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ABSTRACT. Suppose that X1,…, Xn is a sequence of independent random vectors, identi-
cally distributed as a d-dimensional random vector X. Let μ∈RRp be a parameter of interest
and ν∈RRq be some nuisance parameter. The unknown, true parameters (μ0, ν0) are uniquely
determined by the system of equations E{g(X, μ0, ν0)}� 0, where g� (g1,…, gp+q) is a vector
of p+q functions. In this paper we develop an empirical likelihood (EL) method to do inference
for the parameter μ0. The results in this paper are valid under very mild conditions on the
vector of criterion functions g. In particular, we do not require that g1,…, gp+q are smooth
in μ or ν. This offers the advantage that the criterion function may involve indicators, which
are encountered when considering, e.g. differences of quantiles, copulas, ROC curves, to mention
just a few examples. We prove the asymptotic limit of the empirical log-likelihood ratio, and
carry out a small simulation study to test the performance of the proposed EL method for small
samples.
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1. Introduction and general method

Suppose that X1, . . ., Xn is a sequence of independent random vectors, identically distributed
as a d-dimensional random vector X. Let � ∈ Rp be a parameter of interest and � ∈ Rq be
some nuisance parameter. The unknown, true parameters (�0, �0) are uniquely determined by
the system of equations

E{g(X, �0, �0)}=0, (1)

where g = (g1, . . ., gp+q) is a vector of p+q functions. In this paper we develop an empirical
likelihood (EL) method to do inference for the parameter �0. The results in this paper are
valid under very mild conditions on the vector of criterion functions g. In particular, we do
not require that g1, . . ., gp+q are smooth in � or �. This offers the advantage that the criterion
function may involve indicators, which are encountered when considering, e.g. differences of
quantiles, copulas, ROC curves, to mention just a few examples.

Qin & Lawless (1994) also consider the problem of developing EL theory for the parameter
�0. However, their results are restricted to smooth criterion functions, and hence they exclude
many interesting examples. See also the remark following theorem 3.6 in Owen (2001), where
some examples are given of situations that are ruled out by their result, and section 10.6 in
Owen (2001), which considers in more detail the difficulties encountered when considering
non-smooth estimating equations.
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In this paper we will overcome this smoothness condition by using a different method of
proof. In fact, our proof is based on Sherman (1993), who developed general conditions under
which the maximizer of a locally quadratic criterion function is consistent and asymptotically
normal. His result is valid without assuming that the criterion function is continuous. On
the contrary, Qin & Lawless (1994) heavily use Taylor expansions in their proofs, for which
smoothness of the functions g1, . . ., gp+q is indispensable.

Define for any (�, �)∈Rp+q the EL:

L(�, �)=nn sup

{
n∏

i =1

pi(�, �) : pi(�, �)≥0,
n∑

i =1

pi(�, �)=1,

n∑
i =1

pi(�, �)gj(Xi , �, �)=0, j =1, . . ., p+q

}
. (2)

The supremum in (2) is defined to be zero when the set is empty, and exists and is unique
provided that 0 belongs to the interior of the convex hull of (g(X1, �, �), . . ., g(Xn, �, �)). In
the latter case, the standard Lagrange multiplier method provides the optimal pi(�, �):

pi(�, �)= 1
n

⎛
⎝1+

p+q∑
j =1

�j(�, �)gj(Xi , �, �)

⎞
⎠
−1

, i =1, . . ., n, (3)

and also the following empirical log-likelihood ratio for �:

`(�, �)=−2 log L(�, �)=2
n∑

i =1

log

⎧⎨
⎩1+

p+q∑
j =1

�j(�, �)gj(Xi , �, �)

⎫⎬
⎭, (4)

where the Lagrange multipliers �j(�, �) ( j =1, . . ., p+q) satisfy the following equations:
n∑

i =1

gj(Xi , �, �)

1+∑p+q
k =1 �k(�, �)gk(Xi , �, �)

=0, j =1, . . ., p+q. (5)

Now, define an estimator �̃(�) of the nuisance parameter � by maximizing L(�, �) over � for
a fixed value of �, or equivalently by minimizing `(�, �):

�̃(�)=argmin�`(�, �), (6)

and let �̃= �̃(�0). Finally, define

`(�)=`(�, �̃(�)). (7)

The main result of this paper shows that the asymptotic distribution of `(�0) is χ2
p.

In a number of papers, the lack of smoothness of the criterion functions g1, . . ., gp+q has
been overcome by replacing them by smooth approximations, leading to a so-called smooth
EL. See, e.g. Zhou & Jing (2003) for differences of quantiles, Claeskens et al. (2003) for ROC
curves and Chen et al. (2009) for copulas. However, this has the drawback that a bandwidth
parameter needs to be selected, which is often a challenging problem. In this paper we do
not apply any smoothing in the EL procedure, thanks to the new method of proof.

Instead of profiling out the nuisance parameter �0, as we have done in (6), one could also
replace �0 by a certain ‘plug-in’ estimator, different from the above profile estimator. This
idea has been considered in Hjort et al. (2009) in a general framework (where �0 is allowed
to be a function rather than a parameter). With that approach, the limit of the empirical
log-likelihood ratio is, however, not necessarily a χ2

p variable, but it is in general a weighted
sum of χ2

1 variables, where the weights are often unknown. The method proposed in this
paper yields an unweighted χ2

p distribution, thanks to the way the parameter �0 is estimated.

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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The paper is organized as follows. In the next section, we formulate the main result of this
paper, and state the conditions under which this result is valid. We also discuss the extension
of the proposed method to the case of multiple samples. In section 3, a number of specific
examples are considered and the general conditions are tested on these examples. The results
of a small simulation study are shown in section 4, whereas the proof of the main result and
some technical lemmas are given in the Appendix.

2. Main result

As mentioned in the Introduction, the aim of this section is to show that Wilks’ theorem
(which says that the empirical log-likelihood ratio `(�0) converges in distribution to a
χ2

p variable) is valid, even when the criterion functions are not smooth. This then allows to
construct approximate confidence regions for the parameter of interest �0.

The proof of this result relies on theorems 1 and 2 of Sherman (1993). In that paper,
a general method is given for establishing the rate of convergence and the asymptotic
normality of a maximization estimator that does not require differentiability of the criterion
functions. The following matrix V of dimensions (p+2q) × (p+2q) will play an important
role:

V =
(

V11 V12

V t
12 0

)
, (8)

where

V11 =(
E {gj(X, �0, �0)gk(X, �0, �0)})

j,k =1, ..., p+q

V12 =
(

− ∂

∂�k
E{gj(X, �0, �)}

∣∣∣
�= �0

)
k =1, ..., q; j =1, ..., p+q.

