
■ This article surveys the use of empirical, machine-
learning methods for a particular natural lan-
guage–understanding task—information extrac-
tion. The author presents a generic architecture for
information-extraction systems and then surveys
the learning algorithms that have been developed
to address the problems of accuracy, portability,
and knowledge acquisition for each component of
the architecture.

Most corpus-based methods in natural
language processing (NLP) were de-
veloped to provide an arbitrary text-

understanding application with one or more
general-purpose linguistic capabilities, as evi-
denced by the articles in this issue of AI Maga-
zine. Author Eugene Charniak and coauthors
Ng Hwee Tou and John Zelle, for example, de-
scribe techniques for part-of-speech tagging,
parsing, and word-sense disambiguation.
These techniques were created with no specific
domain or high-level language-processing task
in mind. In contrast, my article surveys the use
of empirical methods for a particular natural
language–understanding task that is inherently
domain specific. The task is information ex-
traction. Generally, an information-extraction
system takes as input an unrestricted text and
“summarizes” the text with respect to a pre-
specified topic or domain of interest: It finds
useful information about the domain and en-
codes the information in a structured form,
suitable for populating databases. In contrast
to in-depth natural language–understanding
tasks, information-extraction systems effec-
tively skim a text to find relevant sections and
then focus only on these sections in subse-
quent processing. The information-extraction
system in figure 1, for example, summarizes
stories about natural disasters, extracting for
each such event the type of disaster, the date

and time that it occurred, and data on any
property damage or human injury caused by
the event. 

Information extraction has figured promi-
nently in the field of empirical NLP: The first
large-scale, head-to-head evaluations of NLP
systems on the same text-understanding tasks
were the Defense Advanced Research Projects
Agency–sponsored Message-Understanding
Conference (MUC) performance evaluations of
information-extraction systems (Chinchor,
Hirschman, and Lewis 1993; Lehnert and
Sundheim 1991). Prior to each evaluation, all
participating sites receive a corpus of texts
from a predefined domain as well as the corre-
sponding answer keys to use for system devel-
opment. The answer keys are manually encoded
templates—much like that of figure 1—that
capture all information from the correspond-
ing source text that is relevant to the domain,
as specified in a set of written guidelines. After
a short development phase,1 the NLP systems
are evaluated by comparing the summaries
each produces with the summaries generated
by human experts for the same test set of pre-
viously unseen texts. The comparison is per-
formed using an automated scoring program
that rates each system according to measures of
recall and precision. Recall measures the
amount of the relevant information that the
NLP system correctly extracts from the test col-
lection; precision measures the reliability of the
information extracted:

recall = (# correct slot fillers in 
output templates) / (# slot 
fillers in answer keys) 

precision = (# correct slot fillers in 
output templates) / (# slot 
fillers in output templates)  .

As a result of MUC and other information-ex-
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ing business joint ventures (MUC-5 1994); and
(6) support the automatic classification of legal
documents (Holowczak and Adam 1997).

A growing number of internet applications
also use information-extraction technologies.
Some examples include NLP systems that build
knowledge bases directly from web pages
(Craven et al. 1997); create job-listing databas-
es from news groups, web sites, and classified
advertisements (see www.junglee.com/suc-
cess/index.html); build news group query sys-
tems (Thompson, Mooney, and Tang 1997);
and create weather forecast databases from
web pages (Soderland 1997). 

Although the MUC evaluations have shown
that it is possible to rigorously evaluate some
aspects of an information-extraction system, it
is difficult to state the overall performance lev-
els of today’s information-extraction systems:
At a minimum, performance depends on the
relative complexity of the extraction task, the

traction efforts, information extraction has be-
come an increasingly viable technology for re-
al-world text-processing applications. For ex-
ample, there are currently information-
extraction systems that (1) support underwrit-
ers in analyzing life insurance applications
(Glasgow et al. 1997); (2) summarize medical
patient records by extracting diagnoses, symp-
toms, physical findings, test results, and thera-
peutic treatments to assist health-care providers
or support insurance processing (Soderland,
Aronow, et al. 1995); (3) analyze news wires and
transcripts of radio and television broadcasts to
find and summarize descriptions of terrorist ac-
tivities (MUC-4 1992; MUC-3 1991); (4) moni-
tor technical articles describing microelectronic
chip fabrication to capture information on
chip sales, manufacturing advances, and the
development or use of chip-processing tech-
nologies (MUC-5 1994); (5) analyze newspaper
articles with the goal of finding and summariz-

Figure 1. An Information-Extraction System in the Domain of Natural Disasters.
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Event:
Date:
Time:
Location:
Damage:

Estimated Losses:
Injuries:

tornado
4/3/97
19:15
Farmers Branch : "northwest of Dallas" : TX : USA
"mobile homes" (2)
"Texaco station" (1)
$350,000
none

4 Apr Dallas - Early last evening, a tornado 
swept through an area northwest of Dallas, 

causing extensive damage.  Witnesses 
confirm that the twister occurred without 
warning at approximately 7:15 p.m. and 

destroyed two mobile homes. The Texaco 
station, at 102 Main Street,  Farmers 

Branch, TX,was also severely damaged, but 
no injuries were reported. Total property 
damages are estimated to be $350,000.

Information
Extraction 

System

Free Text

Output
Template



quality of the knowledge bases available to the
NLP system, the syntactic and semantic com-
plexity of the documents to be processed, and
the regularity of the language in the docu-
ments. In general, however, the best extraction
systems now can achieve levels of about 50-
percent recall and 70-percent precision on fair-
ly complex information-extraction tasks and
can reach much-higher levels of performance
(approximately 90-percent recall and
precision) for the easiest tasks. Although these
levels of performance might not initially seem
impressive, one should realize that informa-
tion extraction is difficult for people as well as
machines. Will’s (1993) study, for example,
showed that the best machine-extraction sys-
tems have an error rate that is only twice that
of highly skilled analysts specifically trained in
information-extraction tasks. 

In spite of this recent progress, today’s infor-
mation-extraction systems still have problems:
First, the accuracy and robustness of machine-
extraction systems can be improved greatly. In
particular, human error during information
extraction is generally caused by a lapse of at-
tention, but the errors of an automated extrac-
tion system are the result of its relatively shal-
low understanding of the input text. As a
result, the machine-generated errors are more
difficult to track down and correct. Second,
building an information-extraction system in
a new domain is difficult and time consuming,
often requiring months of effort by domain
specialists and computational linguists famil-
iar with the underlying NLP system. Part of the
problem lies in the domain-specific nature of
the task: An information-extraction system
will work better if its linguistic knowledge
sources are tuned to the particular domain, but
manually modifying and adding domain-spe-
cific linguistic knowledge to an existing NLP
system is slow and error prone. 

