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ABSTRACT

Time-frequency analysis plays a significant role in seis-

mic data processing and interpretation. Complete ensemble

empirical mode decomposition decomposes a seismic signal

into a sum of oscillatory components, with guaranteed

positive and smoothly varying instantaneous frequencies.

Analysis on synthetic and real data demonstrates that this

method promises higher spectral-spatial resolution than

the short-time Fourier transform or wavelet transform.

Application on field data thus offers the potential of

highlighting subtle geologic structures that might otherwise

escape unnoticed.

INTRODUCTION

The most common tool for spectral analysis is the Fourier trans-

form; however, if applied to the entire trace, it provides no informa-

tion about local frequency variations. Such knowledge of how the

frequency content of a signal varies in time can be significant. Local

time-frequency analysis is commonly used in seismic processing

and interpretation, and there is therefore a rich history and diversity

in developed decomposition methodologies.

Taner et al. (1979) propose the instantaneous frequency attribute

which is useful in correlation and appears to indicate hydrocarbon

accumulations. The wavelet transform developed by Morlet et al.

(1982) manifests more flexibility and superiority in geophysical

applications (Chakraborty and Okaya, 1995). Partyka et al.

(1999) first demonstrated the value of spectral decomposition in

3D seismic data interpretation using tapered short-time Fourier

transforms. Taner et al. (1979) and Barnes (2000) improve the

interpretability of instantaneous attributes by using a weighted

average window. Castagna et al. (2003) demonstrate the suitability

of the instantaneous spectrum for hydrocarbon detection. Liu and

Marfurt (2007) also use the instantaneous spectrum for detecting

geologic structures. Odebeatu et al. (2006) apply the S-transform

to reflection data and relate the gas saturation to a clear spectral

signature. Li and Zheng (2008) employ the Wigner-Ville distribu-

tion for carbonate reservoir characterization. Reine et al. (2009) find

transforms with varying time windows (e.g., wavelet transform and

S-transform) allow for more robust estimation of seismic attenua-

tion. Most recently, local attributes derived from an inversion-based

time-frequency analysis have also been used in seismic interpreta-

tion (Liu et al., 2011).

Time-frequency decomposition maps a 1D signal of time

into a 2D image of frequency and time, which describes how the

frequency content varies with time. The widely used short-time

Fourier transform calculates the fast discrete Fourier transform in

each time window to compute the spectrogram. The window length

determines the tradeoff between time and frequency resolution as

the decomposition basis of sine and cosine waves can only provide

a fixed spectral resolution (Mallat, 2008). To overcome the limita-

tions of the short-time Fourier transform, wavelet-based methods

have been applied for seismic time-frequency analysis. Chakraborty

and Okaya (1995) compare the wavelet transform with Fourier-

based methods for performing time-frequency analysis on seismic

data, and show the superiority of the wavelet transform in terms of

spectral resolution. Likewise, the S-transform is proposed by Stock-

well et al. (1996). It can be interpreted as a hybrid of the wavelet

transform and short-time Fourier transform. Short-time Fourier,

wavelet, and S-transforms have all been successfully applied to seis-

mic time-frequency analysis; and yet, they are all inherently limited

in terms of time-frequency resolution by their intrinsic choice of

decomposition basis. The computation of instantaneous frequencies

seems to offer the highest possible time-frequency resolution as an

individual frequency is obtained at each time sample. Unfortu-

nately, negative frequencies, which hold uncertain physical inter-

pretation, are not uncommon (Barnes, 2007; Fomel, 2007). In

this paper, we explore the possibilities of using the empirical

mode decomposition (EMD) (Huang et al., 1998) in combination

with instantaneous frequencies, because this is guaranteed to

produce positive values only.

The empirical mode decomposition method developed by

Huang et al. (1998) is a powerful signal analysis technique for
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nonstationary and nonlinear systems. EMD decomposes a seismic

signal into a sum of intrinsic oscillatory components, called “intrin-

sic mode functions” (IMFs). Each IMF has different frequency

components, potentially highlighting different geologic and strati-

graphic information. Furthermore, high-resolution time-frequency

analysis is possible by combining EMD with the instantaneous fre-

quency. The resulting time-frequency resolution promises to be sig-

nificantly higher than that obtained using traditional time-frequency

analysis tools, such as short-time Fourier and wavelet transforms.