We will need the following conditions:

(C0) There exists a neighbourhood N of �0 such that P(L(�0, �) > 0 for all �∈N )→1.
(C1) The functions gj(x, �0, �) ( j =1, . . ., p+q) are uniformly bounded in Rd × Rq; the

functions

E{gj(X, �0, �)gk(X, �0, �)}, j, k =1, . . ., p+q,

∂

∂�k
E{gj(X, �0, �)} and

∂2

∂�k∂�`

E{gj(X, �0, �)}, k, `=1, . . ., q; j =1, . . ., p+q

are continuous for � in a neighbourhood of �0; the function

E{g(X, �0, �)/[1+�tg (X, �0, �)]}
has continuous partial derivatives with respect to the components of � in a
neighbourhood of �0; the function

E{g(X, �0, �)gt(X, �0, �)/(1+�tg(X, �0, �))2}
is uniformly continuous with respect to the components of � and � in a
neighbourhood of �0 and 0.

(C2) The matrix V11 in (8) is positive definite.
(C3) �̃=argmin�`(�0, �) converges in probability to �0.

(C4) n−1
n∑

i =1

[gj(Xi , �0, �)−E{gj(X, �0, �)}]=OP(n−1/2)

uniformly in � in an o(1)-neighbourhood of �0 ( j =1, . . ., p+q).

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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(C5) n−1
n∑

i =1

[gj(Xi , �0, �)gk(Xi , �0, �)−E{gj(X, �0, �)gk(X, �0, �)}]=oP(1)

uniformly in � in an o(1)-neighbourhood of �0 ( j, k =1, . . ., p+q).

(C6) n−1
n∑

i =1

[gj(Xi , �0, �)−E{gj(X, �0, �)}−gj(Xi , �0, �0)+E{gj(X, �0, �0)}]=oP(n−1/2)

uniformly in � for �− �0 =O(n−1/2) ( j =1, . . ., p+q).

Condition (C0) is equivalent to requiring that the probability that the zero-vector belongs
to the interior of the convex hull of (g(X1, �0, �), . . ., g(Xn, �0, �)) for all �∈N converges to
one, and is needed to ensure that the log-likelihood `(�0, �) can be written as in (4). Note that
in (C1) we only impose smoothness conditions on E{g(X, �0, �)} and not on g(X, �0, �) itself.
Hence, we are able to handle non-smooth criterion functions, like indicators. The matrix in
(C2) is by construction positive semidefinite. All we ask is that it is also positive definite,
which is a very mild assumption. To prove condition (C3), use can be made of, e.g. theorem
5.7 in Van der Vaart (1998, p. 45). Finally, conditions (C4) and (C5) are standard uniform
consistency results, while (C6) is a Bahadur-type modulus of continuity result. They can be
easily proved or found in the literature for particular choices of the criterion functions gj .
See also section 3, where we check the above conditions in a few particular examples of the
general method.

Theorem 1
Assume (C0)–(C6) Then,

`(�0)=`(�0, �̃(�0))=−2 log L(�0, �̃(�0)) d→χ2
p.

In the special case where g1, . . ., gp+q are smooth functions, this result has been shown in
corollary 4 in Qin & Lawless (1994), using a different method of proof.

Remark 1 (EL for two samples). The situation above can also be extended to the multi-
sample situation. For simplicity we describe here the two-sample case. Suppose X1, . . ., Xn1 is
a sample from a d1-dimensional random vector X, and Y1, . . ., Yn2 is an independent sample
from a d2-dimensional random vector Y. Suppose that the parameters (�0, �0) are uniquely
determined by the equations

E{g(X, �0, �0)}=0 and E{h(Y, �0, �0)}=0, (9)

where g = (g1, . . ., gr1 ), h= (h1, . . ., hr2 ) and r1 + r2 =p+q. The EL ratio for � is now

L(�, �)=nn1
1 nn2

2 sup

{
n1∏

i =1

pi(�, �)
n2∏

j =1

qj(�, �) : pi(�, �)≥0, qj(�, �)≥0,
n1∑

i =1

pi(�, �)=1,

n2∑
j =1

qj(�, �)=1,
n1∑

i =1

pi(�, �)gj(Xi , �, �)=0,
n2∑

i =1

qi(�, �) hj (Yi , �, �)=0

}
.

The empirical log-likelihood for � is again defined as

`(�, �)=−2 log L(�, �)

=2
n1∑

i =1

log

⎧⎨
⎩1+

r1∑
j =1

�j(�, �)gj(Xi , �, �)

⎫⎬
⎭+2

n2∑
i =1

log

⎧⎨
⎩1+

r2∑
j =1

�j(�, �)hj(Yi , �, �)

⎫⎬
⎭,
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where the Lagrange multipliers �j(�, �) (j =1, . . ., r1) and �j(�, �) (j =1, . . ., r2) satisfy
equations analogous to the one in (5). The definitions of �̃= �̃(�0) and `(�)=`(�, �̃(�))
are the same as in (6) and (7). The analogue of the (p+2q) × (p+2q) matrix V in (8) now
becomes⎛

⎝V11 0 V13

0 V22 V23

V t
13 V t

23 0

⎞
⎠,

with

V11 =(
E{gj(X, �0, �0)gk(X, �0, �0)})j,k =1, ...,r1

V22 =(
E{hj(Y, �0, �0)hk(Y, �0, �0)})j,k =1, ...,r2

V13 =
(

− ∂

∂�k
E{gj(X, �0, �)}

∣∣∣
�= �0

)
j =1, ...,r1;k =1, ...,q

V23 =
(

− ∂

∂�k
E{hj(Y, �0, �)}

∣∣∣
�= �0

)
j =1, ...,r2;k =1, ...,q

.

Very similar to the one-sample case, one can prove that `(�0) is asymptotically χ2
p.

The required conditions are completely similar to (C0)–(C6). For (C1) and (C4)–(C6), we
need to impose the parallel conditions on the functions gj and hj , whereas for (C2) positive
definiteness of V11 and V22 is required. We also need to impose the usual asymptotic balance
condition on the sample sizes n1 and n2.

