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Abstract—An extension of empirical mode decomposition
(EMD) is proposed in order to make it suitable for operation on
trivariate signals. Estimation of local mean envelope of the input
signal, a critical step in EMD, is performed by taking projections
along multiple directions in three-dimensional spaces using the
rotation property of quaternions. The proposed algorithm thus
extracts rotating components embedded within the signal and
performs accurate time-frequency analysis, via the Hilbert–Huang
transform. Simulations on synthetic trivariate point processes and
real-world three-dimensional signals support the analysis.

Index Terms—Empirical mode decomposition (EMD),
Hilbert–Huang spectrum, motion analysis, quaternion algebra,
rotation property of quaternions, spiking neurons, time-frequency
analysis, trivariate signals, wind modeling.

I. INTRODUCTION

T
HE empirical mode decomposition (EMD) algorithm

has been designed for the time-frequency analysis of

real-world signals [1]. It decomposes the signal in hand into a

number of oscillatory modes called intrinsic mode functions

(IMFs), so that the application of Hilbert transform to these

intrinsic mode functions provides meaningful instantaneous

frequency estimates [2]. The IMFs are obtained directly from

the data with no a priori assumptions regarding the data na-

ture, making EMD suitable for the analysis of nonlinear and

nonstationary signals. The time-frequency analysis via EMD

has found a wide range of applications in signal processing and

related fields [3]–[5].

The original EMD algorithm has been designed to process

real-valued data, whereas for the processing of bivariate sig-

nals, several algorithms for complex EMD have been proposed

[6]. The complex EMD algorithm [7] proposed by Tanaka and

Mandic effectively applies real-valued EMD to the signals cor-

responding to the positive and negative frequency component

of the spectrum of analytic signals. The rotation-invariant com-

plex EMD (RI-EMD) [8] extends the real-valued EMD to the

complex (bivariate) domain in a generic way. Since all the op-

erations are performed directly in , this method provides a

single set of complex IMFs. An extension of RI-EMD developed

by Rilling et al., also termed the bivariate EMD [9], separates

“fast rotating” components of a complex signal from “slowly

rotating” ones. Envelope curves are obtained by projecting a bi-
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variate signal in multiple directions and interpolating their ex-

trema. The local mean is calculated by averaging the envelope

curves and is then subtracted from the original signal repeatedly

to sift out rotating components within the signal. Recently, com-

plex extensions of EMD have found applications in data fusion

[10] from multiple and heterogenous sources, due to their ability

to extract common oscillating modes of each component (real

and imaginary) of a bivariate signal, in the corresponding com-

plex IMFs [11]. In addition to the extensions of EMD to com-

plex (bivariate) time series, various methods have been devel-

oped to generalize EMD to process two-dimensional (2D) sig-

nals, which have found applications in the processing of 2D im-

ages [12], [13]. At present, the applications of EMD are limited

to real-valued, complex (bivariate), and 2D signals, and its fur-

ther extensions are a prerequisite to data-driven time-frequency

analysis of trivariate and three-dimensional (3D) signals.

The proposed extension of EMD operates on trivariate sig-

nals and considers a trivariate signal as a pure quaternion, with

each of its component a real-valued time series, such as 3D

wind data, multichannel EEG (Electroencephalogram) signals,

and 3D inertial sensor (accelerometer and gyroscope) data. The

processing of trivariate time series directly in a 3D space yields

better results than using multiple univariate models applied to

each component separately. This is demonstrated by the ability

of the proposed method to generate common modes of the

input signal in each quaternion-valued IMF. The alignment of

common modes is achieved because the proposed method is

designed to process a trivariate signal under the umbrella of

quaternion calculus. As a result, the method is expected to find

applications in data fusion from multiple sources.

The proposed method uses the quaternion rotation framework

[14], [15] to take projections of the input signal in multiple di-

rections in a 3D space in order to calculate the mean envelope

curve of a trivariate signal. Quaternions are preferred over other

methods for 3D rotations, such as Euler’s angle and rotation ma-

trices, as they offer more compact notation, less computational

demands, better accuracy, intuitive representation of rotation in

terms of the rotation axis and angle, and their use helps to avoid

the singularity problems associated with Euler angles. Their re-

cent applications have been in the modeling of 3D rotations [16],

[17], adaptive filtering [18], [19], gait analysis [20], and robotics

[21].

