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In this paper, we propose some recent works on data analysis and synthesis based on
Empirical Mode Decomposition (EMD). Firstly, a direct 2D extension of original Huang
EMD algorithm with application to texture analysis, and fractional Brownian motion
synthesis. Secondly, an analytical version of EMD based on PDE in 1D-space is pre-
sented.

We proposed an extension in 2D-case of the so-called “sifting process” used in the
original Huang’s EMD. The 2D-sifting process is performed in two steps: extrema detec-
tion (by neighboring window or morphological operators) and surface interpolation by
splines (thin plate splines or multigrid B-splines). We propose a multiscale segmenta-

tion approach by using the zero-crossings from each 2D-intrinsic mode function (IMF)
obtained by 2D-EMD.

We apply the Hilbert–Huang transform (which consists of two parts: (a) Empirical
mode decomposition, and (b) the Hilbert spectral analysis) to texture analysis. We
analyze each 2D-IMF obtained by 2D-EMD by studying local properties (amplitude,
phase, isotropy, and orientation) extracted from the monogenic signal of each one of
them. The monogenic signal proposed by Felsberg et al. is a 2D-generalization of the
analytic signal, where the Riesz transform replaces the Hilbert transform. These local
properties are obtained by the structure multivector such as proposed by Felsberg and
Sommer.

We present numerical simulations of fractional Brownian textures. Recent works
published by Flandrin et al. relate that, in the case of fractional Gaussian noise (fGn),
EMD acts essentially as a dyadic filter bank that can be compared to wavelet decompo-
sitions. Moreover, in the context of fGn identification, Flandrin et al. show that variance
progression across IMFs is related to Hurst exponent H through a scaling law. Starting
with these results, we proposed an algorithm to generate fGn, and fractional Brownian
motion (fBm) of Hurst exponent H from IMFs obtained from EMD of a White noise,
i.e., ordinary Gaussian noise (fGn with H = 1/2).
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126 J.-C. Nunes & É. Deléchelle

Deléchelle et al. proposed an analytical approach (formulated as a partial differ-
ential equation (PDE)) for sifting process. This PDE-based approach is applied on
signals. The analytical approach has a behavior similar to that of the EMD proposed by
Huang.

Keywords: Empirical mode decomposition; Hilbert–Huang transform; Riesz transform;

monogenic signal; texture analysis; nonlinear partial differential equation.

1. Introduction

This paper describes the formulation and application of the empirical mode decom-

position (EMD) in data analysis or synthesis. We present our work which have been

published in Refs. 22, 23 and 74–76.

Firstly, we extend the EMD to 2D-data (i.e., images), the so-called bidimensional

EMD (BEMD), the process being called 2D-sifting process (published in Refs. 74

and 75). The 2D-sifting process is performed in two steps: extrema detection by

neighboring window or morphological operators (morphological reconstruction or

watershed) and surface interpolation by splines (thin plate splines or multigrid

B-splines). Moreover, we detect the zero crossings of each 2D-intrinsic mode func-

tion (IMF) and suggest a multiscale segmentation from these zero crossings (such

as proposed in Ref. 74).

Secondly, we present numerical simulations of fractional Brownian motion (1D

and 2D) from EMD of ordinary Gaussian noise (fGn with H = 1/2) (published in

Ref. 23).

Thirdly, we analyze each 2D-IMF obtained by 2D-EMD by studying local prop-

erties (amplitude, phase, isotropy, and orientation) extracted from the monogenic

signal of each one of them (published in Ref. 76). The monogenic signal is a

2D-generalization of the analytic signal, where the Riesz transform replaces the

Hilbert transform.

Fourthly, we propose an analytical approach of the EMD. Indeed, we replace

the sifting process by nonlinear partial differential equation (PDE) (published in

Ref. 22). The analytical approach has a behavior similar to that of the EMD pro-

posed by Huang.

2. Bidimensional Empirical Mode Decomposition (BEMD)

The Hilbert–Huang transform, first introduced by Huang et al.,51 consists of two

parts: (1) empirical mode decomposition (EMD), and (2) Hilbert spectral analy-

sis. As different applications as medical and seismic signals analyses have shown

the effectiveness of this time–frequency analysis method. This method permits

analyzing 1D-nonlinear and nonstationary data. Comparisons with wavelet and

Fourier analyses show that the Hilbert–Huang transform offers much better tem-

poral and frequency resolutions.52 We propose here an extension of the EMD to

2D-data.



Empirical Mode Decomposition: Applications on Signal and Image Processing 127

2.1. Empirical Mode Decomposition (EMD)

The EMD is locally adaptive and suitable for analysis of nonlinear or nonstationary

processes. The starting point of EMD is to consider oscillatory signals at the level

of their local oscillations and to formalize the idea that:

“signal = fast oscillations surimposed to slow oscillations”

and to iterate on the slow oscillation components considered as a new signal. This

one-dimensional decomposition technique extracts a finite number of oscillatory

components or “well-behaved” AM–FM functions, called intrinsic mode function

(IMF), directly from the data.

The IMFs are obtained from the signal by means of an algorithm called the

sifting process. The sifting procedure is based on two constraints: each IMF has

the same number of zero-crossings and extrema, and also has symmetric envelopes

defined by the local maxima, and minima, respectively. Furthermore, it assumes that

the signal has at least two extrema. The sifting algorithm is represented in Fig. 1.

So, for any one-dimensional discrete signal Iori, EMD can finally be presented

with the following representation:

Iori =
J

∑

j=0

Imode(j) + Ires, (1)

where Imode(j) is the jth mode (or IMF) of the signal, and Ires is the residual trend

(a low-order polynomial component). The sifting procedure generates a finite (and

limited) number of IMFs that are nearly orthogonal to each other.51

2.2. State of the art of the BEMD

We were one of very first to suggest an implementation of 2D-EMD.74, 75 Start-

ing from this 2D-EMD, we proposed various methods of analysis and synthesis of

images.23, 76 Works also relating to this field were proposed by other research teams

in image processing:

• texture analysis,97

• fractal analysis,64, 65

• image compression.61–63

Linderhed61–63 proposes decompositions based on two surface interpolations:

bi-cubic splines or thin plate splines (TPS). Nunes et al.23, 74–76 propose decompo-

sitions based on two surface interpolations by splines: TPS or multilevel B-splines.

