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EMPIRICAL LIKELITHOOD RATIO CONFIDENCE REGIONS!

By ART OWEN
Stanford University

An empirical likelihood ratio function is defined and used to obtain
confidence regions for vector valued statistical functionals. The result is a
nonparametric version of Wilks’ theorem and a multivariate generalization of
work by Owen. Cornish-Fisher expansions show that the empirical likelihood
intervals for a one dimensional mean are less adversely affected by skewness
than are those based on Student’s ¢ statistic.

An effective method is presented for computing empirical profile likeli-
hoods for the mean of a vector random variable. The method is a reduction
by convex duality to an unconstrained minimization of a convex function on
a low dimensional domain. Algorithms exist for finding the unique global
minimum at a superlinear rate of convergence. A byproduct is a noncombina-
torial algorithm for determining whether a given point lies within the convex
hull of a finite set of points.

The multivariate empirical likelihood regions are justified for functions of
several means, such as variances, correlations and regression parameters and
for statistics with linear estimating equations. An algorithm is given for
computing profile empirical likelihoods for these statistics.

1. Introduction. Let X, X,,... be independent random vectors in R ?, for
p = 1, with common distribution function F;,. The empirical distribution

1 n
F==-Y3
noiy x

is well known to be the nonparametric maximum likelihood estimate of F;, based
on X,,..., X,. Here 8, denotes a point mass at x. The likelihood function that
F, maximizes is

L(F) - T1F(x),

where F{x,} is the probability of the set {x;} under F, x, is the observed value of
X; and F is any probability measure on R #. This motivates the term nonpara-
metric m.l.e. for the estimate T(F,) of the parameter T(Fj,), where T is a
statistical functional.

In some cases the empirical likelihood ratio function

(1.1) R(F) = L(F)/L(F,)
can be used to construct nonparametric confidence regions and tests for T(F).
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Consider sets of the form
C={T(F)|R(F) >r}.

This article gives conditions under which sets like C may be used as confidence
regions for T(F,). Under such conditions a test of T(F,) = ¢ rejects when ¢ & C,
that is, when no distribution F with T(F) = ¢ has likelihood L(F) = rL(F),).
The central result is for the mean of X. Clearly some restrictions on F are
needed, or else C = R” whenever r < 1. To see this, let F = &b, + (1 — ¢)F,,. For
small enough ¢ > 0 we have R(F) > r. But then, as x ranges through R?, so
does the mean of F, tracing out C = R”. The problem may be resolved by
restricting to distributions F that are supported in a bounded set. It turns out to
be possible to restrict attention to distributions with support in the sample, that
is, to distributions F < F,. This is convenient because the statistician might not
be willing to specify a bounded support for F and because it reduces the
construction of C to a finite dimensional problem. The theorem for the mean is:

THEOREM 1. Let X, X, X,,... be i.i.d. random vectors in R?, with
E(X)=1p, and var(X) =32 of rank q > 0. For positive r <1 let C, ,=
{/XdF|\F < F,, R(F) = r}. Then C, , is a convex set and

lim P(p, € C,,) = P(x%, < —2logr).
n—oo
Moreover if E(|| X||*) < oo, then
|P(r € G, ,) — P(x3, < —2logr)| = O(n"1/2).

The proof of Theorem 1 is given in Section 2.

The X(Qq) random variable that appears in Theorem 1 is noteworthy. It is the
same limit Wilks (1938) obtains in a parametric setting for a likelihood ratio test
of an hypothesis imposing g constraints on the parameter. The rate attained is
also that found by Wilks (1938) in the parametric case. Sharper rate estimates
are discussed below. It is suggested in Section 2 that for small n, the x(zq)
distribution should be replaced by (n — 1)q/(n — q) times an F, ,_, distribu-
tion.

For F < F, the likelihood ratio (1.1) is that of a multinomial on the sample.
If the support of F, is a finite set, then Theorem 1 is trivial. When Fj, has a
continuous distribution and there are n observations, then with probability 1
there are n — 1 parameters in the multinomial distribution and p parameters of
interest. It is somewhat surprising that with essentially equal numbers of
parameters and observations the limit law is the same as in Wilks’ theorem.
Moreover, the multinomial family of distributions used is on a randomly selected
set of points. As in Wilks’ theorem, nuisance variables are “profiled out.” Let F,
maximize R(F) subject to F < F, and [XdF = u. Then p € C, , if and only if
R(F,) = r. The notation F, will be used below and the profile likelihood ratio
R(F,) will sometimes be denoted ().

The restriction to F' < F, is not as severe as it might seem at first. C. ,, would
not change if we restricted F to have support in the convex hull of {X,..., X, }.
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It is easy to show that R(F') > r implies that the distribution F' place at least
1 — O(n~1') probability on the sample. Therefore when it is known that X € B
with probability 1 for some bounded set B, changing the condition F <« F, to
F < 1p increases the diameter of C, , by O,(n™"), which is small compared to
the diameter O,(n~'/?).

The plan of the rest of this article is as follows. An example and a survey of
related literature conclude Section 1. Section 2 contains a proof of Theorem 1
and a corollary that considers the behavior of empirical likelihood ratio tests at
alternatives close to the true mean. A connection to Hotelling’s T2 emerges from
the proof of Theorem 1 and is the basis for the claim that the F distribution
should be a better reference than the x2. Some simulations are also cited to make
this point. Section 3 discusses the computation of the profile empirical likelihood
for a vector mean. A low dimensional dual problem is introduced. The dual
problem is one of unconstrained convex programming and there are theorems
guaranteeing the existence and uniqueness of a solution and the convergence to
that solution of certain iterative methods. Section 4 considers extensions to
functionals other than the mean. Simple linearization arguments extend Theo-
rem 1 to a rich class of statistics. For p = 1 a Cornish-Fisher expansion in
Section 5 shows that the empirical likelihood method may be thought of as a ¢
test with a partial correction for skewness. In Section 6 some examples of
empirical likelihood inference are given. Likelihood functions are considered for
the standard deviation, the correlation coefficient and regression coefficients. A
nested algorithm for computing the profile empirical likelihood is given and
analyzed.

1.1. Example. For an illustration we use some data from Larsen and Marx
(1986, page 440). Eleven male ducks, each a second generation cross between
mallard and pintail, were examined. Their plumage was rated on a scale from 0
(completely mallardlike) to 20 (completely pintaillike) and their behavior was
similarly rated on a scale from 0 (mallard) to 15 (pintail). Figure 1 shows these
data, together with nested empirical likelihood confidence contours for the mean.
The point with plumage = 14 and behavior = 11 is plotted with a circle of twice
the area of the others, because it represents two ducks. The confidence contours
are presented for nominal confidence levels: 0.50, 0.90, 0.95, 0.99, taken from
20/9 times the F, 4 distribution. An asterisk marks the sample mean.

