,n−k) − cỸi1(c,α, θ)} = 0,

∑k
i=1 pi{ θ−Xn,n−k

α
Ỹi3(c,α, θ) − cỸi1(c,α, θ)} = 0,

which implies that
⎧
⎨

⎩

∑k
i=1 pi{α−1+log(θ−Xn,n−i+1)

log(θ−Xn,n−k)
− 1} = 0,

∑k
i=1 pi{α−1

α

θ−Xn,n−k

θ−Xn,n−i+1
− 1} = 0,

i.e.,
{∑k

i=1 pi{log(
θ−Xn,n−i+1
θ−Xn,n−k

) + 1
α
} = 0,

∑k
i=1 pi{ θ−Xn,n−k

θ−Xn,n−i+1
− α

α−1 } = 0.
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So, R̃n(c,α, θ) can be reduced to

Rn(α, θ) = sup

{
k∏

i=1

(kpi) : pi ≥ 0,

k∑

i=1

pi = 1,

k∑

i=1

piYi (c, α, θ) = 0

}

,

where Yi (α, θ) = (Yi1(α, θ), Yi2(α, θ))T ,

Yi1(α, θ) = log
θ − Xn,n−i+1

θ − Xn,n−k

+ 1

α
and Yi2(α, θ) = θ − Xn,n−k

θ − Xn,n−i+1
− α

α − 1
.

By the standard Lagrange multiplier technique, we obtain the log empirical likelihood
ratio as

l(θ,α) = −2 logRn(α, θ) = 2
k∑

i=1

log
(
1 + λT Yi (α, θ)

)
, (2.2)

where λ = (λ1, λ2)
T satisfies

k∑

i=1

Yi (α, θ)

1 + λT Yi (α, θ)
= 0. (2.3)

Throughout we denote the true value of (θ,α) by (θ0, α0). Since we are interested
in a confidence interval for θ , we consider the profile log empirical likelihood ratio
l(θ, α̂(θ)), where α̂(θ) = argminα>2l(θ,α).

In order to derive the asymptotic limit of the above profile log empirical likelihood
ratio, we assume the following second-order condition: there exist functions a(t) > 0
and A(t) → 0 such that

lim
t→∞

U(tx)−U(t)
a(t)

− xγ −1
γ

A(t)
= Hγ,ρ(x) := 1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
, (2.4)

where U(t) is the inverse function of F(1 − 1/t), γ = −1/α ∈ (−1/2,0) and ρ <

0. We refer to De Haan and Ferreira (2006) for details on the above second-order
regular variation. Under the above condition, we follow the procedure in Qin and
Lawless (1994) to first show that there exists α̂(θ0) with a certain rate of convergence
and then we show the convergence of l(θ0, α̂(θ0)); see the following Proposition 1
and Theorem 1 for details. Note that the results in Qin and Lawless (1994) are not
directly applicable to our setting since {(θ − Xn,n−i+1)/(θ − Xn,n−k)}ki=1 is not an
independent sequence.

Proposition 1 Assume (2.4) holds and k = k(n) satisfies

k/ logn → ∞, k/n → 0,
√

kA(n/k) → 0 as n → ∞. (2.5)

Then, with probability one, l(θ0, α) attains its minimum value at some point α̂(θ0) in

the interior of the ball |α − α0| ≤ k−δ0 with δ0 = max{ 1
3 , 1

α0
+ 2−1+α−1

0
2 }, and α̂(θ0)
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and λ̂ = λ(θ0, α̂(θ0)) satisfy

Q1n

(
α̂(θ0), λ̂

) = 0 and Q2n

(
α̂(θ0), λ̂

) = 0,

where

Q1n(α,λ) = 1

k

k∑

i=1

Yi (α, θ0)

1 + λT Yi (α, θ0)

and

Q2n(α,λ) = 1

k

k∑

i=1

1

1 + λT Yi (α, θ0)

{
d

dα
Yi (α, θ0)

}T

λ.

Theorem 1 Under the conditions in Proposition 1, we have l(θ0, α̂(θ0))
d→ χ2(1) as

n → ∞.

Based on the above theorem, a confidence interval for θ0 with level d is

IE
d = {

θ̄ : l(θ̄ , α̂(θ̄ )
) ≤ χ2

d,1

}
,

where χ2
d,1 is the d th quantile of χ2(1).