Damerval et al.21 propose a decomposition based on Delaunay triangulation and on

piecewise cubic polynomial interpolation. The method proposed by Liu et al.64 carry

out an EMD according to only one direction and not a true 2D-EMD. Indeed, this

method divides a two-dimensional data (or image) into one-dimensional data. The

1D-EMD is applied on a limited number of directions: two (horizontal and vertical)

or more. Such approach shows quickly its limits in the case of local image analysis.
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Fig. 1. The sifting process.

Except in Ref. 74 few results were published concerning multiscale dyadic rep-

resentations obtained by BEMD of real, textured or medical images. Moreover, no

comparison between the various methods was carried out. In Ref. 74, the behavior

of the BEMD was described: almost dyadic behavior by the layout of the impulse

response and the layout of the decrease of the extrema number.

2.3. Our BEMD approach

We present here our work which was published in Refs. 74– 76. A 2D-IMF obtained

by 2D-sifting process is 2D-“well-behaved” AM–FM function. To extract the 2D-

IMF during the 2D-sifting process,74 we have used neighboring window or morpho-

logical operators to detect the image extrema and radial basis functions or multilevel

B-splines to compute the surface interpolation.
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2.3.1. Extremal point detection

To detect the image extrema, we used neighboring window or morphological oper-

ators (morphological reconstruction and watershed).

Neighboring window: We locate extrema points (maxima and minima) of the image

intensity function within a neighboring window. Here, the extrema have values

strictly higher or lower than all their closer neighbors (4, 6 or 8 connexity). The

extrema are found only when they have a size of one pixel. We choosed eight

connexity.

Morphological reconstruction: Moreover, we used morphological reconstruction to

find extremal plateaus. Morphological reconstruction13 finds regions of uniform

pixel value whose neighboring regions all have smaller or larger values (maximal or

minimal plateaus). Since, the extrema definition by mathematical morphology is

more precise, the detection of the extrema is carried out by morphological recon-

struction based on geodesic operators. We define the geodesic reconstruction as

follows.

The grayscale reconstruction IrecI(M) of I from M is obtained by iterating

grayscale geodesic dilations of M under I until a stability is reached; that is,

IrecI = ∨
n≥1

∂n
1 (M). (2)

If we take M = I−1 (subtract one gray level from every pixel of original image)

and if we perform the reconstruction Irec (by geodesic dilation) of M by I, the

difference I − Irec corresponds to the indicator function of the maxima of I.

Conversely, the difference between Irec∗ (reconstruction by geodesic erosion)

and I (original image) produces the indicator function of the minima of I. We used

this extrema detection method which is described in Ref. 94.

Crest or valleys line detection by morphological operator (i.e., watershed): In

Ref. 74, the author proposes to interpolate not by means of the extrema but by

means of the peak lines or the valley lines by using the watershed (morphological

operator).

Watershed segmentation draws its origins from mathematical morphology, and

is in fact a region growing algorithm that treats the input image as a topographic

surface, and through the intuitive process of water-filling, creates a partition of the

image. For the implementation of the watershed algorithm, we used a fast method

suggested in Ref. 94.

By flooding the topographic surface of an image from its regional minimum and

preventing the merging of water coming from different sources, we partition the

image into two different sets; the catchment basins and the watershed lines, where

each catchment basin contains one and only one regional minimum.12

At the contact lines the “watershed lines” are created and constitute the limits

between the image regions.12
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The watershed of a surface has some very useful properties:

• the watershed lines form closed simply connected regions;

• all points belong to a region or fall on a watershed;

• each regional minimum possesses a single catchment basin (region) associated

with it.

These watershed lines mark the crest lines of the original image. To obtain the

lines of valleys, we reverse the levels of gray of the image.

Results of extrema detection: Figure 2 shows the maxima detection from three

methods (neighboring window, morphological reconstruction and watershed). The

BEMD obtained from these three types of extrema by neighboring window,

(a) (b)

(c) (d)

Fig. 2. Maxima detection by three methods (neighboring window, morphological reconstruction,
and watershed) of aerial image. (a) Original image, (b) Maxima obtained by neighboring window,
(c) Maxima obtained by morphological reconstruction and (d) Maxima obtained by watershed.
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morphological reconstruction, and watershed are all different. Indeed, over-

decomposition in the case of BEMD from crest and valley lines is noted.74

2.3.2. Scattered data interpolation

There exist many solutions to scattered data interpolation which include Shepard’s

methods,85 radial basis functions,48 and finite element methods. There is a vast

amount of literature devoted to scattered data interpolation. Readers are referred

to Refs. 2, 6, 42, 44, 50, 66, 73 for excellent surveys. In the case of BEMD, we compute

surface interpolation by radial basis functions (TPS) or by multilevel B-splines from

extrema points.

Surface interpolation by radial basis functions: According to Franke,42 radial basis

functions (RBF) are known to be one of the sharpest and stablest methods to

solve scattered data approximation and interpolation problems.14 The initial ideas,

dating from the late 1960s, are due to Hardy.48 RBF methods are some of the most

elegant schemes from a mathematical point of view.42

An RBF is a function of the form:

s(x) = pm(x) +
N

∑

i=1

λiΦ(‖x − xi‖), (3)

with x ∈ ℜd, λi ∈ ℜ, where

• s is the RBF,

• pm is a low-degree polynomial, typically linear or quadratic, a member of the

mth degree polynomials in d variables,

• ‖ · ‖ denotes the Euclidean norm,

• the λi’s are the RBF coefficients,

• Φ is a real-valued function called the basis function, and

• the xi’s are the RBF centers.

Classical examples for these functions are given by Duchon’s thin plate

splines26 and Hardy’s multiquadratics,48 where developments during this decade

have provided compactly supported RBF (CSRBF) and RBFs with multizone

decomposition.

A variety of different RBFs have been proposed. These are, for example, linear

(L), cubic (C), thin-plate splines (TPS), multiquadrics (M), inverse multiquadrics

(IM), and the Gaussian (G):

ΦL(r) = r, (4)

ΦC(r) = r3, (5)

ΦTPS(r) = r2 log r, (6)

ΦM(r) =
√

1 + (ǫr)2, (7)
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ΦIM(r) =
1

√

1 + (ǫr)2
, (8)

ΦG(r) = e−(ǫr)2. (9)

Drawbacks of this method are that:

• the far field expansion has to be done separately for every basis function, and is

very complex to implement;

• the required computational work is proportional to the number of grid nodes and

the number of scattered data points. Special methods for reducing the processing

time were developed for TPS, and were discussed in Refs. 8, 17, 60. In spite

of significant progress in the field of implementing RBFs and CSRBFs56, 71 for

reconstruction purposes, it is still an open question whether it is possible to

handle realistic amounts of data in real time.