The organization of this paper is as follows: Section II de-

scribes the real-valued EMD and its bivariate (complex) exten-

sions, Section III gives a brief overview of quaternion algebra,

Section IV introduces the proposed algorithm, and Section V

presents simulation results and discussion.

II. REAL-VALUED EMD AND ITS BIVARIATE EXTENSIONS

Real-valued EMD [1] aims to adaptively decompose a signal

into a finite set of oscillatory components called “intrinsic mode
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functions” (IMFs). This is achieved by sifting out rapidly os-

cillating components (dominant modes) from the data, by itera-

tively subtracting less dominant modes (slowly oscillating com-

ponents). These slowly oscillating components are defined as

the local mean of a signal. Once extracted, an IMF has the local

mean value of zero, and the sifting process is stopped when all

the dominant modes are extracted. More specifically, if de-

notes a real-valued input signal, then the application of EMD

yields a set of IMFs, denoted by , such that

(1)

where the residual is a monotonic function and represents

the trend within the original signal. In order to obtain physically

meaningful instantaneous frequency estimates, the IMFs should

be designed so as to be symmetric around the local mean, and

their number of extrema and zero crossings should differ at most

by one [1]. This requirement ensures that the IMFs have no pos-

itive local minima and no negative local maxima. The procedure

used for the extraction of an IMF from a signal is given in

Algorithm 1.

Algorithm 1 Empirical Mode Decomposition

1: Find the locations of all the extrema of .

2: Interpolate (using spline interpolation) between all the

minima (resp. maxima) to obtain the signal envelope

passing through the minima, (resp. ).

3: Compute the local mean .

4: Subtract the mean from the signal to obtain the

“oscillating” signal .

5: If the resulting signal obeys the stopping criterion,

becomes an IMF; otherwise set

and repeat the process from Step 1.

The stoppage criterion used in the final step can be, for in-

stance, the normalized squared difference between two succes-

sive sifting iterates and , that is

(2)

where represents the total number of samples in the orig-

inal series , and the empirical value of is usually set

within the range (0.2–0.3). However, this criterion does not de-

pend on the actual definition of IMF and may underperform in

practice. A more robust criterion, based on the original defini-

tion of IMF, stops the sifting process only after the condition on

the extrema of an IMF is met for consecutive iterations [22]. It

has also been shown in [22] that the empirical range of should

be chosen between 4 and 8.

Upon obtaining an IMF, the next IMF is extracted by applying

the same procedure to the residual signal .

The process is repeated until all the IMFs are extracted and the

remaining signal carries no more oscillations, characterized by

an inadequate number of extrema. The application of the Hilbert

transform to the set of IMFs yields physically meaningful in-

stantaneous frequency and amplitude information and provides

a convenient time-frequency-energy description of a time-series

in the form of Hilbert–Huang spectrum [2].

A. Bivariate (Complex) Extensions of EMD

Recently, several extensions of EMD have been proposed to

make it suitable for the operation on bivariate (complex) sig-

nals. The complex EMD [7] makes use of the analyticity of

the signal to apply the real-valued EMD [1] component-wise,

whereas RI-EMD [8] and bivariate EMD [9] estimate the local

mean based on the envelopes obtained by taking projections of

the input signal in different directions.

1) Complex EMD: For bivariate signals, complex EMD [7]

uses the positive and negative frequency components to apply

standard EMD to two real-valued time series. This is achieved

by converting a general nonanalytic signal into two analytic sig-

nals, each corresponding to either the positive or the negative

frequency components of the original signal. The standard EMD

is then applied to the real part of the resulting analytic signals to

obtain two sets of IMFs. These sets of IMFs are then combined

to form complex-valued IMFs.

