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Abstract

The Cox model with time-dependent coefficients has been studied by a number of authors recently.
In this paper, we develop empirical likelihood (EL) pointwise confidence regions for the time-
dependent regression coefficients via local partial likelihood smoothing. The EL simultaneous
confidence bands for a linear combination of the coefficients are also derived based on the strong
approximation methods. The empirical likelihood ratio is formulated through the local partial log-
likelihood for the regression coefficient functions. Our numerical studies indicate that the EL
pointwise/simultaneous confidence regions/bands have satisfactory finite sample performances.
Compared with the confidence regions derived directly based on the asymptotic normal distribution
of the local constant estimator, the EL confidence regions are overall tighter and can better capture
the curvature of the underlying regression coefficient functions. Two data sets, the gastric cancer
data and the Mayo Clinic primary biliary cirrhosis data, are analyzed using the proposed method.
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1. Introduction

Let T* be the survival time of interest and X = (X1, …, Xp)T the possible explanatory variables
or covariates, where the superscript denotes the transpose of a vector or matrix. We consider
the situation where the survival time may be subject to possible random right censorship. Let
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T = min(T*, C) and δ = I(T* ≤ C), where C is the censoring random variable that is independent
of T* conditional on X. We observe independent identically distributed (i.i.d.) copies of (T,

X, δ): (T1, X1, δ1), …, (Tn, Xn, δn). The survival time  is observed if δi = 1 and censored at
Ci if δi = 0. The Xi = (Xi1, …, Xip)T is the covariate for the ith subject. Let λ(t|x) be the conditional
hazard function of T* given X = x, defined as

The Cox proportional hazards model postulates the following form (Cox, 1972 and 1975):

(1.1)

where β0 is a p-dimensional parameter and λ0(t) is an unspecified function. The function
λ0(t) corresponds to the conditional hazard function of T* given X = 0, thus also called the
baseline hazard function. Under the Cox model (1.1), the conditional hazard rates associated
with any two values of covariate X are proportional. The β0 yields the log relative hazard rate
between two sets of covariates. The proportional hazards model (1.1) is the most popular model
for the analysis of survival data and has been studied extensively by many authors. The
extension of this model to time dependent covariates has been done by Andersen and Gill
(1982) using the counting process and the martingale approach.

In practice, the covariate effects may vary over time and the proportional hazards assumption
may become questionable with longer follow-up. Different hazard regression models have been
proposed to accommodate such situations. These include the general stratified Cox model by
Dabroska (1997), additive hazards models by Aalen (1980) and Huffer and McKeague
(1991), accelerated failure time models by Buckley and James (1979), Koul, Susarla and Van
Ryzin (1981) and transformation models by Cheng, Wei and Ying (1995) and Chen, Jin and
Ying (2002), among others. Because of wide applications and well established interpretations
of the Cox model in practice, it is of great interest to allow the vector of coefficients β0 to
change over time on the basis of the Cox model (1.1). The Cox model with time-dependent
coefficients specifies that

(1.2)

where λ0(t) is an unspecified baseline function as before and β0(t) is a p-dimensional vector of
unspecified coefficient functions of t. Unless β0(t) is constant, this model represents a non-
proportional hazards model. The model (1.2) has been investigated by Murphy and Sen
(1991), Martinussen, Scheike and Skovgaard (2002), Cai and Sun (2003) and Tian, Zucker,
and Wei (2005). Alternatively, Pons (2000) studied the extension of the model by letting β0

depend on some covariate.

Fan, Gijbels and King (1997) suggested to estimate the risk factor in the hazard regression
using a local partial likelihood estimation technique. Cai and Sun (2003) used a similar
approach to estimate the time-dependent coefficients β0(t) for the model (1.2). The asymptotic
consistency and asymptotic normality for the estimators β̂(t) of β0(t) were obtained at each
time t. Pointwise Wald-type confidence intervals for β0(t) can thus be constructed. More
recently, Tian, et al. (2005) further studied the local constant partial likelihood estimators. For
any given p-vector κ, they obtained point-wise Wald-type confidence intervals for κT β0(t)
based on the asymptotic normal distribution of β̂(t). They also constructed simultaneous
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confidence bands over a properly chosen time interval using the strong approximation
technique presented by Bickel and Rosenblatt (1973) and Yandell (1983) and a resampling
technique of Lin, Fleming and Wei (1994). Both these pointwise and simultaneous confidence
intervals constructed for κT β0(t) are centered on the point estimate κT β̂(t).