The remainder of the article surveys the em-
pirical methods in NLP that have been devel-
oped to address these problems of accuracy,
portability, and knowledge acquisition for in-
formation-extraction systems. Like the com-
panion articles in this issue, we see that empir-
ical methods for information extraction are
corpus-based, machine-learning algorithms.
To start, I present a generic architecture for in-
formation-extraction systems. Next, I provide
examples of the empirical methods designed
to increase the accuracy or the portability of
each component in the extraction system.
Throughout, I focus on the specific needs and
constraints that information extraction places
on the language-learning tasks. 

The Architecture of an 
Information-Extraction System 

In the early days of information extraction,
NLP systems varied widely in their approach to
the information-extraction task. At one end of
the spectrum were systems that processed a
text using traditional NLP techniques: (1) a full
syntactic analysis of each sentence, (2) a se-
mantic analysis of the resulting syntactic struc-
tures, and (3) a discourse-level analysis of the
syntactic and semantic representations. At the
other extreme lie systems that used keyword-
matching techniques and little or no linguistic
analysis of the input text. As more informa-
tion-extraction systems were built and empiri-
cally evaluated, however, researchers began to
converge on a standard architecture for infor-
mation-extraction systems. This architecture is
shown in figure 2. Although many variations
exist from system to system, the figure indi-
cates the main functions performed in an in-
formation-extraction system.

Each input text is first divided into sen-
tences and words in a tokenization and tag-
ging step. As indicated in figure 2, many sys-
tems also disambiguate, or tag, each word with
respect to part of speech and, possibly, seman-
tic class at this point during processing. The
sentence-analysis phase follows. It comprises
one or more stages of syntactic analysis, or
parsing, that together identify noun groups,
verb groups, prepositional phrases, and other
simple constructs. In some systems, the parser
also locates surface-level subjects and direct
objects and identifies conjunctions, apposi-
tives, and other complex phrases. At some
point, either before, during, or after the main
steps of syntactic analysis, an information-ex-
traction system also finds and labels semantic
entities relevant to the extraction topic. In the
natural disaster domain, for example, the sys-
tem might identify locations, company names,
person names, time expressions, and money
expressions, saving each in a normalized form. 

Figure 2 shows the syntactic constituents
and semantic entities identified during sen-
tence analysis for the first sentence of the sam-
ple text. There are important differences be-
tween the sentence-analysis stage of an
information-extraction system and traditional
parsers. Most importantly, the goal of syntactic
analysis in an information-extraction system is
not to produce a complete, detailed parse tree
for each sentence in the text. Instead, the sys-
tem need only perform partial parsing; that is,
it need only construct as much structure as the
information-extraction task requires. Unlike
traditional full-sentence parsers, a partial pars-
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The main job of the merging phase is corefer-
ence resolution, or anaphora resolution: The
system examines each entity encountered in
the text and determines whether it refers to an
existing entity or whether it is new and must
be added to the system’s discourse-level repre-
sentation of the text. In the sample text, for ex-
ample, the mention of a tornado in the first
sentence indicates a new entity; the twister in
sentence two, however, refers to the same en-
tity as the tornado in sentence one. Recogniz-
ing when two statements refer to the same en-
tity is critical for an information-extraction
system because it allows the system to associ-
ate the information from both statements with
the same object. In some systems, another task
of merging is to determine the implicit sub-
jects of all verb phrases. In sentence one, this
component would infer that tornado is the sub-
ject of causing (as well as the subject of swept),
allowing the system to directly associate dam-
age with the tornado. The discourse-level infer-
ences made during merging aid the template-
generation phase, which determines the
number of distinct events in the text, maps the
individually extracted pieces of information
onto each event, and produces output tem-
plates. Purely domain-specific inferences can
also occur during template generation. In the
MUC terrorism domain, for example, terrorist

er looks for fragments of text that can reliably
be recognized, for example, noun groups and
verb groups. Because of its limited coverage, a
partial parser can rely solely on general pat-
tern-matching techniques—often finite-state
machines—to identify these fragments deter-
ministically based on purely local syntactic
cues. Partial parsing is well suited for informa-
tion-extraction applications for an additional
reason: The ambiguity-resolution decisions
that make full-blown parsing difficult can be
postponed until later stages of processing
where top-down expectations from the infor-
mation-extraction task can guide the system’s
actions. 

The extraction phase is the first entirely do-
main-specific component of the system. Dur-
ing extraction, the system identifies domain-
specific relations among relevant entities in
the text. Given the first sentence in our exam-
ple, this component should identify the type
of natural disaster (tornado), the location of the
event (area and northwest of Dallas, TX), and
the fact that there was some property damage.
Figure 2 shows the information extracted from
the first sentence and those portions of text re-
sponsible for each piece of extracted data. In-
formation for filling the remaining slots of the
output template would similarly be extracted
from subsequent sentences. 

Figure 2. Architecture for an Information-Extraction System.
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Event:
Date:
Time:
...

tornado
4/3/97
19:15
...

4 Apr Dallas - Early last 
evening, a tornado swept 
through an area northwest 

of Dallas, causing 
extensive damage...

Tokenization
and Tagging

Sentence
Analysis

ExtractionMerging
Template

Generation

Early/adv last/adj 
evening/ noun/time ,/, 

a/det 
tornado/noun/weather 

swept/verb  through/prep ...

Early last evening
a tornado
swept 
through an area 
northwest of Dallas
causing 
extensive damage...

adverbial phrase:time
noun group/subject
verb group
prep phrase:location
adverbial phrase:location
verb group
noun group/object

tornado swept                           
tornado swept through an area  
area northwest of Dallas           
causing extensive damage         
...
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Event: tornado
Location: "area"
Location: "northwest of Dallas"
Damage

Extracted information

->
->
->
->

Early last evening, a 
tornado swept through an 
area northwest of Dallas...

Witnesses confirmed 
that the twister ...



events involving only military targets were not
considered relevant unless civilians were in-
jured, or there was damage to civilian property.
The template-generation phase is often the
best place to apply this domain-specific con-
straint. In addition, some slots in the output
template must be filled with terms chosen
from a set of possibilities rather than a string
from the input text. In the sample scenario,
the Injuries and Event slots require such set
fills. Still other slots (for example, Date, Time,
Location) might require normalization of their
fillers. Both of these subtasks are part of the
template-generation phase. 