Remark 2 (Tests and confidence regions). An approximate 100(1−�)% EL confidence region
for �0 is obtained by the following subset of Rp:

{
� : `(�)≤χ2

p,1−�

}=
{

� : L(�, �̃(�))≥ exp
(

− 1
2 χ2

p,1−�

)}
,

where χ2
p,1−� is the (1−�) quantile of the χ2

p distribution. Similarly, a level-� test for the null
hypothesis H0 :�=�0 will reject H0 if `(�0) >χ2

p,1−�.

3. Examples of the general method

We consider four examples of the general theory in more detail. In each of these examples,
the criterion function involves indicators, which could not be dealt with so far in the
literature on EL methods without using smoothing techniques.

3.1. Difference of quantiles in the one sample problem

For d =1 and X1, . . ., Xn a random sample from X with distribution function F , we consider
the difference of quantiles

�0 =F −1(p2)−F −1(p1),

where 0 < p1 < p2 < 1 and F −1(u)= inf{x : F (x) ≥ u} for 0 < u < 1. Clearly, when p1 =0.25 and
p2 =0.75 we get the interquartile range. Introducing the parameter �0 =F −1(p1), we have the
equations{

F (�0 + �0)−p2 =0
F (�0)−p1 =0.

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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So, we have (1) with p=q =1, g1(X, �, �)= I (X ≤ �) − p1 and g2(X, �, �)= I (X ≤�+ �) − p2.
This problem has been studied by Zhou & Jing (2003) by using a smoothed EL approach,
whereas Chen & Hall (1993) studied one single quantile using a smoothed EL approach.

From theorem 1 we know that `(�0) converges to a χ2
1 distribution, provided conditions

(C0)–(C6) are satisfied. First, define N ={� :�< F (�) < F (�0 + �) < 1−�} for some �> 0. Then,
with probability growing to one, we have that for all �∈N , the convex hull of (g(X1, �0, �), . . .,
g (Xn, �0, �)) is equal to the triangle in R2 with corners (1 − p1, 1 − p2), (−p1, 1 − p2) and
(−p1, −p2). It is easily seen that (0, 0) is inside this triangle as p1 < p2. Hence, (C0) is satisfied.
Condition (C1) is satisfied if F (x) is twice continuously differentiable in a neighbourhood of
x = �0. (C2) easily follows from the fact that p1 < p2, whereas conditions (C4)–(C6) follow from
the rate of convergence and the modulus of continuity of the empirical distribution function.
It remains to show the validity of (C3). For a fixed sample X1, . . ., Xn and for � such that
L(�0, �) > 0, we can write

`(�0, �)=2
n∑

i =1

log

⎧⎨
⎩1+

2∑
j =1

�j(�0, �)gj(Xi , �0, �)

⎫⎬
⎭ ,

where (for j =1, 2)
n∑

i =1

gj(Xi , �0, �)

1+∑2
k =1 �k(�0, �)gk(Xi , �0, �)

=0.

Note that �̃ and �0 are the maximizers of �n(�), and �(�), respectively, where �n(�) and
�(�) are as in (A1) and (A2). Hence, to show condition (C3), we will check the conditions
of theorem 5.7 in Van der Vaart (1998), i.e. we will show that

sup
�

|�n(�)−�(�) | P→0, (10)

sup
|�−�0|> ε

�(�) <�(�0) (11)

for all ε> 0. Condition (11) is ensured by the fact that �0 is assumed to be unique together
with equation (A5), whereas for (10) we write

�n(�)−�(�)=
[
−n−1

n∑
i =1

log(1+�(�0, �)tg(Xi , �0, �))+E{log(1+�(�0, �)tg(X, �0, �))}
]

+ [−E{log(1+�(�0, �)tg(X, �0, �))}+E{log(1+�(�0, �)tg(X, �0, �))}].
The second term above is easily seen to be oP(1) by using standard arguments concerning
parametric Z-estimators (see, e.g. Van der Vaart, 1998, p. 41, for the notion of Z-
estimators). To show that the first term goes to zero uniformly in �, we will prove that the
class

F ={x → log(1+	tg(x, �0, �)) :	∈R, �∈R}
is Glivenko–Cantelli, where R⊂R2 is such that (�1(�0, �), �2(�0, �))t belongs to R for all � and
for all samples for which L(�0, �) > 0. Note that R can be taken compact. This is because
1+�(�0, �)tg(Xi , �0, �) is strictly positive for all i and all �, and hence (�1(�0, �), �2(�0, �))t

needs to satisfy the constraints⎧⎨
⎩

1+�1(�0, �) (1−p1)+�2 (�0, �) (1−p2) > 0,
1−�1(�0, �) p1 +�2(�0, �) (1−p2) > 0,
1−�1(�0, �) p1 −�2(�0, �) p2 > 0.

The intersection of these three half planes is a triangle, and hence it is compact.

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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The Glivenko–Cantelli property of the class F can now be easily shown by using
theorem 2.7.5 in Van der Vaart & Wellner (1996), together with the monotonicity (in x) of
the function gj(x, �0, �) ( j =1, 2). This shows that condition (C3) is satisfied.

As a consequence of theorem 1, we can now construct an EL confidence region for �0 or
test hypotheses concerning the value of �0.

3.2. Copula functions

Take d =2 and let (X11, X21), . . ., (X1n, X2n) be a random sample from X = (X1, X2) with
unknown bivariate distribution function H(x1, x2)=P(X1 ≤x1, X2 ≤x2). According to Sklar’s
theorem, see, e.g. Nelsen (1999), there exists a copula function C that links the bivariate H to
the marginals F1 of X1 and F2 of X2 via the formula H(x1, x2)=C(F1(x1), F2(x2)). The copula
function C is itself a bivariate distribution on the unit square with uniform marginals. More-
over, if F1 and F2 are continuous, C is unique and given by C(u1, u2)=H(F −1

1 (u1), F −1
2 (u2)),

0 ≤ u1, u2 ≤ 1. We want to do inference on the value of the unknown copula function C at
fixed 0≤u1, u2 ≤1. Let

�0 =C(u1, u2).

Introducing the parameters �01 =F −1
1 (u1) and �02 =F −1

2 (u2), we have the equations⎧⎨
⎩

H(�01, �02)−�0 =0
F1(�01)−u1 =0
F2(�02)−u2 =0.

This is of the form (1) with

p=1, q =2, g1(X, �, �)= I (X1 ≤ �1, X2 ≤ �2)−�,

g2(X, �, �)= I (X1 ≤ �1)−u1 and g3(X, �, �)= I (X2 ≤ �2)−u2.