In this paper, we present alternative constructions of confidence intervals for β0(t) and κT

β0(t) based on the empirical likelihood (EL) approach of Owen (1988, 1990). Owen (1988,
1990) introduced EL confidence regions for the mean of a random vector based on i.i.d.
complete data. Owen (1991, 1992) and Kolaczyk (1994), among others, have extended the EL
methodology to a broad range of regression problems involving linear models, generalized
linear models and project pursuit models. The EL methods to nonparametric regressions with
local smoothing have been explored by Chen and Qin (2000) and Zhang and Liu (2003). The
use of EL methods in survival analysis traces back to Thomas and Grunkemeier (1975) who
derived pointwise confidence intervals for survival function with right censored data; see also
Li (1995) and Murphy (1995). This approach has been used in the constructions of simultaneous
confidence bands for survival function, Q-Q plot and the ratio of survival functions by
Hollander, McKeague and Yang (1997), Einmahl and McKeague (1999), Li and Van Keilegom
(2002), McKeague and Zhao (2002). Qin and Lawless (1994) linked the EL method to general
estimating equations. Hjort, McKeague and Van Keilegom (2007) further extended the EL

method to allow for plug-in estimates of nuisance parameters and slower than  of
convergence. The EL method has some unique features, such as range respecting,
transformation-preserving, asymmetric confidence interval and Bartlett correctability. A
discussion of the advantages of the EL method over classical methods (based on normal
approximation and bootstrap) can be found in Hall and La Scala (1990) and Owen (2001).

Qin and Jing (2001) considered using the EL approach for the Cox model (1.1). However, their
method does not really apply to the Cox model in general since it assumes a known baseline
function. In this paper, we develop EL pointwise confidence regions for the time-dependent
regression coefficients β0(t) based on the local partial likelihood of Cai and Sun (2003). We
also construct EL simultaneous confidence bands for κT β0(t) based on the strong
approximation methods. Our main interest includes the development of EL simultaneous
confidence bands coupled with local smoothing for the Cox model with time-dependent
coefficients. An early work for constructing simultaneous confidence bands that used the EL
with smoothing was considered by Hall and Owen (1993) for kernel density estimation.

The rest of the article is organized as follows. In Section 2, we construct the EL pointwise
confidence regions for β0(t) and simultaneous confidence bands for κT β0(t), for any given p-
vector κ. The numerical studies of the proposed method are reported in Section 3, which include
a simulation study and applications to analyze the gastric cancer data (Stablein et al., 1981)
and the Mayo Clinic primary biliary cirrhosis data (Fleming and Harrington 1991, Appendix
D). All the proofs are collected in the Appendix.

2. Empirical likelihood confidence regions/bands for time-dependent

coefficients

2.1. Local partial maximum likelihood estimator

Let Ni(t) = I(Ti ≤ t, δi = 1) be the counting process of observed failures for the ith individual,
and Yi(t) = I(Ti ≥ t) the at risk indicator process. For a fixed time point t, consider the following
local partial log-likelihood function of the p-vector β to estimate β0(t):
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(2.1)

where Kh(·) = K(·/h)/h, h = hn > 0 is the bandwidth that controls the size of a local neighborhood,
K(·) is a kernel function that weighs smoothly down the contribution of remote data points and
τ is a prespecified constant such that P(Ti > τ) > 0. The local constant partial maximum
likelihood estimator β̂(t) is obtained by maximizing (2.1) with respect to β (Cai and Sun,
2003).

Let  and s(j) (β, u) = ES(j) (β, u), j = 0, 1, 2 where

Xi(u)⊗0 = 1, Xi(u)⊗1 = Xi(u) and  The score function is given by

(2.2)

Cai and Sun (2003) showed that  and that

(2.3)

for any fixed interior point t of [0, τ], where ν0 = ∫ K2(u)du, bias(t) is a function of t depending
on the model specifications and

(2.4)

The asymptotic covariance ∑(t) can be consistently estimated by ∑̂(t) = ∫ Kh(u − t)V (β̂(t), u)

dN(u), where  and V (β, u) = S(2) (β, u)/S(0) (β, u) − [S(1) (β,
u)]⊗2 /[S(0) (β, u)]2.

Let nh5 → 0, which results in an under-smoothed estimator β̂(t). An asymptotic 100(1−α)%
pointwise confidence region for β0(t), 0 < t < τ , based on the asymptotic normality (2.3), is
given by

where  is the 1 − α quantile of the chi-square distribution with p degrees of freedom.