The Role of Corpus-Based–
Language Learning Algorithms

With this architecture in mind, we can now re-
turn to our original question: How have re-
searchers used empirical methods in NLP to im-
prove the accuracy and portability of
information-extraction systems? In general,
corpus-based–language learning algorithms
have been used to improve individual compo-
nents of the information-extraction system
and, as a result, to improve the end-to-end per-
formance. In theory, empirical methods can be
used for each subtask of information extrac-
tion: part-of-speech tagging, semantic-class tag-
ging, word-sense disambiguation, named enti-
ty identification (for example, company
names, person names, locations), partial pars-
ing, extraction-pattern learning, coreference
resolution, and each step of template genera-
tion. The catch, as is often the case in corpus-
based approaches to language learning, is ob-
taining enough training data. As described in
the overview article, supervised language learn-
ing algorithms acquire a particular language-
processing skill by taking many examples of
how to correctly perform the task and then
generalizing from the examples to handle un-
seen cases. The algorithms, therefore, critically
depend on the existence of a corpus that has
been annotated with the appropriate supervi-
sory information. For language tasks that are
primarily domain independent and syntactic
in nature, annotated corpora such as the Penn
tree bank (Marcus, Marcinkiewicz, and Santori-
ni 1993) already exist and can be used to ex-
tract training data for the information-extrac-
tion system. Part-of-speech tagging and
bracketing text into noun groups, verb groups,
clauses, and so on, fall into this category. For
these tasks, one can use the tree bank’s Wall
Street Journal corpus, which has been annotated
with both word class and syntactic structure,
together with any of a number of corpus-based

algorithms: Some examples include using hid-
den Markov models (HMMs) for part-of-speech
tagging and statistical learning techniques for
parsing (see Charniak [1993] and Weischedel et
al. [1993]), Brill’s (1995) transformation-based
learning for part-of-speech tagging and brack-
eting (Ramshaw and Marcus 1995), decision
tree models for parsing (Magerman 1995), case-
based learning for lexical tagging (Daelemans
et al. 1996; Cardie 1993), and inductive logic
programming for learning syntactic parsers
(Zelle and Mooney 1994). The resulting taggers
and bracketers will be effective across informa-
tion-extraction tasks as long as the input to the
information-extraction system uses a writing
style and genre that is similar to the training
corpus. Otherwise, a new training corpus must
be created and used to completely retrain or
bootstrap the training of the component. In
theory, word-sense–disambiguation algorithms
would also be portable across extraction tasks.
However, defining standard word senses is dif-
ficult, and to date, text collections have been
annotated according to these predefined senses
only for a small number of selected words. In
addition, the importance of word-sense disam-
biguation for information-extraction tasks re-
mains unclear. 

Natural language–learning techniques are
more difficult to apply to subsequent stages of
information extraction—namely, the learning
of extraction patterns, coreference resolution,
and template generation. There are a number
of problems: First, there are usually no corpora
annotated with the appropriate semantic and
domain-specific supervisory information. The
typical corpus for information-extraction tasks
is a collection of texts and their associated an-
swer keys, that is, the output templates that
should be produced for each text. Thus, a new
corpus must be created for each new informa-
tion-extraction task. In addition, the corpus
simply does not contain the supervisory infor-
mation needed to train most components of
an information-extraction system, including
the lexical-tagging, coreference-resolution,
and template-generation modules. The output
templates are often inadequate even for learn-
ing extraction patterns: They indicate which
strings should be extracted and how they
should be labeled but say nothing about which
occurrence of the string is responsible for the
extraction when multiple occurrences appear
in the text. Furthermore, they provide no di-
rect means for learning patterns to extract set
fills, symbols not necessarily appearing any-
where in the text. As a result, researchers create
their own training corpora, but because this
process is slow, the resulting corpora can be
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Learning Extraction Patterns 
As in the sentence-analysis stages, general pat-
tern-matching techniques have also become
the technique of choice for the extraction
phase of an information-extraction system
(MUC-6 1995). The role for empirical methods
in the extraction phase, therefore, is one of
knowledge acquisition: to automate the acqui-
sition of good extraction patterns, where good
patterns are those that are general enough to
extract the correct information from more
than one sentence but specific enough to not
apply in inappropriate contexts. A number of
researchers have investigated the use of cor-
pus-based methods for learning information-
extraction patterns. The learning methods
vary along a number of dimensions: the class
of patterns learned, the training corpus re-
quired, the amount and type of human feed-
back required, the degree of preprocessing nec-
essary, the background knowledge required,
and the biases inherent in the learning algo-
rithm itself. 

One of the earliest systems for acquiring ex-
traction patterns was AUTOSLOG (Riloff 1993;
Lehnert et al. 1992). AUTOSLOG learns extraction
patterns in the form of domain-specific con-
cept-node definitions for use with the CIRCUS

parser (Cardie and Lehnert 1991; Lehnert
1990). AUTOSLOG’s concept nodes can be viewed
as domain-specific semantic case frames that
contain a maximum of one slot for each frame.
Figure 3, for example, shows the concept node
for extracting two mobile homes as damaged
property from sentence two of the sample text.
The first field in the concept node specifies the
type of concept to be recognized (for example,
Damage). The concept type generally corre-
sponds to a specific slot in the output template
(for example, the Damage slot of figure 1). The
remaining fields in the concept node represent
the extraction pattern. The trigger is the word
that activates the pattern—it acts as the pat-
tern’s conceptual anchor point. The position
denotes the syntactic position where the con-
cept is expected to be found in the input sen-
tence (for example, the direct object, subject,
object of a preposition); the constraints are se-
lectional restrictions that apply to any poten-
tial instance of the concept. In CIRCUS, these se-
mantic constraints can be hard or soft: Hard
constraints are predicates that must be satisfied
before the phrase in the specified position can
be extracted as an instance of the concept; soft
constraints suggest preferences for slot fillers
but do not inhibit the extraction of phrases if
violated. In all our examples, we assume that
the constraints are hard. Finally, the enabling
conditions are constraints on the linguistic con-

much smaller than is normally required for
statistical approaches to language analysis. 