The empirical mode decomposition methods have progressed

from EMD to ensemble empirical mode decomposition (EEMD)

(Wu and Huang, 2009), and a complete ensemble empirical mode

decomposition (CEEMD) has recently been proposed by Torres

et al. (2011). Even though EMD methods offer many promising

features for analyzing and processing geophysical data, there have

been few applications in geophysics. Magrin-Chagnolleau and

Baraniuk (1999) and Han and Van der Baan (2011) use EMD to

obtain robust seismic attributes. Battista et al. (2007) exploit

EMD to remove cable strum noise in seismic data. Bekara and

Van der Baan (2009) eliminate the first EMD component in the

f-x domain to attenuate random and coherent seismic noise. Huang

and Milkereit (2009) use the EEMD to analyze the time-frequency

distribution of well logs.

The objective of this paper is to show the suitability of

EMD-based methods for seismic time-frequency analysis. First, we

describe and illustrate the various EMD procedures. Next, using a

synthetic example, we show the combination of CEEMD with

instantaneous frequencies promises higher time-frequency resolu-

tion than the short-time Fourier or wavelet transforms. Finally,

we apply the technique on field data to highlight various geologic

structures.

THEORY

Empirical mode decomposition

EMD decomposes a data series into a finite set of signals, called

IMFs. The IMFs represent the different oscillations embedded in the

data. They satisfy two conditions: (1) in the whole data set, the num-

ber of extrema, and the number of zero crossings must either equal

or differ by one at most; and (2) at any point, the mean value of the

envelope defined by the local maxima and the envelope defined by

the local minimums is zero. These conditions are necessary to en-

sure that each IMF has a localized frequency content by preventing

frequency spreading due to asymmetric waveforms (Huang et al.,

1998).

EMD is a fully data-driven separation of a signal into fast and

slow oscillation components. The IMFs are computed recursively,

starting with the most oscillatory one. The decomposition method

uses the envelopes defined by the local maxima and the local mini-

mums of the data series. Once the maxima of the original signal are

identified, cubic splines are used to interpolate all the local maxima

and construct the upper envelope. The same procedure is used for

local minimums to obtain the lower envelope. Next, one calculates

the average of the upper and lower envelopes and subtracts it from

the initial signal. This interpolation process is continued on the re-

mainder. This sifting process terminates when the mean envelope is

reasonably zero everywhere, and the resultant signal is designated

as the first IMF. The first IMF is subtracted from the data and the

difference is treated as a new signal on which the same sifting pro-

cedure is applied to obtain the next IMF. The decomposition is

stopped when the last IMF has a small amplitude or becomes mono-

tonic (Huang et al., 1998; Bekara and van der Baan, 2009; Han and

van der Baan, 2011). The sifting procedure ensures the first IMFs

contain the detailed components of the input signal; the last one

solely describes the signal trend.

Some properties that render EMD interesting for seismic signal

analysis are (1) the decomposition is complete in the sense that

summing all IMFs reconstructs the original input signal and no loss

of information is incurred; (2) IMFs are quasiorthogonal such

that the crosscorrelation coefficients between the different IMFs

are always close to zero; (3) the IMFs have partially overlapp-

ing frequency contents differentiating the decomposition from

simple bandpass filters; (4) no predefined decomposition basis is

defined in contrast with Fourier, wavelet, and S-transforms

(Huang et al., 1998; Flandrin et al., 2004; Bekara and Van der

Baan, 2009).

Unfortunately, as desirable as the last two properties can be, they

may also constitute a major obstacle restricting the performance of

EMD due to intermittency and mode mixing (Huang, 1999; Huang

et al., 2003). Mode mixing is defined as a single IMF consisting of

signals of widely disparate scales or a signal of a similar scale

residing in different IMF components (Huang andWu, 2008). Deer-

ing and Kaiser (2005) try to use signal masking to solve the mode

mixing problem. However, the masking function is complicated to

estimate in real-world applications. In the next section, we therefore

introduce the recently proposed ensemble and complete ensemble

EMD variants designed to prevent mode mixing.

Ensemble empirical mode decomposition

Based on the filter bank structure of EMD (Flandrin et al., 2004),

Wu and Huang (2009) propose the ensemble EMD to overcome

mode mixing. EEMD is a noise-assisted analysis method. It injects

noise into the decomposition algorithm to stabilize its performance.