In the next subsection, we derive EL pointwise confidence regions for the time-dependent
coefficients β0(t) based on the score function (2.2). We also construct EL simultaneous
confidence bands for each component of β0(t) based on the strong approximation methods.
The EL simultaneous confidence bands for κT β0(t) can then be obtained through an linear
transformation. The following conditions are assumed in order to establish the asymptotic
properties.
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Let ℬ be a compact set of the space ℝp that includes a neighborhood of β0(t) for t ∈ [0, τ]. We
assume the following regularity conditions.

a. X(t) is a bounded and predictable process on [0, τ].

b. s(j)(β, t), for j = 0, 1, 2, and their partial derivatives with respect to β are continuous
in (β, t) ∈ ℬ × [0, τ] with s(0)(β, t) > 0 for (β, t) ∈ ℬ × [0, τ]. λ0(t), β0(t), s(j) (β0(t),
t) and s(j) (β, t), for j = 0, 1, are twice continuously differentiable in t ∈ [0, τ].

c. ∥S(j) (β, t) − s(j) (β, t)∥ = Op(n−1/2) uniformly in (β, t) ∈ ℬ × [0, τ].

d. The matrix ∑(t) is positive definite for all t ∈ [0, τ].

e. The kernel function K(·) is a symmetric density with the bounded support on [−1, 1]
and is continuously differentiable. The bandwidth h = n−υ, where 1/5 < υ < 1/2.

2.2. The EL pointwise confidence regions

The score function (2.2) can be written as

(2.5)

Each term in the summation has mean close to zero at β = β0(t) by the martingale property and
the fact that the difference β0(t) − β0(u) is small for |t − u| ≤ h.

Let  Replacing the cumulative baseline function

 by its nonparametric estimator Λ̂0(t) = Λ ̂0(β̂(·), t), we define, for 1 ≤ i ≤ n,

Then 

The empirical likelihood method was originally proposed by Owen (1988, 1990) for
constructing confidence regions for the mean of a random vector based on i.i.d. complete data.
Qin and Lawless (1994) linked the EL method to general estimating equations. Hjort,
McKeague and Van Keilegom (2007) further extended the EL method to allow for plug-in

estimates of nuisance parameters and slower than  of convergence under a given set
of conditions. The basic idea of empirical likelihood is to regard the observations, e.g., {(Ti,
Xi, δi), i = 1, …, n}, as if they are i.i.d. from a fixed and unknown distribution P, and to model
P by a multinomial distribution concentrated on the observations, with pi as the probability

mass at the ith observation. The empirical likelihood is then  and the empirical
likelihood ratio is of the form L(P)/L(Pn), where Pn is the empirical distribution dividing the
probability equally among n observations. The following empirical likelihood ratio function
can be formulated to obtain confidence regions for β0(t) at each time t, by considering the
constrain EPUi(β, t) = 0

(2.6)
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Our empirical likelihood ratio uses the plug-in estimate for the nonparametric base-line

function Λ0(t) and needs to consider local smoothing which results in slower than  of
convergence the score U (β, t). Unlike Hjort, et al. (2007), our Ui(β, t), i = 1, …, n, are not i.i.d.
even for the true Λ0(t) since each term involves both S(0) (β, t) and S(1) (β, t). The asymptotic
theorem for constructing the EL pointwise confidence regions for β0(t) can be proved similarly
as in Hjort et al. (2007). This proof is based on a technical lemma given in the Appendix,
Lemma A.1, which specify the terms similar to the conditions of Hjort et al. (2007). In fact,
Lemma A.1 presents some results that are stronger than what are needed for the EL point-wise
confidence regions. It is also the basis for the constructions of EL simultaneous confidence
bands which present some new challenges and necessitate additional treatments, as derived in
the next subsection.

For each β and t, the maximum of  in (2.6) under the constraints

 and ∑pi = 1 exists, provided that 0 is inside the convex hull of the
points U1(β, t), …, Un(β, t), cf. Owen (1988,1990). It is clear that the local constant estimator
β̂(t) is also the empirical likelihood ratio estimator since R(β, t) attains the maximum at β̂(t)

based on the fact that  maximized at pi = 1/n. The maximum R(β, t) may be obtained
using the method of Lagrange multipliers. Similar to Qin and Lawless (1994), the maximum
is attained when pi = n−1{1 + λTUi(β, t)}−1, where λ = (λ1, …, λp)T is a solution to

(2.7)

The empirical likelihood ratio statistic for testing H0 : β = β0(t) at a fixed time t ∈ (0, τ) becomes

(2.8)

The next theorem derives its asymptotic distribution and leads to the construction of pointwise
confidence regions for β0(t).

THEOREM 2.1—Under Conditions (a)–(e), −2 log R(β0(t), t) converges in distribution to a

chi-square distribution with p degrees of freedom as n → ∞ for each t ∈ (0, τ).

For each t ∈ (0, τ), an asymptotic 100(1 − α)% confidence region for β0(t) is obtained by

As discussed by Owen (2001), the coverage error in empirical likelihood using χ2 calibration
is typically of order of 1/n. A Bartlett correction reduces the coverage error to O(1/n2) and the
bootstrap has been found to be effective in reducing the coverage error in some settings. Here
for the same purpose we introduce a Gaussian multiplier calibration for the critical value

. The Gaussian multiplier method has been widely used and very effective in many
semiparametric and nonparametric settings, cf. Lin et al. 1994. Let

. From (A.8) in the proof of Theorem 2.1 in the Appendix,

(2.9)
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holds uniformly for β in a neighborhood of β0(t), t ∈ [h, τ − h] for some ϵ > 0, where Γ(t) =
ν0∑(t) is the asymptotic variance of U˜ (β0(t), t) as shown in Lemma A.1.