Remark 1 The above proposed empirical likelihood method does not apply to the
irregular case since the asymptotic limit of the maximum likelihood estimator for the
endpoint is a normal distribution when 0 < α < 2 (see Woodroofe 1974; Peng and
Qi 2009). Therefore, Wilks theorem cannot be expected for the empirical likelihood
method based on score equations.

Selection of k is of importance. Theoretically, one needs to choose k to minimize
the coverage error. Unfortunately, how to derive the coverage expansion remains un-
known. On the other hand, in general k is much smaller than the sample size n in
analyzing extremes, which implies that calibration for the proposed empirical likeli-
hood method is quite practically useful. Indeed the simulation in next section shows
that the calibration makes the choice of k much less sensitive. We refer to Owen
(2001) for details on calibration of empirical likelihood method. Here we propose the
following bootstrap calibration method.

Draw a random sample of size n from X1, . . . ,Xn with replacement. Based on this
resampling, we calculate the empirical likelihood ratio in (2.2) with θ being replaced
by θ̂ , where θ̂ is the solution to

1

k + 1

k∑

i=1

θ − Xn,n−k

θ − Xn,n−i+1

{
1

k + 1

k∑

i=1

log
θ − Xn,n−i+1

θ − Xn,n−k

+ 1

}

= 1. (2.6)

Let us denote this bootstrapped empirical likelihood ratio as l∗(θ̂ , α).
Note that (2.6) is the score equation for θ after parameters c and α are canceled

out, and thus θ̂ is the maximum likelihood estimate for θ in Hall (1982). Moreover,
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θ̂ and the maximum empirical likelihood estimate, arg minθ l(θ, α̂(θ)), are the same
since the empirical likelihood function is formulated via score equations.

Next we profile the bootstrapped empirical likelihood ratio to obtain α̂∗(θ) =
arg minα>2 l∗(θ̂ , α). Hence we obtain the bootstrapped profile empirical likelihood
ratio l∗(θ̂ , α̂∗(θ̂)). Repeat the above procedure M times so that we obtain M boot-
strapped profile empirical likelihood ratios. Let d∗ denote the [Md]th largest value of
these M bootstrapped empirical likelihood ratios. Then a bootstrap calibration confi-
dence interval is

IBC
d = {

θ̄ : l(θ̄ , α̂(θ̄ )
) ≤ d∗}.

3 Simulation and data analysis

In this section, we first investigate the finite sample behavior of the proposed empiri-
cal likelihood confidence interval IE

d and the bootstrap calibration confidence interval
IBC
d in terms of coverage accuracy, and compare with the normal approximation con-

fidence interval and percentile-t bootstrap confidence interval given below.
Define

γ̂ = 1

k + 1

k∑

i=1

log
θ̂ − Xn,n−i+1

θ̂ − Xn,n−k

.

Then γ̂ and θ̂ defined in Sect. 2 are estimators for γ = −1/α and θ proposed by Hall
(1982). Put

σ̂ = Xn,n−k

{
1

k + 1

k∑

i=1

log
Xn,n−i+1

Xn,n−k

}

{1 − γ̂ }γ̂ −2{1 + γ̂ }{1 + 2γ̂ }1/2.

Then, it follows from Li and Peng (2009a, 2009b) that

√
k
θ̂ − θ

σ̂

d→ N(0,1)

under conditions of Proposition 1. Further Li and Peng (2009a, 2009b) showed
that bootstrap method based on the pivotal statistic Tn = √

k{θ̂ − θ}/σ̂ is consis-
tent. Therefore, we can construct the normal approximation confidence interval and
percentile-t bootstrap confidence interval with level d based on the pivotal statistic
Tn. Let us denote them as IN

d and IB
d .