In Figure 2, the same information is presented, with the contours now taken
from a scaled F, 4 distribution for Hotelling’s T2 statistic. These are parametric
likelihood ratio contours assuming a bivariate normal distribution with unknown
mean and variance.

A comparison to the bootstrap is natural here, though there does not yet seem
to be a completely satisfactory way to construct bootstrap confidence regions in
two or more dimensions. The difficulty lies in selecting the “central” 1 — «
fraction of B resampled points. Figure 3 is based on assigning each resampled
mean the largest rank it attains in any linear projection. The (1 — «)B points
with the smallest maximum rank determine the region. This method of ranking
vectors is due to Donoho (1982) and Stahel (1981). If two points attained the
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Fic. 1. Empirical likelihood contours.

same maximum rank, the tie was broken by considering the point attaining that
rank over a greater angular range of projections to be farther from the center.
The same confidence levels as were used in Figures 1 and 2 are shown. The
regions are based on 1000 resampled means and 360 projections. They are smaller
than the other regions and are quite angular. Hall (1987) estimates a density for
resampled (studentized) means and selects a contour of the density containing
1 — a of the resampled means. Unfortunately the contours are not convex unless
the density estimate is “oversmoothed.” One can expect these problems to be
worse in higher dimensions. The regions in Figure 3 are also smaller than the
corresponding regions in Figures 1 and 2.

1.2. Related literature. That F, is the m.le. of F, was already well known
by Kiefer and Wolfowitz (1956). They considered consistent estimation by
maximum likelihood in various random effects settings. In a remark on page 893
they introduce an important method for defining m.l.e.s in undominated families
of distributions. Kaplan and Meier (1958) give a derivation of the product limit
estimator of the survival function as a nonparametric m.l.e. and Johansen (1978)
shows that the product limit estimator is an m.l.e. in Kiefer and Wolfowitz’s
sense in an undominated class of point process models. More recently Bailey
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(1984) shows that in the absence of tied failure times and of time dependent
covariates, nonparametric maximum likelihood applied to the Cox model yields
the usual partial likelihood estimate for the regression parameter 8, Tsiatis’
(1981) estimate for the cumulative hazard function A(#) and an information
matrix for 8 and any particular A(Z,) that can be inverted to form asymptotic
confidence ellipses in the usual way. Vardi (1985) has used nonparametric
maximum likelihood to estimate distribution functions in the presence of selec-
tion bias.

The first use of an empirical likelihood ratio function to set confidence
intervals appears to be Thomas and Grunkemeier (1975). Their application was
to survival probabilities estimated by the Kaplan—Meier curve. Thomas and
Grunkemeier provide a heuristic argument to show that empirical likelihood
ratio intervals for a survival probability based on the X(21) distribution have
asymptotically correct coverage levels. Unlike the usual intervals based on
Greenwood’s formula, Thomas and Grunkemeier’s intervals can be asymmetric
and they never include values outside [0,1]. This is especially appealing for
survival probabilities near 0 or 1. Cox and Oakes (1984, Section 4.3) indepen-
dently obtain the same intervals. A univariate version of Theorem 1 appears in
Owen (1985) and a sharper univariate version appears in Owen (1988a). DiCiccio,
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Hall and Romano (1988) have shown that the error in Theorem 1is O(n ') if the
assumptions justifying Edgeworth expansions are met and that a Bartlett factor
reduces the error to O(n~2). The slower rate O(n~'/?) still obtains for one sided
problems. DiCiccio and Romano (1988) consider corrections to the signed root of
the empirical likelihood ratio that allow construction of one sided confidence
intervals with coverage error O(n™1!).

Empirical likelihood has parallels in the bootstrap literature. The Bayesian
bootstrap (BB) of Rubin (1981) generates reweighted empirical distributions
27" 188, , where the g; are positive random variables with unit sum. In the
simplest case they follow a unit Dirichlet distribution and may be sampled by
taking the n gaps formed by 0, 1 and n — 1 independent U[0,1] random
variables. To apply the BB to a functional T one computes T(Zf;lginl) for
many resampled vectors g. Rubin gives an example in which the histogram of
1000 BB correlation coefficients is similar to, but smoother than, a histogram of
1000 ordinary bootstrap correlation coefficients. The Bayesian argument behind
the BB employs a finite support set {d,,..., d,} for F,, a vector 8 of probabili-
ties with 8, = F{d;} and a prior for § proportional to

k
(1.2) [167
j=1
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on the k& variable unit simplex. The posterior for # is then proportional to

k

(1.3) Il opi*n,

Jj=1

where n; is the number of observations equal to d;. Rubin favors an improper
prior with all p; = —1, for then 6, = 0 with (improper) posterior probability 1
for any unobserved d ;. The advantage is that one need not know the value of d;
when n; = 0. Empirical likelihood corresponds roughly to a noninformative prior
with p; = 0 in (1.2), and likelihood ratio function given by (1.3). While the BB
samples from (1.3), empirical likelihood profiles (1.3) and uses an asymptotic
calibration. Thus we have in a nonparametric setting, the familiar result that the
likelihood function is a posterior for a noninformative prior. The correspondence
is not exact since profiles of (1.3) would use 6; > 0 for n; = 0 when d; is outside
of the convex hull of the data.

A variant of the nonparametric tilting bootstrap of Efron (1981, Section 11)
uses the same family of multinomial distributions as empirical likelihood. Sup-
pose p = 1 and define distributions G, < F,, with G,{ X} « exp(zX,) for — o0 <
t < oo. This produces a one dimensional exponential family of discrete distribu-
tions passing through F, at ¢ = 0. The mean values of the G, lie in the interval
(Xays X(ny)- Let p, = [XdG,. The nonparametric tilting bootstrap interval for
E(X) has as its lower « limit, the value p, such that a bootstrap sample from G,
has fraction a of its resampled means larger than the sample mean X. Upper
limits and central intervals may be obtained similarly. One need not sample from
many different family members because resampled tail areas from G, can be
obtained by exponentially tilting resampled tail areas from G, = F,. A member
G, of this family minimizes the Kullback-Liebler distance from G to F, among
G < F, with [XdG = p,. The empirical log likelihood ratio is the
Kullback-Liebler distance from F, to F <« F,. Minimizing this distance for
F < F, and [XdF = p yields F,. Efron parametrizes this family through H, <
F, w1th H{X) o« 1+X)! and suggest using bootstrap tail areas to form
conﬁdence intervals for E(X). Since the family H, is not exponential, tilting
arguments cannot be exploited to reduce the computation. The families H, and
F, are reparametrizations of each other. Efron suggests one sided resampling
inference from the members of H, to form a confidence interval. Empirical
likelihood forms a likelihood ratio function in the family F, or equivalently in H,
and profiles it. Efron notes that in the parametric famlly G, the Cramér- Rao
bound for E(X) at t=0is n 25(X, — X)? so that the reductlon to a one
dimensional family is not spuriously helpful. The same least favorable property
holds in H,. DiCiccio and Tibshirani (1986) also employ a least favorable family
of distributions.