Let  where U^i(t) is obtained by replacing β with β̂(t) in Ui(β, t).
Then Γ̂ (t) is a consistent estimator for Γ(t). Let ξ1, …, ξn be i.i.d. standard normal random

variables. Define  and

(2.10)

The critical value  in the EL confidence region construction can be calibrated using the

1 − α empirical quantile of , which are B independent copies of GR* obtained by
repeatedly generating independent sets of {ξ1, …, ξn} given the observed data sequence.

2.3. The EL Simultaneous confidence bands

Based on the pointwise confidence interval for a coefficient function, one can make inference
for the covariate effect at a given time. However, to assess how the covariate effect changes
over time, one would need to establish simultaneous confidence band for coefficient function
over time. Tian, et al. (2005) has derived simultaneous confidence bands for the coefficient
functions over time that are symmetric about the corresponding estimators. Their confidence
bands for {κT β0(t), t ∈ [t1, t2]} are of the form {κTβ̂ (t) ± cα w^ (t)−1, t ∈ [t1, t2]}, where κ is
a given p-vector. In this section, we develop EL simultaneous confidence bands for each

component of the coefficients β0(t) and for κT β0(t) over time. Such confidence bands are easy

to plot and interpolate. We use an approach that resembles the method of profile empirical

likelihood ratio by plugging in the estimates of other components.

As we see from (2.9), the difficulty in the constructions of the simultaneous confidence bands

lies in the fact that the process (h/n)1/2U(β, t) is not tight, thus it does not converge to a process

in distribution; see Tian, et al. (2005). The strong approximation techniques presented by Bickel

and Rosenblatt (1973) and Yandell (1983) are used to obtain the approximation to the

distribution of the supremum of some appropriate process. Furthermore, since this type of

approximation is known to be not very accurate (Hall, 1993), we propose a Gaussian multiplier

simulation technique to calibrate the critical values.

Let [t1, t2] ⊂ (0, τ). Without loss of generality, we describe the method for obtaining pointwise

and simultaneous confidence bands for β1(t), the first component of β0(t), over t ∈ [t1, t2] in

the following. Let R(β1, β̂ −1(t), t) be the empirical likelihood ratio R(β, t) evaluated at β =

(β1, β̂−1(t)), where β1 is the first component of β andβ̂−1(t) is the vector consisting of the

components of β̂(t) other than the estimate β̂1(t). Let e1 be the first column of a p × p identity

matrix and

THEOREM 2.2—Assume that Conditions (a)−(e) hold. Let nh5 → 0. Then
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for some ϵ > 0. Further,

i. For each t ∈ [t1, t2],

ii. For any M > 0,

(2.11)

and

(2.12)

where rn = [2 log((t2 − t1)/h)]1/2, 
(2rn)−1 and K′ (s) is the derivative of K(s).

From Theorem 2.2, an asymptotic 100(1−α)% EL pointwise confidence band for β1(t), t1 ≤ t
≤ t2 is obtained by

where  is the 1 − α quantile of the distribution of  with 1 degree of freedom. An
asymptotic 100(1 − α)% EL simultaneous confidence band for β1(t), t1 ≤·t ≤ t2 can be
constructed by

where cα is the 1−α quantile of the asymptotic distribution of Q. By (2.11), cα can be estimated

by  As discussed earlier and according to Theorem 2.2, a more
accurate approximation for cα can be obtained by the quantile of Q* given the observed data

sequence. Specifically, cα can be estimated by the 1 − α empirical quantile of , which
are independent copies of Q* obtained by repeatedly generating independent sets of {ξ1, …,

ξn}. Similarly, the critical value  in the EL pointwise confidence band for β1(t), t1 ≤ t ≤
t2, can be calibrated using the 1 − α empirical quantile of Q* after dropping the supremum over
t.

To construct EL pointwise and simultaneous confidence bands for κT β0(t) where κ is a p × 1-
dimensional constant vector, we let ψ be a p × (p − 1) matrix chosen such that the matrix A =
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(κ, ψ) is nonsingular. Put γ0(t) = AT β0(t). Then β0(t) = (AT )−1γ0(t) and (β0(t))T x = (γ0(t))T

A−1x. Hence, the EL confidence bands for κT β0(t) can be carried out by constructing the
confidence bands for the first component of γ0(t) in the covariate transformed Cox model: λ
(t|z) = λ0(t) exp((γ0(t))T z), where z = A−1x. In fact, the vector κ can be allowed to depend on
t since the method developed here is applicable to time-dependent covariates. Based on the
simultaneous confidence bands for κT β0(t), one can test the hypothesis κT β0(t) = 0 by
examining whether the confidence band encloses the x-axis, or identify the covariates whose
effects are time-dependent by checking whether the corresponding confidence band contains
a horizonal line.