Draw 1000 random samples with size n = 1000 from the random variable θ −1/Z,
where P(Z ≤ z) = 1 − (1 + zτ1)−τ2 for z > 0. For calculating the bootstrap cal-
ibration confidence interval IBC

d and the percentile-t bootstrap confidence interval
IB
d , we draw 200 resamplings with size n for each sample. We consider the cases

(θ, τ1, τ2) = (0,8,4/8) and (0,40,4/40). Note that the case (τ1, τ2) = (40,8/40)

gives a much faster rate of convergence for function A defined in (2.4) than the
case (τ1, τ2) = (8,4/8), which means that a larger k can be employed for the case
(τ1, τ2) = (40,4/40) than the other. In Fig. 1, we plot the coverage probabilities
against k = 50,60, . . . ,200 for these four confidence intervals with levels 0.9, 0.95.
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Fig. 1 Empirical coverage probabilities for the four confidence intervals are plotted against
k = 50, . . . ,200. Straight solid line, another solid line, dashed line, dotted line and dotted-dashed line
represent the level and intervals IN

d
, IE

d
, IB

d
and IBC

d
, respectively

From Fig. 1 we found that the proposed empirical likelihood confidence interval is
more accurate than the normal approximation confidence interval, and both are less
accurate but less computationally intensive, than the proposed bootstrap calibration
confidence interval and the percentile-t bootstrap confidence interval. The proposed
bootstrap calibration confidence interval is most accurate for most cases and least
sensitive to the choice of the sample fraction k. Moreover, confidence intervals for
the case (τ1, τ2) = (40,8/40) are more accurate than those for the case (τ1, τ2) =
(8,4/8) when a large k is employed.

Next we apply the above intervals to a real data set, which consists of the total
lifespan (in days) of 10391 residents born in the Netherlands in the years 1877–1881,
still alive on January 1, 1971, and who died as resident of the Netherlands. More
detailed analysis on this data set can be found in Chaps. 3.7 and 4.6 of De Haan and
Ferreira (2006). Here we focus on the intervals IB

d and IBC
d since the above results

show that these two intervals are much more accurate than the other two.
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Table 1 Intervals IB
0.95 and

IBC
0.95 are calculated for the

lifespan data set with
k = 100,150, . . . ,400

IB
0.95 IBC

0.95

k = 100 (111.84, 113.49) (111.65, 121.61)

k = 150 (112.02, 117.81) (111.92, 123.69)

k = 200 (112.42, 117.35) (112.18, 126.02)

k = 250 (112.11, 118.36) (112.13, 125.54)

k = 300 (112.29, 119.06) (112.27, 124.85)

k = 350 (112.34, 119.11) (112.27, 127.59)

k = 400 (112.59, 119.81) (112.31, 128.61)

First we change the lifespan in days to years by dividing by 365. Then we calculate
these two intervals by drawing 1000 bootstrap samples. To approximate IBC

d by an
interval, we increase and decrease θ̄ from θ̂ by step 0.01 until l(θ̄ , α̂(θ̄ )). Table 1
reports these two intervals with level 95% for k = 100,150, . . . ,400. From this table,
we observe that the length of the interval IBC

d is larger than that of IB
d , and IBC

d is
much skewed to the right.

4 Proofs

Let V1, . . . , Vn be i.i.d. random variables with distribution function 1 − 1/x for x ≥ 1
and Vn,1 ≤ · · · ≤ Vn,n denote the order statistics of V1, . . . , Vn. Consider another in-
dependent sequence of i.i.d. random variables V ∗

1 , . . . , V ∗
k with distribution function

1 − 1/x, and denote V ∗
k,1 ≤ · · · ≤ V ∗

k,k as their order statistics. It is well known that

{Vn,n−i+1/Vn,n−k}ki=1
d= {V ∗

k,k−i+1}ki=1. (4.1)

The following lemma comes from Lemma 5.2 of Draisma et al. (1999).

Lemma 1 Let f be a measurable function. Suppose there exist a real parameter α1

and functions a1(t) > 0 and A1(t) → 0 such that for all x > 0

lim
t→∞

f (tx)−f (t)
a1(t)

− xα1 −1
α1

A1(t)
= H1(x) = 1

β1

{
xα1+β1 − 1

α1 + β1
− xα1 − 1

α1

}
,

where β1 ≤ 0. Then for any ε > 0 there exists t0 > 0 such that for all t ≥ t0, tx ≥ t0,

∣∣∣∣

f (tx)−f (t)
a1(t)

− xα1 −1
α1

A1(t)
− H1(x)

∣∣∣∣ ≤ ε
{
1 + xα1 + 2xα1+β1eε| logx|}.