We computed surface interpolation by TPS through a set of irregularly spaced

points (extrema) during the 2D-sifting process.23,74–76

Surface interpolation with multilevel B-splines: Splines are extensively used in

image processing, primarily in interpolation tasks due to their approximation prop-

erties. From among spline properties beneficial to image processing, we should men-

tion: compact support, existence of fast algorithms to compute coefficients from

function values and vice versa, and the facility to compute derivatives as spline

functions of lower degree. B-splines are very easy to manipulate and have been

used widely and successfully used in Computer-Aided Geometric Design, computer

graphics and visualization.7 The mathematical description of the B-spline inter-

polation problem can be found in many textbooks, tutorials and papers, such as

Refs. 91–93, or others. The standard approach is to solve a sparse linear equations

system. There are several types of splines that can be used. The simplest approach

is to consider tensor product splines41 and their generalizations to non-uniform

rational B-splines (NURBS) surfaces,81 which have important applications, e.g., in

modeling and designing surfaces. These spaces are essentially restricted to rectan-

gular domains.

Several multilevel methods for surface construction have been studied and pre-

sented over the past years, although relatively few deal with approximation of

scattered data.

Multilevel B-splines, proposed in Ref. 59, are introduced to compute a C2-

continuous surface through a set of irregularly spaced points using a coarse-to-fine

hierarchy of control lattices. The method is local in the sense that on the finer

tensor product grids each B-spline coefficient is computed from nearby points only.

Consequently, the method is also fast.

Other spline methods are based on box splines,20, 49 simplex splines,100 splines of

finite-element type, or approaches due to multiresolution analysis and wavelets.35
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Many authors have investigated multiresolution analysis for manipulating spline

surfaces and polygonal meshes.10, 11, 18

We used multilevel B-splines (described in Ref. 59) for scattered data interpo-

lation during the 2D-sifting process.74 Multilevel B-spline interpolation, presented

in Ref. 59, is a hierarchical method that first tries to fit a set of globally smooth

B-splines through the sampled data each defined on a distinct 4 ∗ 4 grid of control

points with large coverage. In each successive step the number of control point in the

grid of each B-spline is doubled in each direction and a new set of B-splines is created

on the four smaller 4 ∗ 4 grids of control points. These new B-splines on the smaller

grids are fitted through the difference of the sum of the already computed B-splines.

According to Bertram et al.,10 a drawback of this method is that the global

refinement of lattices is inefficient when accurately reproducing small local features.

2.3.3. Stopping criteria

We have to determine a criterion for the 2D-sifting process to stop. This can be

accomplished by limiting the size of the standard deviation (SD), computed from

the two consecutive sifting results Iresj(i−1) and Iresji for the j th mode as:

SD =
K

∑

k=0

L
∑

l=0

[

|(Iresj(i−1)(k, l) − Iresji(k, l))|2

Ires2
j(i−1)

(k, l)

]

. (10)

We added two conditions with this stopping criteria:

• the iteration count to obtain an IMF is lower or equal to a constant. At the end

of 12 iterations, we admit that the residual image Iresji is an IMF,

• we also obtain an IMF when the difference between two consecutive SD (SDi

and SDi) is lower than a threshold ( precision ∗ SDi). We calculate it this way.

If (SDi − SDi−1) < (precision ∗ SDi), the residual image Iresji is an IMF.

2.4. BEMD results and discussion

Firstly, we describe the 2D-sifting process. Secondly, we show nonlinear multiscale

representation of images obtained by BEMD.

2.4.1. Multiscale representation and BEMD

The 2D-decomposition by sifting process of an image provides a representation that

is easy to interpret. Examples using images (512 × 512 in grayscale) (Figs. 3–8, 9

and 10) from the Brodatz texture album or photographies are shown in Figs. 11–13,

16–22, 54 and 55. To stop the sifting process, we have used the standard deviation

(SD). We have used SD smaller than 1.

We proposed in Figs. 17–19 BEMD of landshaft image (Fig. 7) by TPS from

three extrema detection method.
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Fig. 3. Bassin image.

Fig. 4. Abbey texture.

Fig. 5. Cactus.

Fig. 6. Cardiac image.

Fig. 7. Landshaft image.

Fig. 8. Heart image.

Fig. 9. Fabric image.

Fig. 10. Wavy image.
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Fig. 11. BEMD of Bassin image (Fig. 3) by
TPS from extrema obtained by morphological
reconstruction.

Fig. 12. BEMD of abbey texture (Fig. 4) by
TPS from extrema obtained by morphological
reconstruction.
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Fig. 13. BEMD of cactus image (Fig. 5) by
TPS from extrema obtained by morphological
reconstruction.

Fig. 14. BEMD of fabric image (Fig. 9) by
TPS from extrema obtained by morphological
reconstruction.
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Fig. 15. BEMD of wavy image (Fig. 10) by
TPS from extrema obtained by morphological
reconstruction. Fig. 16. BEMD of cardiac CT (Fig. 6).
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Fig. 17. BEMD of landshaft image (Fig. 7) by
TPS from strict extrema.

Fig. 18. BEMD of landshaft (Fig. 7) image by
TPS from extrema obtained by morphological
reconstruction.
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Fig. 19. BEMD of landshaft image (Fig. 7) by
TPS from extrema obtained by watershed.

Fig. 20. BEMD of heart image (Fig. 8) by TPS
from extrema obtained by morphological recon-
struction (with precision = 0.00000003).
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Fig. 21. BEMD of heart image (Fig. 8) by TPS
from extrema obtained by morphological recon-
struction (with precision = 0.00003).

Fig. 22. BEMD of heart image (Fig. 8) by TPS
from extrema obtained by morphological recon-
struction (with precision = 0.03).
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BEMD from three precision (0.00000003, 0.00003, and 0.03) from extrema

obtained by morphological reconstruction.

2.4.2. Zero-crossings

We detect the zero-crossings of each modes and suggest a multiscale segmentation

from these zero-crossings (such as proposed in Ref. 74). These zero-crossings can

correspond to structures to seek. A multiscale segmentation approach perhaps sug-

gested similar to that proposed by Marr–Hildreth70 using the zero-crossings of the

Laplacian of Gaussian (Figs. 23–28).