This example has been studied using a smoothed EL by Chen et al. (2009).
The verification of conditions (C0)–(C6) can be carried out in much the same way as in

the previous example. Note that we now have three estimating equations instead of two, and
some arguments (especially the geometric arguments) are therefore somewhat more
technical than in the previous example. The main reasoning is, however, the same and details
are therefore omitted.

In the last two examples we consider the context of two samples. The verification of the
conditions is very analogous to the first example, as the criterion functions are again based
on indicators. The same method of proof as in the first example can therefore be followed.

3.3. Difference of quantiles in the two sample problem

For independent random samples X1, . . ., Xn1 from X with distribution function F1 and
Y1, . . ., Yn2 from Y with distribution function F2, we consider

�0 =F −1
2 (t)−F −1

1 (t),

where 0 < t < 1. Introducing the parameter �0 =F −1
1 (t), we have the equations{

F1(�0)− t =0
F2(�0 + �0)− t =0.

This is of the form (9) with g(X, �, �)= I (X ≤ �)− t and h(Y, �, �)= I (Y ≤�+ �)− t.

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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3.4. ROC curves

In the situation of section 3.3, we consider

�0 =1−F1(F −1
2 (1− t)),

where 0 < t < 1, which is the receiver operating characteristic (ROC) curve, evaluated in
the point t. For a nice introduction on ROC curves, see, e.g. Pepe (2003). Introducing the
parameter �0 =F −1

2 (1− t) leads to the equations{
F1(�0)− (1−�0)=0
F2(�0)− (1− t)=0,

which is again of the form (9). A smoothed EL approach to this problem has been
considered in Claeskens, et al. (2003) for completely observed data and in Molanes Lopez
et al. (2008) (unpublished data) for censored and truncated data.

4. Simulations

For the sake of brevity, in this section, we only consider the example introduced in section 3.2,
regarding copula functions. Through a simulation study, we check the behaviour of our EL
method in this particular case and compare it with the smoothed EL approach proposed by
Chen et al. (2009), hereafter abbreviated by CPZ.

A 100(1 − �)% confidence region for �0 =C(u1, u2) includes all those values of � for
which the null hypothesis H0 : C(u1, u2)=� cannot be rejected. According to remark 2, an
approximate 100(1−�)% confidence region for �0 is given by

I1−�(u1, u2)={
� : `(�)≤χ2

1,1−�

}
. (12)

We draw 1000 samples of size n from the mixture copula, C(u1, u2; 
, �1, �2), given by:

C(u1, u2; 
, �1, �2)= 

{

u−�1
1 +u−�1

2 −1
}1/�1 + (1− 
) exp{−((− log u1)�2 + (− log u2)�2 )1/�2}, (13)

where the marginals are standard normal distributions and the parameters �1, �2 and 
 are
such that �1 > 0, �2 > 1 and 
∈ [0, 1]. We take the above mixture copula with �1 =2 and �2 =3,
as previously considered by CPZ. When 
=1 the mixture copula in (13) becomes a
Clayton copula with parameter �1 and when 
=0 it becomes a Gumbel–Hougaard copula
with parameter �2. The parameter 
 denotes the mixing probability of these two copulas in
the mixture.

The selection of observations from a given copula has been carried out based on a
general approach, which is outlined in, e.g. Embrechts et al. (2003). This general method
entails solving an equation which, in the particular case of a Gumbel–Hougaard copula, does
not have an analytical solution. Although a numerical algorithm can in principle be used
to solve this equation, this approach turns out to be very time consuming, given the large
number of times the algorithm needs to be applied. For this reason, drawing from a Gumbel–
Hougaard copula has been performed using an alternative algorithm proposed by Marshall
& Olkin (1988), based on a mixture of powers.

In order to check the performance of our method, a Monte Carlo approximation of the
coverage probability of (12) is obtained under different scenarios. For every trial, we first
obtain the value of `(�0) by solving the optimization problem in (14)–(16):

min
�

`(�0, �) (14)
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subject to

n∑
i =1

gj(Xi , �0, �)

1+∑3
k =1 �k(�0, �)gk(Xi , �0, �)

=0, for j =1, 2, 3, (15)

1+
3∑

k =1

�k(�0, �)gk(Xi , �0, �) > 0, for i =1, . . ., n, (16)

where gk(Xi , �0, �) (k =1, 2, 3 and i =1, . . ., n) are given in section 3.2. Once we obtain `(�0)
we check if �0 falls in the confidence region given in (12) by checking whether `(�0)≤χ2

1,1−�.
The proportion of times that �0 falls in (12) gives us a Monte Carlo approximation of the
coverage probability of (12).

Note that the constraints in (16) must be imposed to exclude any �(�0,�)= (�1(�0,�),�2(�0,�),
�3(�0, �)) for which some pi(�0, �)≤0 [(see (3)]. Following the ideas presented in Owen (2001,
p. 62 and 235), the constrained optimization problem in (14)–(16) is equivalent to

min
�

`(�0, �), (17)

subject to

n∑
i =1

log(1)
∗

{
1+

3∑
k =1

�k(�0, �)gk(Xi , �0, �)

}
gj(Xi , �0, �)=0, for j =1, 2, 3, (18)

where

Table 1. Empirical coverage probabilities for the empirical likelihood-based
confidence region in (12) with sample sizes n=200, 400 and points (u1, u2)
on the unit square diagonal. The first line corresponds to the new method,
the second line to the smoothed empirical likelihood method of Chen et al.
(2009)

n=200 n=400

(
, u1, u2) I0.90(u1, u2) I0.95(u1, u2) I0.90(u1, u2) I0.95(u1, u2)

(0.0, 0.25, 0.25) 0.893 0.940 0.886 0.944
0.923 0.957 0.902 0.944

(0.0, 0.50, 0.50) 0.906 0.954 0.891 0.954
0.889 0.940 0.896 0.948

(0.0, 0.75, 0.75) 0.844 0.934 0.862 0.936
0.897 0.951 0.890 0.939

(0.5, 0.25, 0.25) 0.900 0.930 0.889 0.940
0.919 0.970 0.895 0.949

(0.5, 0.50, 0.50) 0.907 0.943 0.900 0.936
0.908 0.961 0.846 0.908

(0.5, 0.75, 0.75) 0.897 0.952 0.878 0.942
0.876 0.932 0.869 0.924

(1.0, 0.25, 0.25) 0.870 0.915 0.894 0.935
0.922 0.964 0.901 0.954

(1.0, 0.50, 0.50) 0.877 0.931 0.885 0.938
0.898 0.952 0.893 0.948

(1.0, 0.75, 0.75) 0.902 0.952 0.858 0.919
0.825 0.910 0.762 0.850

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.



