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Abstract

Oil-film interferometry is rapidly becoming the preferred method for direct measurement of

wall shear stress in studies of wall-bounded turbulent flows. Although being widely accepted

as the most accurate technique, it does have inherent measurement uncertainties, one of which

is associated with determining the fringe spacing. This is the focus of this paper. Conventional

analysis methods involve a certain level of user input and thus some subjectivity. In this paper,

we consider empirical mode decomposition (EMD) and the Hilbert transform as an alternative

tool for analyzing oil-film interferograms. In contrast to the commonly used Fourier-based

techniques, this new method is less subjective and, as it is based on the Hilbert transform, is

superior for treating amplitude and frequency modulated data. This makes it particularly

robust to wide differences in the quality of interferograms.

Keywords: oil-film interferometry, Hilbert–Huang transforms, empirical mode decomposition

1. Introduction

Wall shear stress, τw, in wall-bounded flows is an important

quantity that needs to be measured in studies of drag

characteristics, scaling of mean flow and other turbulence

statistics. The measurement of τw has been the focus of many

studies [1–5] and in recent years oil-film interferometry has

emerged as a preferred technique. The oil-film interferometer

provides a direct measure of the wall shear stress, as opposed

to the classical methods such as the Clauser chart [6, 7] and

the Preston tube [8, 9], which require a priori assumption

of known universal scaling laws. However, the analytical

methods used to extract the fringe spacing and hence the wall

shear stress, τw, from the oil-film interferograms introduce a

certain degree of user subjectivity. Common approaches that

exist for the extraction of the fringe spacing are the x–t diagram,

maximum entropy spectral techniques and correlation-based

methods. Details of the approaches for various applications

are available in numerous recent works [1–4, 10–12]. Ideally,

when it is assumed that the average wall shear stress is constant,

a line taken perpendicular to the fringe pattern will yield

a sinusoid with constant amplitude and wavenumber, where

maxima and minima will correspond to the center of the light

and dark bands of the interference pattern, respectively. The

fringe spacing could then easily be determined by finding

the dominant wavenumber using Fourier spectral methods.

However, when dealing with real interferograms the data are

rarely globally both linear and stationary. This makes accurate

identification of the dominant wavenumber difficult because

any globally non-uniform wavenumbers will cause energy

spreading and spurious harmonics to appear in the Fourier

energy spectrum. Most oil-film interferometry techniques

require a user-chosen line or region that is analyzed. Region

selection is also required because the oil-film interferograms

are sensitive to contamination, mainly due to dust, bubbles in

the oil or other contaminants. The process of selecting the

interrogation window can be problematic because there is no

systematic method and one relies on visual inspection of the

interferograms. In cases of highly contaminated oil films, the

entire sequence of interferograms might have to be discarded.

Here an alternative method is introduced for the extraction

of the fringe spacing from oil-film interferograms. This

method largely overcomes the limitations associated with the

Fourier transform as well as providing a method to estimate

the fringe spacing from contaminated interferograms. A

relatively new technique, the empirical mode decomposition
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(EMD) [13], coupled with the Hilbert transform allows one

to overcome the limitations of Fourier spectral methods and

can be used to analyze non-stationary and nonlinear data

series. The method involves two steps: first, EMD is

applied to the data series to obtain a set of intrinsic mode

functions (IMFs), which are symmetrical about the mean and

based on the intrinsic characteristic scales of the data itself.

In the second step, the Hilbert transform is applied to the

IMFs to generate the time–wavenumber–energy distribution

of the data. The EMD and Hilbert transform technique

developed by Huang et al [13] was originally used in the

study of nonlinear water waves [14] and is also referred

to as the Hilbert–Huang transform (HHT). The technique is

adapted here for the extraction of fringe spacing from oil-film

interferograms and overcomes largely the need to preselect the

region of interrogation, avoiding edge and three-dimensional

effects.

2. Oil-film interferometry

The oil-film interferometer measures wall shear stress, τw,

by determining the thinning rate of an oil film that is placed

on the bounding surface of the flow regime of interest. This

method of measuring the skin friction has been applied to

the study of canonical turbulent boundary layers, flows over

aerofoils and flows over turbine blades. The seminal work of

Tanner and Blows [15] established the relationship between

the wall shear stress and the thinning rate of the oil film,

which is governed by the thin oil-film equation of Squire [16].

Tanner [17, 18] and Tanner and Kulkarni [19] continued to

develop the technique and further work by Monson [20], and

Monson and Higuchi [21] modified and further improved the

oil-film interferometer. There are many variations of the oil-

film interferometry technique, and these fall into the categories

of point, line and image-based techniques. Designations

include the laser interferometer skin friction (LISF), fringe

imaging skin friction (FISF), global imaging skin friction

(GISF) and surface imaging skin friction (SISF) methods.

A comprehensive review of the various methods is given

by Naughton and Sheplak [3]. Over the course of time,

the technique has continued to evolve given the advances

in image acquisition technology and improvements to the

analysis techniques.

Oil-film interferometry is based on the relationship

between the thinning rate of the oil film and the three forces

that may act upon it: gravity, pressure and shear force. When

the oil film is sufficiently thin, the effect of gravity and pressure

forces becomes negligible and the thinning rate of the oil film

is assumed to be linear. A simple relationship then exists

between the thinning rate of the oil and the shear force acting

upon it. When a coordinate system is defined such that x is

the streamwise direction, y is the wall normal direction and z

is the spanwise direction, one can obtain the wall shear stress

as

τw =
2μoil

√

n2
oil − n2

air sin2 θ

λ

�x

�t
, (1)

where τw is the wall shear stress, λ is the wavelength of the

light source, μoil is the viscosity of the oil, noil and nair are

Figure 1. Examples of oil-film interferometry images from different
experiments. Only typical examples of contaminated images are
shown.

the refractive indices of the oil and air, respectively, θ is the

illumination incidence angle and �x is the difference in the

distance between consecutive fringes (relative to the leading

edge of the oil film) [2, 11, 21, 22]. Equation (1) is applicable

to flow where the thinning rate of the oil film can be assumed

to be linear and change in shear stress is small over the distance

that is being measured.