The implementation procedure for EEMD is simple (Wu and

Huang, 2009):

1) Add a fixed percentage of Gaussian white noise onto the target

signal.

2) Decompose the resulting signal into IMFs.

3) Repeat steps (1) and (2) several times, using different noise rea-

lizations.

4) Obtain the ensemble averages of the corresponding individual

IMFs as the final result.

The added Gaussian white noise series are zero mean with a con-

stant flat-frequency spectrum. Their contribution thus cancels out

and does not introduce signal components not already present in

the original data. The ensemble-averaged IMFs maintain therefore

their natural dyadic properties and effectively reduce the chance of

mode mixing.

Although EEMD can improve EMD performance, it does leave

another question: Is it a complete decomposition? Does the sum of

all resulting IMFs reconstruct the original signal exactly? Unfortu-

nately, by design, each individual noise-injected EMD application

can produce a different number of IMFs. Summing the ensemble-

averaged IMFs does not perfectly recreate the original signal,

although the reconstruction error decreases with increasing number

of employed noise realizations at the expense of increasing compu-

tation times.

O10 Han and van der Baan
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Complete ensemble empirical
mode decomposition

Complete ensemble empirical mode decomposition is also a

noise-assisted method. The procedure of CEEMD can be described

as follows (Torres et al., 2011):

First, add a fixed percentage of Gaussian white noise onto the

target signal, and obtain the first EMD component of the data with

noise. Repeat the decomposition I times using different noise rea-

lizations and compute the ensemble average to define it as the first

IMF1 of the target signal. Thus,

IMF1 ¼
1

I

X

I

i¼1

E1½xþ εwi�; (1)

where IMF1 is the first EMD component of the target signal x, wi is

zero-mean Gaussian white noise with unit variance, ε is a fixed

coefficient, Ei½ � produces the ith IMF component and I is the num-

ber of realizations.

Then calculate the first signal residue r1,

r1 ¼ x − IMF1: (2)

Next, decompose realizations r1 þ εE1½wi�, i ¼ 1; 2; : : : ; I, until

they reach their first IMF conditions and define the ensemble aver-

age as the second IMF2

IMF2 ¼
1

I

X

I

i¼1

E1½r1 þ εE1½wi��: (3)

For k ¼ 2; 3; : : : ; K, calculate the kth residue: rk ¼ rðk−1Þ−

IMFk, then extract the first IMF component of rk þ εEk½wi�,
i ¼ 1; 2; : : : ; I and compute again their ensemble average to obtain

IMFðkþ1Þ of the target signal

IMFðkþ1Þ ¼
1

I

X

I

i¼1

E1½rk þ εEk½wi��: (4)

The sifting process is continued until the last residue does not

have more than two extrema, producing

R ¼ x −
X

K

k¼1

IMFk; (5)

where R is the final residual, and K is the total number of IMFs.

Therefore the target signal can then be expressed as

x ¼
X

K

k¼1

IMFk þ R: (6)

Equation 6 makes CEEMD a complete decomposition method

(Torres et al., 2011). Compared with EMD and EEMD, CEEMD

not only solves the mode mixing predicament, but also provides

an exact reconstruction of the original signal. Therefore, it is more

suitable than EMD or EEMD to analyze seismic signals.

Instantaneous frequency

The local symmetry property of the IMFs ensures that instanta-

neous frequencies are always positive, thereby rendering EMD or

its variants interesting for time-frequency analysis (Huang et al.,

1998). Seismic instantaneous attributes (Taner et al., 1979) are de-

rived from the seismic trace xðtÞ and its Hilbert transform yðtÞ by
computing its analytic signal, given by

zðtÞ ¼ xðtÞ þ iyðtÞ ¼ RðtÞ exp½iθðtÞ�; (7)

where RðtÞ and θðtÞ denote the instantaneous amplitude and instan-

taneous phase, respectively. Instantaneous amplitude is the trace en-

velope, also called reflection strength, defined as,

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞ þ y2ðtÞ
q

: (8)

Instantaneous frequency fðtÞ is defined as the first derivative of

instantaneous phase. Thus,

fðtÞ ¼
1

2π

dθðtÞ

dt
: (9)

To prevent ambiguities due to phase unwrapping in equation 9,

the instantaneous frequency can be calculated instead from

fðtÞ ¼
1

2π

xðtÞy 0ðtÞ − x 0ðtÞyðtÞ

x2ðtÞ þ y2ðtÞ
; (10)

where prime denotes derivative with respect to time.