422 E. M. Molanes Lopez et al. Scand J Statist 36

log∗(z)=
{

log(z), if z ≥ 1
n ,

log( 1
n )−1.5+2nz − (nz)2

2 , if z ≤ 1
n ,

and log(1)
∗ (z)=(∂/∂z)(log∗(z)). With this new formulation of the problem, the inequality

constraints in (16) have been ruled out.
Table 1 shows the coverage probabilities of our method and those reported in CPZ, which

makes our results directly comparable with theirs. The expected standard deviation of each
number in the table due to Monte Carlo is in general less than 0.01. The bandwidth para-
meter in their method is selected using a cross validation procedure (see their paper for a de-
tailed description of the procedure). From this comparison, we conclude that the behaviour
of our method, which has the advantage of avoiding a bandwidth selection problem, is in
general at least as good as the behaviour of the smoothed EL approach of CPZ. A closer
inspection of the table reveals that CPZ’s method has a coverage probability that is in general
closer to the target than our method, but, on the other hand, CPZ’s method is slightly more
variable. Moreover, as CPZ indicate, the bandwidth in their procedure has a non-negligible
impact on the coverage probability, and the choice of the optimal bandwidth in terms of cov-
erage probability remains an open problem, both theoretically and practically. Our method
on the contrary does not depend on a bandwidth, and hence it does not share this drawback.

In Table 2 we show the coverage probabilities obtained with our method for other sample
sizes, other values for the parameter 
 in (13) and for points (u1, u2) falling outside of the
unit square diagonal. CPZ did not consider this setting in their simulation study. However,
from the experience we gained during the implementation of our methodology, we observed
that achieving convergence is more challenging when dealing with non-diagonal points. The
table shows that the empirical coverage probabilities are close to their nominal values and
that the results improve when the sample size increases.

Note that the fact that we do not introduce smoothing and avoid a delicate bandwidth
selection problem, inherent to CPZ’s method, entails, on the other hand, that our method-
ology is more complex to programme, because no derivatives can be taken. We specially

Table 2. Empirical coverage probabilities for the empirical likelihood-based
confidence region in (12) with sample sizes n=200, 300 and points (u1, u2)
outside the unit square diagonal and such that |u1 −u2|=0.10, 0.20, 0.30

n=200 n=300

(
, u1, u2) I0.90(u1, u2) I0.95(u1, u2) I0.90(u1, u2) I0.95(u1, u2)

(0.25, 0.30, 0.40) 0.909 0.966 0.895 0.948
(0.50, 0.30, 0.40) 0.926 0.948 0.915 0.958
(0.75, 0.30, 0.40) 0.886 0.948 0.900 0.948
(0.25, 0.40, 0.50) 0.895 0.949 0.894 0.947
(0.50, 0.40, 0.50) 0.907 0.939 0.914 0.959
(0.75, 0.40, 0.50) 0.879 0.945 0.865 0.949
(0.25, 0.30, 0.50) 0.901 0.947 0.901 0.963
(0.50, 0.30, 0.50) 0.898 0.957 0.864 0.946
(0.75, 0.30, 0.50) 0.895 0.923 0.879 0.923
(0.25, 0.40, 0.60) 0.856 0.958 0.870 0.944
(0.50, 0.40, 0.60) 0.884 0.958 0.907 0.947
(0.75, 0.40, 0.60) 0.869 0.949 0.878 0.942
(0.25, 0.30, 0.60) 0.935 0.942 0.811 0.971
(0.50, 0.30, 0.60) 0.958 0.962 0.918 0.922
(0.75, 0.30, 0.60) 0.830 0.955 0.874 0.954
(0.25, 0.40, 0.70) 0.923 0.952 0.888 0.964
(0.50, 0.40, 0.70) 0.841 0.965 0.896 0.956
(0.75, 0.40, 0.70) 0.895 0.922 0.879 0.951
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found more difficulties for our method to achieve convergence when non-diagonal points are
considered. This is the reason why in the implementation of our methodology we finally used
a combination of numerical algorithms as explained below.

For every trial we first try to solve the optimization problem specified in (17) and (18)
by using a matlab function for nonlinear constrained optimization problems ( fmincon). If
this algorithm fails to find the solution to (17) and (18), we then use a modification of a
basic generating set search (GSS) algorithm for unconstrained optimization, proposed by
Frimannslund & Steihaug (2007). This algorithm is derivative-free and incorporates
curvature information about the objective function as the search progresses. If this second
algorithm does not converge either, then we use a crude grid search. We evaluate (17) at
an equally spaced grid of points, �= (�1, �2), placed around (F −1

1n (u1), F −1
2n (u2)), where F −1

jn

denotes the empirical quantile function of Fj for j =1, 2. Note that for the implementation
of these two last algorithms, the evaluation of the objective function in (17) at a given �
goes through previously finding the solution, �(�0, �), to the nonlinear system of equations
defined in (18). The matlab function fsolve has been used to solve these nonlinear
equations.
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Fig. 1. A QQ plot with the c quantiles of the �2
1 distribution (c ∈ {0.001, 0.002, . . ., 0.999}) plotted

against the corresponding sample quantiles obtained from 1000 values drawn from `(�0) under different
settings: for (
, u1, u2)= (1, 0.5, 0.5), with n=200 (dark points) and n=400 (grey points) (left-top panel),
for (
, u1, u2)= (0.5, 0.25, 0.25), with n=200 (dark points) and n=400 (grey points) (right-top panel),
for (
, u1, u2)= (0, 0.75, 0.75), with n=200 (dark points) and n=400 (grey points) (left-bottom panel)
and for (
, u1, u2)= (0.25, 0.30, 0.50), with n=200 (dark points) and n=300 (grey points) (right-bottom
panel). The 45◦ line and two reference points corresponding to nominal confidence levels of 90% and
95% are also included in each plot.
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In order to empirically examine the accuracy of the χ2
1 approximation to the distribution

of the log-likelihood function at the true parameter, `(�0), we draw QQ plots that compare
the c quantiles of the χ2