3. Numerical studies

In this section we conduct a simulation study to check the finite sample performance of the
proposed EL pointwise and simultaneous confidence bands. We compare the performance of
the proposed EL pointwise confidence regions with the normal approximation based
confidence regions in terms of coverage probability. The EL simultaneous confidence bands
are also assessed. Moreover, The proposed method is applied to analyze the gastric cancer data
(Stablein et al., 1981) and the Mayo Clinic primary biliary cirrhosis data (Fleming and
Harrington 1991, Appendix D).

3.1. Simulation study

We consider two models for the simulation experiments. First, we simulate data from the
following model:

(3.1)

where λ0(t) = t−1/2 /2, β0(t) = t1/2 and the covariate X is a 0/1 treatment indicator, with each
value having equal probability of occurring. The censoring variable C is generated from a
uniform distribution on an interval [0, α], where α is chosen such that it results in either 10%
or 30% censoring. Note that the time varying effect β0(t) in this case denotes the change in the
relative risk between the treatment group and the control group on a logarithmic scale. Our
simulation compares the EL confidence intervals for β0(t), t ∈ [.25, 1.25] with that based on
Cai and Sun (2003). Table 1 presents the coverage probabilities of the asymptotic 95%
pointwise confidence intervals for β0(t), t ∈ [.25, 1.25] for various sample sizes n = 250, 500
and n = 750, bandwidths h = .2 and h = .3, and for censoring percentages 10% and 30%, where
ELSQ corresponds to the EL procedure using the chi-square critical values, ELGM is the EL
procedure using Gaussian multiplier method for estimating the critical values and CS is the
method based on Cai and Sun (2003). The coverage probabilities of the EL simultaneous
confidence bands for β0(t), t ∈ [.25, 1.25] are presented in Table 2. The Epanechinikov kernel
function K(x) = .75(1 − x2)I(|x| ≤ 1) is used throughout. All the coverage probabilities are based
on 1000 replications. The proposed EL pointwise confidence intervals performs very
competitively with that of Cai and Sun (2003) approach in terms of coverage probability. The
EL approach remains stable across various censoring percentages. The coverage probabilities
of the EL simultaneous confidence band for β0(t), t ∈ [.25, 1.25] reported in Table 2 shows
that as sample size increases from n = 250 to n = 750, the performance of ELGM improves
reaching very close to the nominal level and remains stable across varying censoring
percentages, while ELEX (with cα calculated directly from the extreme value distribution)
performs very poorly.

Next, we investigate the performance of the proposed confidence regions based on the
following model with one time-varying effect and one fixed effect:
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(3.2)

where β1(t) = t and β2 = 1/2. The covariates X1 is generated from a uniform distribution on the
interval [0, 1] and X2 is generated from a standard normal distribution. The baseline λ0(t) is
taken to be 1: In Table 3, we present the coverage probabilities of the EL pointwise confidence
interval for β1(t) for t ∈ [.25, 1.25] for various sample sizes n = 250, 500 and 750, bandwidths
h =.5 and h = .6, and censoring percentages 10% and 30%: The coverage probabilities of the
pointwise confidence intervals based on Cai and Sun (2003) are not reported here. The findings
on the comparison are similar to those from Table 1. The coverage probabilities of the EL
simultaneous confidence band (ELGM) for β1(t) for t ∈ [.25, 1.25] are given in Table 4, while
those of ELEX are not reported simply because the method does not seem to work for practical
sample sizes due to its slow convergence. Again, the numbers reported in the tables are based
on 1000 replications.

Note that the performance of the EL pointwise confidence band is very good even for the
sample size n = 250 and remains stable across varying censoring percentages. Table 4 also
indicates good finite sample behavior of the EL simultaneous confidence bands.

Overall, based on the extensive simulation studies that we have conducted (including the ones
not reported here), the empirical likelihood based approach seems to have very good finite
sample properties. In fact, all three approaches (ELSQ, ELGM and CS) for the pointwise
confidence intervals seem to yield similar coverage probabilities. The advantage of the EL
confidence bands is that the produced confidence bands need not be symmetric about the
estimates, and are narrower particularly in the situation of higher dimensional covariates, as
we shall see from the two application studies next. This property translates to greater power in
the hypothesis testing with the EL confidence bands. These findings are in line with the
simulation outcomes of Qin and Lawless (1994). In addition, our data analysis experience
indicates that the EL procedure using Gaussian multiplier method (ELGM) for estimating the
critical values is more stable than the EL procedures using the chi-square critical values
(ELSQ), probably due to the fact that the ELGM is based on a better approximation to the finite
sample distribution especially for small sample sizes. Further, the EL simultaneous confidence
bands using the critical values calculated directly from the extreme value distribution (ELEX)
do not perform well for practical sample sizes due to its slow convergence.