Finally we consider some results on multinomial likelihoods. Hoeffding (1965)
shows that for multinomial distributions, tests based on the likelihood ratio are
asymptotically optimal in the Bahadur sense. Tusnady (1977) extends Hoeffding’s
work by considering a sequence of multinomial families using finite partitions of
the sample space that get finer as n increases. Tusnady shows that the likelihood
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ratio tests on these families are asymptotically optimal (in the Bahadur sense)
under some regularity conditions on the sequence of partitions. Tusnady
does not indicate how to choose an optimal set of partitions. One of his
regularity conditions is that the number of sets m(n) in the partition satisfy
m(n)log(n)/n — 0 as the sample size n = oo, so his results do not apply here
where m(n) = n — 1. Berk and Jones (1979) use discrete likelihoods to test
whether a sample is from the uniform distribution. They show that their test has
a larger Bahadur slope than does any weighted Kolmogorov test at any alterna-
tive. Their test statistic is the most significant of n binomial p values, one at
each of the order statistics. Their limit law is not x2, but is related to the
extreme value distribution. Both Tusnady (1977) and Berk and Jones (1979)
formulate their results through the Kullback-Leibler distance from the empiri-
cal measure to a hypothesized set of measures.

2. Proof of Theorem 1. We begin with a device that allows us to proceed as
if there were no ties among the X;. Let F be a distribution on R? and suppose

(2.1) w; > 0, Y w = F{X}
Ji X=X,

for 1 < i, j < n. The w, have the form of probabilities attached to observations
instead of X values. Now define

L(F,w) = T]w,
i=1

where w is a vector whose components w; satisfy (2.1). The maximal value of L
is attained when F=F, and w, = w, = --+- = w, =n"'. With this in mind
define

R(F,w) = []nuw,.
i1

The functions I, and R are observation based likelihood and likelihood ratio
functions.
LeEmMA 1. For any r € [0,1],

{F|R(F) > r) = {F|R(F,w) > r some w satisfying (2.1)}.
Proor. See Owen (1988a). O

In applications of Lemma 1, both sets of distributions are intersected with
sets such as {F < F,} or {T(F) = t}. The consequence is that the regions
{T(F)|R(F) = r} are the same as {T(F)|[Tnw; = r}, where F and w are related
through (2.1). Therefore we may use

(2.2) R(F) =[] nw,
in place of (1.1).



98 A. OWEN

The next lemma will be used to guarantee that the mean of a distribution is
eventually an interior point of the convex hull of a sample from that distribu-
tion.

LEMMA 2. Let F, be a distribution on R? with mean p, and finite covari-
ance matrix 2 of full rank p. Let Q be the set of unit vectors in R?. Then for
X ~ F,,

inf P((X — p,)'6 > 0) > 0.
feQ

Proor. Without loss of generality p, = 0. Suppose that there exists a
sequence 8, such that P(X'6, > 0) < n™ %, Then by compactness of © there is a
subsequence 8* — 6, € Q. Let E = {X|X'§, > 0}. Then

Ixgr>0 = lxg,>0

pointwise in E by continuity in 6 of X'6. Now by Lebesgue’s dominated
convergence theorem (Royden 1968, page 88),

P(X8y> 0) = [ 110,50 dFy(X)

= lim flx'0;>odFo(X)
n—-wYE

< lim P(X'6* > 0)

n— o
=0.

Since X’f, has mean zero we also have P(X'§, < 0) = 0 so that X'4, = 0 ass.
[ F,]- But this contradicts the assumption that = has full rank. O

Lemma 3 provides some strong order bounds used in the proof of Theorem 1
and Lemma 4 sharpens one of them to obtain a rate.

LEMMA 3. Let Y, >0 be iid. random variables and define Z, =
max, _; ., Y. If E(Y?) < o, then
(2.3) Z, = o(n'/?)
and '

¥ = o(n”),
1

1

|~

n

both with probability 1 as n — co.

PrROOF. Since E(Y?) < oo we have Y®P(Y? > n) < oo, which implies that
YP(Y, > n'/?) < o and hence by the Borel-Cantelli lemma Y, > n'/? finitely
often with probability 1. But Y, > n'/? finitely often implies Z, > n!/2 finitely
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often. By the same argument Z, > An'/? finitely often for any A > 0. Therefore
(2.4) limsup Z,/n'/? < A

with probability 1. Inequality (2.4) holds simultaneously with probability 1 for
any countable set of values for A, so Z, = o(n'/%) with probability 1, establish-
ing (2.3).

For the second assertion,

S e Y = o(w)
o n i
by (2.3) and the strong law of large numbers applied to Y2 O
LEMMA 4. Let Y, >0 be i.i.d. random variables and define Z, =
max,_;., Y. If E(Y?) < o and A > 0, then
P(z,> An?) = O(n~V?).

Proor.

n'2P(Z, > An'/?) < n*?P(Y, > An'/?)
< B (¥) /(A
= A°E(Y?). O

Proor oF THEOREM 1. If ¢ < p the problem may be reparametrized in
terms of a g dimensional linear transformation of the X, so without loss of
generality we may assume g = p.

Convexity of C, , follows trivially from Jensen’s inequality.

First we establish the limit law of P(p, € C, ). Finiteness of 2 implies by
Lemma 3 that

(2.5) Z,= max | X; — poll = o(n'/?)
1<i<n
and that
1
(2:6) = LIX; = woll® = o(n'/%),

both with probability 1 as n — co.
By Lemma 2, with Q the set of unit vectors in R 2,

O<e= inf P{(X —py)0>0

e = inf P((X ~ o) > 0)
and by a generalization of the Glivenko—Cantelli theorem to uniform conver-
gence over half spaces,

sup|P{(X — po)0 > 0} — P{(X — )0 >0} >0 as,
[Z=3)
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where P, denotes probability for X ~ F,. It follows that
€
(2.7) inf P{(X — po)8 >0} >,
geQ 2

all but finitely often with probability 1.
We shall assume that n is large enough that (2.7) holds. A consequence of (2.7)

is that p, is contained in the convex hull of {X,,..., X} as an interior point.
Therefore
(2.8) R(py) = sup{R(F)| fXdF = o, F < Fn}

exists and is positive. Since p, € C, , if and only if %#(p,) > r, we need only
show that

—2log Z(1o) = Xy

in distribution as n — co.

By Lemma 1 we may identify {F|F <« F,} with the simplex of vectors
w € R"™ with
w; > 0, Yw,=1.

13

In this formulation

(2.9) R(po) = sup [ [nw,

where the supremum is over w in the simplex satisfying
Y wi(X; - po) =0.