3. Fractal Synthesis by EMD

We present here our work which was published in Ref. 23. We reported here that

EMD method might offer a new way to synthesis fractional processes in 1D and 2D

space.

3.1. Fractal analysis

The estimation of the fractal dimension, or of the Hurst exponent of an fBm real-

ization has proven to be an important problem both for signal and image analysis.

The fBm model has been successfully used in texture analysis and synthesis, land-

scape modeling and speech segmentation. Especially, in computer vision, Brownian

texture is a widely used Gaussian process with a variety of applications in image

analysis, e.g., in physics, medical, and fractal imaging.

3.1.1. Analysis of fractional Brownian motion

Fractional Brownian motion (hereafter fBm) is a continuous-time random process

proposed by Mandelbrot and Van Ness.69 Basically, it consists in a fractional inte-

gration of a white Gaussian process and is therefore a generalization of Brownian

motion, which consists simply in a standard integration of a white Gaussian process.

In fact, fBm is the only known correlation model that satisfies Wornells definition

of 1/f processes.95 One characterizing feature of fBm is its statistical self-similar

property,69 which means that the variance of increments of a process obeys a hyper-

bolic scaling law so that the statistical properties of the process at any two scales

are the same within a scaling constant. The exponent of the hyperbolic law deals

with the Hurst parameter H that quantifies the persistence of an fBm realization.

In fractal theory, Hurst exponent is related to the fractal dimension in a simple

manner.30

Traditional analysis techniques are based on some type of regression analysis

to measure the hyperbolic progression of the average size of increments at varying

scales, the progression of power versus frequency, or the progression of the variance

of the wavelet coefficients at different scales.38, 43, 80 A maximum likelihood frac-

tal and fGn estimators were proposed in Refs. 24 and 67. Recently, an estimator
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Fig. 23. Zero-crossings of IMF (Fig. 16)
obtained by BEMD of cardiac CT (Fig. 6).

Fig. 24. Zero-crossings of IMF (Fig. 14)
obtained by BEMD of fabric image (Fig. 9).



Empirical Mode Decomposition: Applications on Signal and Image Processing 143

Fig. 25. Zero-crossings of IMF (Fig. 15)
obtained by BEMD of wavy image (Fig. 10).

Fig. 26. Zero-crossings of IMF (Fig. 13)
obtained by BEMD of cactus image (Fig. 5).
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Fig. 27. Zero-crossings of IMF (Fig. 12)
obtained by BEMD of abbey texture (Fig. 4).

Fig. 28. Zero-crossings of IMF (Fig. 20)
obtained by BEMD of cardiac CT (Fig. 8).
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for noisy fBm measurements that takes advantage of the decorrelation effects of

orthogonal wavelets was published in Refs. 1 and 96.

More recently, EMD application to some broadband processes have been shown

to spontaneously achieve wavelet-like decompositions.39, 40

3.1.2. Dyadic filter-bank structure of EMD

The experimental spectral analysis and statistical characterization of the obtained

IMFs reveal an equivalent filter-bank structure which shares most properties of

a wavelet decomposition in the same context,1 in terms of self-similarity, quasi-

decorrelation and variance progression.37, 39, 40, 99 Furthermore, the spontaneous

adaptation of EMD to “natural” dyadic scales is shown, rationalizing the method as

an alternative way for estimating the fractional-Gaussian-noise Hurst exponent.39, 40

The authors37, 39 estimate a power spectrum for each IMF of the decomposition.

To renormalize according to the power spectra in a coupled way these modes, either

in time, or in frequency provides a single curve. Moreover, the number of these

zero-crossings (or extrema) zH(j) is a decreasing exponential function of the mode

number j: zH(j) = ρ−j
H , with ρH very close to 2. The spectra of all modes (for

indices 2 to last) look quite the same: a band-pass filter. The spectrum of the

first mode corresponds to the characteristics of a high-pass filter. The logarithm of

the maximum amplitude of modes 2 to last (for EMD of impulse) varies linearly

according to the index of the modes.37, 39

3.1.3. EMD-based characterization of stationary processes

Fractional Gaussian noise (fGn) can be viewed as the increment process of fractional

Brownian motion (fBm).69 An fBm process, BH , is a so-called H-sssi Gaussian

process, meaning that it is self-similar with index H ∈ (0, 1) and has stationary

(discrete-time) increments sH [j] ∼= BH [j + 1]−BH[j] with autocovariance function

γH [j] = E{sH [n]sH [n + j]}29 given by

γH [j] =
σ2

2
(|j − 1|2H − 2|j|2H + |j + 1|2H). (11)

White noise increments correspond to the special case of fGn realization for

which H = 1/2. It is shown in Refs. 40, 83, 99 that in the case of fractional

Gaussian noise, EMD can be interpreted as a filter bank of overlapping band-pass

filters for modes of ranks j ≤ 2

Var{C
〈j〉
H (t)} ∝ ρ

j(2H−2)
H , (12)

where C
〈j〉
H (t) is the jth IMF of process s

(t)
H . The dyadic nature of the EMD on

fractional processes implies ρH ≈ 2 for all H .40 Hence, it becomes possible to

access to the Hurst exponent via the variance progression across IMFs

Var{C
〈j〉
H (t)} ∝ 2j(2H−2). (13)
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In Sec. 3.2, we used this remarkable property to propose a new algorithm for

stationary processes simulation.

3.2. Fractal synthesis by EMD

There exist algorithms for simulating general fractional processes with a given auto-

covariance function. These algorithms can be used for generating 1D signals or

texture images. Textures and natural data are often modeled by the increments of

the sampled fBm, known as (discrete) fractional Gaussian noise (fGn). Therefore,

fBm and fGn, or simply fractal models, have been successfully applied to texture

analysis and synthesis19, 54, 80, 89 and terrain modeling.55, 79, 98 For a general point

of view, there exist several methods for generating long-range dependent processes,

such as fBm or fGn. Two classes of methods can be defined;

• Cholesky decomposition methods based on fGn covariance matrix, and

• spectral,68 wavelets38 or autoregressive models90 methods.

See Ref. 5 for a survey about these methods.