We use equations 8 and 10 to compute instantaneous amplitudes

and frequencies for each IMF. Contrary to classical application of

instantaneous attributes to the original signal, this procedure pro-

duces a multitude of instantaneous frequencies at each time sample,

namely one for each IMF, allowing for a more in-depth signal ana-

lysis. The result is a time-frequency distribution that is uniformly

sampled in time but not in frequency, contrary to, for instance, the

short-time Fourier transform. There are as many instantaneous fre-

quencies as IMFs, but most applications produce up to a dozen

IMFs, creating very sparse time-frequency representations.

We also compute the peak frequency of the various IMFs and

other decomposition methods to create a single attribute. It is de-

fined as the frequency where the maximum energy in each time

sample occurs. Peak frequency extraction is a useful kind of spectral

decomposition technique which has been widely applied in signal

processing research (Marfurt and Kirlin, 2001; Boashash and

Mesbah, 2004).

This attribute has the advantage that it produces a single image

convenient for interpretation purposes. Further analysis using the

individual frequency slices remains always feasible. In a similar

fashion, Marfurt and Kirlin (2001) introduce a mean-frequency

attribute as a way to summarize the information contained in a

spectral decomposition.

EXAMPLES

Synthetic data: EMD, EEMD, and CEEMD

In this section, we first compare the various EMD-based methods

using synthetic signals to demonstrate the advantages of CEEMD.

We then show that instantaneous spectral analysis after CEEMD has

higher time-frequency resolution than traditional tools, like the

short-time Fourier and wavelet transforms.

The signal in Figure 1 is comprised of an initial 20 Hz cosine

wave, superposed 100 Hz Morlet atom at 0.3 s, two 30 Hz Ricker

EMD for seismic time-frequency analysis O11
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wavelets at 1.07 and 1.1 s, and three different frequency compo-

nents between 1.3 and 1.7 s of, respectively, 7, 30, and 40 Hz. Note

that the 7 Hz frequency components are not continuous, and com-

prise less than one-period portions, appearing at 1.37, 1.51,

and 1.65 s.

EMD decomposes the synthetic data into seven IMFs (Figure 2).

The IMFs in Figure 2 show mode-mixing deficiencies. IMF1 does

not solely extract the high-frequency Morlet atom, but is polluted

with low-frequency components. Likewise, IMF2 and IMF3 mix

low- and high-frequency components from a variety of signal com-

ponents. This makes it difficult to recognize the individual contri-

butions of each component to various IMFs, thereby complicating

signal analysis.

Figure 3 contains the EEMD output with 10% added Gaussian

white noise and 100 realizations. The mode-mixing problem is

reduced, to a large extent; for instance, the 100 Hz Morlet atom

is completely retrieved in IMF1. IMF2 mainly contains the

40 Hz signal, which is the second highest frequency component.

Some slight mode mixing still occurs in IMF3 and IMF4, but at

a significantly reduced level compared with the EMD output.

The CEEMD result also using 10% Gaussian white noise and 100

realizations is shown in Figure 4. The resulting IMF1 is similar to

the one obtained by EEMD, retrieving the 100 Hz Morlet atom

completely. The resulting IMF2 and IMF3 contain mostly the

40 Hz signal at 1.6 s as well as some other higher frequency com-

ponents, and IMF4 reflects the two 30 Hz Ricker wavelets around

1.1 s, 30 Hz frequency component at 1.4 s, and the remainder of the

40 Hz signal at 1.6 s. The background 20 Hz cosine wave is mainly

reflected in IMF5. CEEMD is least affected by mode mixing of all

EMD variants.

Figure 5 displays the reconstruction error for EEMD and

CEEMD results. EEMD does not perfectly reproduce the original

signal with a reconstruction error of about 0.5% of the total energy;

the CEEMD one is close to machine precision and thus negligible.

Synthetic data: Instantaneous frequencies

After the CEEMD decomposition, each IMF is locally

symmetric, such that the instantaneous frequency of each IMF is

smoothly varying and guaranteed to be positive. We compute

the instantaneous frequency of each IMF using equation 10 and

Figure 1. Synthetic example: background 20 Hz cosine wave,
superposed 100 HzMorlet atom at 0.3 s, two 30 Hz Ricker wavelets
at 1.07 and 1.1 s, and there are three different frequency components
between 1.3 and 1.7 s.