Since R is continuous in F and {F < F,} N {/XdF = p,} is compact, it
follows that the supremum %(p,) is attained. A unique distribution attains the
supremum, for otherwise a convex combination of two distinct distributions
attaining the supremum would have mean p, and a likelihood ratio strictly
larger than %(p,), which is a contradiction. We needed %(u,) > 0 to force
uniqueness.

This unique distribution may be found via Lagrange multipliers. We maximize
R(F) = [1nw, subject to the p linear constraints Yw,(X; — py) = 0. The result is

1. 1

. F . = L= 5
(2 10) ;LO{XL} wl n 1 + )\,(Xi _ .U«o)

where the multiplier A € R” satisfies
1 Xi = 1o
v
1+ N(X; — o)

Now we show that ||A|| = O,(n~'/?). Write X = p# where p > 0 and ||6]| = 1.
We need the positivity of 1 + p8'(X; — ) below, but said positivity follows

(2.11) 0= = g(A).

n
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easily from w; < 1. Now

0 =1g(p0)l
> |0'g(p8)|
1 ) (Xz - [-Lo)al(Xi - :U’O)
(2.12) o Y i
= %0/2 ()1(1+ 532%— u,:())) " % FeEK )
p0'S6 1

¥ /2%~ b)),

>
1+ pZ, ni;

where e; is the unit vector in the jth coordinate direction and

(213) S = (X~ w) (X o)

Now 08'S6 > o, + 0,(1) where o, > 0 is the smallest eigenvalue of 3. The
second term in (2.12) is O,(n~'/?) by the central limit theorem. It follows that

1 +ppZn B Op(n_I/Z)
and therefore by (2.5),
(2.14) p=IIAll = O,(n"1/%).
Let v, = M(X; — py) where A is the root of (2.11). Then by (2.14) and (2.5),
(2.15) max [y| = O,(n7*)o(n'7?) = 0,(1).

Expanding (2.11),

0=8(0) = L(X,~ po)(1 — %+ /(1 - 1)
(2.16)

_ 1 )
=X -—po—SA+ ;Z(Xi_MO)Yi/(l_Yi)’

where X is the sample mean of X,,..., X, and S is given by (2.13). The final
term in (2.16) has norm bounded by

XK, = wlPIIERL = i = o(n/7)0,(n-)0,(1) = ay(n=1),
using (2.6), (2.14) and (2.15). Therefore we may write
(2.17) A=5"X - po) + B, where |Bl=o,(n"/2).
By (2.15) we may expand
log(1 + v;) =vi = v2/2 + m,,
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where, for some finite B > 0,
P(m| < By}, 1<i<n) -1
as n — 0. Substituting (2.10) and (2.17) in (2.9),
—2log #(p,) = —2) log nw,
=2) log(1 + v;)
=2y — Xy +2km
=2nN (X — py) —nASA+ 2)
= 2n()?— p,O)’S_l()_( - ,uo) + 2n,3’()? - ,uo)
—n(X = po)'S™HX = po) — 208 (X — py)
—np'STB+2Y
= n(X = po)S (X — o) — nBS B + 2% m;,
where, as n - oo,
(2.18) n(X = 1o )'S7HX = o) = x{ny
in distribution and
np'ST8 = 0,(1)

and

|227h'

< 2B|APYXIX; — pol®
= 2BO,(n"*?)o,(n*?)

= 0,(1).

This establishes the limit law for P(p, € C, ,). Now we establish that the
rate of convergence is O,(n~'/?) assuming E| X ||* < c0. Using only E|| X | < oo,
the convergence in (2.18) is at the rate n~!/2 by the Berry—Esseen theorem. We
need to show that

(2.19) np'S~8 =.0,(n""?)
and
(2.20) 21, =0,(n""?)

and that the convergence in (2.5), (2.7) and (2.15) is fast enough so that the
events they allowed us to neglect in finding the limit law have probability
O(n~1/%). We do not need a rate on (2.6) since it will not be used to establish
(2.19) and (2.20) and the limit law used it only to bound the last term of (2.16). A
sharper bound is used below for that term.
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If E||X||® < oo then the strong law of large numbers applies to X|| X; — p,||®
and so the final term in (2.16) is
0(1)0,(n™1)0,(1) = O,(n7").
Therefore ||8]| = O,(n™") and the term in (2.19) is O,(n~"). Similarly
| Xn| = 0,(n7*2)0(n) = O,(n"'7?),

establishing (2.20).
Lemma 4 applied to || X; — p,/|*/® implies that

(2.21) P(Zn > n3/8) = O(n=12)

so that a result stronger than (2.5) holds at the rate n~ /2, By the
Vapnik-Chervonenkis inequality [Gaenssler (1983), page 28] the probability in
(2.7) converges to 0 exponentially fast.

To establish a rate for (2.15) we need a rate of convergence on ||A||. We work
with the last term in (2.12):

P %e;Z(Xi = to) > n_m) = P((%e;Z(X" B “0))4 g n_w)

IA

E((%e;i(xi - #o))4)n3/2

= 0(n=1?)
and so
(2.22) P(|A]| = n=3/8) = O(n=1/2).

Note that the smallest eigenvalue of S is larger than o,/2 with probability
1 — O(n~'/?) by a Chebyshev argument on the components of S.
The version of (2.15) with a rate is

P(max|y;| > 0.25) < P(n®¥|A|| > 0.5) + P(n~%%Z, > 0.5)
=0(n"1%),
by easy extensions of (2.21) and (2.22). The theorem is proved. O

The leading term in the expansion of —2log %(p,) is nearly Hotelling’s 7.
The distinction is that S is not the usual sample variance-covariance matrix.

After some algebra,

1 T2\ !
+ —_—
n—1 n

n(X = ug)S~Y(X = y) = T2(1 _ _ T4 O (nY).

For normally distributed X;, the distribution of (n — p)T?/((n — 1)p)is F, ,_,.
The scaled F would be replaced by xZ,, if = could be used in place of S in T2
The use of the F distribution instead of the x? compensates for the estimation of

2 from a finite sample. This suggests that the F distribution might provide a
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better reference point than the x? for —2log %(p,). A simulation (Owen, 1988b)
for samples of size 3 through 20 and a variety of sampling distributions bears
this out for p = 1.

Now consider the limiting distribution of —2log #(g) for p within O,(n~"/?)
of p,. We have the following corollary to the proof of Theorem 1:

COROLLARY 1. Under the conditions of Theorem 1 for any 1 € R?,
—2log #(po + n7 22 %r) > x3,(I7l1%)

in distribution, where q is the rank of = and ||7||? is a noncentrality parameter
and

—2log (X + n~/28V2%) > ||7))2
in probability where S = 1/mI(X, — X)X, - X).

Proor. The proof is essentially the same as that given above for Theorem 1.
O

The first result in Corollary 1 shows that the power of a level « empirical
likelihood ratio test is asymptotically P(x7,(|I7[I*) > xZ,,1-.) on the ellipsoid
p = po + n~ 2312 generated by r € R? with ||7|| constant. The second result
shows the same quadratic limit, centered on X.