Define

Ȳn(α) = 1

k

k∑

i=1

Yi (α, θ0)
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and

Sn(α) = 1

k

k∑

i=1

Yi (α, θ0)YT
i (α, θ0).

Lemma 2 Under the conditions of Proposition 1,

sup
α>2

1

k

k∑

i=1

∥∥Yi (α, θ0)
∥∥2 = Op(1) (4.2)

and

sup
α>2

max
1≤i≤k

∥∥Yi (α, θ0)
∥∥ = op

(
kδ

)
(4.3)

for any δ ∈ (1/α0,1/2].

Proof Since Xn,n−i+1
d= U(Vn,n−i+1), we can write

θ0 − Xn,n−i+1

a(Vn,n−k)

d=
{

θ0 − U(Vn,n−k)

a(Vn,n−k)
+ 1

γ0

}
− (Vn,n−i+1/Vn,n−k)

γ0

γ0

−
{U(

Vn−i+1
Vn,n−k

Vn,n−k) − U(Vn,n−k)

a(Vn,n−k)
− (Vn,n−i+1/Vn,n−k)

γ0 − 1

γ0

}

= I1 − I2 − I3 (4.4)

for i = 1, . . . , k. It follows from (2.4) that

θ0−U(t)
a(t)

+ 1
γ0

A(t)
→ Hγ0,ρ(∞) (4.5)

(see the proof of Lemma 4.2 in Ferreira et al. 2003), which implies that

θ0−Xn,n−k

a(Vn,n−k)
+ 1

γ0

A(n/k)
→ Hγ0,ρ(∞) a.s. (4.6)

since k
n
Vn,n−k → 1 a.s. By (2.4), (4.6), Lemma 1, (2.5) and δ ≤ 1/2, we can show

that

I1 = O
(
A(n/k)

) = o
(
k−δ

)
and I3 = O

(
A(n/k)

) = o
(
k−δ

)
a.s. (4.7)

By (4.1) and γ0 = −1/α0 < −δ, we have

min
1≤i≤k

kδ(Vn,n−i+1/Vn,n−k)
γ0 = kδ(Vn,n/Vn,n−k)

γ0 d= kδ(V ∗
k,k)

γ0 → ∞ a.s. (4.8)

It follows from (4.4), (4.7) and (4.8) that

min
1≤i≤k

kδ θ0 − Xn,n−i+1

a(Vn,n−k)
→ ∞ a.s. (4.9)



D. Li et al.

By (4.6) and (4.9), we have

sup
α>2

max
1≤i≤k

∣∣Yij (α, θ0)
∣∣ = o

(
kδ

)
a.s. (4.10)

for j = 1,2, which implies (4.3). If follows from (4.1) that

1

k

k∑

i=1

(Vn,n−i+1/Vn,n−k)
γ0 d= 1

k

k∑

i=1

(V ∗
i )γ0 → 1

1 − γ0
a.s. (4.11)

Hence, (4.2) follows from (4.4), (4.6), (2.4), Lemma 1, (2.5) and (4.11). �

Lemma 3 Under the conditions in Proposition 1, we have

√
kȲn(α0)

d→ N(0,V ), (4.12)
∥∥Ȳn(α) − Ȳn(α0)

∥∥ = O
(
k−1/2 log log k + |α − α0|

)
a.s., (4.13)

Ȳn(α0) = O
(
k−1/2 log log k

)
a.s. (4.14)

and

sup
|α−α0|≤δn

∥
∥Sn(α) − V

∥
∥ → 0 a.s. (4.15)

for any sequence δn → 0, where

V =
⎛

⎝
1
α2

0
− 1

(α0−1)2

− 1
(α0−1)2

α0
(α0−1)2(α0−2)

⎞

⎠ .

Proof By (4.4), (2.4), Lemma 1, (2.5), (4.8) and Taylor expansion, we can show that

max
1≤i≤k

∣∣
∣∣

a(Vn,n−k)

θ0 − Xn,n−i+1
− −γ0

(Vn,n−i+1/Vn,n−k)γ0

∣∣
∣∣ = o

(
1/

√
k
)

a.s. (4.16)

Since min1≤i≤k
−γ0

(Vn,n−i+1/Vn,n−k)
γ0 ≥ −γ0, (4.16) implies that

max
1≤i≤k

∣∣∣∣ log
a(Vn,n−k)

θ0 − Xn,n−i+1
− log

−γ0

(Vn,n−i+1/Vn,n−k)γ0

∣∣∣∣ = o
(
1/

√
k
)

a.s. (4.17)

It follows from (4.6) and (2.5) that

⎧
⎨

⎩

θ0−Xn,n−k

a(Vn,n−k)
+ 1

γ0
= o(1/

√
k) a.s.

log θ0−Xn,n−k

a(Vn,n−k)
− log 1

−γ0
= o(1/

√
k) a.s.