3.2.1. Proposed fractional processes synthesis method

Decomposition of white noise: An extended analysis of characterization of ordinary

Gaussian noise based on EMD method is presented in Refs. 9. Following the results

presented in Refs. 40 and 99 and relation, we known that the decomposition of

ordinary Gaussian noise, H = 1/2, by use of EMD ends up with IMFs with vari-

ance progression Var{C
〈j〉
1/2(t)} ∝ ρ−j

H . Hence, it is possible to generate fractional

Gaussian noise by summing all IMFs with appropriately weighting factors. We call

this H-dependent EMD reconstruction.

H-dependent EMD reconstruction: Based on EMD of White noise, the follow-

ing algorithm generates fractional processes with Hurst exponent H , see also

Ref. 23:

• Initialization. Generate ordinary Gaussian noise, ξ(t), for which H = 1/2.

• Decomposition. Decompose ξ(t) with EMD method to generate the J IMFs

C
〈j〉
1/2(t), j = 1, . . . , J of the representation of ξ(t).

• Reconstruction. Weight each IMF of rank j by factor 2j(β)/σ〈j〉, where H is the

desired new Hurst exponent, and reconstruct new fractional process ξH(t) by

the following EMD reconstruction, where σ〈j〉 stands for standard deviation of

the jth IMF:

ξh(t) =
J

∑

j=1

2j(β−1)

σ〈j〉
C

〈j〉
1/2(t) (14)
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with

β =

{

H for an fGn,

H + 1 for an fBm.
(15)

Parameter β is related with Hurst exponent H as in Eq. (15) for, respectively,

fGn or fBm processes synthesis. The H-dependent EMD reconstruction, Eq. (14),

not holds the trend r〈J〉(t) of initial representation. In practice, this residual reflect-

ing global trend is a negligible component of EMD of White noise. Alternatively,

it can be considered as the (J + 1)th IMF of the EMD, and can be integrated in

Eq. (14).

Figure 29 shows the theoretical autocorrelation and the real autocorrelation of

fGn simulations (obtained by EMD) according to different values of Hurst exponent

H = 0.1, 0.2, 0.8, 0.9. Fractional processes (5000) are generated from the White noise

realizations (5000) of data length N = 1000. We show a centered window on peak

of autocorrelation −20 to +20. We show in gray the theoretical autocorrelation and

black the autocorrelation of fBm obtained by EMD.

3.2.2. Texture synthesis

IMFs variance progression in the 2D case: In the spirit of the previous work on

characterization of EMD method in 1D case,40 we have found that the number of

zero-crossings, zH , for each bidimensional IMF obtained from the decomposition of

fractional Gaussian noise images are related to rank j by the power law:

zH = ρ−j
H (16)

with ρH ≈ 2 for all H ∈ (0, 1), which is a mark of dyadic nature of BEMD as in

1D case. Therefore, we can write the variance progression across BIMFs as

Var{C
〈j〉
H (x, y)} ∝ 2−j(2β−2), (17)

where parameter β is related to Hurst exponent H as in Eq. (15).

To extract the 2D-IMF during the 2D-sifting process74 we have used morpho-

logical operators to detect the image extrema and TPS to compute the surface

interpolation (Fig. 1). We present in (Fig. 30) 2D-IMF of impulse realizations (500

realizations) for six first IMF.

Figure 31 show average according to 16 directions of impulse response of BEMD.

Figure 32 shows the average and logarithm of average number of extrema by

2D-IMF.

Bidimensional fractional processes synthesis algorithm: With Eq. (17), the exten-

sion of H-dependent reconstruction, expressed by Eq. (14), in 2D case is immedi-

ately expressed by

ξH(x, y) =
J

∑

j=1

2j(β−1)

σ〈j〉
C

〈j〉
1/2(x, y), (18)
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(a) H = 0.1 (b) H = 0.2 (c) H = 0.3

(d) H = 0.4 (e) H = 0.5 (f) H = 0.6

(g) H = 0.7 (h) H = 0.8 (i) H = 0.9

Fig. 29. Theoretical and real autocorrelation of EMD-based simulation of fractional processes
according to different values of Hurst exponent H = 0.1, 0.2, 0.8, 0.9. First published in Ref. 23.

where ξH is the generated fGn or fBm 2D process depending on the choice of

parameter β as in Eq. (15).

Figure 33 shows different realizations of fGn and fBm texture images. The

BEMD-based synthesis results depend on the choice of extrema definition in the
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Fig. 30. Impulse response of BEMD. First published in Ref. 23.
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Fig. 31. Average according to 16 directions of impulse response of BEMD. First published in
Ref. 23.

sifting process, such as local extrema (Fig. 33(a)) or lines of extrema (Fig. 33(b)).

In both cases, fractional processes are generated with different values of Hurst

exponent H = {0.05, 0.15, 0.85, 0.95}.

4. Phase-Based Image Processing and BEMD

We present here our work which was published in Ref. 76. The main contribution of

our approach is to apply the Hilbert–Huang transform (which consists of two parts:

(a) EMD, and (b) the Hilbert spectral analysis) to texture analysis.

We applied Hilbert–Huang transform51 (which consists of two parts: (a) EMD,

and (b) Hilbert spectral analysis) to texture images for two reasons.74 The first rea-

son is that EMD is a fully data-driven method77 and using no predetermined filter28

or wavelet functions. Indeed, we implemented a bidimensional EMD (BEMD).75

The second reason is that we can analyze locally and independently each 2D-IMF

obtained by BEMD in the same way that through the Hilbert–Huang transform.

4.1. The Riesz transform and the monogenic signal

Such as the Hilbert–Huang transform in the case of one-dimensional signal analy-

sis,52 we present an image analysis method by studying local properties of 2D-IMF

obtained by BEMD. These local properties (amplitude, phase, isotropy, and orien-

tation) are extracted from the monogenic signal of each 2D-IMF. The monogenic

signal31 is a 2D-generalization of the analytic signal, where the Riesz transform

replaces the Hilbert transform.

The estimation of the local phase and the local amplitude is an important step

in many signal and image processing tasks. A second crucial task in many image
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Fig. 32. Average number of extrema of 2D-IMF in the case of 2D-fractional Gaussian noise. First
published in Ref. 23.

processing and more precisely in texture analysis is the estimation of the local

orientation. Furthermore, the local frequency can be taken as a measure for local

scale (i.e., the frequency band),53, 78 structures such as lines and edges can be

distinguished by the local phase,45 the local amplitude and the local phase can be

used for edge detection,58 and the local phase can be used to estimate the disparity

of stereo images47 or the flow in image sequences.
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(a)

(b)

Fig. 33. EMD-based simulation of fractional processes according to different values of Hurst
exponent H = 0.1, 0.2, 0.9. First published in Ref. 23.
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The methods used for the phase and amplitude estimation are based on the

evaluation of the analytic signal of the input signal which involves the calculation

of the signal’s Hilbert transform.