To compute EL pointwise/simultaneous confidence bands, one can use a combination of grid
search and Newton Raphson type of root solving algorithms with a modification for checking
constraints; see the discussions in Hall and La Scala (1990). In practice, the appropriate
bandwidth selection can be based on a cross-validation method. This approach is widely used
in nonparametric function estimation literature and has been investigated by Tian et al.
(2005) in this scenario. They used a κ-fold cross-validation approach for the bandwidth
selection with the optimum choice based on minimizing “prediction error”. This procedure
appears to be robust.

3.2. Gastric cancer study

In this section, we illustrate our method by first analyzing gastric cancer patients study (Stablein
et al., 1981). The data consists of survival times of ninety patients divided between two
treatments, one group on chemotherapy and the other group on combined treatment of both
chemotherapy and radiation. We analyze this data using the Cox model with time-varying
treatment effect β0(t). In Figure 1, we present a comparison of the proposed EL confidence
interval/band with the confidence interval based on the Cai and Sun approach, using the
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bandwidth h = 600 days. The critical values of the EL confidence intervals/bands are estimated
using the Guassian multiplier approach.

As can be seen from Figure 1, the treatment effect is linear in agreement with the findings of
Carter et al. (1983). However, the effect changes from positive to negative, i.e., β̂(t) > 0 roughly
up to 15 months and then β̂(t) becomes negative. The empirical likelihood based confidence
interval is narrower than that based on the Cai and Sun approach in the right tail and is
asymmetric.

3.3. Mayo Clinic primary biliary cirrhosis study

We further illustrate our proposed EL interval estimates by analyzing the well-known Mayo
Clinic primary biliary cirrhosis data (Fleming and Harrington 1991, Appendix D). The data
consists of survival times of 418 patients and various potential prognostic factors with two
subjects missing covariate values. As in previous literature, we focus our attention on the 416
patients with complete covariate information and include the following five covariates: age,
log(albumin), log(bilirubin), log(prothrombin time) and edema. These covariates have been
selected as important predictors for Cox’s regression model with time-invariant regression
parameters by Fleimng and Harrington (1991, page 195) and by Tian et al. (2005) for time-
varying parameters. Tian et al. (2005) showed that the optimal bandwidth using on the
prediction error based on the minus logarithm of partial likelihood function is 690 days or 1.89
years. We shall use this bandwidth for all the interval estimates calculations.

We compare the 95% EL pointwise confidence intervals for the time-dependent effects of the
five covariates with those based on the Cai and Sun approach. As seen in Figure 2, the EL
pointwise confidence intervals (dashed lines) are overall tighter than the Cai and Sun based
approach (grey lines). We also report the 95% EL confidence bands for the time-dependent
effects of the five covariates (dotted lines) in the time interval [1:78; 8:22] years. Again, the
critical values of the EL confidence intervals/bands are estimated using the Guassian multiplier
approach. Our findings are in agreement with the analysis of Tian et al. (2005) that the effect
of log(prothrombin time) is significant initially with the effect decreasing as time progresses.
Also with the introduction of time-dependent effects, edema and log(prothrombin time) can
be introduced into the model without violation of proportionality assumption (Fleming and
Harrington, 1991). Overall, the EL pointwise confidence intervals are narrower than the Cai
and Sun approach based pointwise confidence intervals and can better capture the curvature
of the underlying treatment effects.

Appendix

Here we give proofs for Theorem 2.1 and Theorem 2.2. The following lemma provides the
critical results needed for the proofs. Let ∥A∥ be the Euclidean modulus of a matrix A.
According to the Appendix A and B of Tian et al. (2005), there exists a α > 0 such that
suph≤t≤τ−h ∥β̂(t) − β0(t)∥ = (nh)−1/2Op(n−α). Let δn = (nh)−1/2n−δ with 0 < δ < α, and ℬt be a
neighborhood of β0(t) such that ∥β − β0(t)∥ ≤ δn, for 0 ≤ t ≤ τ.

LEMMA A.1

Under Conditions (a)−(e), for 0 < t < τ,

i.

ii.
 uniformly in β ∈ ℬt, t ∈ (h, τ − h);
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iii.
, uniformly in β ∈ ℬt, t ∈ (h, τ − h), where Γ

(t) = ν0∑(t).