Figure 1 shows the evolution of oil drop as it is acted

upon by shear from an air flow passing over it under different

flow conditions. Initially, the droplet of oil is deformed by the

force acting on it and over time the oil spreads and thins to

form a film with thickness of the order of a few microns. The

fringes are generated by Fizeau interferometry and the fringe

spacing increases over time as the oil film becomes thinner.

In almost all laboratory applications, the oil films are subject

to contamination due to dust particles or air bubbles getting

caught in the film and these disturbances can be seen in sample

acquisitions shown in figure 1. If a line is taken through a

contaminated region in the interferogram, the resulting signal

of light intensity as a function of streamwise distance will

feature discontinuities. These spurious peaks are caused by

the dust particles that locally raise the oil film surface and hence

are highly reflective. It is also apparent that the disturbances

due to dust are not isolated and the flow around and behind

them is also altered; i.e. there is an effect on the observed

fringe spacing surrounding the disturbance. Since the wall

shear stress is based on the time history of the fringe spacing,

it is clear that the disturbances in the oil film pose a significant

problem because they will propagate through the entire time

history. This can lead to errors in the calculated value of

skin friction and if the films are severely contaminated, the

data must be discarded. Most analytical methods use some

form of region or line selection in order to avoid errors caused

by contamination of the oil films to propagate through the

analysis. One of the aims of this paper is to provide a technique

that will remove the subjectivity involved in selecting the

interrogation region. The following sections outline the use of

the empirical mode decomposition and the Hilbert transform

2
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as a tool for the extraction of the fringe spacing in a method

that does not require such user inputs.

3. Techniques for analysis of interferograms

As mentioned earlier, estimating the thinning of the oil

film with time is an important requirement in accurate

determination of τw. This in turn requires calculating the

fringe spacing (in physical space) and its change with time.

For images that are acquired digitally this is easily done

by processing the images to determine the distance between

two consecutive fringes in terms of the pixels. A reference

calibration image then can provide conversion of �x in pixels

to �x in physical space. However, determining the fringe

spacing is not straightforward as the quality of images can

differ significantly as shown in figure 1. For the sample images

shown, it is observed that the interference pattern is visible in

all of them with a widely varying degree of clarity. Surface

contamination and dust in all of the examples cause an irregular

fringe pattern in the flow direction and are characterized with

non-uniform curvature. For a set of images acquired for a

particular flow, the presence of any dirt leads to the user

needing to determine the ‘region of analysis’, and this region of

analysis largely depends on the size of contamination, which

is not a control parameter. Accordingly, the usual procedure

involves windowing the data in order to

(a) avoid edge and three-dimensional effects introduced by

droplet curvature,

(b) select the portion of the interferogram or signal that is

locally linear and stationary and discard the rest in order

to use Fourier methods, and

(c) maximize the signal-to-noise ratio of the experimental

data.

Another feature to be noted is the varying features

of fringes as they appear different under different lighting

conditions and image acquisition setup. Thus, images with

weak contrast might again be difficult to use if a good region

of analysis is not visually identifiable. Typically, a set of

images with such contamination would be discarded if it were

to be analyzed by conventional techniques. As an example of

one of the conventional approaches, a composite x–t diagram

is shown in figure 2. This composite image is obtained by

choosing a fixed array of pixels in the flow direction from

multiple images acquired over time and then rearranging them

to exhibit the location of a particular fringe at x in time. The

fringe pattern in the composite image shows a linear relation

between the fringe spacing and time. Hence, the slope of line

drawn over the first fringe from the bottom is equivalent to

�x/�t , while a similar line on the second fringe pattern will

have a slope of 2�x/�t . A user can draw many such lines

on the x–t diagram and determine an average. However, a line

can be drawn on either edge or the center of a fringe, which

will result in different slope estimates. Also, one can only

utilize a small region of the diagram (lower right) to visually

identify fringe lines without ambiguity. Such an approach can

introduce errors that depend on the user’s selection criteria and

would not be consistent if the process is repeated. Hence, we

x
→

F
ri

n
g
e

sp
a
ci

n
g

(p
ix

el
s)

time →

5Fs

Figure 2. An x–t diagram or composite image showing
development of the fringe pattern in time. The slope of the first dark
band is �x/�t .

aim to use the HHT as a robust and statistical procedure that

can extract the fringe spacing accurately even in the absence

of ‘ideal’ fringe patterns throughout and with minimal user

input.

The fast Fourier transform (FFT) is widely used in image

processing and is also applied to oil-film interferograms to

determine the fringe spacing. The Fourier transform f̂ (ω) of

an analytic function f (x) is given as

f̂ (ω) =
1

2π

∫ ∞

−∞

f (x) e−iωx dx. (2)

An FFT of the intensity profile will result in a spectrogram

which peaks at a wavenumber equivalent to the spacing

between two dark and light bands in the fringe patterns.

However, wavenumber determination by the FFT is only

accurate for a linear and stationary signal. Its applicability

also suffers from discontinuity, noise and signal length, which

are typically present in intensity profiles as shown in figures 3,

5 and 6. As the signal in practical application is always finite,

one can only calculate a discrete Fourier transform (DFT)

by an FFT algorithm within a limited frequency/wavenumber

range. The frequency range of a DFT depends on the sample

size of the finite signal. This aspect will be discussed later in

section 5.1.