More precisely, let be a complex-valued sequence and

its discrete Fourier transform. By processing signal

with the filter with the transfer function

(3)

the digital Fourier transform (DFT) of two analytic signals,

denoted by and , are generated, which cor-

respond respectively to the positive and the negative frequency

parts of . The subsequent application of the inverse

Fourier transform, denoted by , yields time series

and , defined as

(4)

(5)

where the operator extracts the real component of a com-

plex signal. Real-valued EMD can then be applied to and

, to give

(6)

(7)

where symbols and denote respectively the number of

IMFs for the positive and the negative frequency parts,

are the IMFs, while and represent respectively the

residual signals for and . The original complex

signal can then be reconstructed in terms of and

as

(8)
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Fig. 1. Rotation of a 3D vector � � about line segment�� by an angle �.

where is the Hilbert transform operator and the symbol

denotes the complex conjugation operator.

For the th complex IMF , defined as

(9)

the original complex-valued signal can also be written as

(10)

where represents the trend in the data and is represented in

terms of the residuals of and as

(11)

The so-defined complex EMD retains the generic structure of

standard EMD. However, as the number of IMFs for and

can in general be different, it is difficult to interpret the

meaning of the so-extracted IMFs. This limits the applications in

some areas, e.g., in data fusion from multiple sources [11], and

this approach is not suitable for extensions to higher dimensions.

2) Rotation-Invariant EMD (RI-EMD): The Rotation-In-

variant EMD method [8] operates directly in and defines the

extrema of a complex signal, a crucial step in envelope estima-

tion, as points where the angle of the first derivative of the signal

becomes zero. For a complex signal , it can

be shown that this criterion is equivalent to , that is,

the extrema of the imaginary part. As it is assumed that a local

maximum is always followed by a local minimum, these sets

can be interchanged. The spline interpolation is then performed

on both the components separately to obtain complex-valued

envelopes, which are then averaged to obtain the local mean.

This method yields a single set of complex-valued IMFs, and

the ambiguity at the zero frequency within complex EMD is

avoided due to the direct operation in . However, since this

method uses the extrema of only the imaginary component of a

bivariate signal to calculate the local mean of the envelopes, its

accuracy may be compromised.

3) Bivariate EMD: The bivariate EMD algorithm [9] cal-

culates the local mean envelopes based on the extrema of both

(real and imaginary) components of a complex signal, yielding

more accurate estimates than RI-EMD. It projects the bivariate

signal in different directions and obtains the corresponding

envelopes by interpolating the extrema of projected signals via

component-wise spline interpolation. The method extends the

intuitive notion of “oscillations” in the real-valued EMD to

its 2D counterpart “rotations,” thus yielding bivariate intrinsic

mode functions. The bivariate EMD method, therefore, effec-

tively sifts rapidly rotating signal components from the slowly

rotating ones. In Algorithm 2, the steps to calculate the local

mean of the complex signal using bivariate EMD are given.

Algorithm 2 Bivariate Extension of EMD

1: Obtain signal projections, denoted by , by

projecting the complex signal , by means of a unit

amplitude complex number , in the direction of ,

as

(12)

where denotes the real part of a complex number,

and ;

2: Find the locations corresponding to the maxima

of .

3: Interpolate (using spline interpolation) between the

maxima , to obtain the envelope curves

.

4: Calculate the mean, , of all the envelope curves.

5: Subtract from the input signal to yield an

“oscillatory” component, that is, .

Similarly to real-valued EMD, if meets the stoppage

criterion for bivariate IMFs, then the process is reapplied to

; otherwise, it is applied to . The stoppage crite-

rion for the bivariate IMF is similar to that employed in [23].

Notice from RI-EMD and bivariate EMD that the critical

point in 2D extensions of EMD is to find the locations of local

minima and maxima. RI-EMD uses projections in only two di-

rections to find the extrema, whereas bivariate EMD uses pro-

jections in multiple directions by projecting the signal in 2D

(complex) plane using a unit amplitude complex exponential.

The issue of finding the extrema of a signal is even more crucial

when operating in more than two dimensions. We next propose

an extension of EMD for trivariate signals, whereby the extrema

are found by projecting the input signal in multiple directions in

three dimensions via a quaternion rotation framework.

III. QUATERNION ALGEBRA

A quaternion is defined as ,

where , , , and are real numbers and , and are the

unit vectors along the three vector dimensions [16]. Addition of

quaternions is defined as

(13)
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Fig. 2. Projections for trivariate signals. (a) The direction vector �� in 3D space, which has unit norm, can also be represented by a point on the surface of a
unit sphere. (b) Multiple direction vectors represented by points on a longitude line. Projections of the input signal are taken by rotation about the vector �. To
encompass the whole 3D space, direction vectors on multiple longitude lines should be considered.