Proof

Let  be the martingale associated with the ith
individual. Then for each fixed t,

where the first term is a locally square integrable martingale in τ with the predictable variation
process

by Lemma 1 of Cai and Sun (2003). Let Hn,i,l(u) be the lth element of Xi(u) −S(1)(u, β0(t))/
S(0)(u, β0(t)). The Lindeberg condition is satisfied since

for all ϵ > 0. Thus  by applying the martingale central limit theorem [cf.
Theorem 5.3.5 of Fleming and Harrington (1991)].

The proof of (ii) follows from Appendix A of Tian et al. (2005) by noting that the rate op(1)
in the last line of its page 180 can be substituted by Op((nh)−1/2 + h2) and that the derivatives
of s(j)(β, t), j = 0, 1, are uniformly continuous in the neighborhood ℬt × [0, τ].

To prove the assertion (iii), we let

Then,
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where

Since the covariate processes are bounded, β0(u) is continuously differentiable and S(1) (β, u)/
S(0) (β, u) = Op(1) holds uniformly in β ∈ ℬu, u ∈ [0, τ], we have

Since supβ∈ℬt,t∈[0,τ] |S
(0) (β, t) − s(0) (β, t)| = Op(n−1/2) and by the uniform consistency of β̂(·)

given in Appendix A (Tian, et al., 2005),

Let

Then
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uniformly in β ∈ ℬt, t ∈ (h, τ − h) and i ∈ {1, …, n}.

Since ∥Wi(β, t)∥ = Op(h−1), ∥wi(β, t)∥ = Op(h−1), A1i(t) and A2i(t) converge to zero in probability
uniformly in β ∈ ℬt, t ∈ (h, τ − h) and i ∈ {1, …, n}, it follows that

Further,

since Bi(·)’s have the same distribution for i = 1, …, n. By Lemma 2 of Gilbert, McKeague and
Sun (2007, manuscript) and the Donsker theorem (cf. van der Vaart, 1998), one can show that
n1/2Bi(u) converges weakly in (β, u) ∈ ℬ × [0, τ]. This is followed by E supβ∈ℬt,0≤u≤τ |
n1/2B1(u)| = O(1). Thus, we have

(A.1)

Note that

uniformly in β ∈ ℬt, t ∈ (0, τ) and i ∈ 1, …, n}. We have
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(A.2)

For each j, k ∈ {1, …, p}, let

(A.3)

where wij(β, t) is the jth element of wi(β, t). We next show that |Gn(β, t)| = op((nh2)−1/2)
uniformly in β ∈ ℬt, t ∈ (h, τ − h) by applying Theorem 19.28 of van der Vaart (1998) for
changing classes.

Let l∞ ([0, τ] be the space of all bounded functions on [0, τ] equipped with uniform topology.
Consider the empirical process

where, for each β ∈ ℬ and t ∈ (h, τ − h),  is
a mapping from l∞ ([0, τ] × l∞([0, τ] to ℝp. Let ℱn = {fn,β,t : β ∈ ℬ, t ∈ (h, τ − h)} be a sequence
of the classes of functions. Then the classes ℱn possess a uniform bounded envelop function
independent of n, under the conditions (a), (b) and (e). Simple calculation shows that E
fn,β1,t1 (Xi, Mi) (fn,β2,t2 (Xi, Mi))

T − E fn,β1,t1 (Xi, Mi)(E fn,β2,t2(Xi,Mi))
T → 0 for (β1, t1), (β2,

t2) ∈ ℬ × [0, τ]. Further,

for some constants  Thus, the condition (19.27) of van der Vaart (1998) is
satisfied. Since

for some constants m > 0 under the conditions (a), (b) and (e), we have, by Example 19.7 (van
der Vaart, 1998), the bracketing integral J[](δn, ℱn, L2(P)) → 0 for every δn ↓ 0. Hence, the
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processes  (β, t) ∈ ℬ × [0, τ], converges weakly
to zero (the degenerated Gaussion process) by Theorem 19.28 of van der Vaart (1998). Since
the classes ℱn is uniformly bounded independent of n, we have, by Example 19.20 (van der

Vaart, 1998),  converges weakly to zero. Hence
supβ∈ℬ,t∈(h,τ−h)|Gn(β, t)| = op((nh2)−1/2).

Based on (A.1), (A.2) and the rate for (A.3), and by the condition (e), there exists some ϵ > 0,
such that

uniformly in β ∈ ℬt, t ∈ (h, τ − h) as nh2 → ∞, where the last line is obtained under the condition
(b).

Proof of Theorem 2.1.