Another problem is that the semantic and
domain-specific language-processing skills
needed for information extraction often re-
quire the output of earlier levels of analysis, for
example, tagging and partial parsing. This re-
quirement complicates the generation of train-
ing examples for the learning algorithm be-
cause there can be no standard corpus from
which complete training examples can be read
off, as is the case for part-of-speech tagging and
parsing. The features that describe the learning
problem depend on the information available
to the extraction system in which the learning
algorithm is embedded, and these features be-
come available only after the training texts
have passed through earlier stages of linguistic
analysis. Whenever the behavior of these ear-
lier modules changes, new training examples
must be generated and the learning algorithms
for later stages of the information-extraction
system retrained. Furthermore, the learning al-
gorithms must deal effectively with noise
caused by errors from earlier components. The
cumulative effect of these complications is
that the learning algorithms used for low-level
tagging or syntactic analysis might not readily
apply to the acquisition of these higher-level
language skills, and new algorithms often need
to be developed. 

In spite of the difficulties of applying empir-
ical methods to problems in information ex-
traction, it is precisely the data-driven nature
of corpus-based approaches that allows them
to simultaneously address both of the major
problems for information-extraction sys-
tems—accuracy and portability. When the
training data are derived from the same type of
texts that the information-extraction system is
to process, the acquired language skills are au-
tomatically tuned to that corpus, increasing
the accuracy of the system. In addition, be-
cause each natural language–understanding
skill is learned automatically rather than man-
ually coded into the system, the skill can be
moved quickly from one information-extrac-
tion system to another by retraining the ap-
propriate component. 

The remaining sections describe the natural
language–learning techniques that have been
developed for training the domain-dependent
and semantic components of an information-
extraction system: extraction, merging, and
template generation. In each case, I describe
how the previously discussed problems are ad-
dressed and summarize the state of the art in
the field. 

One of the
earliest 
systems 
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acquiring 
extraction

patterns 
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AUTOSLOG.
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text of the triggering word that must be satis-
fied before the pattern is activated. The con-
cept node of figure 3, for example, would be
triggered by the word destroyed when used in
the active voice. Once activated, the concept
node would then extract the direct object of
the clause to fill its Damage slot as long as the
phrase denoted a physical object. 

Once the concept node is defined, it can be
used in conjunction with a partial parser to ex-
tract information from novel input sentences.
The system parses the sentence; if the trigger
word is encountered and the enabling condi-
tions satisfied, then the phrase found in the
specified syntactic constituent is extracted,
tested for the appropriate semantic con-
straints, and then labeled as an instance of the
designated concept type. The bottom of figure
3 shows the concept extracted from sentence
two of the sample text after applying the Dam-
age concept node. Alternatively, given the sen-
tence “the hurricane destroyed two office
buildings,” the same Damage concept node
would extract two office buildings as the dam-
aged entities. The extracted concepts are used
during merging and template generation to
produce the desired output templates.

AUTOSLOG learns concept-node definitions
using a one-shot learning algorithm designed
specifically for the information-extraction
task. As a training corpus, it requires a set of
texts and their answer keys.2 The AUTOSLOG

learning algorithm is straightforward and de-
pends only on the existence of a partial parser,
a small lexicon with semantic-class informa-
tion, and a small set (approximately 13) of
general linguistic patterns that direct the cre-
ation of concept nodes. Given a noun phrase
from an answer key, AUTOSLOG performs the fol-
lowing steps to derive a concept node for ex-
tracting the phrase from the original text: 

First, find the sentence from which the
noun phrase originated. For example, given
the target noun phrase two mobile homes that
fills the Damage slot, AUTOSLOG would return
sentence two from the sample text during this
step. 

Second, present the sentence to the partial
parser for processing. AUTOSLOG’s partial parser
must be able to identify the subject, direct ob-
ject, verb group, and prepositional phrases of
each clause. For sentence two of the sample
text, the parser should determine, among oth-
er things, that destroyed occurred as the verb
group of the third clause with two mobile homes
as its direct object. 

Third, apply the linguistic patterns in order.
AUTOSLOG’s linguistic patterns attempt to iden-
tify domain-specific thematic role information

for a target noun phrase based on the syntactic
position in which the noun phrase appears
and the local linguistic context. The first pat-
tern that applies determines the extraction
pattern, that is, concept node, for extracting
the noun phrase from the training sentence.
The linguistic pattern that would apply in the
two mobile homes example is

<active-voice-verb> followed by <target-
np>=<direct object>  .

This pattern says that the noun phrase to be
extracted, that is, the target-np, appeared as
the direct object of an active voice verb. Simi-
lar patterns exist for the objects of passives and
infinitives and for cases where the target noun
phrase appears as the subject of a clause or the
object of a prepositional phrase. AUTOSLOG’s lin-
guistic patterns are, for the most part, domain
independent; they need little or no modifica-
tion when moving an NLP system from one in-
formation-extraction task to another. 

Fourth, when a pattern applies, generate a
concept-node definition from the matched
constituents, their context, the slot type for
the target noun phrase, and the predefined se-
mantic class for the filler. For our example, AU-
TOSLOG would generate a concept node defini-
tion of the following form: 

Concept = < <slot type> of <target-np> > 

Trigger = 
“< <verb> of <active-voice-verb> >” 

Position = direct-object 

Constraints = 
((< <semantic class> of <concept> >)) 

Enabling Conditions = ((active-voice))  .

Figure 3. Concept Node for Extracting Damage Information. 
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Sentence Two:

“Witnesses confirm that the twister occurred 
without warning at approximately 7:15 p.m. 
and destroyed two mobile homes.”

Concept-Node Definition:

Concept = Damage
Trigger = “destroyed” 
Position = direct-object
Constraints = ((physical-object)) 
Enabling Conditions = ((active-voice)) 

Instantiated Concept Node 

Damage = “two mobile homes”



view the proposed extraction patterns and dis-
card those that seem troublesome. 

AUTOSLOG has been used to automatically de-
rive extraction patterns for a number of do-
mains: terrorism, business joint ventures, and
advances in microelectronics. In terms of im-
proving the portability of information-extrac-
tion systems, AUTOSLOG allowed developers to
create extraction patterns for the terrorism do-
main in 5 hours instead of the approximately
1200 hours required to create extraction pat-
terns for the domain by hand. In terms of ac-
curacy, there was no direct empirical evalua-
tion of the learned patterns, even though some
form of cross-validation could have been used.
Instead, the learned patterns were evaluated
indirectly—by using them to drive the Univer-
sity of Massachusetts–MUC-3 information-ex-
traction system. In short, the AUTOSLOG-gener-
ated patterns achieved 98 percent of the
performance of the handcrafted patterns. This
result is especially impressive because the
handcrafted patterns had placed the Universi-
ty of Massachusetts system among the top per-
formers in the MUC-3 performance evaluation
(Lehnert et al. 1991). AUTOSLOG offered an addi-
tional advantage over the handcrafted rule set:
Because domain experts can review the auto-
matically generated extraction patterns with
minimal training, building the patterns no
longer required the expertise of a computa-
tional linguist with a deep understanding of
the underlying NLP system. This is a critical
step toward building information-extraction
systems that are trainable entirely by end
users. 