4.1.1. The Hilbert transform and analytic signal

The analytic signal provides access to a real one-dimensional (1D) signal’s local

amplitude and phase. The complex signal is built from a real signal by adding

its Hilbert transform — which is a phase-shifted version of the signal — as an

imaginary part to the signal.

The Hilbert transform fHi of a real 1D-signal f is given by

fHi(x) = f(x) ∗
1

πx
, (19)

where ∗ denotes convolution.

The complex signal fA of f is the sum of the original signal and the phase-shifted

signal, where the shifted signal is added as an imaginary part:

fA(x) = f(x) + ifHi(x) = f(x) ∗

(

δ(x) +
i

πx

)

. (20)

The real part of fA is identical to the input signal, while the imaginary part is

a (−π
2 )-phase-shifted version (or the Hilbert transform fHi) of f . In the frequency

domain the Hilbert transform is defined by FHi(u) = − iu
|u|F (u), where F and FHi

are the Fourier transforms of f and fHi, respectively.

The analytic signal can be written as fA(x) = |fA(x)| exp(iφ(x)). Here |fA(x)|

is called the local amplitude and φ(x) the local phase of f .

The complex signal can be used to separate the amplitude and the phase infor-

mation of a given real 1D-signal. Since such a separation would be of helpful for

multidimensional signals as well e.g., for feature extraction and classification in

image processing, it is natural that there have been attempts to define the complex

signal in nD.

4.1.2. The Riesz transform and the monogenic signal

In Ref. 33, the authors address the topics of scale-space and phase-based signal

processing in common framework. The Riesz transform27 is a multidimensional

generalization of the Hilbert transform.31 The combination of a 1D-signal and

its Hilbert transform is called the analytic signal.45 The analytic signal is the

basis for all kinds of approaches which make use of the local phase. Similarly,

the combination of a 2D-signal and its Riesz transform is called the monogenic

signal.31 For a more detailed discussion on the monogenic signal, refer to Refs. 31

and 34.

Indeed, monogenic signal is often identified as a local quantitative or qualitative

measure of an image. Different approaches to an nD-analytic or complex signal
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have been proposed in the past:

• the total Hilbert transform,87

• the partial Hilbert transform,45

• the total complex signal,46

• the hypercomplex signal.16

The different approaches are unified by expressing all of them as combinations

of the signal and its partial and total Hilbert transforms. It is known that the Riesz

transform generalizes the Hilbert transform.86 Some of the scripts can be found in

Refs. 34 and 84.

Phase-based image processing which have been proposed are:

• Edge detection by means of quadrature filters,

• Phase congruency is based on comparisons of the local phase at certain distinct

scales,57, 82

• Differential phase congruency.33

The main difference between approaches using the detection of local amplitude and

phase congruency approaches is the behavior in 2D-neighborhoods.33 This can also

be verified in various edge-detection experiments,34 where the amplitude and based

approaches blur the contour at corners and junctions.

4.1.3. Structure MultiVector (SMV)

The structure multivector is an approach for analyzing the local properties of

two-dimensional signal (e.g., images).32 It combines the classical concepts of the

structure tensor and the analytic signal in a new way. This has been made

possible by using a representation in the algebra of quaternions. The result-

ing methods are linear and of low complexity. The filter-response includes local

phase, local amplitude, and local orientation of intrinsically 1D neighborhoods in

the signal. The authors of Ref. 32 develop a 2D-analytic signal for intrinsically

1D-signals (in contrast to 2D-analytic signal15 which is designed for intrinsically

2D-signals), which include three properties: local amplitude, local phase, and local

orientation.

As already the name induces, the structure multivector is closely related to the

structure tensor. The structure tensor as defined in Ref. 88 includes the following

information (in fact, only the orientation vector is considered):

• amplitude: measurement for the existence of local structure,

• orientation of the local structure.

The structure multivector32 consists of three independent components (local phase,

local orientation, and local amplitude) and its codes three properties. Consequently,

there is no additional information possible. The function which computes the
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structure multivector uses a multiscale approach, because the shift of the Gaus-

sian bandpass is coupled with the variance as for the Gabor wavelets.

Local phase and local amplitude are inherent features of scale-space theory.33

The ideas of local phase and multiscale representation are combined to recognize

local structures and to measure local features. We used SMV to study local prop-

erties of each 2D-IMF.

4.2. Phase-based image processing and BEMD

Local properties extracted from the monogenic signal obtained by the structure

multivector32 of each 2D-IMF are the following ones: amplitude, phase, isotropy,

directionality.

We show in Figs. 14 and 15 local features (major amplitude, minor amplitude,

major phase, minor phase, isotropy and orientation) extracted by SMV of first

2D-IMF of Figs. 5(b) and 15(a).

These extracted local features have direct semantic interpretation. Indeed, we

can analyze independently each one of these extracted local features and pro-

pose a new segmentation method not from the original image but from the

local features of one or more 2D-IMF obtained by BEMD. For example, we can

detect uniform areas in the image of major amplitude or orientation of first

2D-IMF.

Extracted by SMV of IMF (Fig. 20) obtained by BEMD of heart image (Fig. 8),

• Figure 34 presents Amplitude,

• Figure 35 presents Phase,

• Figure 36 presents Isotropy,

• Figure 37 presents Theta.

Extracted by SMV of IMF (Fig. 11) obtained by BEMD of bassin image (Fig. 3),

• Figure 38 presents Amplitude,

• Figure 39 presents Phase,

• Figure 40 presents Isotropy,

• Figure 41 presents Theta.

Extracted by SMV of IMF (Fig. 12) obtained by BEMD of abbey texture

(Fig. 4),

• Figure 42 presents Amplitude,

• Figure 43 presents Phase,

• Figure 44 presents Isotropy,

• Figure 45 presents Theta.

Extracted by SMV of IMF (Fig. 14) obtained by BEMD of fabric image (Fig. 9),

• Fig. 46 presents Amplitude,
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Fig. 34. Amplitude (extracted from SMV) of
IMF (Fig. 20) obtained by BEMD of heart
image (Fig. 8).