Consider λ defined in Section 2.2 satisfying (2.7) and let ρ = ∥λ∥ and θ = λ/ρ. Then |θ| = 1. Let

. By (2.7),

(A.4)

where Zn(β, t) = max1≤i≤n ∥Ui(β, t)∥ = Op(h−1). By Lemma A.1,

Let γ(t) > 0 be the smallest eigenvalue of Γ (t). By the continuity of Γ(t), there exits c > 0 such
that such that γ(t) ≥ c for t ∈ [0, τ]. Then, θTΓ̃ (β, t)θ ≥ γ + op(1) ≥ c+op(1). It follows from (A.
4) that
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Hence αn ≡ ρ/(1 + ρZn(β, t)) = Op((n/h)−1/2 + h3 + hδn) and ρ = αn(1 − αnZn (β, t)). Since
αnZn (β, t) → 0, we have ∥λ∥ = ρ = Op((n/h)−1/2 + h3 + hδn). This holds uniformly for β ∈ ℬt,
t ∈ (h, τ − h) by Lemma A.1.

Since λTUi(β, t) = Op((nh)−1/2+h2+δn) = op(1), uniform in β ∈ ℬt, t ∈ (h, τ − h), applying the
second order Taylor expansion to (2.8), we have

(A.5)

where

uniform in β ∈ ℬt, t ∈ (h, τ − h). By the equation (2.7),

we have  Thus

(A.6)

Now, note that
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where the last term is obtained since

It follows that

(A.7)

By (A.4), (A.6), (A.7) and Lemma A.1 we have, for some ϵ > 0,

(A.8)

uniformly in β ∈ ℬt, t ∈ (h, τ − h). Hence, −2 log R(β0(t), t) converges in distribution to a chi-
square distribution with p degrees of freedom. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2

Let  By (A.8),

(A.9)

holds uniformly in β ∈ ℬt, t ∈ (h, τ − h). Let Γ−1(t) = DT (t)D(t) and D(t) = (d1(t), …, dp(t))T,
where dk(t) is the kth column of DT (t). Then

(A.10)

uniformly in β ∈ ℬt, t ∈ (h, τ − h). Since suph≤t≤τ−h ∥β̂ (t)−β0(t)∥ = (nh)−1/2Op(n−α), δn =
(nh)−1/2n−δ, 0 < δ < α, it follows that

(A.11)

where β1 is the first component of β0(t) and β̂ −1(t) is obtained by dropping the first component
β̂ 1(t) from β̂(t).

Sun et al. Page 18

Ann Stat. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Note that U˜ (β̂ (t), t) = 0 and Γ(t) = ν0∑(t) = −ν0(∂U˜ (β, t)/∂β1, …, ∂U˜ (β, t)/∂βp+ op(n−ϵ)),
uniformly in β ∈ ℬt, t ∈ (h, τ − h). Let ek be the kth column of a p × p identity matrix. It follows

 For k = 1, …, p,

It follows from (A.11) that

Since , we have

(A.12)

Let  It follows from
Appendix B of Tian et al. (2005) that the distribution of the process −2 log R(β1, β̂−1(t), t) can
be represented by the distribution of

where W(t) is a standard Wiener process. Let  Then p^(t) = p
(t)+op(n−ϵ) uniformly in β ∈ ℬt, t ∈ (h, τ − h). Hence, the distribution of the process −2 log R
(β1, β̂ −1(t), t)/p^ (t) can be represented by the distribution of

(A.13)

The assertion (i) follows since 

Let  By Bickel and Rosenblatt (1973),
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Note that for x ≥ −rndn, P{supt1≤t≤t2 |Z(t)| ≤ dn + x/rn} = P{supt1≤t≤t2 |Z(t)|2 ≤ (dn + x/rn)2}. We
have

Let y = x + (2rndn)−1x2. We have, for any y > −2−1rndn, x = rndn[−1 +(1 + 2y(rndn)−1)1/2] =
2y[1 + (1 + 2y(rndn)−1)1/2]−1, which converges to y since rndn → ∞ for each y. Further, y − x
= 2y2(rndn)−1[1 + (1 + 2y(rndn)−1)1/2]−2 =O((rndn)−1) = O((log n)−1), uniformly in |y| ≤ M with
M > 0. Hence sup |y|≤M |exp(−2e−y) − exp(−2e−x)| = O((log n)−1). It follows

(A.14)

The (2.11) follows from (A.13) and (A.14). Let

By Appendix B of Tian et al. (2005), we have

Following the previous arguments in proving (2.11) and by (A.12), we have

Hence,

The assertion (ii) is hence proved.
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FIG 1.

Comparison of 95% confidence intervals for time-dependent treatment effect based on gastric
cancer data.

Sun et al. Page 23

Ann Stat. Author manuscript; available in PMC 2009 October 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG 2.

Comparisons of 95% confidence intervals for time-dependent coefficients corresponding to
Age, Log(albumin), Log(bilirubin), Log(prothrombin time) and Edema based on Mayo
Primary Cirrhosis Data (center solid black line{point estimate; dashed lines–EL confidence
interval; dotted lines–EL confidence band; solid grey lines–confidence interval based on Cai
an Sun (2003)).
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