Fig. 3. Generating multiple direction vectors in a 3D space. (a) Choices of rotation axes to obtain projections along multiple directions in a 3D space. For projec-
tions along longitudinal lines on a sphere, multiple axes represented by a set of vectors � are chosen in the �� plane, with angle � taken with respect to ��-axis.
(b) Points on multiple longitudinal lines on a sphere, representing directions along which projections of the input signal can be taken by rotating the input signal
along rotation axes represented by a set of unit quaternions �.

and the unit elements , , and are related as

(14)

From (13) and (14), observe that the quaternion multiplica-

tion is not commutative. Subtraction of quaternions can be de-

scribed as the addition and multiplication by .

The conjugate of a quaternion is defined as

(15)

whereas the norm of the quaternion is given by

(16)

Of special interest for this work is the so-called unit quaternion,

which has a unit norm and can be written as

(17)
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where is a 3D vector of unit length. A unit quaternion also has

an exponential form given by

(18)

The above equation can be seen as the generalization of Euler’s

identity for complex numbers and represents the rotation of a

vector by an angle about a 3D unit vector . Fig. 1 illustrates

the rotation of a vector by an angle about the line segment

. The direction of is specified by a 3D unit vector

, and the rotated vector is represented by , that is

(19)

Note that both the quaternion and represent the same ro-

tation of a 3D vector .

IV. TRIVARIATE EMPIRICAL MODE DECOMPOSITION

A major challenge in extending standard EMD to multivariate

signals is to find an accurate method for calculating the local

mean since the concept of extrema cannot always be rigorously

defined for multivariate signals. In the bivariate extension of

EMD, the local mean of an input signal is calculated by taking

projections of a bivariate signal in multiple directions. The di-

rection vectors, along which signal projections are taken, are

uniformly distributed in the complex plane. The maxima of the

resulting projections are interpolated via complex splines to ob-

tain envelope curves, which are then averaged to yield an ap-

proximation of the local mean.

To extend this idea to trivariate signals, we need to obtain

signal projections in multiple directions in 3D spaces. The ex-

trema of these signal projections can then be interpolated using

a component-wise spline interpolation, yielding 3D pure quater-

nion-valued envelope curves. The use of component-wise spline

interpolation for pure quaternion signals represents an extension

of the concept of “complex splines,” employed in RI-EMD and

bivariate EMD. The resulting “quaternion-valued envelopes”

are then averaged to obtain an estimate of the local mean of a

3D signal.

To obtain signal projections along different directions, mul-

tiple direction vectors are chosen in a 3D space. The direction

vectors can be conveniently represented by points on the sur-

face of a unit sphere. Each point on the surface corresponds to

the terminal point of a direction vector drawn from the center of

the sphere; one such point and its associated direction vector is

shown in Fig. 2(a). To generate a set of multiple direction vec-

tors in a 3D space, we generate a lattice by taking equidistant

points on multiple longitudinal lines on the sphere, obtaining

so called “equi-longitudinal lines.” The projection of the input

signal along these points (direction vectors) on an equi-longitu-

dinal line can then be obtained by rotating the input signal along

a rotation axis in the plane and mapping it on the -axis. Mul-

tiple points (direction vectors) on a single longitudinal line, cor-

responding to rotation axis , along which the projections can

be taken are shown in Fig. 2(b). Every rotation in three dimen-

sions can be treated as a rotation about an axis by a given angle.

Thus, a unit quaternion, which gives an efficient and convenient

Fig. 4. Local mean (dotted line) calculated for a trivariate signal (solid line)
using (22) in Algorithm 3.

mathematical notion for rotation using an angle-axis represen-

tation, is a natural choice for performing 3D rotations.

To take projections along direction vectors spanning the

whole 3D space, we employ multiple rotation axes along the

plane. By rotating the input signal along these axes, we can

obtain signal projections along the directions corresponding to

multiple equi-longitudinal lines on the surface of the sphere,

as shown in Fig. 3(b). Since rotation axes are 3D vectors, they

can also be represented by a set of unit quaternions in the

plane, under an angle to the x-axis as shown in Fig. 3(a).