1 distribution for c ∈{0.001, 0.002, . . ., 0.999}, with the corresponding
sample quantiles obtained from 1000 values drawn from `(�0) (see Fig. 1 where different
scenarios are considered). From these QQ plots we can conclude that, except for extreme
upper quantiles, the distribution of `(�0) is reasonably well approximated by a χ2

1 distribution.
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Appendix: Proofs

Throughout this appendix we will use the abbreviated notation �j(�)=�j(�0, �) (j =1, . . ., p+q).
We will give here the proofs of the main theorem and of several lemmas. As these will rely
on theorems 1 and 2 of Sherman (1993), it is convenient to introduce some extra notation
in order to bring our situation into theirs. As we know from condition (C3) that �̃ converges
in probability to �0, we can restrict our attention to what follows to an o(1) neighbourhood
of �0. In that case, the empirical log-likelihood ratio can be written in the form (A4) for n
large, and we therefore define:

�n(�)=−n−1
n∑

i =1

log(1+�(�)tg(Xi , �0, �)) (A1)

�(�)=−E{log(1+�(�)tg(X, �0, �))}, (A2)

where �(�) is defined in (5) and �(�)= (�1(�), . . ., �p+q(�)) satisfies

E
{

g(X, �0, �)
1+�(�)tg(X, �0, �)

}
=0. (A3)

Note that �(�) exists, and is non-stochastic, unique and continuously differentiable for � in
a neighbourhood of �0. This follows from the implicit function theorem (see, e.g. theorem
13.7, p. 374 in Apostol, 1974), together with condition (C1). In addition, note that `(�0, �)=
−2n�n(�), where `(�0, �) is defined in (4).

We start with a preliminary lemma concerning �̃ and �0.

Lemma 1
Under (C0)–(C2), and with �̃ defined in (6), we have

�̃=arg max
�

�n(�), (A4)

�0 =arg max
�

�(�). (A5)

Proof. Equation (A4) follows from the fact that

max
�

�n(�)=−1
2

n−1 min
�

`(�0, �)=−1
2

n−1`(�0, �̃)=�n(�̃).

For (A5), note that �(�0)=0 as �(�0)=0, and that for any � /= �0,

�(�)=−�(�)tE
{

g(X, �0, �)
1+�(�)tg(X, 1�0, �)

}
− 1

2
E

{
(�(�)tg(X, �0, �))2

(1+�(�)tg(X, �0, �))2

}
,

for some �(�) on the line segment between 0 and �(�). The first term above equals 0, whereas
the second one is strictly negative. Hence �0 is a maximizer of �(�).

Lemma 2
Under (C0)–(C2), (C4), (C5), we have

�(�)=OP(n−1/2)+OP(‖�− �0‖), (A6)

�(�)−�(�)=OP(n−1/2) (A7)

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.



426 E. M. Molanes Lopez et al. Scand J Statist 36

uniformly for all � in an o(1) neighbourhood of �0, and

�(�)=V −1
11 (�)n−1

n∑
i =1

g(Xi , �0, �)+oP(n−1/2), (A8)

uniformly for all � in an O(n−1/2) neighbourhood of �0, where

V11(�)= (E{gj(X, �0, �)gk(X, �0, �)})j,k =1, ...,p+q.

Proof. First note that V11(�) is positive definite for � in a neighbourhood of �0 because of
conditions (C1) and (C2). The proof of (A6) and (A8) follows along the same lines as the
proof of, e.g. theorem 3.2 in Owen (2001, p. 219). The proof of (A7) follows using standard
arguments concerning parametric Z estimators (see, e.g. Van der Vaart, 1998, p. 41, for the
notion of Z-estimators).

Lemma 3
Under (C0)–(C2), there exists a neighbourhood N of �0 and a constant K > 0 for which

�(�)≤−K‖�− �0‖2

for all �∈N, where ‖ · ‖ is the Euclidean norm.

Proof. From the proof of lemma 1, we have

�(�)=−1
2

E
{

(�(�)tg(X, �0, �))2

(1+�(�)tg(X, �0, �))2

}
,

with �(�) on the segment between 0 and �(�). As from (A3) it follows that �(�) is continuously
differentiable, we have that

�(�)=�(�0)+�′(�∗)(�− �0)=�′(�∗)(�− �0),

with �∗ between �0 and �. Hence,

(�(�)tg(X, �0, �))2 = (�− �0)t�′(�∗)tg (X, �0, �)gt(X, �0, �)�′(�∗) (�− �0) and

�(�)= 1
2 (�− �0)tF (�, �∗)(�− �0),

where

F (�, �∗)=−�′(�∗)tE
{

g(X, �0, �)gt(X, �0, �)
(1+�(�)tg(X, �0, �))2

}
�′(�∗).

From condition (C1) it follows that F (�, �∗) is uniformly continuous in a compact neighbour-
hood of �0 and hence

�(�)≤ 1
2 (�− �0)tF (�0, �0)(�− �0)+�‖�− �0‖2

for any �> 0. As F (�0, �0)=−�′(�0)tE{g(X, �0, �0)gt(X, �0, �0)}�′(�0), we have by (C2) that the
inner matrix is positive and hence that F (�0, �0) is negative definite. This means that it has
the following representation: F (�0, �0)=P−1�P, where P−1 =Pt and � is a diagonal matrix
with the eigenvalues on the diagonal. These eigenvalues are strictly negative. Then,

(�− �0)tF (�0)(�− �0)= (�− �0)tP−1�P(�− �0)= (P(�− �0))t�(P(�− �0))

≤−K‖P(�− �0)‖2 =−K (�− �0)tPtP(�− �0)=−K‖�− �0‖2,

with −K equal to the eigenvalue with the largest absolute value.

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 36 EL for non-smooth criterion functions 427

Lemma 4
Under (C0), (C1), (C4), (C5), we have

�n(�)=�(�)+OP(n−1/2‖�− �0‖)+oP(‖�− �0‖2)+OP(n−1)

uniformly in �, for �− �0 =o(1).

Proof. First note that

n−1
n∑

i =1

{log(1+�(�)tg(Xi , �0, �))− log(1+�(�)tg(Xi , �0, �))}

={�(�)−�(�)}tn−1
n∑

i =1

{
g(Xi , �0, �)

1+�(�)tg(Xi , �0, �)

}

+ 1
2 {�(�)−�(�)}tn−1

n∑
i =1

{
g(Xi , �0, �)gt(Xi , �0, �)
(1+	(�)tg(Xi , �0, �))2

}
{�(�)−�(�)},

for some 	(�) on the line segment between �(�) and �(�). The first term above is OP(n−1) by
equations (A3) and (A7), while the second one is OP(n−1) by lemma 2 and the boundedness
of the function g.