Figure 4 shows the general structure of cor-
pus-based approaches to learning information-
extraction patterns. AUTOSLOG conforms to this
structure except for its human feedback loop,
which does not inform the learning algorithm
of its findings. Virtually all subsequent at-
tempts to automate the acquisition of extrac-
tion patterns also conform to the general struc-
ture of figure 4. In the next paragraphs, I
describe a handful of these systems. 

First, Kim and Moldovan’s (1995) PALKA sys-
tem learns extraction patterns that are similar
in form to AUTOSLOG’s concept nodes. The ap-
proach used to generate the patterns, however,
is quite different. The background knowledge
is not a set of linguistic patterns to be instanti-
ated but a concept hierarchy, a set of prede-
fined keywords that can be used to trigger each
pattern, and a semantic-class lexicon. The con-
cept hierarchy contains generic semantic case-
frame definitions for each type of information
to be extracted. To learn extraction patterns,
PALKA looks for sentences that contain case-

AUTOSLOG assumes that the semantic class of
each concept type is given as part of the do-
main specification and that the parser has a
mechanism for assigning these semantic class-
es to nouns and noun modifiers during sen-
tence analysis. After substitutions, this con-
cept-node definition will match the Damage
concept node of figure 3. 

Some examples of extraction patterns
learned by AUTOSLOG for the terrorism domain
include (in shorthand form): <victim> was
murdered; <perpetrator> bombed; <perpetra-
tor> attempted to kill; was aimed at <target>.
In these examples, the bracketed items denote
concept type and the word in boldface is the
concept node trigger. Although many of AU-
TOSLOG’s learned patterns are good, some are
too general (for example, they are triggered by
is or are); others are too specific; still others are
just wrong. These bad extraction patterns are
sometimes caused by parsing errors; alterna-
tively, they occur when target noun phrases
occur in a prepositional phrase, and AUTOSLOG

cannot determine whether the preceding verb
or noun phrase should trigger the extraction.
As a result, AUTOSLOG requires that a person re-

Figure 4. Learning Information-Extraction Patterns. 
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frame slots using semantic-class information.
The training corpus is used to choose the cor-
rect mapping when more than one is possible,
but the concept and semantic-class hierarchies
guide PALKA’s generalization and specialization
of proposed patterns. 

Like AUTOSLOG and PALKA, CRYSTAL (Soderland
et al. 1995) learns extraction patterns in the
form of semantic case frames. CRYSTAL’s pat-
terns, however, can be more complicated. In-
stead of specifying a single trigger word and its
local linguistic context, the triggers for CRYS-
TAL’s patterns comprise a much more detailed
specification of linguistic context. In particu-
lar, the target constituent or any surrounding
constituents (for example, the subject, verb, or
object of the current clause) can be tested for a
specific sequence of words or the presence of
heads or modifiers with the appropriate se-
mantic class. CRYSTAL uses a covering algorithm
to learn extraction patterns and their relatively
complicated triggering constraints. Covering
algorithms are a class of inductive learning
technique that successively generalizes input
examples until the generalization produces er-
rors. As a result, CRYSTAL begins by generating
the most specific concept node possible for
every phrase to be extracted in the training
texts. It then progresses through the concept
nodes one by one. For each concept node, C,
CRYSTAL finds the most similar concept node,
C’, and relaxes the constraints of each just
enough to unify C and C’. The new extraction
pattern, P, is tested against the training corpus.
If its error rate is less than some prespecified
threshold, P is added to the set, replacing C
and C’. The process is repeated on P until the
error tolerance is exceeded. At this point, CRYS-
TAL moves on to the next pattern in the origi-
nal set. CRYSTAL was initially used to derive ex-
traction patterns for a medical diagnosis
domain, where it achieved precision levels
ranging from 50 percent to 80 percent and re-
call levels ranging from 45 percent to 75 per-
cent, depending on how the error-tolerance
threshold was set. 

Although AUTOSLOG, PALKA, and CRYSTAL learn
extraction patterns in the form of semantic
case frames, each uses a different learning
strategy. AUTOSLOG creates extraction patterns
by specializing a small set of general linguistic
patterns, CRYSTAL generalizes complex but max-
imally specific linguistic contexts, and PALKA

performs both generalization and specializa-
tion of an initial extraction pattern. Where AU-
TOSLOG makes no attempt to limit the number
of extraction patterns created, CRYSTAL’s cover-
ing algorithm derives the minimum number of
patterns that cover the examples in the train-

ing corpus. In addition, CRYSTAL and PALKA use
automated feedback for the learning algo-
rithm; AUTOSLOG requires human perusal of
proposed patterns. CRYSTAL and PALKA, however,
require more background knowledge in the
form of a possibly domain-specific semantic-
class hierarchy, a lexicon that indicates seman-
tic-class information for each word and, in the
case of PALKA, a set of trigger words. The parsers
of both systems must also be able to accurately
assign semantic-class information to words in
an incoming text. No semantic hierarchy is
needed for AUTOSLOG—a flat semantic feature
list will suffice. Also, although AUTOSLOG’s pat-
terns perform best when semantic-class infor-
mation is available, the learning algorithm and
the resulting concept nodes can still operate ef-
fectively when no semantic-class information
can be obtained. 

There have been a few additional attempts
to learn extraction patterns. Huffman’s (1996)
LIEP system learns patterns that recognize se-
mantic relationships between two target noun
phrases, that is, between two slot fillers of an
information-extraction output template. The
patterns describe the syntactic context that
falls between the target noun phrases as well as
the semantic class of the heads of the target
phrases and all intervening phrases. I (Cardie
1993) used standard symbolic machine-learn-
ing algorithms (decision tree induction and a k
nearest-neighbor algorithm) to identify the
trigger word for an extraction pattern, the gen-
eral linguistic context in which the pattern
would be applied, and the type of concept that
the pattern would identify. Califf and Mooney
(1997) have recently applied relational learn-
ing techniques to acquire extraction patterns
from news group job postings. Like CRYSTAL,
their RAPIER system operates by generalizing an
initial set of specific patterns. Unlike any of the
previously mentioned systems, however, RAPIER

learns patterns that specify constraints at the
word level rather than the constituent level. As
a result, only a part-of-speech tagger is re-
quired to process input texts. 