Figure 2. EMD output displaying mode mixing. IMF1 extracts the
high-frequency Morlet atom and some low-frequency components.
IMF2 and IMF3 also mix different signal components.

Figure 3. EEMD output with 10% added Gaussian white noise and
100 realizations. Although some mode mixing still occurs in IMF3
and IMF4, the mode mixing problem is reduced to a large extent
compared with the EMD output (Figure 2).
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associated instantaneous amplitude with equation 8. It is possible to

smooth the resulting time-frequency image by means of a convolu-

tion with a 2D Gaussian filter of prespecified width. This is useful

for display purposes and initial comparison with other time-fre-

quency transforms. Next, we compare the resulting instantaneous

spectrum with the short-time Fourier and wavelet transforms for

the same synthetic trace shown in Figure 1.

All three methods can discriminate the various frequency com-

ponents between 1.2 and 2 s, namely the 7, 30, and 40 Hz signals,

with acceptable temporal and spectral resolution. None of these

three methods can identify the individual portions of the three

7 Hz frequency components, but solely their joint presence. The

short-time Fourier transform with a 170 ms time window (Figure 6)

does not distinguish between the two Ricker wavelets clearly at

1.07 and 1.1 s due to its fixed time-frequency resolution and their

close spacing of 30 ms. Wavelet analysis (Figure 7) fares better;

however, the spectral resolution for the 100 Hz Morlet wavelet

at 0.3 s is poor.

Figure 8 displays the instantaneous spectrum after CEEMD. The

100 Hz Morlet wavelet, both 30 Hz Ricker wavelets, and three dif-

ferent frequency components are recovered with the highest time-

frequency resolution. A small Gaussian weighted filter with width

of 6 × 6 time and frequency samples is applied to the instantaneous

spectrum for display purposes.

After calculating the instantaneous frequency, we can control the

time-frequency resolution by varying the size of Gaussian weighted

filter. Figure 9 shows the resulting instantaneous spectrum using a

30 × 30Gaussian-weighted filter, creating a result more comparable

to the short-time Fourier and wavelet transforms (Figures 6 and 7).

This synthetic example shows the potentially significantly higher

time-frequency resolution of CEEMD combined with instantaneous

frequencies over that obtainable with the short-time Fourier and

wavelet transforms.

Real data

We next apply the various time-frequency analysis tools on a

seismic data set from a sedimentary basin in Canada. There are

Cretaceous meandering channels at 0.42 s between common-

midpoints (CMPs) 75 and 105 and CMPs 160 and 180, respectively.

Figure 4. CEEMD output with 10% added Gaussian white noise
and 100 realizations. The output is least affected by mode mixing
of all EMD variants (compare with Figures 2 and 3).

Figure 5. Reconstruction error for EEMD and CEEMD results.
EEMD can lead to nonnegligible reconstruction error, whereas it
is close to machine precision for CEEMD.

Figure 6. STFT with a 170 ms time window. It cannot distinguish
between the two Ricker wavelets at 1.07 and 1.1 s due to its fixed
time-frequency resolution.

EMD for seismic time-frequency analysis O13
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An erosional surface is located between CMPs 35 and 50 around

0.4 s. The data also contain evidence of migration artifacts (smiles)

at the left edge between 0.1 s and 0.6 s. Note that van der Baan et al.

(2010) have used cumulative energy and local phase attributes to

interpret the same data.

First, we take the trace for CMP 81 (Figure 11) as an example to

show the time-frequency distributions corresponding to the various

transforms. The results for the short-time Fourier transform with

a 50 ms time window and the wavelet transform are shown in

Figures 12 and 13, respectively. Both tools show that there are

essentially two frequency bands, a lower one between 10 and

50 Hz persistent at all times, and an upper one that diminishes over

time (90 Hz at 0.1 s, 70 Hz at 0.5 s, and 50 Hz at 1 s). The reduction

in the high-frequency band is most likely due to attenuation of the

seismic wavelet.

Instantaneous spectral analysis combined with CEEMD with

10% added Gaussian white noise using 50 realizations (Figure 14)

provides a much sparser image. It reflects a similar time-frequency

distribution as the two traditional tools with the persistent lower

frequency band as well as the diminishing upper band visible.