3. Computing intervals for the mean. We need to compute the profile
empirical likelihood function #(p) = R(F,) for various candidates p for E(X).
Tests of E(X) = p may be based on the magnitude of #2(p). Confidence regions
for E(X) can be constructed by computing %#(p) on a grid of pu values and
applying a contouring algorithm.

By an argument in Section 2 it follows that for p in the convex hull of
X, X,

1 1

(8.1) F{Xx)} = PERS USRI

where the multiplier A = A() € R” exists and is uniquely determined by
- p
(3.2) 0=2 = g(A).

1+ N(X;— )
It follows that '

(3.3) a(p) =TT+ N (X, —p)) 7"

For p = 1 it is easy to solve (3.2) with a safeguarded zero finding algorithm
such as Brent’s method (Press, Flannery, Teukolsky and Vetterling, 1986). Owen
(1988a) uses Brent’s method to maximize empirical likelihood ratios for certain
M estimates and shows how to find an initial interval containing A. The
bisection algorithm used by safeguarded zero finders is unavailable for p > 1, so
we reformulate the problem as one of minimization of a convex function.
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Note that —g is the gradient with respect to A of
f(A) = = Xlog(1 + N (X, — ),

so the zero of g is a stationary point of f. We now show attention can be
restricted to a convex domain for f and that under mild conditions, the domain
is compact and f is strictly convex. By (3.1) we need only consider A for which

(3.4) 1+XN(X,—p)=1/n, 1<i<n,

so we may assume that A is in the intersection D of n half spaces given by (3.4).
D is convex and closed. Assuming that the points X, ..., X, span R?, D is also
compact, its boundedness following from the assumption that p is interior to the
convex hull of the data. The Hessian of f is

e (X)X =)
T = L - el

which is positive semidefinite on D because 1 + A'(X; — p) > 0. Assuming that
X,,..., X, span R 7, the sample variance of the X; has full rank, so H is positive
definite on D and hence f is strictly convex. It follows that f has a unique
global minimum on D and that f’s minimizer is the solution of (3.2).

We now have the following dual problem: to maximize log R(F') over the
simplex in n dimensions subject to the p constraints [X dF = p is to minimize f
over D without constraints. Thus we have reduced the dimension and obtained a
problem with no constraints except A € D, which can be removed as described
below. Notice that f = log % except that the former is written as a function of A
and the latter as a function of p, since A = A(p) in (3.3). Interestingly this makes
the dual problem one of minimum likelihood. For values A € D other than the
solution of (3.2), F, given by (3.1) is not in general a probability measure.

The preceding result is a special case of convex duality. The minimization
problem is one of convex programming. For a general discussion of these topics,
see Pshenichny and Danilin (1978, Chapter 3).

There are several theorems that guarantee that the unique solution of (3.2)
can be found.

Theorem 4.9 of Rheinboldt (1974, page 48) guarantees that certain damped
Newton algorithms will converge to the solution of (3.2).

Theorem 5.2 of Rheinboldt (1974, page 62) guarantees superlinear convergence
for the Davidon—Fletcher—Powell algorithm, provided the starting point A, is
one for which the level set {A{f(A) < f(A)} is compact. This holds for Ap=0.

Theorem 4.14 of Rheinboldt (1974, page 51) guarantees convergence of three
different one-variable-at-a-time algorithms. Such algorithms proceed by adjust-
ing A, for j =1+ (imod p), i =0,1,2..., until convergence to suitable accu-
racy has been obtained. Indeed one could use Brent’s method component by
component on A in an iterative manner to solve (3.2).

It is unusual to have such strong theoretical support for a minimization
problem. More commonly one can only get local convergence results that guaran-
tee convergence to a relative minimum from a starting point sufficiently close to
the solution.
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It is convenient to extend f from D to R”, while preserving convexity. Let
Q(:) be the quadratic function of R that matches log(-) and its first two
derivatives at 1/n. Now let log*(x) = log(x) for x > 1/n and log*(x) = @(x) for
x < 1/n. Finally put

() = = Xlog*(1 + N'(X, — u)).

By (84), f* =f on D and strict global convexity of f* follows from the strict
concavity of log*.

The convergence theorems describe the performance of the algorithms when
computations are made with infinite precision and infinite sequences of steps are
carried out. In practice one has to contend with finite approximations on both
issues. It has been the author’s experience that the computations are most easily
made for p near X and that as p approaches the convex hull of the data the
computation becomes more difficult. Algorithms may therefore be compared
according to how small the log likelihood ratio must become before the algorithm
encounters difficulty. A natural goal for computation is to be able to compute the
log likelihood ratio down to values corresponding to confidence intervals with
coverage well beyond that required in practice. For other values of p the
approximation #(p) = 0 is adequate. For the duck data, the IMSL conjugate
gradient routine zZXCGR applied to f* allows computation of log likelihoods
smaller than —50, which far exceeds the needs of any reasonable confidence
regions for the mean.

When p is outside of the convex hull of the data, there is no solution. In
practice what happens is that the algorithm terminates at a large value of A for
which the slope of the logarithm is so small that the gradient is zero to the
required precision. One can tell that this has happened because the w; are not in
the unit simplex. Typically they sum to less than 1. This provides an alternative
way to decide whether a point is in the convex hull of a finite set of points:
Mazximize the empirical log likelihood ratio of the first point considered as the
mean of the others, using the extension by log* and inspect the solution. This
may be more convenient than making a preliminary check of whether a given
point is within the convex hull of the data, especially when the dimension of the
data is higher than 2.

4. Extensions to other statistics. Many statistics are related in simple
ways to sample means. In this section we consider three extensions from sample
means to more general classes of statistics. They are all based on delta method
arguments.

First we consider parameters which are functions of means. Examples include
the variance of X, which is a function of the mean of (X, X?), and the
correlation between X and Y, which is a function of the mean of
(X,Y, X2, Y2 XY). Apart from factors like n/(n — 1) the natural sample statis-
tics in these examples are the analogous functions of sample means.

Let Z,,...,Z, be iid. in R? with mean p, and sample mean Z. Let H:
R? — RY and consider the estimate H(Z) of the parameter H(u,), where H has
a Frechet derivative G # 0 at p,. That is, H(Z) = H(p,) + G(Z — py) +
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o(||Z — pgl) as {|Z — pgl| = 0. Under additional conditions Theorem 1 justifies
confidence regions for H(p,) + G(Z — p,) if p, is known. These regions cannot
be computed in practice, because they depend on p,, but they can be shown to
be very close to the empirical likelihood regions for H which do not require
knowledge of u .