(4.18)
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By (4.16)–(4.18) and (4.1), we have
⎧
⎨

⎩

1
k

∑k
i=1 Yi1(α, θ0)

d= { 1
k

∑k
i=1 log(V ∗

i )γ0 + 1
α0

} + { 1
α

− 1
α0

} + o(1/
√

k) a.s.,

1
k

∑k
i=1 Yi2(α, θ0)

d= { 1
k

∑k
i=1(V

∗
i )−γ0 − α0

α0−1 } − { α
α−1 − α0

α0−1 } + o(1/
√

k) a.s.
(4.19)

Hence, (4.12), (4.13) and (4.14) follow from (4.19) and the fact that

1

k

k∑

i=1

(V ∗
i )−γ0 − α0

α0 − 1
= O

(
k−1/2 log logk

)
a.s.,

1

k

k∑

i=1

log(V ∗
i )γ0 + 1

α0
= O

(
k−1/2 log logk

)
a.s.

and

√
k

(
1

k

k∑

i=1

(V ∗
i )−γ0 − α0

α0 − 1
,

1

k

k∑

i=1

log(V ∗
i )γ0 + 1

α0

)
d→ N(0,V ).

Similarly we can show (4.15). �

Proof of Proposition 1 By setting

μ(α) =
(

1

α0
− 1

α
,

α

α − 1
− α0

α0 − 1

)T

,

we have

Yi (α, θ) = Yi (α0, θ) − μ(α).

Put

g(λ, α) = 1

k

k∑

i=1

Yi (α, θ0)

1 + λT Yi (α, θ0)
(4.20)

and Dn(α) = max1≤i≤k ‖Yi (α, θ0)‖. Let η = λ/‖λ‖, i.e., λ = ‖λ‖η. It follows
from (2.3) that

0 = ηT g(λ, α) = 1

k

k∑

i=1

(
ηT Yi (α, θ0)

1 + λT Yi (α, θ0)
− ηT Yi (α, θ0)

)
+ ηT Ȳn(α),

which implies that

‖λ‖ηT S̃n(α)η = ηT Ȳn(α),

where

S̃n(α) = 1

k

k∑

i=1

Yi (α, θ0)YT
i (α, θ0)

1 + ‖λ‖ηT Yi (α, θ0)
.
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From 1 + ‖λ‖ηT Yi (α, θ0) > 0, we get that

‖λ‖ηT Sn(α)η ≤ ‖λ‖ηT S̃n(α)η
(

1 + max
1≤i≤k

‖λ‖∣∣ηT Yi (α, θ0)
∣∣
)

≤ ‖λ‖ηT S̃n(α)η
(
1 + ‖λ‖Dn(α)

)

= ηT Ȳn(α)
(
1 + ‖λ‖Dn(α)

)
,

i.e.,

‖λ‖{ηT Sn(α)η − Dn(α)ηT Ȳn(α)
} ≤ ηT Ȳn(α). (4.21)

Denote the smallest eigenvalue of V as σ1. It follows from Lemmas 2 and 3 that
{

minη(η
T Sn(α)η) = σ1(1 + o(1)) a.s.,

minη |Dn(α)ηT Ȳn(α)| = o(1) a.s.
(4.22)

uniformly for |α − α0| ≤ k−δ0 with δ0 given in Proposition 1. Therefore, by (4.21),
(4.22) and Lemma 2,

‖λ‖ = O
(
k−δ0

)
a.s. (4.23)

uniformly for |α − α0| ≤ k−δ0 .
Note that

0 = 1

k

k∑

i=1

Yi (α, θ0)

(
1 − λT Yi (α, θ0) + (λT Yi (α, θ0))

2

1 − λT Yi (α, θ0)

)

= Ȳn(α) − Sn(α)λ + 1

k

k∑

i=1

Yi (α, θ0)(λ
T Yi (α, θ0))

2

1 − λT Yi (α, θ0)
.