The sparser image is helpful for more accurately locating these

spectral anomalies, and thus facilitating further interpretation.

Next, we pick the peak frequency at each time sample and

overlay it onto the original seismic data. Figure 15 shows the peak

frequency after short-time Fourier transform. This image shows

smooth and continuous features, including alternately high- and

low-frequency bands between 0.2 and 0.8 s due to variations in

reflector spacing, and a general decrease in high frequencies, which

is associated with attenuation of the seismic wavelet.

Figure 15 delineates several interesting features in this data

set. First, the peak frequency attribute highlights the Cretaceous

meandering channels at 0.42 s, which are characterized by lower

frequency content due to their increased thickness. Second, it indi-

cates the weakening of the closely spaced reflections (thin layers)

around 0.8 s. High peak frequencies are clearly visible between

CMPs 0 and 75, followed by predominantly low frequencies due

to the thick homogeneous layer underneath. A comparison with

the original section (Figure 10) shows indeed a reduction in the

number of closely spaced reflections from the left to the right

around 0.8 s, although the migration artifacts visible at the left edge

may also influence the high-frequency region to some extent.

As first glance, the CEEMD-based peak frequencies seem to be

noisier (Figure 16). However, the image contains more fine detail

compared with the short-time Fourier result (Figure 15). Both

images delineate the Cretaceous meandering channels around

0.42 s. Also, the thin-layer reflection at 0.80 s is more clearly fol-

Figure 7. Wavelet transform analysis, which shows a better com-
promise between time and frequency resolution than the short-time
Fourier transform as it distinguishes both Ricker wavelets at 1.1 s.
Yet, the frequency resolution for the 100 Hz Morlet wavelet at 0.3 s
is poor.

Figure 8. Instantaneous spectrum after CEEMD has the highest
time-frequency resolution and identifies all individual components.
A 6 × 6 Gaussian weighted filter is applied for display purposes.

Figure 9. Instantaneous spectrum after CEEMD and a 30 × 30
Gaussian-weighted filter to make the result more comparable to
Figures 6 and 7.
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lowed without the abrupt transition to a low-frequency layer at CMP

75 due to the influence of the underlying thick opaque layer. This is

a direct result of the higher time resolution of CEEMD combined

with computation of instantaneous frequencies. On the other hand,

initial inspection of the smoother results for the short-time Fourier

transform facilitates interpretation of the CEEMD results.

Next, we extract the 30 and 50 Hz frequency slices after CEEMD

and short-time Fourier transforms (Figure 17) to illustrate the higher

time-frequency resolution of the CEEMD-based results. The instan-

taneous spectrum shows much sparser outputs and resolves the

spectral characteristics of the various reflections more clearly than

the short-time Fourier results. This also explains why the Fourier-

based peak-frequency attribute is more continuous than the

CEEMD-based result in Figures 15 and 16.

We finally perform a spectral decomposition of a 3D seismic data

volume using both approaches. Figure 18 shows a time slice at

420 ms displaying the channel feature as well as a subtle fault.

CEEMD again employs 10% added Gaussian white noise and

50 realizations. A window length of 150 ms (75 points) is used

for the short-time Fourier transform, producing a frequency step

of 7 Hz in the spectral decomposition.

Figure 19a and 19c shows, respectively, the 10- and 30-Hz

spectral slices for the instantaneous spectrum after CEEMD at

420 ms. The channel and fault are visible, especially at 30 Hz. Both

spectral slices show similar features; yet there are also clear differ-

ences, in particular in the amplitudes of the channel, indicating little

Figure 11. Individual trace of CMP 81 in Figure 10. It crossed the
channel at 0.42 s.

Figure 12. Short-time Fourier transform with a 50 ms time window
on CMP 81. The strong 35 Hz anomaly at 0.42 s is due to the
channel.

Figure 13. Wavelet analysis on CMP 81. Vertical stripes at higher
frequencies are due to an increased time resolution but poorer
frequency resolution. High-frequency content is diminishing over
time.

Figure 10. Seismic data set from a sedimentary basin in Canada.
The erosional surface and channels are highlighted by arrows.
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spectral leakage across these two frequencies. These amplitude

differences are helpful in interpreting thickness variations.

The 10- and 30-Hz spectral slices produced by Fourier analysis

also show the fault and channel features (Figure 19b and 19d).