THEOREM 2. Let Z,, Z,,...,Z, be i.i.d. random vectors in R?, p > 1, with
mean p, and finite variance 2 of rank p. Let H: R? > RY have Frechet
derivative G # 0 at p,. Define

Z, .= {deF(Z)|F < F,,R(F) > r},

C. .= {H(Z) zez,,),
Cn={H(pz) +G(Z-pZe 2, .},
and let Z = (1/n)L,Z,. Then as n — oo,

P(H(p,) € C/.,) = P(xls) < —2log(r)),
where d = min( p, rank(G)) and

sup |H(Z) = H(pz) = G(Z = pa)ll = 0p(n™).

Proor. The linearization H(p,) + G(Z — p,) has mean H(p,) and vari-
ance GZG of rank d > 0, so the first assertion follows by Theorem 1.

By Corollary 1, supse; |IZ — pgll = O)(n~"/?). The second assertion now
follows from the definition of G. O

The regions C/ , justified by Theorem 1 differ from the empirical likelihood
regions C, , by o,(n'/?), which is asymptotically negligible compared to their
diameter O (n~"/?).

Essentially the same argument and conclusions may be made for Frechet
differentiable statistical functionals T(F). Owen (1988a, Theorem 3) proves this
for distributions F' on R, where the derivative is defined in terms of the
Kolmogorov norm on an appropriate space of distributions. The proof extends to
distributions on R ? with the Kolmogorov norm replaced by a sup norm over half
spaces of R?.

Theorem 2 justifies empirical likelihood intervals for the variance of X,
assuming E(X*) exists. An example is given in Section 6. Owen (1988a) justifies
intervals for the variance of X under the restrictive condition that X is
bounded, which makes the variance a differentiable statistical functional. The
multivariate empirical likelihood result thus makes it possible to introduce a
nuisance parameter for the mean and obtain a better result for a one dimensional
statistic like the variance.
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Theorem 1 may be extended to M estimates. An M estimate is defined as a
root T = T(F) of

(4.1) Ju(x,7)aF =0,

where X ~ F. Usually X, 7 and ¢ take real values, but here we generalize to
X € R? and 7, (X, 7) € RY% Conditions must be imposed on Y(X, 7) to guar-
antee a solution to (4.1) and further conditions may be used to obtain a unique
root. We will impose conditions through families of functions ¢ , and . given
by

(4.2) Vaulx) = ¥(x, t) = 4, (¢).

THEOREM 3. Let T(F) be a solution of (4.1) and let X,, X,,..., X, be i.i.d.
in R P with distribution F,. Assume that ¢: R? X R? > RY satisfies:

(4.3a) T(F,) = 7.exists and is unique,
(4.3b) ., is measureable and
(4.3¢) 0 # var(y(X,, r)) exists.

For positive r < 1 and R given by (1.1), let

% .= {(F<F,|R(F)>r)

r

and
C. = FELgJ?n{qflp(X, t) dF = 0}.

Then as n — oo,
P(T(F) € C,,,) = P(x%s < —2log(r)),
where d = rank(var(y/( X, 1))).

PRrROOF. Let Z(X) = y(X, 7) where 1 = T(Fy) is the unique root of (4.1) for
F = F,, assumed in (4.3a). Condition (4.3b) on ¢, ensures that Z( X)=y9(X, 1)
are random vectors. Then (4.3¢c) yields, via Theorem 1, that as n — oo,

P(r€C,,)=P0eW,,) > P(xk, < —2log(r)),

where

Wr’n={fZ(X)dF|FeZ’n}. O

For p = 1, Owen (1988a, Theorem 2) shows that if the y, (¢) is nonincreasing
in ¢ for Fyalmost all x, then the confidence sets C, , are intervals. A natural
conjecture is that if i, : R? - R is a monotone function (i.e., the gradient of a
convex function), then C, , is a convex set in R9. An example in Section 6 shows

that the conjecture is false.



EMPIRICAL LIKELIHOOD 109

DiCiccio, Hall and Romano (1988) show that empirical likelihood regions for
smooth functions of means have coverage errors on the order O(n~!) and that
Bartlett adjustment reduces this to O(n~2). DiCiccio and Romano (1988) show
that corrections to the signed root of the profile empirical likelihood ratio for a
smooth function of the mean are normal to O(n1!).

5. Comparison to Johnson’s ¢ and Student’s £. The proof of Theorem 1
justifies the empirical likelihood regions by showing that for fixed r they tend to
regions based on the central limit theorem as n = . The extension in Theorem
2 shows that for certain nonlinear statistical functionals, an approximation by a
linear functional justified by Theorem 1 makes an asymptotically negligible
difference. In this section we show that there is reason to expect that the
empirical likelihood regions should be better than intervals based on the central
limit theorem, by incorporating an adjustment for skewness.

When p = 1, the normal theory intervals are obtained by referring the pivot

t=n"2(X —p)s !

to the ¢, , distribution, where s is the usual sample standard deviation.
Assuming the X; have moments of all orders, Johnson (1978) develops a
Cornish-Fisher expansion

(5.1) CF(t)=2Z, —n'?y/6 —n V2yZ2/3 — n"Y?AZ Z,,

from which terms of order smaller than n~/? are omitted. Here y is the
skewness of X;, A = (x + 2 — y2)"/2/2, where « is the kurtosis of X, and Z,
and Z, are independent standard normal random variables. The presence of a
constant term in (5.1) indicates bias in ¢ and a nonzero coefficient for Z2 — 1
indicates skewness in ¢.

Johnson then considers

L=t+n V2% /6+n"12yt2/3,
which has Cornish-Fisher expansion
(5.2) CF(t,) =2, —n A2, Z,.

Johnson’s ¢, corrects ¢ for bias and skewness associated with the skewness in X.
Johnson proposes estimating y by the sample skewness and using the resulting
quantity #,. Based on some simulations, Johnson concludes that the accuracy of
the ¢ variable is improved.

To examine the empirical likelihood ratio, let sf =n %X, - p)? Y, =
nTIN(X; — p)’/s] and t, = n'/A(X — p)/s,. For |ln— poll = O,(n" /%) the ex-

pansion of —2log Z(p) to terms of order n='/? is

_ 2 _
—2log R(p) = n(X — p)’/s? + gZ(X,- — )X - p)’/ss

_ 42 —1/243
= 12+ 2n"V23y,/3.
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This expansion is, to the order considered, the square of
_ —1/242
t,=t,+n 1/2%2y,/3.

The difference between ¢, and ¢ is of smaller order than n~ /2 as is that
between n~'/?y, and n~'/?y. Therefore the Cornish-Fisher expansion of the
signed root of —2log #(p) is, to the accuracy considered, the same as that of
t + n Y2t2y /3, that is,

(5.3) CF(t,)=2Z,—n'?v/6 — n"V?AZ,Z,.