The present study aims to improve on the techniques

to extract fringe spacing by utilizing the HHT, which is a

powerful tool in analysis of non-stationary data [13]. The

Hilbert transform of an analytic function X(t) is given as

Y (t) = P.V.
1

π

∫ ∞

−∞

X(τ)

t − τ
dτ, (3)

where P.V. indicates the Cauchy principal value. The Hilbert

transform can be thought of as the convolution of X(t) with

the function 1/(πt). An analytic signal Z(t) is obtained with

3
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Figure 3. Example 1. (a) IMFs of the intensity profile at a pixel line
shown by a dashed black line on the grayscale image on top. I is the
intensity profile, and Ci are IMFs. (b) Amplitude versus
wavenumber plots for the FFT and HHT. For the HHT, the
wavenumber for mode containing fringe characteristics is shown in
black and rest are in gray. A solid black line denotes the median of
wavenumbers of the dominant mode.

X(t) and Y (t) as a complex conjugate pair:

Z(t) = X(t) + i Y (t) = α(t) eiθ(t), (4)

in which

α(t) = [X2(t) + Y 2(t)]1/2, θ(t) = arctan

(

Y (t)

X(t)

)

. (5)

Here, α is the amplitude and θ is the phase angle. The polar

coordinate representation can be thought of as the best local

fit of an amplitude- and phase-varying trigonometric function

to X(t). A instantaneous frequency is then defined as

ω(t) =
dθ(t)

dt
. (6)

A detailed discussion on instantaneous frequency and physical

interpretation of Hilbert transform can be found in Huang

et al [13] and Bendat and Piersol [23]. This definition of

instantaneous frequency cannot be applied to any arbitrary

signal. Physically, only one frequency exists at a particular

instance in time and hence it can only represent one component

of a signal. EMD proposed by Huang et al [13] decomposes

the signal into ‘mono-component’ signals using certain

criteria so that a relevant instantaneous frequency can be

obtained for each of those decomposed functions. Hilbert

transform applied to a signal in spatial domain would give the

instantaneous wavenumber, as in the present case.

3.1. Empirical mode decomposition

The EMD technique is applied to decompose a data series

into a set of intrinsic mode functions, or IMFs, so that the

information of physical significance contained within the data

can be obtained without distortion. Full details of these

techniques are given in Huang et al [13, 14] and Bendat and

Piersol [23]. By definition, IMFs must satisfy two conditions:

(1) the total number of extrema and zero-crossings at most

differ by one, and

(2) the local mean defined by the envelope formed by the local

maxima and the envelope formed by the local minima

must be equal to zero.

A ‘sifting process’ (see [13]) is used to identify and

separate the intrinsic modes of the signal, X(t). Once

identified, the maxima and minima are used to generate

the upper and lower envelope functions of the data. The

mean formed by the upper and lower envelopes, m1, is then

subtracted from the data to give h1. The procedure of

subtracting the mean of upper and lower envelopes is repeated

on h1:

X(t) − m1 = h1, (7)

h1 − m11 = h11, (8)

h11 − m12 = h12, (9)

↓

h1(k−1) − m1k = h1k.
(10)

If

SD =

∑

(h1(k−1) − h1k)
2

∑

h2
1(k−1)

< 0.2–0.3, (11)

then C1 = h1k is an intrinsic mode. Once a function, C1, that

satisfies the IMF criteria is found, it becomes an IMF and is

then subtracted from the original data series:

X(t) − C1 = R1.

4
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The sifting procedure of equations (7)–(11) is repeated for

R1 to find the next intrinsic mode, C2. The entire process

is then repeated until all IMFs are obtained. Essentially, the

sifting process drives the mean of the envelopes formed by

the local maxima and local minima to zero in order to satisfy

the definition of an IMF. When all the IMFs are identified

and removed from the data, there remains a residual function,

which is generally the trend of the data series.

The sifting process requires a stop criterion; otherwise,

the generated IMFs will be modes of constant amplitude and

contain only frequency modulations. Without the amplitude

modulation, the modes lose their physical meaning [13]. The

stop criterion proposed by Huang et al [13] was to limit

the standard deviation between consecutive sifts to values

of between 0.2 and 0.3. Here, we impose the lower limit

and an additional criterion based on the number of maxima

or minima. If the number of maxima or minima falls

below a certain threshold, the sifting process is stopped.

In effect this implements a cutoff frequency to limit the

number of IMFs generated and also to prevent the generation

of spurious modes. The cutoff frequency will change for

different applications but is generally a proportion of the

lowest frequency occurring in the original data series. For

the particular case of interferograms, if the image has high

background noise a lower standard deviation is advised so

that noise is limited to the first few modes. A larger value

of standard deviation will inherently result in larger scatter in

instantaneous frequencies. On the other hand, imposing a limit

on the number of maxima/minima provides a means to limit

higher trend containing modes being generated. Such modes

contain low wavenumber features that are substantially lower

than the characteristic wavenumber corresponding to the fringe

spacing. Hence, increasing the standard deviation can lead to

larger errors in determining dominant wavenumber/frequency

of the characteristic IMF, while the number of maxima/minima

determined during sifting only affects the computational time.

The reader is referred to [13, 14] for details of the sifting

process and EMD.

When analyzing an oil-film interferogram, the data series

will consist of a line taken through an interferogram parallel

to the flow direction. The signal obtained will contain

multiple maxima and minima each corresponding to the light

and dark bands that appear in the interferogram. When

the EMD is applied to this signal, the time lapse between

successive extremum of one of the obtained IMFs will be

the fringe spacing of the oil-film interferogram. For oil-

film interferograms, the cutoff wavenumber is a factor of the

wavenumber that corresponds to the maximum fringe spacing

within the entire time series. This can be determined by

inspection of the last recorded interferogram.