Fig. 35. Phase (extracted from SMV) of IMF
(Fig. 20) obtained by BEMD of heart image
(Fig. 8).
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Fig. 36. Isotropy (extracted from SMV) of
IMF (Fig. 20) obtained by BEMD of heart
image (Fig. 8).

Fig. 37. Theta (extracted from SMV) of IMF
(Fig. 20) obtained by BEMD of heart image
(Fig. 8).
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Fig. 38. Amplitude (extracted from SMV) of
IMF (Fig. 11) obtained by BEMD of bassin
image (Fig. 3).

Fig. 39. Phase (extracted from SMV) of IMF
(Fig. 11) obtained by BEMD of bassin image
(Fig. 3).



Empirical Mode Decomposition: Applications on Signal and Image Processing 159

Fig. 40. Isotropy (extracted from SMV) of
IMF (Fig. 11) obtained by BEMD of bassin
image (Fig. 3).

Fig. 41. Theta (extracted from SMV) of IMF
(Fig. 11) obtained by BEMD of bassin image
(Fig. 3).
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Fig. 42. Amplitude (extracted from SMV) of
IMF (Fig. 12) obtained by BEMD of abbey
texture (Fig. 4).

Fig. 43. Phase (extracted from SMV) of IMF
(Fig. 12) obtained by BEMD of abbey texture
(Fig. 4).
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Fig. 44. Isotropy (extracted from SMV) of
IMF (Fig. 12) obtained by BEMD of abbey
texture (Fig. 4).

Fig. 45. Theta (extracted from SMV) of IMF
(Fig. 12) obtained by BEMD of abbey texture
(Fig. 4).
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Fig. 46. Amplitude (extracted from SMV) of
IMF (Fig. 14) obtained by BEMD of fabric
image (Fig. 9).

Fig. 47. Phase (extracted from SMV) of IMF
(Fig. 14) obtained by BEMD of fabric image
(Fig. 9).
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Fig. 48. Isotropy (extracted from SMV) of
IMF (Fig. 14) obtained by BEMD of fabric
image (Fig. 9).

Fig. 49. Theta (extracted from SMV) of IMF
(Fig. 14) obtained by BEMD of fabric image
(Fig. 9).
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Fig. 50. Amplitude (extracted from SMV) of
IMF (Fig. 15) obtained by BEMD of wavy
image (Fig. 10).

Fig. 51. Phase (extracted from SMV) of IMF
(Fig. 15) obtained by BEMD of wavy image
(Fig. 10).
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Fig. 52. Isotropy (extracted from SMV) of
IMF (Fig. 15) obtained by BEMD of wavy
image (Fig. 10).

Fig. 53. Theta (extracted from SMV) of IMF
(Fig. 15) obtained by BEMD of wavy image
(Fig. 10).
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• Fig. 47 presents Phase,

• Fig. 48 presents Isotropy,

• Fig. 49 presents Theta.

Extracted by SMV of IMF (Fig. 15) obtained by BEMD of wavy image (Fig. 10),

• Fig. 50 presents Amplitude,

• Fig. 51 presents Phase,

• Fig. 52 presents Isotropy,

• Fig. 53 presents Theta.

Although all the local features of all the 2D-IMF are not really useful in a later

stage of segmentation, some can-to be relevant. Indeed, of the uniform regions are

observable and can correspond to the required structures.

5. Analytical Approach

This work have been published in Ref. 22. The mean envelope originally proposed

by Huang is obtained by the difference between the upper and lower envelopes

which connect, respectively, all the maxima or all minima by cubic spline. This

iteration procedure (called the sifting process) is repeated until strictly zero mean.

This analytical approach which replace the sifting process is based on a parabolic

PDE. In order to implement sifting procedure in a PDE-based framework, the

following processes are based on the definition of characteristics fix points of a

function: (i) turning points, (ii) curvature points. The present research focuses its

interest on turning points, which are minima, maxima, and inflexion points, defined

by the values of their first and/or second derivatives. The discussions in the following

two sub-sections make use of fourth-order parabolic equations of the form:

5.1. PDE-based formulation in 1D

A possible form for fourth-order diffusion equation is

∂s(x, t)

∂t
= −

∂

∂x

(

g(x, t)
∂3s(x, t)

∂x3

)

, (21)

where g(x, t) is the diffusivity function possibly depending on both position and

time, and where the time variable is artificial, and measures the degree of processing

(e.g., smoothing) of the signal, as opposed to a real time. Equation (21) can be

viewed as a Long-range diffusion (LRD) equation (see for example Ref. 72, p. 244),

with thresholding function g(x) depending only on position (constant in time) and

more precisely on some characteristic fix points of the signal to decompose. After

derivation equation (21) read:

st(x, t) = −∂1
xg(x)∂3

xs(x, t), (22)
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where the subscript t denotes partial differentiation with respect to the variable

t and ∂q
x denotes partial differentiation of order q with respect to the variable x.

In the following we use the notation s0(x) = s(x, t = 0) for initial condition and

s∞(x) = s(x, t = ∞) for asymptotic solution of Eq. (21).

In order to implement sifting procedure in a PDE-based framework, the follow-

ing processes are based on the definition of characteristic fix points of a function:

(i) turning-points; (ii) curvature-points. Here, we are interesting in turning points

that are minima, maxima, and inflexion points, defining by the values of their first

and/or second derivatives. We have to define a coupled PDEs system in place of

sifting process to estimate lower and upper envelopes.

5.1.1. A coupled PDEs system

A simple method to estimate mean-envelope is to formulate a coupled PDEs system

to mimic Huang’s sifting process based on upper and lower envelopes estimation.

Turning points are here respectively maxima and minima of the signal to be decom-

posed. This coupled PDEs system, based on Eq. (21) reads (see also Ref.22 for a

less general PDE formulation):

{

s+
t (x, t) = −δ1

x[g+(δ1
xs0(x), δ2

xs0(x))δ3
xs+(x, t)],

s−t (x, t) = −δ1
x[g−(δ1

xs0(x), δ2
xs0(x))δ3

xs−(x, t)].
(23)

After convergence of system (23) asymptotic solutions s+
∞(x) and s−∞(x), stand

respectively for upper and lower envelops of signal s0. Hence, mean-envelope of s0

is obtained by:

s∞(x) =
1

2
[s+

∞(x) + s−∞(x)].