Skewness in X, results in skewness and bias in ¢. Examining (5.3) we see that
the empirical likelihood method corrects the skewness but not the bias. It should
therefore improve upon ¢ in large samples, but not as much as Johnson’s #,
which removes the skewness and bias. For central confidence intervals, the bias
cancels but this does not happen for one sided intervals. In Owen (1988a) a
simulation with X, from the x7,, distribution and n = 20 shows that central 90%
empirical likelihood intervals for the mean were much more accurate than those
based on Student’s ¢. Simulations in Owen (1988b) show an improvement over
Student’s ¢ for samples of size 10 or more from skewed distributions. For very
small samples (fewer than 10 points) Student’s ¢ is as good as or better than
empirical likelihood. The empirical likelihood central intervals were also more
accurate than some of the simpler bootstrap central intervals. The bias effects
were evident in the one sided empirical likelihood intervals, which were quite
inaccurate. This one sided inaccuracy is typical of likelihood based methods.

6. Other examples. In this section some examples of empirical likelihood
inference based on Theorem 2 are given. Sections 6.1 and 6.2 consider the
variance and product moment correlation, respectively. A two level (nested)
algorithm is used for computing the profile empirical likelihoods. The inner level
of the algorithm is the one discussed in Section 3 for the mean and the outer
level profiles out nuisance parameters. It is shown in Section 6.3 that the outer
level is, for large samples, a convex optimization. Some applications of Theorem
3 are discussed briefly in Section 6.4.

6.1. Variance. We consider first the variance o2 of a real random variable X.
Abuse notation slightly and let F, maximize R(F) subject to F < F,
and (/X*dF — (/X dF)?)/* = o. Let F, , maximize R(F) subject to F < F,,
JXdF = p and [(X ~ p)*dF = ¢®. Since

R(Fo) = SupR(F;L,o)’
I

we can use a nested algorithm as follows: Compute F, , for ¢ and some
candidate p at the inner level, and optimize over p at the outer level. The nested
algorithm was used because a simpler algorithm based on iterative linear approx-
imations failed. In that algorithm one alternates between maximizing the empiri-
cal likelihood for E((X — p)?) = o2 assuming a “known” mean p and updating
p by the mean of the likelihood maximizing distribution. The alternating
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algorithm failed to compute even moderately extreme (0.90 to 0.99) upper
confidence points for the variance.

We also use the notation %#(o) = R(F,) and #(u,0) = R(E, ,). The distinc-
tion from profile empirical likelihoods for a mean will be clear from context.

The inner optimization is done through the algorithm in Section 3. The outer
optimization is done by any suitable one dimensional optimizer. It is convenient
to use derivative information at the outer stage. It may be shown that for
fixed o,

d

d#loggt"(p,o) na,,

where A, is the Lagrange multiplier corresponding to the constraint (X dE, ,=p
in the inner optimization.

Not every pair (u, o) is obtainable through reweighting the sample. One could
require the outer level of optimization to consider only those values of p
compatible with the value of o at hand, but it is far easier to extend the domain

- of the empirical log likelihood through the function log* as described in Section
3. With this extension

d
—log #(s,0) = mA, T (M),
W

where
1 ’ 2 2
w(N) = —log™(1+ (X, = ) + N, [(X, = p)* = 0%]).

Here A = (A}, A,) is the vector of Lagrange multipliers from the inner level and
log*’ is the derivative of log*.

That d/dp log Z(p, 6) = nA, can be used to assess properties of the outer

optimization. Let 3 denote the variance of (X — p,(X — p)? — 62Y. Then for
(1, 0%) with O, (n"'/?) of (E(X),var(X)) and assuming E(X®) < oo,
X—p
V-o?
where V; = (X;— p)?— 0% and V=n"'LV, This suggests that the second
derivative of log %(u, 6) with respect to p should be negative and, hence, that
log #(p, 6) should be concave in p for fixed 6. A general argument along these
lines is made in Section 6.3. ,

Larsen and Marx (1986, page 332) give 19 estimated ages, in millions of years,
of mineral samples collected in the Black Forest. The ages were estimated by
potassium-argon dating. The variance of these measurements is of direct inter-
est since it provides information on the precision of the dating method. A
histogram of this data appears in Figure 4. The sample standard deviation is 27.1
million years and a normal theory 95% confidence interval is 20.1 to 40 million
years.

The empirical likelihood ratio function was calculated for standard deviations
in the range from 1.5 to 51.5 million years in steps of half a million years.

>\=z—1( +0,(nY),
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Fic. 4. Potassium—argon dates.

Computations were made for an increasing sequence of standard deviations
starting near the maximum likelihood estimate and for a decreasing sequence
starting there. This way the final values from each step could be used as starting
values for the next. It took 2 minutes to make 102 likelihood evaluations on a
microvax VaxStation II.

Figure 5 shows the empirical likelihood ratio function, together with the
normal theory likelihood ratio function. The likelihood ratios are plotted against
standard deviations in millions of years. The horizontal lines correspond to 90%
and 95% empirical likelihood confidence intervals. Slightly different lines would
be appropriate for the exact confidence regions based on a normal model. The
empirical likelihood ratio curve has a shorter right tail and a very slightly longer
left tail than the normal one. It is surprising how close the two curves are. The
shorter right tail of the empirical curve seems natural given the apparent
shortness of the tails in Figure 4. The sample kurtosis is 0.02 if one uses the
normal maximum likelihood estimate of g2 as in Miller (1986, page 272) and
—0.29 if one uses the unbiased estimate of 62 Since the sample maximum is 344
and the minimum is 243, the largest possible standard deviation for a reweighted
sample is 51.5. The algorithm found an empirical log likelihood of —52.9 for a
standard deviation of 51. The smallest standard deviation for which a meaning-
ful solution was obtained was 3.5 and the corresponding empirical log likelihood
was —51.8. These correspond to putative x(zl) values larger than 100. It follows
that for any confidence level of practical interest the empirical interval for the
variance can be computed from this data. For standard deviations outside
(3.5,51) the modifications to the logarithm that make it possible to use generic
optimizers lead to convergence to solutions for which the weights w, sum to less
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than 1. It made the computations more stable to divide the ages by 100 before
computing the intervals.

The normal theory curve is exact if the observations are normally distributed
and has a large sample justification if the kurtosis of the measurements is 0. The
empirical likelihood curve has a large sample justification through Theorem 2 if
the kurtosis is finite. Figure 6 shows a histogram of 1000 bootstrap replications of
the standard deviation. The histogram has a location and scale comparable to
those of the likelihood ratio curves.

6.2. Correlation. A similar nested algorithm works for the correlation p. The

inner level consists of finding the likelihood of (u,, p,, 02, o2, po,0,) as a mean
for

(XY, (X = )% (Y = )" (X = (Y - m,))-

The outer level consists of maximizing the result of the inner level over choices of
(s 1ty o2, of). Using the dual problem, the inner optimization is over five
variables and the outer is over four variables. The whole computation is done
over a one dimensional grid of values for p. The four variables of the outer
optimization must obey some constraints to be valid moments. Rather than
check whether each trial point of the outer optimization is possible, it is easier to
extend the inner function as described in Section 3. As before analytic deriva-
tives are available for the outer optimization. Numerical performance is im-
proved by centering and scaling both the X and Y variables.
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F16.6. Bootstrap standard deviations.