4. The experimental database

Measurements were performed on the floor of the high

Reynolds number boundary layer wind tunnel (HRNBLWT)

at the University of Melbourne. Following are the important

features of the experiments that are relevant to results presented

here.

(a) Interferometry was performed at three different

streamwise stations: x = 8 m, 13 m and 21 m. The

freestream velocity was also varied to obtain a range of

Reynolds number, Rex between 6.7 × 106 and 3.5 × 107.

Most measurements were repeated a number of times

to check their repeatability and in case small problems

occurred. Also, multiple oil droplets are used side by side

to avoid repetition if a single oil film is contaminated.

(b) The oil-film measurements were all performed on a glass

plate mounted flush with the floor of the wind tunnel with

both the light source and the camera located underneath

the wind tunnel. The light source is a low pressure

sodium lamp SOX35 mounted in a box with a white

Plexiglas window to diffuse its light. The camera used

was a NIKON D200 mounted on a tripod and operated

remotely using NIKON CAPTURE PRO. The angle of

the floor and of the lens were measured with an electronic

inclinometer. The angle between the glass plate and the

camera was calculated from the difference between the

floor angle and the angle of the lens. The pictures were

recorded in the jpeg format, ‘fine’ quality with dimensions

in pixels of 3872 × 2592.

(c) Silicone oil with a viscosity of 20 cSt (mm2 s−1) is

used. The oil viscosity was measured and calibrated as a

function of temperature at Ecole Polytechnique Fédérale

de Lausanne (EPFL).

(d) Millimeter paper was placed on the glass plate as

a calibration grid and recorded as images to convert

the distance between successive fringes from pixels to

physical units.

For the present study, we focus on the techniques for

determining the fringe spacing and the results are only

shown for fringe spacing, Fs , in pixels. The uncertainty in

determining the τw largely comes from errors in determining

the rate of change of fringe spacing, oil viscosity and

calibration. By comparing results of fringe spacing in

pixels, the discussion of error related to oil viscosity and

image calibration is avoided as they depend on a particular

experimental setup. Further details of the facility are given by

Nickels et al [24] and Hutchins and Marusic [25], while Ng

et al [26] presents previous skin-friction results in the same

facility using oil-film interferometry.

5. Analysis examples

Figures 3, 5 and 6 show sample images with the interference

pattern from three separate flows with different freestream

velocities and ambient conditions. Each image seen on the

top is accompanied by a plot showing its grayscale intensity

(I) profile at a pixel location shown by the solid black line on

the image. Typically, the images acquired are in the indexed

RGB format and then converted to grayscale intensity. A

grayscale profile is preferred as it provides the most contrast

between the light and dark fringe patterns. The IMFs, Ci ,

obtained by EMD of the intensity profile are shown in plots

below each intensity profile. Each figure also shows the

amplitude of the Fourier and Hilbert transform plotted against

the wavenumber. The dominant wavenumber obtained from a

5
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particular IMF is a function of pixels that on inversion produces

the wavelength, which is the fringe spacing, and has units of

pixels. One is only required to revert to the time domain

when determining the rate of change of the fringe spacing. As

here we are interested in determining the mean fringe spacing,

the amplitude information of each transform is only used to

determine the dominant wavenumber and not scaled to make

them equivalent.

Figure 3 shows a ‘clean’ image with the clear fringe

pattern reproduced well in the sinusoid wave-like characteristic

of the grayscale intensity. One can now use this profile

of intensity versus pixels as a signal and determine the

wavenumber characteristic of the wave pattern using a signal

processing algorithm. It is obvious that this intensity profile

is not stationary. The first three IMFs contain the small-scale

information associated with the noise in the signal. We find

that fringe characteristics of I are contained in the fourth mode,

C4. In the algorithm, a correlation between the original signal

and the individual IMFs is used to identify the intrinsic mode

that contains the fringe characteristics. Compared to I, C4 is

symmetric with zero mean. The last mode, C7, contains the

trend or the traveling mean of the signal, I. This is a typical

outcome of EMD where small-scale information is retained

in the first few modes while large scales or low wavenumber

characteristics appear in subsequent modes.

Adhering to common practice, the FFT is applied to the

mean subtracted intensity profile while the Hilbert transform

is applied to the individual IMFs, Ci . The Hilbert transform

when applied to the IMFs generated by EMD proposed by

Huang et al [13] are known as the Hilbert–Huang transform

(HHT). As the HHT gives wavenumber information which

varies with time, one can also create a Hilbert marginal

spectrum (wavenumber–amplitude–time map). However, for

comparison with the FFT and determination of dominant

wavenumber, the amplitude versus wavenumber plot shown

here will suffice. For each mode, n number of wavenumbers

are determined if the length of I is n pixels. As the dominant

wavenumber is retained in the fourth mode, it is shown in

black in the figure while the amplitude versus wavenumber

for the rest of the Ci are shown in gray for the HHT. The

wavenumber obtained from a Ci at a particular location in x

is associated with its local amplitude and does not necessarily

mean that a wave of that wavenumber was the most likely to

have persisted through the entire data series. Hence, a median

value of the instantaneous wavenumber of the fourth mode is

considered as the dominant wavenumber. This wavenumber

is shown by a solid black line on the HHT spectra plot. Five

‘×’ marks in the interferometry image for five fringes are

placed at a spacing equivalent to the inverse of dominant

wavenumber of the HHT spectra (solid black line). It is clear

that the instantaneous wavenumber obtained from the HHT

is physically relevant and results in a reliable estimate of the

fringe spacing. In comparison, the FFT spectrum in figure 3

also shows a sharp peak near the same wavenumber; however,

there is a considerable spread of energy at low wavenumber due

to the non-stationary behavior of I. This problem for the FFT

can be remedied by removing a traveling mean determined by

some method, e.g. a low order polynomial. However, it is not
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Figure 4. Fringe spacing for each pixel line in the spanwise
direction obtained for one image.

known a priori which functional form will provide the best

traveling mean. Such an approach also fails in the presence

of sharp discontinuity and low signal-to-noise ratio. For the

FFT, only the spectrum above a cutoff wavenumber of 5/n is

used to detect a peak to avoid the low wavenumber high energy

distribution.