By Lemma 2 and (4.23), the last term is dominated by

1

k

k∑

i=1

‖Yi (α, θ0)‖3‖λ‖2

1 − ‖λ‖Dn(α)
= O(1)Dn(α)‖λ‖2 = o

(
kδ0

)
O

(
k−2δ0

) = o
(
k−δ0

)
a.s.

which implies that

λ = S−1
n (α)Ȳn(α) + o

(
k−δ0

)
a.s. (4.24)

uniformly in |α − α0| ≤ k−δ0 .
By (4.24) and Taylor expansion, we have, almost surely, that

l
(
θ0, α0 + k−δ0

)

= 2
k∑

i=1

λT Yi

(
α0 + k−δ0 , θ0

) −
k∑

i=1

{
λT Yi

(
α0 + k−δ0 , θ0

)}2 + o
(
kk−2δ0

)

= kȲT
n

(
α0 + k−δ0

)
S−1

n

(
α0 + k−δ0

)
Ȳn

(
α0 + k−δ0

) + o
(
k1−2δ0

)
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= kμT
(
α0 + k−δ0

)
S−1

n

(
α0 + k−δ0

)
μ

(
α0 + k−δ0

) + o
(
k1−2δ0

)

≥ c1k
1−2δ0 (4.25)

for some constant c1 > 0. Similarly, we can show that

l
(
θ0, α0 − k−δ0

) ≥ c2k
1−2δ0 a.s. (4.26)

and

l(θ0, α0) = kȲT
n (α0)S

−1
n (α0)Ȳn(α0) + o

(
k1−2δ0

) = o
(
k1−2δ0

)
a.s. (4.27)

Hence, the proposition follows from (4.25)–(4.27). �

Proof of Theorem 1 Taking derivatives with respect to α and λT , we have

∂

∂α
Q1n(α,0) =

(
− 1

α2
,

1

(α − 1)2

)T

,

∂

∂λT
Q1n(α,0) = −1

k

k∑

i=1

Yi (α, θ0)YT
i (α, θ0),

∂

∂α
Q2n(α,0) = 0,

∂

∂λT
Q2n(α,0) =

(
− 1

α2
,

1

(α − 1)2

)
.

Expanding Q1n(α̂(θ0), λ̂) and Q2n(α̂(θ0), λ̂) at (α0,0) and using Proposition 1, we
have that

0 = Qjn(α0,0) + ∂

∂α
Qjn(α0,0)

(
α̂(θ0) − α0

) + ∂

∂λT
Qjn(α0,0)(λ̂ − 0) + op(δn)

(4.28)
for j = 1,2, where δn = |α̂(θ0) − α0| + ‖λ̂‖. Hence

(
λ̂, α̂(θ0) − α0

)T = �−1
n

(−QT
1n(α0,0) + op(δn), op(δn)

)T
, (4.29)

where

�n =
⎛

⎝
∂

∂λT Q1n(α0,0) ∂
∂α

Q1n(α0,0)

∂

∂λT Q2n(α0,0) 0

⎞

⎠ (4.30)

p→
(

−V (−α−2
0 , (α0 − 1)−2)T

(−α−2
0 , (α0 − 1)−2) 0

)

. (4.31)

Since Q1n(α0,0) = Op(k−1/2), (4.29) and (4.30) imply that

δn = Op

(
k−1/2). (4.32)
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Hence, by (4.29)–(4.32) and Lemma 3,

l
(
θ0, α̂(θ0)

) = 2k
(
λ̂

T
, α̂(θ0) − θ0

)(
QT

1n(α0,0),0
)T

+ k
(
λ̂

T
, α̂(θ0) − θ0

)
�n

(
λ̂

T
, α̂(θ0) − θ0

)T + op

(
k−1/2)

= −k
(
QT

1n(α0,0),0
)
�−1

n

(
QT

1n(α0,0),0
)T + op

(
k−1/2)

= −(√
kȲT

n (α0),0
)
�−1

n

(√
kT̄T

n (α,0),0
)T + op

(
k−1/2)

d→ χ2(1). �
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