However, there are significantly less amplitude variations across

both slices as unique frequencies are spaced 7 Hz apart due to

the short window length and the spectral leakage inherent to the

Fourier transform. This renders interpretation of thickness varia-

tions in the channel much more challenging as thinning or thicken-

ing by a factor of two may still produce the same amplitudes across

several spectral slices centered on the expected peak frequency. We

could have opted for a longer Fourier analysis window, thereby

reducing the frequency step in the amplitude spectra. On the

other hand, this increases the risk of neighboring reflections

negatively biasing the decomposition results. No local analysis

window is defined for the CEEMD method, thus circumventing this

trade off.

DISCUSSION

Instantaneous frequency can be used to detect and map meander-

ing channels and to determine their thickness (Liu and Marfurt,

2006) as it maps at what frequency maximum constructive interfer-

ence occurs between the top and bottom channel reflection. How-

ever, direct calculation can lead to instantaneous frequencies, which

fluctuate rapidly with spatial and temporal location (Barnes, 2007;

Han and van der Baan, 2011).

Saha (1987) discusses the relationship between instantaneous fre-

quency and Fourier frequency, and points out that the instantaneous

frequency measured at an envelope peak approximates the average

Fourier spectral frequency weighted by the amplitude spectrum.

Huang et al. (2009) summarize the applicability conditions for in-

stantaneous frequency; namely, the time series must be monocom-

ponent and narrow-band. Analysis of instantaneous frequencies has

been gradually replaced by spectral decomposition techniques in

the 1990s due to their increased flexibility (Chakraborty and Okaya,

1995; Partyka et al., 1999).

CEEMD successfully overcomes the mode-mixing problem, thus

facilitating the analysis of individual IMFs. The subsequent com-

putation of the instantaneous frequency then leads to relatively

smoothly varying and positive instantaneous frequencies suitable

for time-frequency analysis. In addition, the synthetic and real data

examples show this produces a potentially higher time-frequency

resolution than the short-time Fourier and wavelet transforms.

Window length, overlap, and mother wavelet parameters restrict

the resolution of short-time Fourier and wavelet transforms, and

predefined decomposition bases render these two methods less

suitable for analyzing nonstationary systems.

Figure 14. Instantaneous spectrum after CEEMD on CMP 81,
displaying the highest time-frequency resolution. Similar features
are visible as in Figures 12 and 13 including the channel at
0.42 s and the diminishing high-frequency content over time.

Figure 15. Peak frequency attribute after short-time Fourier trans-
form. The image highlights variations in reflector spacing, laterally
(channels) and vertically, as well as the gradually decreasing
frequency content with depth due to attenuation.

Figure 16. Peak frequency attribute from the instantaneous spec-
trum and CEEMD. A higher time-frequency resolution leads to
more spatial and temporal variations but also a sharper delineation
of the channels and individual reflection sequences.

O16 Han and van der Baan

D
o
w

n
lo

ad
ed

 0
3
/0

7
/1

3
 t

o
 1

4
2
.2

4
4
.1

9
1
.5

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



The computational cost of CEEMD is proportional to the number

of realizations. We use 50 realizations in the real data application

to balance computational cost versus satisfactory decomposition

results. Broadly speaking, we found in our tests that the computa-

tional cost of a wavelet transform and CEEMD using 50 realizations

are, respectively, twice and 18 times that of a short-time Fourier

transform. A single EMD decomposition can thus be faster than

a single short-time Fourier transform result. Obviously, these

computation times strongly depend on the imple-

mentation and actual parameter settings, yet

applications of EMD and variants are not prohi-

bitively expensive. The actual time-frequency

resolution of any EMD variant in combination

with computation of the instantaneous frequency

is, to the best of our knowledge, still unknown.

The uncertainty principle states that it is impos-

sible to achieve simultaneously high time and

frequency resolution, as their product is always

greater than or equal to a constant. In the short-

time Fourier transform, the window length causes

the tradeoff between time and frequency resolu-

tion. Large time windows achieve good frequency

resolution at the cost of high time resolution, and

vice versa. Conversely wavelet and S-transforms

display an inherent trade-off between time and

frequency resolution via their variable-size ana-

lysis windows (Rioul and Vetterli, 1991; Kumar

and Foufoula-Georgiou, 1997).