Although much progress has been made on
learning extraction patterns, many research is-
sues still need to be resolved. Existing methods
work well when the information to be extract-
ed is explicitly denoted as a string in the text,
but major extensions would be required to
handle set fills. Furthermore, existing methods
focus on the extraction of noun phrases. It is
not clear that the same methods would work
well for domains in which the extracted infor-
mation is another syntactic type or is a compo-
nent of a constituent rather than a complete
constituent (for example, a group of noun
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empirically, and as a result, it is not clear what
information to include in the heuristics. It is
also difficult to design heuristics that combine
multiple coreference cues effectively, given
that the relative importance of each piece of
information is unknown. Furthermore, most
computational approaches to coreference reso-
lution assume as input fully parsed sentences,
often marked with additional linguistic attrib-
utes such as grammatical function and themat-
ic role information. Information-extraction
systems do not normally have such detailed
parse information available: The robust partial
parsing algorithms used by most information-
extraction systems offer wider coverage in ex-
change for less syntactic information. A fur-
ther complication in developing trainable
coreference components for an information-
extraction system is that discourse analysis is
based on information discerned by earlier
phases of processing. Thus, any coreference al-
gorithm must take into account the accumu-
lated errors of the earlier phases as well as the
fact that some information that would aid the
coreference task might be missing. Finally, the
coreference component of an information-ex-
traction system must be able to handle the
myriad forms of coreference across different
domains. 

Empirical methods for coreference were de-
signed to address these problems. Unlike the
methods for learning extraction patterns, algo-
rithms for building automatically trainable
coreference-resolution systems have not re-
quired the development of learning algorithms
designed specifically for the task. By recasting
the coreference problem as a classification
task, any of a number of standard inductive-
learning algorithms can be used. Given two
phrases and the context in which they occur,
for example, the coreference-learning algo-
rithm must classify the phrases with respect to
whether they refer to the same object. Here, I
describe two systems that use inductive-classi-
fication techniques to automatically acquire
coreference-resolution heuristics: MLR (ma-
chine-learning–based resolver) (Aone and Ben-
nett 1995) and RESOLVE (McCarthy and Lehnert
1995). 

Both MLR and RESOLVE use the same general
approach, which is depicted in figure 5. First, a
training corpus is annotated with coreference
information; namely, all phrases that refer to
the same object are linked using the annota-
tions. Alternatively, just the best (usually the
most recent) antecedent for each referent is
marked. Training examples for presentation to
the machine-learning algorithm are then cre-
ated from the corpus. There will be one in-

modifiers in a noun phrase). Finally, few of the
methods described here have been evaluated
on the same information-extraction tasks un-
der the same conditions. Until a direct com-
parison of techniques is available, it will re-
main difficult to determine the relative
advantages of one technique over another. A
related open problem in the area is to deter-
mine, a priori, which method for learning ex-
traction patterns will give the best results in a
new extraction domain. 

Coreference Resolution and
Template Generation

In comparison to empirical methods for learn-
ing extraction patterns, substantially less re-
search has tackled the problems of coreference
resolution and template generation. As men-
tioned earlier, the goal of the coreference com-
ponent is to determine when two phrases refer
to the same entity. Although this task might
not appear difficult, consider the following
text from the MUC-6 (1995) corporate man-
agement succession domain. In this text, all
the bracketed segments are coreferential: 

[Motor Vehicles International Corp.]
announced a major management shake-
up.... [MVI] said the chief executive officer
has resigned.... [The Big 10 auto maker] is
attempting to regain market share.... [It]
will announce significant losses for the
fourth quarter.... A [company] spokesman
said [they] are moving [their] operations
to Mexico in a cost-saving effort.... [MVI,
[the first company to announce such a
move since the passage of the new inter-
national trade agreement],] is facing in-
creasing demands from unionized work-
ers.... [Motor Vehicles International] is
[the biggest American auto exporter to
Latin America]. 

The passage shows the wide range of linguis-
tic phenomena that influence coreference res-
olution, including proper names, aliases, defi-
nite noun phrases, definite descriptions,
pronouns, predicate nominals, and apposi-
tives. Unfortunately, different factors can play
a role in handling each type of reference. In
fact, discourse processing, and coreference in
particular, has been cited as a major weakness
of existing information-extraction systems.
One problem is that most systems use manual-
ly generated heuristics to determine when two
phrases describe the same entity, but generat-
ing good heuristics that cover all types of ref-
erence resolution is challenging. In particular,
few discourse theories have been evaluated

… the goal 
of the 

coreference
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to determine

when two
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stance for every possible pairing of referents in
the training texts: Some of these are positive ex-
amples in that they correspond to phrases that
are coreferent; others are negative examples in
that they correspond to phrases that are not re-
ferring to the same object. The exact form of
the instances depends on the learning algo-
rithm, but for the inductive-learning algo-
rithm used by MLR and RESOLVE, the training ex-
amples contain (1) a list of features, or
attribute-value pairs, that describe the phrases
under consideration and the context in which
they occur and (2) supervisory information in
the form of a class value that indicates whether
the two phrases are coreferent. The specific fea-
tures used depend on the kinds of information
available to the information-extraction system
when the coreference decision must be made.
More details on the creation of training data
are given later. 

Once the data set has been derived from the
corpus, it is presented to the machine-learning
algorithm, which uses the examples to derive
a concept description for the coreference-reso-
lution task. Figure 5 shows a concept descrip-
tion in the form of a decision tree, but the ac-
tual form depends on the particular learning
algorithm employed. The idea is that after
training, this concept description can be used
to decide whether two phrases in an unseen
text refer to the same object. This process is

shown as the application phase in figure 5. The
information-extraction system processes a new
text and reaches a point where coreference de-
cisions must be made. For each such decision,
the NLP system creates a test instance. The test
instance uses the same feature set as the train-
ing instances: Its features describe a discourse
entity, its possible antecedent, and their shared
context. The test instance is given to the
learned concept description for classification
as either coreferent or not, and the decision is
returned to the information-extraction system. 