The procedure outlined above is for 1 pixel line in the flow

direction. Similarly, the wavenumber is determined for all the

pixel lines (parallel to the one shown) in order to obtain a large

bin of wavenumbers which are similar. Figure 4 shows fringe

spacing obtained for the particular interferogram of figure 3

for all pixel lines using the FFT and HHT as one moves in

the spanwise direction (perpendicular to the flow). The three-

dimensional effect from the edge and curvature of the oil drop

manifests itself in the behavior of fringe spacing in the form

of increased Fs at both ends. The Fs for the HHT approach

is obtained as the median of wavenumbers of the dominant

mode (see figure 4(b)). Hence, FsHHT behavior has a scatter

to it while providing a continuous variation in the spanwise

direction. On the other hand, the FFT approach does not

detect small changes in the fringe spacing and gives a constant

FsFFT estimate near the middle of the thin film. The variation

in FsFFT at either end only appears as ‘step’ changes, which

is physically incorrect. Hence, for interferograms where the

width of the interference pattern is relatively small, the HHT

approach is better posed to identify a region near the center that

is devoid of three-dimensional effects. A mean or median of

these gives an overall wavenumber and hence the mean fringe

spacing that exists throughout the image.

Figure 5 shows a fringe pattern similar to figure 3 but has a

large dust particle present near xpixel ≈ 1000. This results in a

sharp discontinuity and drop in the intensity profile, which can

lead to dubious results if analyzed by a conventional method.

The interference pattern is also seen downstream of the dirt;

however, the amplitude of the wave is not uniform unlike the

region upstream of the dirt. Again the first three IMFs retain

the small-scale information while the fringe pattern appears in

C4. The fringe pattern downstream is seen in C4; however, it is

6
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Figure 5. Example 2. See figure 3 for detailed caption.

not uniform as it has been disturbed by the presence of the dirt.

The varying intensity is captured in C6 with a large dip in the

profile at the location of the dirt indicating that EMD is useful

in finding the moving mean even when sharp discontinuities

are present. Applying the HHT on C4, the fringe spacing is

obtained from the instantaneous wavenumber in HHT spectra,

which agrees well with fringes on the grayscale image (‘×’

marks). The FFT spectrum also shows a peak at the dominant

wavenumber but is not as distinct as compared to figure 3.

Also, identification of the peak wavenumber from the FFT

spectrum is difficult in this case as low wavenumber peaks are

amplified due to non-stationarity even if a threshold is used.

Figure 6 shows a clean image but it is acquired relatively

early in time as the interference pattern starts developing. The

fringe spacing and amplitude of the signal here is quite small

compared to the earlier two cases. Also, the width of the

oil film rapidly changes to become very narrow downstream.

This results in a very short region of signal with the meaningful

interference pattern (from xpixel ≈ 700 to xpixel ≈ 1600) that

can be analyzed at the section chosen to show the intensity

profile. Also, an unclean surface can lead to noise in the

intensity profile (seen downstream) which can be hard to

distinguish if the fringe spacing is small and the contrast is

weak. A large dip due to the thick oil that is still developing

is seen downstream near xpixel ≈ 200. For this particular

case, the fringe pattern is recovered in the second mode even

though it is hard to identify by visual inspection. This is not

surprising as the fringe spacing is very small and its period is

of the same order as the random noise in the signal, albeit with

a much larger amplitude. The HHT spectra for C2 (shown

in black) clearly distinguish the wavenumber associated with

fringes appearing with higher amplitude. The noise present

in C1 is at a relatively higher wavenumber with a very low

magnitude. Such wavenumber characteristics are impossible

to detect in the FFT spectrum, which fails to show a clear peak

at a wavenumber associated with the fringe spacing. Again,

non-stationarity poses a problem here. If one considers only a

part of the signal (e.g. from xpixel ≈ 800 to xpixel ≈ 1600) for

FFT analysis, then it might be possible to detect the dominant

wavenumber. However, choosing a region of analysis for

every flow and its many different interference images is not

practical. Before proceeding with a discussion of the results

and a comparison of the FFT and HHT, some challenges

encountered by both the methods will be discussed.

5.1. Challenges in implementing the FFT

The FFT, although being a very powerful and widely used

tool in signal processing, suffers many limitations in our

application of determining the fringe spacing. Here, the

demerits are only discussed with respect to the analysis of

oil-film interferograms. They are summarized as follows.

(i) The FFT is only accurate if the signal is linear and

stationary. As shown earlier, the intensity profiles from

oil-film acquisitions are rarely stationary. The FFT of

a non-stationary signal leads to high amplitudes at a

relatively low wavenumber, which makes it difficult to

distinguish the physically relevant wavelength associated

with fringe spacing.