Hence, it suffices to calculate the order of

n−1
n∑

i =1

log(1+�(�)tg(Xi , �0, �))−E{log(1+�(�)tg(X, �0, �))}

=n−1
n∑

i =1

[
�(�)tg(Xi , �0, �)−E{�(�)tg(X, �0, �)}]

− 1
2

n−1
n∑

i =1

[(�(�)tg(Xi , �0, �))2 −E{(�(�)tg(X, �0, �))2}]

+ 1
3

n−1
n∑

i =1

[
(�(�)tg(Xi , �0, �))3

(1+	1i)3
−E

{
(�(�)tg(X, �0, �))3

(1+	2)3

}]

=T1 +T2 +T3,

where

|	1i |≤ |�(�)tg(Xi , �0, �)|≤M
p+q∑
j =1

|�j(�)|

and similarly for 	2, and where

M = sup
j,x,�

|gj(x, �0, �)|<∞

by condition (C1). For T1 we have

|T1|≤
p+q∑
j =1

|�j(�)|
∣∣∣∣n−1

n∑
i =1

[gj(Xi , �0, �)−E{gj(X, �0, �)}]

∣∣∣∣
=OP

(
n−1/2

p+q∑
j =1

|�j(�)|
)

=OP(n−1/2‖�− �0‖)+OP(n−1)
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because of condition (C4) and lemma 2. Further,

|T2|≤ 1
2

p+q∑
j,k =1

|�j(�)�k(�)|
∣∣∣∣n−1

n∑
i =1

[
gj(Xi , �0, �)gk(Xi , �0, �)−E{gj(X, �0, �)gk(X, �0, �)}] ∣∣∣∣

=oP

(( p+q∑
j =1

|�j(�)|
)2)

=oP(‖�− �0‖2)+oP(n−1)

by using (C5). Similarly,

|T3|≤ 1
3

p+q∑
j,k,`=1

|�j(�)�k(�)�`(�)|
∣∣∣∣n−1

n∑
i =1

[
gj(Xi , �0, �)gk(Xi , �0, �)g`(Xi , �0, �)

(1+	1i)3

−E
{

gj(X, �0, �)gk(X, �0, �)g`(X, �0, �)
(1+	2)3

}]∣∣∣∣.
By (C1) and as |	1i |≤M‖�(�)‖ and |	2|≤M‖�(�)‖, we have that, for each sequence of random
variables {rn} with rn =o(1):

sup
‖�−�0‖≤rn/M

|T3|≤ (constant)
( p+q∑

j =1

|�j(�)|
)3 1

1− rn

=OP(‖�− �0‖3 +n−3/2)
1

1− rn
=oP(‖�− �0‖2)+OP(n−1).

Lemma 5
Under (C0), (C1), (C5) and (C6) we have

�n(�)= 1
2

(�−�0)tV (�−�0)−n−1/2(�−�0)tWn +oP(n−1) (A9)

uniformly in �, for �− �0 =O(n−1/2), where �= (�(�), �)t, �0 = (0, �0)t,

Wn =
(

n−1/2
n∑

i =1

g1(Xi , �0, �0), . . ., n−1/2
n∑

i =1

gp+q(Xi , �0, �0), 0q

)
, (A10)

and where 0q is a vector of q zeros.

Proof. Throughout the proof we will use the notation �1 =�(�), �2 = �, �01 =0 and �02 = �0.
Taylor expansion as in lemma 4 gives

�n(�)=−n−1
n∑

i =1

log(1+�t
1g(Xi , �0, �2))

=−n−1
n∑

i =1

�t
1g(Xi , �0, �2)+ 1

2
n−1

n∑
i =1

(�t
1g(Xi , �0, �2))2 − 1

3
n−1

n∑
i =1

(�t
1g(Xi , �0, �2))3

(1+�1i)3

=S1 +S2 +S3,

where

|�1i |≤M
p+q∑
j =1

|�1j |.
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As in the proof of lemma 4 we have that S3 =OP(‖�−�0‖3)=oP(n−1), as �(�)=OP(n−1/2) by
lemma 2. Next consider S1. We write

S1 =−n−1
n∑

i =1

p+q∑
j =1

gj(Xi , �0, �02)�1j −n−1
n∑

i =1

p+q∑
j =1

[
gj(Xi , �0, �2)−gj(Xi , �0, �02)

]
�1j

=S11 +S12.

Note that S11 =−n−1/2(�−�0)tWn. For S12 we write

S12 =−n−1
p+q∑
j =1

n∑
i =1

[gj(Xi , �0, �2)−E {gj(X, �0, �2)}−gj(Xi , �0, �02)+E{gj(X, �0, �02)}]�1j

−
p+q∑
j =1

[E{gj(X, �0, �2)}−E{gj(X, �0, �02)}]�1j . (A11)

From (C6) we have that the first term in (A11) is

oP

(
n−1/2

p+q∑
j =1

|�1j |
)

=oP(n−1/2‖�−�0‖)=oP(n−1).

For the second term in (A11), we have, using (C1), that it is equal to

−
p+q∑
j =1

∂

∂�2
E{gj(X, �0, �2)}

∣∣∣∣
�2 =�02

(�2 −�02)�1j +oP(n−1),

where

∂

∂�2
E{gj(X, �0, �2)}

∣∣∣∣
�2 =�02

is the vector with elements

∂

∂�2k
E{gj(X, �0, �2)}

∣∣∣∣
�=�02

.

Hence, S12 = (�1 −�01)tV12(�2 −�02)+oP(n−1). Now we deal with S2.

S2 = 1
2

n−1
n∑

i =1

p+q∑
j,k =1

gj(Xi , �0, �02)gk(Xi , �0, �02)�1j�jk

+ 1
2

n−1
n∑

i =1

p+q∑
j,k =1

[gj(Xi , �0, �2)gk(Xi , �0, �2)−gj(Xi , �0, �02)gk(Xi , �0, �02)]�1j�jk

=S21 +S22.