In Eq. (23), stopping functions, g±, depend on both first- and second-order signal

derivatives, with 0 ≤ g± ≤ 1. For example, a good choice for stopping functions

seems to be

g±(x) =
1

9
[|sgn(δ1

xs0(x))| ± sgn(δ2
xs0(x)) + 1]2. (24)

In such a way, g+ = 0 and δ1
xg+ = 0 at maxima of s0, in the same way g− =

0 and δ1
xg− = 0 at minima of s0. So, LRD acts only between two consecutive

maxima (resp. minima) points until fourth-order derivative of s(x, t) is canceled.

Since, stopping functions are piecewise constant, after convergence the resulting

signal s+
∞(x) (resp. s−∞(x)) is a piecewise cubic polynomial curve interpolating the

successive maxima (resp. minima) of signal. In Eq. (24) sign function, sgn(z), is

replaced by a regularized version. A possible expression is given by sgnα(z) =

2/π arctan(πz/α).
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5.1.2. Interpolation with tension

A more general form for Eq. (22) is

st(x, t) = δ1
x[g(x)(αδ1

xs(x, t) − (1 − α)δ3
xs(x, t))]. (25)

So, in this form, α is the tension parameter, and ranges from 0 to 1. Zero tension,

α = 0, leads to the biharmonic equation form (22) and corresponds to the minimum

curvature construction for upper and lower envelopes. The case α = 1 corresponds

to infinite tension (piecewise linear envelopes).

5.2. Numerical resolution

Numerical resolution for coupled PDEs system based on Eq. (25) is implemented

with a Crank–Nicolson scheme (semi or fully implicit) or Du Fort and Frankel

scheme. Noting that a particular attention is made for derivatives of s0 in the

defintion of g(x):

g(x) = g(D1s0(x), D2s0(x)),

where g = g±, and D1z = minmod(D+z, D−z), D2z = D+D−, where D+ and D−

are forward and backward first difference operators on the x-dimension, and where

minmod(a, b) stands for the minmod limiter minmod(a, b) = 1
2 [sgn(a) + sgn(b)] ·

min(|a|, |b|).

5.3. Results

To give a concise presentation, the following illustrating results (published in

Ref. 22) were obtained using coupled PDEs process. Equation is also capable of

producing similar results but requires a careful, and hence time consuming, atten-

tion on step-time value δt. Contrary to the solutions of Eq. (11) of Ref. 22, solutions

are less sensitive to step time. All IMFs were obtained in a small number (lower

than 8) of iterations in the PDE-based sifting procedure and with a constant time

step (for example δt = 20) to assure relatively fast convergence of the process. In

order to make a proper comparison the examples described in Ref. 36 are again

considered.

Figure 54 illustrates the modewise decomposition, of a Dirac impulse. It can

be easily seen that the wavelet-like form of the successively extracted five first

components are in agreement with the results reported in Ref. 36. The first example

of signal decomposition consists of a sum of two triangular waveforms and a tone

(presented in Fig. 55). The second example is a composite signal originating from

the superposition of two sinusoidal FM signals and one Gaussian logon (presented

in Fig. 56). In this case, the components overlap in both time and frequency, thus
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Fig. 54. Decomposition of a Dirac impulse. Five first components (right column) and residuals
(left column) of the decomposition of an impulse signal (shown in the top plot). The components
labeled c1 to c5 (right) are equivalent to impulse responses of a filter bank (compare with the
results from EMD reported in Ref. 37). First published in Ref. 22.

Fig. 55. PDE-based signal decomposition. In this first example, a composite signal (left, first
row), resulting from the superposition of two triangular (s1 and s3) waveforms and one tone (s2),
is decomposed into its three expected elementary components labeled c1 to c3 (right, rows 2–4).
Residual component of the decomposition is also given in the first row (compare these results with
those obtained using EMD algorithm, Fig. 2 in Ref. 83). First published in Ref. 22.
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Fig. 56. PDE-based signal decomposition. In this second example, a composite signal (left col-
umn, first row), resulting from the superposition of two sinusoidal FM signals (s1 and s2) and one
Gaussian logon (s3), is decomposed in its three expected elementary components labeled c1 to c3
(right column, rows 2–4). The residual component of the decomposition is also given in the first
row. For comparison, IMF and the residual resulting from classical EMD is also shown (IMFs are
labeled as imf1 to imf3, shown in the middle column). First published in Ref. 22.

disabling the components to be separated by any non-adaptive filtering technique.

In all these examples, both linear and nonlinear oscillations are effectively separated.

6. Conclusion

In this paper, we address the topics of multiscale representation obtained by BEMD,

and image analysis.

We extend the EMD to 2D-data (i.e., images), the so-called bidimensional EMD

(BEMD), the process being called 2D-sifting process.

We propose an algorithm to generate fractional Gaussian noise (fGn), and frac-

tional Brownian motion (fBm) of Hurst exponent H from IMFs obtained from EMD

of a White noise, i.e., ordinary Gaussian noise (fGn with H = 1/2).

We analyze each 2D-IMF obtained by BEMD by studying local properties

(amplitude, phase, isotropy, and orientation) extracted from the monogenic sig-

nal of each one of them. The monogenic signal proposed by Felsberg et al. is a

2D-generalization of the analytic signal, where the Riesz transform replaces the

Hilbert transform. The structure multivector (SMV) is an operator for analyzing

the local structure of an image. It combines ideas from the structure tensor, steer-

able filters, and quadrature filters where the advantages of all three approaches are

brought into a single method by means of geometric algebra.

Deléchelle et al. proposed an analytical approach (formulated as a partial differ-

ential equation) for sifting process. This PDE-based approach is applied on signals.

The analytical approach has a behavior similar to that of the EMD proposed by

Huang.
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et à la DMLA, Thesis, Université Paris 12, France.
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83. G. Rilling, P. Flandrin and P. Gonçalvès, On empirical mode decomposition and its
algorithms, in Proc. IEEE EURASIP Workshop Nonlinear Signal Image Processing,
Grado, Italy (2003).

84. http://www.ks.informatik.uni-kiel.de/visatec



Empirical Mode Decomposition: Applications on Signal and Image Processing 175

85. D. Shepard, A two dimensional interpolation function for irregularly spaced data, in
Proc. ACM 23rd National Conference (1968), pp. 517–524.

86. G. Sommer, T. Bülow and D. Pallek, Riesz transforms for the isotropic estimation of
the local phase of moire interferograms, in Symposium für Mustererkennung, DAGM
2000, eds. Ch. Perwass, G. Sommer and N. Krüger, Vol. 22 (Springer-Verlag, Kiel,
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