(ii) A moving or traveling mean can be subtracted to remove

the non-stationarity from the signal. However, this

approach has to be tailored for the varying quality of the

images. Specific to interferograms, the non-stationary

7
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Figure 6. Example 3. See figure 3 for detailed caption.

behavior depends on the ambient light conditions and

hence, for different experimental setups different methods

for extracting the traveling mean might be needed. As

shown in figure 5, such an approach is still not helpful in

treating nonlinearity or discontinuities in the signal.
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Figure 7. (a) Two intensity profiles along a pixel line after
removing traveling mean from a set of acquisitions 80 s apart in the
same flow. (b) Amplitude of the FFT on the profiles.

(iii) For very small fringe spacings, the FFT provides no

qualitative distinction between the signal noise and the

wave itself. For images with weak contrast, this would

lead to a relatively flat spectrum making it difficult to

locate the peak.

(iv) The FFT for signals of length n can only resolve n/2 + 1

frequencies with each frequency cell being 2/n wide.

For the short sample size of a wave with a relatively

large period, the estimate of dominant frequency is

often inaccurate. This limitation is more prominently

encountered in interferograms with a small number of

fringes. Figure 7 shows intensity profiles from two images

acquired from the same flow. The dash-dotted profile

is from an image acquired at an earlier time while the

solid profile is from an image acquired after 80 s. It

is clearly seen that the distance between two subsequent

zero crossings for the solid line (five fringes) is higher

than the dash-dotted one (six fringes) indicating larger

fringe spacing. This is further evident by considering

that a sinusoidal pattern fitted to the intensity profiles will

give six crests for the dash-dotted line while five crests

for the solid line. However, the FFT spectrum for both

the profiles peaks at the same wavenumber because the

actual wavenumbers, say k1 and k2, correspond to the same

frequency cell. This resolution limitation is quite common

when the change in fringe spacing of two consecutive

image acquisitions is smaller than 2/n. The wavenumbers

in the discrete Fourier transform are linearly spaced and

hence the inverse of these would have a nonlinear variation

in physical or space coordinates. On the other hand, the

fringe spacing for oil-film interferograms changes linearly

with time and hence will require large sample lengths, n,

to resolve small changes in the low wavenumber (high

Fs) characteristics. Auto-correlation methods can help in

8



Meas. Sci. Technol. 21 (2010) 105405 K Chauhan et al

0

5

C1

0

5

C2

0

5

C3

0

5

C4

100

120

I

0 500 1000 1500 2000
90

100

110

Σ
C

5
−

8

Pixels

Figure 8. IMFs for an intensity profile showing mode mixing
between C3 and C4.

overcoming this limitation if the curvature of fringes is

not too high.

5.2. Challenges in implementing the HHT

The main challenges encountered in implementing the HHT

are summarized as follows.

(i) When generating the envelopes required by EMD, the

treatment of end conditions requires special attention.

Typically, cubic splines are fitted to the local maxima

and minima in order to generate the upper and lower

envelopes. However, fitting a cubic spline to the data

can be problematic at the ends because large swings can

be generated [13]. These end swings can then propagate

inward, generating new artificial extremum and eventually

generating spurious intrinsic modes of low wavenumber.

To limit these, whilst maintaining low computational

expense, we have chosen to add a sine wave at both the

ends. The amplitude of this wave is characterized by the

first two extrema at each end. This approach works with

the assumption that the imaginary signal preceding and

following the signal has the same wave characteristics.

(ii) Another difficulty that is typically encountered is a

phenomena called ‘mode mixing’ [14]. Figure 8 shows

IMFs for an intensity profile which also has random noise

on the fringe pattern. After applying EMD, it is seen

that the wave characteristic associated with the fringe

pattern is present in both C3 and C4 instead of being

a continuous occurrence in either one of them. As the

same component of wavenumber is present in two modes,

one can say that the component of C4 is ‘mixed’ with C3.

Mode mixing occurs due to the presence of ‘riding waves’,

which are small wavelength and amplitude fluctuations

residing on top of larger waves. Mode mixing can be

a common occurrence in interferogram analysis as the

surface conditions are not ideal and small amplitude noise

is always present on the fringe pattern. Riding waves will

cause the envelope mean to travel along the signal instead

of its line of symmetry. Such mixing of modes can be

problematic when determining the dominant wavenumber

as the amplitude versus wavenumber characteristic of

C3 will be quite wide (both low and high wavenumbers

present). Also, the peak amplitude for both C3 and C4

will be attenuated. In the present study, the covariance

between the original signal and the individual IMFs is used

to determine which IMF contains the information of the

dominant wavenumber. Covariance being the measure

of how much two variables change together is a direct

means of statistically relating the original signal and IMF

with the fringe pattern. If mode mixing occurs, such a

statistical determination might fail because of the lack of

correlation for both the modes with the original signal.

One approach to tackle mode mixing is to evaluate the

distance between two consecutive zero crossings. For C3 in

figure 8, a histogram of the period between zero crossings

will be populated for both small and large periods. A upper

limit criterion can be implemented, which limits the period

size allowed in a particular mode. Any wave with a higher

period is then replaced by the local envelope mean so that it

is ‘forced’ to go to the next IMF, which by nature of EMD

should contain the large-scale information. Figure 9 shows

this implementation where the large amplitude and period

waves in C3 are replaced by the local mean and they now

appear in C4. The IMF C4 can now provide the dominant

wavenumber estimate more accurately. A low pass filter on

the original signal to remove the small-scale disturbances and

riding waves can also be used. Mode mixing rarely occurs

for a filtered signal. However, because the fringes spacing

typically changes from very small to quite large, such a filter

should only be implemented after a good estimate of accuracy

and errors of the overall procedure are known.

In the present study, we have not treated the data for mode

mixing by either of the above methods. The reason is to avoid

any sort of subjectivity to the analysis. The aim of this paper is

to use the HHT as a tool which can be adopted by readers for

similar studies. Hence, the strengths and weaknesses of the

HHT applied to interferograms are presented here by keeping

the procedure in an elementary form. A user can further make

improvements to the techniques by customizing it to their own

applications if required.