Larsen and Marx (1986, page 456) give 15 pairs of observations relating the
frequency with which crickets chirp to the temperature. The data are plotted in
Figure 7. The frequency is said to be in chirps per second and the temperature is
given in degrees Fahrenheit. The sample correlation is 0.835.

The profile empirical likelihood ratio function for the correlation is plotted in
Figure 8. Also shown is the normal theory profile likelihood ratio function. The
empirical curve lies above the normal one. Figure 9 is a histogram of 1000
bootstrap replications of the correlation. The empirical likelihood ratio curve is
very asymmetric, so it will yield inferences quite different from those based on an
estimated standard deviation for p. The shape of the curve is similar to the
bootstrap histogram. Theorem 2 justifies empirical likelihood for the correlation
by a delta method argument. Thus we might expect to find a curve with a
location and width determined by the sample correlation and a sample estimate
of its standard deviation. That the shape of the curve is skewed in what is known
to be the right direction for normal samples is reassuring and not predicted by
the argument used in Theorem 2.

6.3. Nested algorithm. We show that the outer level of the optimization
should be well behaved in a large class of problems, at least for large samples.

Generalize the approach illustrated above for the variance and correlation as
follows. Let @ be a vector of parameters of interest. Let » be a vector of nuisance
parameters. Suppose that the estimating equation

fm(z, v,0)dF =0
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for vector m defines » and 6§ implicitly as functionals of the distribution F of the
vector Z. Consider 8 to be fixed at a value to be tested. In the correlation
example Z = (X, Y) and

m=(X—p,Y—p,(X-pn)-d

(Y_ p‘y)2 - G)?,(X - p‘x)(Y— IJ‘y) - poxoy) .

The parameter vectors are § = (p) and v = (p, 1,, 0,, 0,)’. We wish to compute
Z(0) = sup, Z(v, ) in an obvious notation, using n i.i.d. observations Z,. This
may be done by maximizing over », the minimum over A of

1 =2
- Y log(1 + Am(Z,,6,v)).

i=1

It simplifies the notation to use m to denote m(Z, 8, ») and to use super-
scripts to denote components of A and m. Indices that are repeated in a term are
understood to be summed over. Thus the inner optimization results in

m’

(6.1) - %

+ Nem*

and this defines A = A(») implicitly, provided that the sample variance of m has
full rank. Derivatives with respect to »" are denoted by a subscript r.
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We now seek to maximize

(6.2) %log A(v,0) =Q(v) = - % Y log(1 + A/m7)

over » with # held fixed and A = A(»). We will show that the Hessian of @ is a
negative definite matrix plus O,(n~"/?), which suggests that the outer optimiza-
tion should be well behaved.

We restrict attention to sequences of 6 and » vectors that are within
O,(n~'/?) of the true parameter values and for which the sample mean of m is
O,(n~'/%). It follows as in Section 2 that ||A|| = O,(n~'/?). We assume that first
and second derivatives of m with respect to components of » have finite
expectations and that the fourth moment of m is finite. Recall from the proof of
Theorem 1 that the probability that max;m/A/| < 0.25, say, approaches 1 as
n — 0.

Differentiating (6.1) with respect to »" yields

mi(1 + Nm*) — mi(Nem* + Nem?k)

1+ }\kmk)2

1
0 [—
~2
and, since ||A|| = O,(n~'/?),

(6.3) 0(n-172) =~y 17 ‘—mjmktk’.
n (1 4+ Mm*)
Differentiating (6.2) with respect to »” yields
1 _ Mm/+ NMm!
T nS 1+ NmEo
1 Ami

n=1+NMm*’

by (6.1). Differentiating again

1 (Mmf+ Mml) (1 + Nem#) — Mmf(Nem* + Nemk)
Qrs = - _E b pn2
n (1 + Nm*)
(6.4) L
1 AMm/
—Oy(n ) - =Y
nT (1 + MemF)

We can express (6.3) and (6.4) in matrix form as
(6.5) 0,(n"*?) =vm - SvA
and

(6.6) Q.. = 0,(n™"?) — (VA)(Vrh),



118 A. OWEN
respectively, where

m(Z;,0,v)ym(Z,,0,v)
(1 + N»)m(Z,0,v))*’

~ 1
S=-
~)
the matrix v has jr element

1 ml(Z;,8,v)
n z 1+ ANr)m(Z,8, V))2

and VA denotes the matrix of partial derivatives of A with respect to the
components of ».

The matrix S is close to S, the sample variance—covariance matrix for m
because A’m is uniformly bounded with high probability. Similarly v is nearly
the sample mean of vm, the matrix of partial derivatives of components of m
with respect to those of ». Combining (6.5) and (6.6), we express the Hessian of @
in vector notation as

0,(n~'2) — (vin)'S (v ).

It follows that the Hessian of @ is a negative definite matrix of O,(1) plus a
term of O(n~'/2), provided that m has a variance of full rank and that the
expected value of vm is of full rank. Since log %Z(», ) = n@, the matrix n@,,
may be thought of as the information matrix for » when estimated with
known 6.

6.4. M estimates and regression. Owen (1988a) obtains a one variable ver-
sion of Theorem 3. Applying it to the median results in a family of confidence
intervals that reproduce those generated by the sign test. One potential applica-
tion of Theorem 3 is to pairs of medians. The confidence regions for a pair of
medians will not always be convex. As an extreme case, suppose that the sample
is concentrated in L = {(x, y)|x = 0, ¥ = 0, xy = 0}. Then any reweighted sam-
ple also has its marginal median vector in L, and so the empirical likelihood
regions will be subsets of L and need not always be convex. Any resampled pair
of medians would also lie in L, so bootstrap intervals might also be subsets of L.
Noticing this and constructing appropriate confidence sets would require some
special attention from the bootstrapper, while with empirical likelihood it is
automatic. ,

Multiple linear regression may be treated by either Theorem 2 or Theorem 3.
Suppose that X; € R” and Y, € R and that an ii.d. sample of (X, 7Y)) is
available from a distribution on R?*!, Then the sample regression coefficients
are continuous functions of certain means of responses, squares and cross-prod-
ucts and are subject to Theorem 2. Using Theorem 3, one can postulate that for
some X, B € R? the vectors (Y, — X/8)X; are independent and identically
distributed with mean 0 and finite variance of full rank, and so for various B test
whether the residuals might reasonably have mean 0 and be uncorrelated with
the predictors.
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When the X, are fixed by design neither approach applies directly, because
both require i.i.d. observations. In a forthcoming paper the author will consider
this case. The method proceeds by replacing the appeal to an i.i.d. central limit
theorem by one based on the Lindeberg condition.
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