Both MLR and RESOLVE use this general
method for automatically constructing coref-
erence components for their information-ex-
traction systems. Both use the widely available
C4.5 decision-tree–induction system (Quinlan
1992) as the inductive-learning component.
There are, however, a number of differences in
how each system instantiated and evaluated
the general approach of figure 5. McCarthy
tested RESOLVE on the MUC-5 business joint-
venture corpus (English version), and Aone
and Bennett tested MLR on the Japanese corpus
for the same information-extraction domain.
The evaluation of MLR focused on anaphors in-
volving entities tagged as organizations (for
example, companies, governments) by the
sentence-analysis phase of their information-
extraction system. The evaluation of RESOLVE

focused more specifically on organizations

Figure 5. A Machine-Learning Approach to Coreference Resolution. 
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well because a single feature—the character
subsequence feature—can reliably predict
coreference for phrases that are proper names
for organizations, which make up almost half
of the instances in the data set. Performance
on non–proper-name organization referents
was much lower. Definite noun phrases, for ex-
ample, reached only 44-percent recall and 60-
percent precision. Nevertheless, an important
result for both MLR and RESOLVE was that each
significantly outperformed a coreference sys-
tem that had been developed manually for
their information-extraction systems. 

In a subsequent evaluation, the RESOLVE sys-
tem competed in the MUC-6 coreference com-
petition where it achieved scores of 41-percent
to 44-percent recall and 51-percent to 59-per-
cent precision after training on only 25 texts.
This result was somewhat below the five best
systems, which achieved 51-percent to 63-per-
cent recall and 62-percent to 72-percent preci-
sion. All the better-performing systems, how-
ever, used manually encoded coreference
algorithms. Like some of the manually coded
systems, RESOLVE only attempted to resolve ref-
erences to people and organizations. In fact, it
was estimated that a good proper name–alias
recognizer would have produced a coreference
system with relatively good performance—
about 30-percent recall and, possibly, 90-per-
cent precision. One should note, however, that
the interannotator agreement for marking
coreference in 17 articles was found to be 80-
percent recall and 82-percent precision, with
definite descriptions (for example, [MVI, [the
first company to announce such a move since
the passage of the new international trade
agreement]]) and bare nominals (for example,
“A [company] spokesman”) accounting for
most of the discrepancies. 

Overall, the results for coreference resolu-
tion are promising. They show that it is possi-
ble to develop automatically trainable corefer-
ence systems that can compete favorably with
manually designed systems. In addition, they
show that specially designed learning algo-
rithms need not be developed because stan-
dard machine-learning algorithms might be
up to the challenge. There is an additional ad-
vantage to applying symbolic machine-learn-
ing techniques to problems in natural lan-
guage understanding: They offer a mechanism
for evaluating the usefulness of different
knowledge sources for any task in an NLP sys-
tem that can be described as a classification
problem. Examination of the coreference deci-
sion trees created by C4.5, for example, will in-
dicate which knowledge sources are more im-
portant for the task: The knowledge source

that had been identified as a party in a joint
venture by the extraction component. 

Both systems used feature representations
that relied only on information that earlier
phases of analysis could provide. However,
MLR’s data set was generated automatically by
its information-extraction system, while RE-
SOLVE was evaluated using a manually generat-
ed, noise-free data set. In addition, the feature
sets of each system varied markedly. MLR’s
training and test instances were described in
terms of 66 features that describe (1) lexical
features of each phrase (for example, whether
one phrase contains a character subsequence
of the other), (2) the grammatical role of the
phrases, (3) semantic-class information, and
(4) relative positional information. Although
all attributes of the MLR representation are do-
main independent, the values for some attrib-
utes can be domain specific. 

RESOLVE’s instance representation, on the
other hand, contains a number of features that
are unabashedly domain specific. Its represen-
tation includes eight features including
whether each phrase contains a proper name
(two features), whether one or both phrases re-
fer to the entity formed by a joint venture
(three features), whether one phrase contains
an alias of the other (one feature), whether the
phrases have the same base noun phrase (one
feature), and whether the phrases originate
from the same sentence (one feature). Note
that a number of RESOLVE’s features correspond
to those used in MLR, for example, the alias fea-
ture of RESOLVE versus the character subse-
quence feature of MLR. 

RESOLVE and MLR were evaluated using data
sets derived from 50 and 250 texts, respective-
ly. RESOLVE achieved recall and precision levels
of 80 percent to 85 percent and 87 percent to
92 percent (depending on whether the deci-
sion tree was pruned). A baseline system that
always assumed that the candidate phrases
were not coreferent would also achieve rela-
tively high scores given that negative examples
made up 74 percent of the RESOLVE data set. MLR,
however, achieved recall and precision levels
of 67 percent to 70 percent and 83 percent to
88 percent (depending on the parameter set-
tings of the training configuration). For both
MLR and RESOLVE, recall and precision are mea-
sured with respect to the coreference task only,
not the full information-extraction task. 

Without additional experiments, it is impos-
sible to know whether the differences in results
depend on the language (English versus Japan-
ese), the slight variations in training-testing
methodology, the degree of noise in the data,
or the feature sets used. Interestingly, MLR does
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corresponding to a feature tested at node i in
the tree is probably more important than the
knowledge sources corresponding to the fea-
tures tested below it in the tree. Furthermore,
once the data set is created, it is a simple task
to run multiple variations of the learning algo-
rithm, giving each variation access to a differ-
ent subset of features. As a result, empirical
methods offer data-driven feedback for linguis-
tic theories and system developers alike. 

Still, much research remains to be done. The
machine-learning approach to coreference
should be tested on additional types of
anaphor using a variety of feature sets, includ-
ing feature sets that require no domain-specific
information. In addition, if the approach is to
offer a general, task-independent solution to
the coreference problem, then the role of do-
main-specific information for coreference res-
olution must be determined empirically, and
the methods must be evaluated outside the
context of information extraction. The relative
effect of errors from the preceding phases of
text analysis on learning algorithm perfor-
mance must also be investigated. 