6. Results and discussion

Figures 10 and 11 plot fringe spacing versus time for two

zero pressure gradient boundary layer flow experiments in

the Melbourne wind tunnel. The fringe pattern seen in the

last image acquired is shown on the top. It should be noted

9
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Figure 9. IMFs for the same intensity profile as in figure 8 after
treating for mode mixing. The histogram of zero crossings is used to
exclude large period waves in C3. Note that C1 and C2 are the same
as in figure 8.

that in a particular experiment the images are captured at a

certain time interval which depends on the oil viscosity and

freestream velocity. In figures 10 and 11, the abscissa is the

image number, which can be conveniently converted to time by

multiplying the time interval between consecutive images. In

these experiments, multiple drops of oil were used side by side.

These are denoted by ‘a’, ‘b’ and ‘c’ on the image. The fringe

spacing for a particular image number is the ensemble mean

obtained from wavenumbers estimated from each streamwise

pixel line using the HHT and FFT. As the fringe spacing varies

linearly with time, a least-squares fit gives the slope, dFs/dt

(pixels s−1). A calibration image for each setup makes it

possible to obtain dFs/dt in m s−1, which can be substituted

in equation (1) for �x/�t . The numerical values of slope

obtained for each fringe pattern from the HHT and FFT are

listed on the plot along with their percentage difference. Also,

a parameter Fǫ is defined as

Fǫ =

√

1

N

∑

(FsHHT − FsFFT)2, (12)

where N is the total number of images fitted to estimate the

slope and FsHHT and FsFFT are the fringe spacing estimated

using the HHT and FFT, respectively. Here, Fǫ serves as a

statistical measure of difference between the HHT and FFT

estimates of fringe spacing in pixels.

The interference pattern in figure 10 is clean and devoid of

any dust or contamination. It is not surprising that the slopes
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Figure 10. Fringe spacing, Fs versus image number (time) for ZPG
flow in the Melbourne tunnel at U∞ = 20 m s−1 at station 3 (x ≈

21m). Symbols ‘◦’, ‘▽’ and ‘+’ represent FsHHT for oil drops ‘a’, ‘b’
and ‘c’, respectively. Symbols ‘�’, ‘△’ and ‘×’ represent FsFFT for
oil drops ‘a’, ‘b’ and ‘c’, respectively. Solid lines are linear
least-squares fits. Note the shift of 30 units between data points for
‘a’, ‘b’ and ‘c’. The inset shows magnified comparison for the oil
film ‘c’ clearly showing the step change in FsFFT. Approximately
2000 pixels in the streamwise direction are used for EMD.

evaluated for the HHT and FFT agree very well with each

other. Also, Fǫ ≈ 3 suggests that the fringe spacing obtained

by these two methods would at most disagree by 9 pixels

(three standard deviations), which is quite small compared to

Fs ∼ 250 pixels for the final images. However, it should

be noted that such a good agreement is only obtained by

discarding Fs estimates by the FFT, which suffer from the

problem of wavenumber resolution. It can be seen that FsFFT

toward the end of the acquisition does not change for a certain

consecutive set of images and then suddenly jumps to a higher

value. This is due to the jump of dominant wavenumber

from one wavenumber cell to another as discussed earlier in

section 5.1. The data points which have the same Fs FFT as the

previous or next image are not used to determine the slope.

It is clear that in the absence of the HHT, the FFT would not

provide an accurate estimate of Fs for the latter part of the

acquisitions. The instantaneous wavenumber of the Hilbert

transform does not suffer from a limitation of wavenumber

range and only depends on the accuracy of determining dω/dt

(equation (6)). Hence, even when the fringe spacing is large

(or only a few fringes are seen in the interrogation region),

the HHT can provide an accurate estimate of the wavenumber

from the IMFs. This is clearly evident by the linear behavior

of FsHHT all throughout in contrast to the ‘step’ behavior of

FsFFT toward the end of the acquisition.
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Figure 11. Fringe spacing, Fs , versus image number (time) for ZPG
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‘b’, respectively. Symbols ‘�’ and ‘△’ represent FsFFT for oil drops
‘a’ and ‘b’, respectively. Solid lines are linear least-squares fits.

Figure 11 shows a similar plot as figure 10 for

interferometry at different streamwise locations and freestream

velocities. Compared to figure 10, freestream velocity in this

case is lower, resulting in the maximum fringe spacing being

near 100 pixels (compared to ∼250 in figure 10) after the same

amount of time has elapsed. The problem of wavenumber

resolution is also present in this case. However, this particular

case has been chosen because of the presence of a distinctly

large dust particle on the left oil film ‘a’ and a patch of surface

contamination on oil film ‘b’. This results in a very poor

interference pattern that would be discarded if analyzed by

any conventional approach like the x–t diagram of figure 2.

Even selecting a clear region of the fringe pattern manually

would be difficult as it would have a only small region with a

clear interference pattern. However, it is found that the HHT

approach works consistently well even in this case resulting

in linear behavior of FsHHT. On the other hand, FsFFT shows

considerable scatter along its linear behavior resulting in a

2.1% difference in the estimated slope for oil film ‘b’. Such

a difference is significant as the expected accuracy of oil-

film interferometry is to be typically bound within ±1.5%.

The estimate of wall shear stress can only be as accurate

as the accuracy of the estimated slope (�x/�t) if the other

parameters are accurately known. In contrast, even though the

inference pattern in ‘b’ is not clear, we see that the percentage

difference between FsHHT and FsFFT is relatively small. This

is due to the overall larger width of the oil film in ‘b’, which

initially contained a larger volume of oil drop to start with.