Rotation axes, represented by a vector of quaternions , can

therefore be expressed as

(20)

Since a trivariate signal can also be represented as a pure quater-

nion , the projections of the input signal along multiple di-

rection vectors on the sphere [Fig. 3(b)] can be calculated by

rotating the input signal [using (19)] about a set of vectors and

taking its projection along the z-axis , using

(21)

where symbol “ ” denotes the dot product. To calculate the en-

velopes in multiple directions, angles and can be selected to

respectively have and values between 0 to . The range of

is necessary since both and give projections in the same

direction, and also from (19), the application of a unit quater-

nion represents rotation by an angle .

While projections of the input signal on points (direction vec-

tors) along equi-longitudinal lines on a sphere provide reason-

able solution, it can be noticed from Fig. 3(b) that there is greater

concentration of points close to the North and South pole of the

sphere, and therefore, the points close to the poles are given

more “weight” in the calculation of the local mean signal. As

a result, the method would not be strictly invariant to 3D rota-

tions, although it spans the whole 3D space for a large number
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Fig. 5. A trivariate signal and its decomposition obtained using the proposed method. 3D plots of the input trivariate signal followed by the IMFs are shown on
the left. Time plots of the three components of the trivariate signal and their decomposition are also shown (X: dotted line, Y: solid line, Z: dashed line).

of points and hence provides a satisfactory solution.1 The ex-

tension of EMD for pure quaternion signals is summarized in

Algorithm 3.

Algorithm 3 Trivariate Extension of EMD

1: Calculate projections, denoted by , of a trivariate

quaternion signal using (21), where for

, and for ;

2: Find the time instants corresponding to the

maxima of , for all values of and ;

3: Interpolate to obtain quaternion envelope

curves , for all and ;

4: Compute the mean of all the envelope curves using:

(22)

5: Extract the “detail” using .

If the “detail” fulfills the stoppage criterion for a

quaternion-valued IMF, then the above procedure is

applied to , otherwise it is applied to .

The stoppage criterion for quaternion-valued IMF is similar

to that proposed in [23], the difference being that the condition

1To make the method asymptotically rotation-invariant, an average
of envelopes � can be taken on the surface of the sphere using

���� � ���� � ��, where �� corresponds to the differential
solid angle on sphere �. The mean envelope can then be calculated by using
���� � ����	 � ��	
 �
 �, where the weighting factor

��	
 �
 � compensates for the higher density of the point set by giving smaller
weights to envelopes near poles; this scheme, however, has problems for
smaller values of � and 	 .

for equality of the number of extrema and zero crossings is not

imposed since extrema cannot be properly defined for quater-

nion-valued IMFs. Fig. 4 shows the results of employing the

mean envelope (22) in Algorithm 3 for the calculation of the

local mean of a trivariate signal, using and .

Notice that the local mean correctly tracks the dynamics of the

signal.

The original EMD method aims to extract the oscillatory

components embedded in the data, called “intrinsic mode func-

tions.” The bivariate IMFs, obtained from bivariate extensions

of EMD, extend the notion of oscillation in two dimensions to

extract 2D rotational modes. Similarly, the proposed method

is designed to obtain rotational components in 3D spaces, if

present, within the trivariate signal. The mean envelope, which

defines the overall trend in the signal, is considered as a slowly

rotating signal and is subtracted from the input signal until

the “detail” (fast rotating component) is extracted. Similarly

to real-valued EMD and its bivariate extensions, the algorithm

can also decompose signals carrying no physically meaningful

rotating components, e.g., trivariate white noise signal.

For illustration, the decomposition of a trivariate signal2 is

performed using the proposed trivariate extension of EMD, and

the results are shown in Fig. 5. The different 3D rotating modes

of the input trivariate signal are extracted, whereby the lower

index IMFs contain higher frequency 3D rotations and the

higher index IMFs represent lower frequency rotating modes,

as shown in Fig. 5. The residue signal does not contain any 3D

rotating components. Time plots of the individual components

of input trivariate signal and their respective decomposition

2The signal represents the 3D orientation data generated by hand movements
in a Tai Chi sequence, with a synthetically added mode for illustration purpose.
The data was captured using an inertial 3D sensor.
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Fig. 6. Decomposition of a synthetic quaternion signal, with multiple
frequency modes, via the proposed trivariate EMD algorithm. Each quater-
nion-valued IMF carries a single frequency mode, thereby facilitating the
alignment of common modes within different components of a trivariate signal.