The instantaneous frequency calculates a fre-

quency value at every time sample, producing the

highest possible time resolution but with neces-

sarily very poor frequency resolution. This pro-

vides an alternative insight into why negative

frequency values are not uncommon. However,

instantaneous frequency is not meaningless as

the instantaneous frequency measured at an en-

velope peak approximates the weighted average

Fourier spectral frequency, and shows superior

results on monocomponent and narrow band signals (Saha,

1987; Huang et al., 2009).

Flandrin et al. (2004) show that EMD acts as a constant-Q band-

pass filter for white-noise time series. In other words, white noise is

divided into IMF components, each comprising approximately a

single octave. Results by Torres et al. (2011) imply that CEEMD

maintains this property. Given the uncertainty principle, we postu-

late therefore that the inherent frequency resolution of each indivi-

dual IMF is one octave with a time resolution inversely proportional

to the center frequency of this octave. The obtained IMFs thus have

an increasing frequency resolution at the expense of a decreasing

time resolution with increasing IMF number. In other words, the

first IMF has thus the highest time resolution and the lowest fre-

quency resolution. The opposite is true for the last IMF. This

furthermore implies that temporal fluctuations in the instantaneous

frequencies are limited to approximately the reciprocal of the center

frequency of the corresponding octave, or to put it differently, all

computed instantaneous frequencies are guaranteed to be relatively

smooth within their various scale lengths.

The preceding discussion assumes a white-noise signal. For

arbitrary signals, the performance of CEEMD in combination with

instantaneous attributes may retrieve even more accurate and

precise time-frequency decompositions if the original trace is

comprised of individual monocomponent and narrowband signals

as the sifting algorithm is designed to extract individual IMFs with

precisely such characteristics. One important assumption in EMD

and its variants is that the observed signal is comprised of narrow-

band subsignals. The instantaneous frequency of each IMF then

accurately captures their characteristics. On the other hand, if

Figure 17. Constant-frequency slices. (a) 30-Hz CEEMD-based method, (b) 30 Hz
short-time Fourier transform, (c) 50-Hz CEEMD-based method, (d) 50-Hz short-time
Fourier transfrom. The instantaneous spectrum combined with CEEMD shows higher
time-frequency resolution than the short-time Fourier transform.

Figure 18. The conventional amplitude slice at time 420 ms. The
channel feature is clearly shown.
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subsignals have some bandwidth, such as a Ricker wavelet or

Morlet wavelet, the described method will seek to collapse this

to a single frequency. This could be interpreted as superresolution

as it may help in analyzing subtle variations but simultaneously it

may hide the true bandwidth of this subsignal. In addition, this may

not be suitable for all signal analysis, e.g., if an attenuation analysis

is required using spectral ratios (Reine et al., 2009, 2012a, 2012b).

Finally, the main advantages of CEEMD combined with instan-

taneous frequencies are the ease of implementary and controllable

time-frequency resolution. There are only two parameters in

CEEMD, namely the percentage of Gaussian white noise and

the number of noise-realizations.

Neither seems to have a critical influence on final decomposi-

tions. Furthermore, we can control the time-frequency resolution

by the size of the Gaussian weighted filter. Smaller sizes show high-

er temporal-spectral resolution, and vice versa. It is therefore

possible to compute first a decomposition result similar to those

of the short-time Fourier and wavelet transforms which can then

be reduced for further and more precise analysis, thus allowing

for seismic interpretation with controllable time-frequency resolu-

tion. The real data example verifies that instantaneous spectrum

after CEEMD have higher time-frequency resolution than tradi-

tional decompositions. However, the associated peak-frequency at-

tribute may therefore vary more rapidly, spatially and temporally,

rendering the interpretation more challenging. Our recommendation

is to analyze the principal frequency variations by short-time Four-

ier transform or severely smoothed CEEMD-based instantaneous

frequencies first, followed by identification of the subtle changes

in geology using the unsmoothed instantaneous spectrum.

CONCLUSION

CEEMD is a robust extension of EMD methods. It solves not

only the mode mixing problem, but also leads to complete signal

reconstructions. After CEEMD, instantaneous frequency spectra

manifest visibly higher time-frequency resolution than short-time

Fourier and wavelet transforms on synthetic and field data exam-

ples. These characteristics render the technique highly promising

for seismic processing and interpretation.
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