For S21 we write

S21 = 1
2

n−1
p+q∑

j,k =1

n∑
i =1

[gj(Xi , �0, �02)gk(Xi , �0, �02)

−E{gj(X, �0, �02)gk(X, �0, �02)}]�1j�1k

+ 1
2

p+q∑
j,k =1

E{gj(X, �0, �02)gk(X, �0, �02)}�1j�1k . (A12)
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From (C5), we have that the first term in (A12) is

oP

(( p+q∑
j =1

|�1j |
)2)

=oP(‖�−�0‖2)=oP(n−1).

The second term in (A12) is equal to
1
2

(�1 −�01)tV11(�1 −�01). The term S22 can be written
as

S22 = 1
2

n−1
p+q∑

j,k =1

n∑
i =1

[gj(Xi , �0, �2)gk(Xi , �0, �2)−E{gj(X, �0, �2)gk(X, �0, �2)}

−gj(Xi , �0, �02)gk(Xi , �0, �02)+E{gj(X, �0, �02)gk(X, �0, �02)}]�1j�1k

+ 1
2

p+q∑
j,k =1

[E{gj(X, �0, �2)gk(X, �0, �2)}−E{gj(X, �0, �02)gk(X, �0, �02)}]�1j�1k .

From (C5) it follows that the first term is oP(‖�− �0‖2)=oP(n−1) and that the second term
is OP(‖�−�0‖3)=oP(n−1), using (C1). This shows (A9).

Lemma 6
Under (C0)–(C6), we have

�n(�)=−1
2

(�− �0)tV t
12V −1

11 V12(�− �0)+n−1/2(�− �0)tV t
12V −1

11 Xn

− 1
2

n−1X t
nV −1

11 Xn +oP(n−1) (A13)

uniformly in �, for �− �0 =O(n−1/2), and

�̃− �0 =n−1/2(V t
12V −1

11 V12)−1V t
12V −1

11 Xn +oP(n−1/2), (A14)

where Wn = (Xn, 0q)t, and V and Wn are given in (A8) and (A10) respectively.

Proof. We start with the first assertion. From lemma 2, together with conditions (C1)
and (C6), we know that �(�)=V −1

11 [n−1/2Xn −V12(�− �0)]+oP(n−1/2) uniformly for all � in an
O(n−1/2) neighbourhood of �0. Hence, it follows from lemma 5 that

�n(�)= 1
2

[
�(�)tV11�(�)+2(�− �0)tV t

12�(�)
]
−n−1/2(�(�)t, (�− �0)t)Wn +oP(n−1)

= 1
2

[{
n−1/2X t

n − (�− �0)tV t
12

}
V −1

11

{
n−1/2Xn −V12(�− �0)

}]
+ (�− �0)tV t

12V −1
11

{
n−1/2Xn −V12(�− �0)

}
−n−1/2

{
n−1/2X t

n − (�− �0)tV t
12

}
V −1

11 Xn +oP(n−1)

=−1
2

(�− �0)tV t
12V −1

11 V12(�− �0)+n−1/2(�− �0)tV t
12V −1

11 Xn

− 1
2

n−1X t
nV −1

11 Xn +oP(n−1). (A15)

To show the second assertion of the lemma, we will apply theorems 1 and 2 in Sherman
(1993). First note that condition (C3) and lemmas 1, 3 and 4 imply that �̃−�0 =OP(n−1/2), by
applying theorem 1 in Sherman (1993). Next, (A15) shows that the displayed condition (4) in
the statement of theorem 2 in Sherman (1993) is satisfied, except for the term − 1

2 n−1X t
nV −1

11 Xn,
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which should not be there. However, careful inspection of the proof of this theorem reveals
that the result remains valid when this extra term is present, as this term does not depend
on �. It now follows from the proof of this theorem that

�̃− �0 =n−1/2(V t
12V −1

11 V12)−1V t
12V −1

11 Xn +oP(n−1/2).

This shows the second statement of the lemma.

Proof of theorem 1. Without loss of generality, we condition on the event that ‖�̃− �0‖≤ K
for some K > 0. This is possible, as �̃−�0 =OP(n−1/2) (see lemma 6). From lemma 6 it follows
that, with V22.1 =−V t

12V −1
11 V12,

�n(�̃)=− 1
2 n−1X t

nV −1
11 V12V −1

22.1V t
12V −1

11 Xn − 1
2 n−1X t

nV −1
11 Xn +oP(n−1)

=− 1
2 n−1X t

nV −1/2
11 DV −1/2

11 Xn +oP(n−1),

where

D=V −1/2
11 {I +V12V −1

22.1V t
12V −1

11 }V 1/2
11 ,

or equivalently,

`(�0)=X t
nV −1/2

11 DV −1/2
11 Xn +oP(1). (A16)

Note that D can also be written as D=V 1/2
11 V 11V 1/2

11 , where

V −1 =
(

V 11 V 12

(V 12)t V 22

)
,

as it follows from lemma 3 in Qin & Lawless (1994) that

V −1 =
(

I −V −1
11 V12

0 I

)(
V −1

11 0
0 V −1

22.1

)(
I 0

−V t
12V −1

11 I

)

=
(V −1

11 (I +V12V −1
22.1V t

12V −1
11 ) −V −1

11 V12V −1
22.1

−V −1
22.1V t

12V −1
11 V −1

22.1

)
.

Moreover, note that

V −1/2
11 Xn =V −1/2

11 n−1/2
n∑

i =1

g(Xi , �0, �0) d→N(0; I ),

so that from (A16) it follows that

`(�0) d→χ2
p,

provided we can show that

D is symmetric, (A17)

D is idempotent, (A18)

tr(D)=p, (A19)

where tr(D) is the trace of the matrix D. For (A17), we have that Dt =D as it is easily seen
that V t

11 =V11 and (V 11)t =V 11. For (A18), note that
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DD=V 1/2
11 V 11V11V 11V 1/2

11 =V 1/2
11 V 11V 1/2

11 =D,

as by direct calculation, it follows that

V 11V11V 11 =V −1
11 (I +V12V −1

22.1V t
12V −1

11 )(I +V12V −1
22.1V t

12V −1
11 )

=V −1
11 (I +V12V −1

22.1V t
12V −1

11 )=V 11.

Finally, for (A19) we have:

tr(D)= tr(V 1/2
11 V 11V 1/2

11 )= tr(V11V 11)= tr(I +V12V −1
22.1V t

12V −1
11 )

= tr(I(p+q)×(p+q))+ tr(V t
12V −1

11 V12V −1
22.1)

= tr(I(p+q)×(p+q))− tr(Iq×q)=p+q −q =p.
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