There have been few attempts to use empir-
ical methods for other discourse-level prob-
lems that arise in information extraction. BBN
Systems and Technologies has developed a
probabilistic method for determining para-
graph relevance for its information-extraction
system (Weischedel et al. 1993); it then uses
the device to control the recall-precision trade-
off. I have used symbolic machine-learning
techniques to learn relative pronoun disam-
biguation heuristics (Cardie 1992a, 1992b).
Thus, the information-extraction system can
process a sentence such as “Castellar was kid-
napped by members of the ELN, who attacked
the mayor in his office” and infer that members
of the ELN is the actor of the kidnapping as well
as the implicit actor of the attack in the second
clause. Two trainable systems that simultane-
ously tackle merging and template generation
have also been developed: TTG (Dolan et al.
1991) and WRAP-UP (Soderland and Lehnert
1994). Both systems generate a series of deci-
sion trees, each of which handles some piece
of the template-generation or merging tasks,
for example, deciding whether to merge two
templates into one or deciding when to split
an existing template into two or more tem-
plates. WRAP-UP used 91 decision trees to make
these decisions for the MUC-5 microelectron-
ics domain based on features of the entities ex-
tracted from each clause in an input text. Un-
fortunately, the information-extraction
systems that used these trainable discourse
components did not perform nearly as well as

systems that used manually generated merging
and template-generation subsystems. Addi-
tional research is needed to determine the fea-
sibility of an entirely trainable discourse com-
ponent. Finally, statistical approaches to
template merging are also beginning to sur-
face. Kehler (1997), for example, introduced a
method for assigning a probability distribution
to coreference relationships, as encoded in
competing sets of output templates. His initial
experiments indicate that the method com-
pares favorably with the greedy approach to
template merging that is used in SRI Interna-
tional’s FASTUS information-extraction system
(Appelt et al. 1995). 

Future Directions
Research in information extraction is new. Re-
search in applying learning algorithms to
problems in information extraction is even
newer: We are only beginning to understand
the techniques for automatically acquiring
both domain-independent and domain-de-
pendent knowledge for these task-driven sys-
tems. As a result, the field can take any number
of exciting directions. First, like the trends in
statistical language learning, a next step would
be to explore unsupervised learning algo-
rithms as a means for sidestepping the lack of
large, annotated corpora for information-ex-
traction tasks. In general, there is a dirth of
learning algorithms that deal effectively with
the relatively small amounts of data available
to developers of information-extraction sys-
tems. A related but slightly different direction
of research is to focus on developing tech-
niques that allow end users to quickly train in-
formation-extraction systems for their own
needs through interaction with the system
over time, completely eliminating the need for
intervention by NLP system developers. Many
new learning methods will be needed to suc-
ceed in this task, not the least of which are
techniques that make direct use of the answer
keys of an information-extraction training cor-
pus to automatically tune every component of
the extraction system for a new domain. Final-
ly, the robustness and generality of current
learning algorithms should be investigated
and extended by broadening the definition of
information extraction to include the extrac-
tion of temporal, causal, or other complex re-
lationships among events. The demand for in-
formation-extraction systems in industry,
government, and education and for personal
use is spiraling as more and more text becomes
available online. The challenge for empirical
methods in NLP is to continue to match this

Research in
information
extraction 
is new. 
Research in
applying
learning 
algorithms 
to problems 
in 
information
extraction 
is even 
newer ….

Articles

WINTER 1997   77



ference on Artificial Intelligence, 117–124. Menlo
Park, Calif.: American Association for Artificial Intel-
ligence. 

Charniak, E. 1993. Statistical Language Learning.
Cambridge, Mass.: MIT Press.  

Chinchor, N.; Hirschman, L.; and Lewis, D. 1993.
Evaluating Message-Understanding Systems: An
Analysis of the Third Message-Understanding Con-
ference (MUC-3). Computational Linguistics 19(3):
409–449.  

Craven, M.; Freitag, D.; McCallum, A.; Mitchell, T.;
Nigam, K.; and Quek, C. Y. 1997. Learning to Extract
Symbolic Knowledge from the World Wide Web, In-
ternal report, School of Computer Science, Carnegie
Mellon University.

Daelemans, W.; Zavrel, J.; Berck, P.; and Gillis, S.
1996. MBT: A Memory-Based Part-of-Speech Tagger-
Generator. In Proceedings of the Fourth Workshop
on Very Large Corpora, eds. E. Ejerhed and I. Dagan,
14–27. Copenhagen: ACL SIGDAT.  

Dolan, C.; Goldman, S.; Cuda, T.; and Nakamura, A.
1991. Hughes Trainable Text Skimmer: Description
of the TTS System as Used for MUC-3. In Proceedings
of the Third Message-Understanding Conference
(MUC-3), 155–162. San Francisco, Calif.: Morgan
Kaufmann.

Glasgow, B.; Mandell, A.; Binney, D.; Ghemri, L.; and
Fisher, D. 1997. MITA: An Information-Extraction Ap-
proach to Analysis of Free-Form Text in Life Insur-
ance Applications. In Proceedings of the Ninth Con-
ference on Innovative Applications of Artificial
Intelligence, 992– 999. Menlo Park, Calif.: American
Association for Artificial Intelligence.  

Holowczak, R. D., and Adam, N. R. 1997. Informa-
tion Extraction–Based Multiple-Category Document
Classification for the Global Legal Information Net-
work. In Proceedings of the Ninth Conference on In-
novative Applications of Artificial Intelligence,
1013–1018. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence. 

Huffman, S. 1996. Learning Information-Extraction
Patterns from Examples. In Symbolic, Connectionist,
and Statistical Approaches to Learning for Natural Lan-
guage Processing, eds. S. Wermter, E. Riloff, and G.
Scheler, 246–260. Lecture Notes in Artificial Intelli-
gence Series. New York: Springer.  

Kehler, A. 1997. Probabilistic Coreference in Infor-
mation Extraction. In Proceedings of the Second
Conference on Empirical Methods in Natural Lan-
guage Processing, eds. C. Cardie and R. Weischedel,
163–173. Somerset, N.J.: Association for Computa-
tional Linguistics.  

Kim, J.-T., and Moldovan, D. I. 1995. Acquisition of
Linguistic Patterns for Knowledge-Based Informa-
tion Extraction. IEEE Transactions on Knowledge and
Data Engineering 7(5): 713–724.  

Lehnert, W. 1990. Symbolic-Subsymbolic Sentence
Analysis: Exploiting the Best of Two Worlds. In Ad-
vances in Connectionist and Neural Computation Theo-
ry, eds. J. Barnden and J. Pollack, 135–164. Norwood,
N.J.: Ablex.  

Lehnert, W., and Sundheim, B. 1991. A Performance
Evaluation of Text Analysis Technologies. AI Maga-

demand by developing additional natural lan-
guage–learning techniques that replace manu-
al coding efforts with automatically trainable
components and that make it increasingly
faster and easier to build accurate and robust
information-extraction systems in new do-
mains. 
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Notes 
1. The development phase has varied from year to
year but has ranged from about one to nine months. 

2. A newer version of AUTOSLOG requires only that in-
dividual texts are marked as relevant or irrelevant to
the domain (Riloff 1996). The learned concept nodes
are then labeled according to type by hand.
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