A wider fringe pattern gives more samples of wavenumber

that are estimated from pixel lines in the flow direction and
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Figure 12. (a) Percentage difference for dFs/dt between the FFT
and HHT approach for all interferograms (each data point
corresponds to a single oil drop). Symbols denote: ‘•’, ‘�’ and ‘�’
for U∞ = 12, 17 and 21 m s−1, respectively, at station 1; ‘×’ for
U∞ = 12 m s−1 at station 2; ‘�’, ‘◭’, ‘�’ and ‘◮’ for U∞ = 10, 15,
20 and 25 m s−1, respectively, at station 3. (b) Root-mean-square
error of linear fit to the Fs versus t data for the FFT and HHT
approach. ‘•’, RMSE for fits to FsFFT versus t; ‘�’, RMSE for fits to
FsHHT versus t. Data points are arranged in increasing order of
RMSE from the FFT approach (‘•’) and dashed line is half its value.

subsequently averaged. A small oil drop will form a narrow

fringe pattern with high curvature and the three-dimensional

effects can lead to an inaccurate fringe spacing estimate.

Finally, figure 12 shows two comparisons for the FFT

and HHT approach to find dFs/dt . First, the percentage

difference between dFs/dt obtained using the FFT and HHT is

shown in figure 12(a) for all 60 cases of oil-film interferograms

available from the experiments for the zero pressure gradient

boundary layer. These include measurement at different

stations with different freestream velocities and also the

multiple acquisitions made for similar flow conditions. It

is found that the typical difference between the FFT and

HHT approaches for estimated dFs/dt is within ±1%, which

is about the same as the expected error in determining τw

from oil-film interferometry. This emphasizes the need for

accurately determining dFs/dt , an error in which linearly

contributes to the error of τw (equation (1)). As the thickness of

thin film changes linearly with time, we compare the linearity

of Fs versus t obtained using FFT and HHT approaches. This

is achieved by comparing the root-mean-square error (RMSE)

of linear fits to Fs versus t as shown in figure 12(b). A small
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RMSE would indicate that the estimated development of Fs

versus t is in close agreement to the physical linear behavior. It

is clear from figure 12(b) that the HHT approach considerably

improves the accuracy of estimating the linear variation of

Fs versus t with RMSE less than half of RMSE for the FFT

approach. Hence, figure 12(b) compliments figure 12(a) to

indicate that the error involved in determining dFs/dt can be

reduced by at least 50% by adopting the HHT approach.

7. Conclusions

In the present study, a large database of oil-film interferometry

acquisitions is analyzed using two approaches: FFT and HHT.

While FFT methods are conventionally used in determining the

fringe spacing, they often require some user input in the form

of region selection, removal of non-stationarity and sometimes

peak identification. Even when such care is implemented in

the analysis, it still falls short of being accurate for images that

have dust and contamination. The Hilbert–Huang transform

on the other hand does not suffer from the limitations of

the FFT listed in section 5.1, and although, it poses its own

challenges in the form of mode mixing and end effects, these

are not found to be limiting for application. Both mode mixing

and end effects can be treated by adopting the EMD algorithms

to suit the characteristics of the signal being measured, though

the higher computational cost associated with EMD (and

sifting) is unavoidable. On the other hand, the FFT is simple

to implement and computationally fast algorithms are readily

available due to its popularity. Overall, key benefits of using

the HHT over the FFT as a procedure for extracting fringe

spacing can be explicitly listed as follows.

(i) The HHT does not suffer from the problem of inadequate

wavenumber resolution. The instantaneous wavenumber

only depends on the shape of the IMF and hence the

HHT even on a short signal length can provide significant

information.

(ii) EMD isolates the fringe characteristics to a particular

IMF while the noise and low wavenumber characteristics

are typically in other modes. Hence, wavenumber

identification is relatively easier as compared to the FFT

spectrum.

(iii) The HHT can be applied to non-stationary and nonlinear

data. It can also handle interferograms with dirt

and surface contamination, which can have sharp

discontinuities and uneven wave patterns in the intensity

profile.

It is advisable to have a sufficiently high number of

fringes in the images acquired to use the Fourier transform

for extracting fringe spacing. Typically, one has to balance

between three important parameters in the experiment: the

freestream velocity, the viscosity of oil and the time available

for the acquisition of interferograms. This requires choosing

different oil viscosities for different freestream velocities for

best result. At high freestream velocities, the fringe spacing

can be quite large and the oil film is closest to the thin-

film approximation. A high oil viscosity is preferred in such

instances. On the other hand, short acquisition times would

require relatively low viscosity of oil so that enough linear

change in fringe spacing is observed to determine the slope.

Such an adaptation of parameters is not straightforward and

tedious. The approach of using the HHT eliminates such

tweaking of parameters as it is able to extract fringe spacing

even from short signal length or interferograms with few

fringes visible. Also, it provides a good linear estimate of

Fs even over short acquisition times to reliably estimate the

slope, dFs/dt (see figure 10).

It should be noted that the HHT approach does require

some user adaptation in the form of selecting the right sifting

stop criteria, treatment of end effects, treatment of mode

mixing and extracting a single value of wavenumber from

a time-varying wavenumber distribution. However, these only

affect the quantitative results presented in this paper while

the inherent advantages over Fourier methods remain intact.

The advantages and applicability of the HHT makes it a very

robust technique to determine fringe spacing. As highlighted

in the previous section, the HHT approach determines dFs/dt

more accurately than the FFT, while their results can differ by

few a percentage. Hence, using the HHT as a primary tool in

analysis of interferograms will only improve the already most

accurate technique of oil-film interferometry for wall shear

stress measurements.
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