(IMFs) are also shown in Fig. 5. The decomposition of in-

dividual components exhibits the mode alignment property,

whereby common frequency modes in different input com-

ponents are aligned in single IMF. This property is further

demonstrated in the next section.

V. COMMON SCALE/MODE ALIGNMENT USING

QUATERNION-VALUED IMFS

We now perform an analysis of quaternion-valued IMFs to

demonstrate their ability to align “common scales” present

within the data. Complex extensions of EMD, exhibiting sim-

ilar mode aligning property have recently found application

in data fusion [11]. The alignment of oscillatory modes of the

input trivariate signal represented by pure quaternion IMFs

allows to combine information of same nature from different

IMFs and, hence, facilitates the fusion of information from up

to three sources.

To illustrate the mode alignment property of the proposed

method, pure quaternion signal was constructed from a set of

three sinusoidal signals shown in the top row of Fig. 6 (de-

noted by , , and ). One sinusoid was made common to

all the components ( , , and ), whereas the remaining two

sinusoidal components were used so that the resulting signal

had a common frequency mode in both and and and

. The trivariate EMD algorithm was then applied to the re-

sulting quaternion signal yielding multiple quaternion-valued

IMFs, as shown in Fig. 6. Observe that the sinusoid common

to all the components of the input is the second IMF, whereas

the remaining two frequency modes are present in IMFs one

and three. Such mode alignment cannot be achieved by using

the real-valued EMD component-wise, as it generally does not

yield the same number of IMFs per component.

Fig. 7. A 3D wind signal represented as a pure quaternion. (a) Wind speed in
the east-west (X), north-south (Y), and the vertical (Z) direction. Wind regime
with high dynamics is denoted by “A.”. The regimes with mild and low dy-
namics are denoted by symbols “B” and “C”. (b) The 3D local mean of the
wind signal from (a), obtained by applying the mean-envelope detection method,
given in Algorithm 3.

VI. SIMULATION RESULTS

Simulations were conducted on synthetic signals and on real-

world 3D wind data. For all the signals, the number of directions

used to calculate the mean envelope was set to and

.
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Fig. 8. Hilbert–Huang spectra of IMFs of wind signal components in (a) East-West direction (�), (b) North-South direction (� ), and (c) vertical direction (�).

A. Time-Frequency Analysis

In the first set of simulations, an application of the proposed

algorithm to time-frequency analysis of a 3D wind signal was

conducted. Time-frequency analysis of wind can provide impor-

tant information in order to identify critical episodes of wind

behavior, including gusts and turbulence. Traditional Fourier-

based spectral methods are bound to fail in those cases due to

the nonstationarity of the wind signal. The East, North, and Up-

ward velocity, shown in Fig. 7(a), were represented as , ,

and components of the pure quaternion signal , that is

(23)

Fig. 7(b) shows the trend in the wind dynamics visualized

through the mean envelope of trivariate wind signal. Fig. 7(a)

also shows segments of the wind signal with different dynamics,

denoted respectively by “A,” “B,” and “C.” A wind regime with

high dynamic (“A”) exhibits larger changes in wind speed in rel-

atively small time intervals and should contain high-frequency

components in the corresponding Hilbert–Huang spectrum,

while medium (“B”) and lower dynamic (“C”) regimes are ex-

pected to contain predominantly lower frequency components.

This is illustrated in Fig. 8, which shows the Hilbert–Huang

spectra of the wind signal from Fig. 7. The spectrum of the

North wind speed component [see Fig. 8(b)], belonging to the

low-dynamics wind regime, was mostly dominated by low fre-

quency components. Wind regimes denoted by “C” had mostly

lower frequency components in the corresponding frequency

spectrum, for instance, around sample 500 in Fig. 8(a). In

contrast, for wind regimes with high dynamics, the spectrum

had more pronounced magnitudes at higher frequencies. The

high variations in the wind speed in the Upward and the East

components, observed at samples 1200–1400, can be clearly

observed in the corresponding spectra in Fig. 8(a) and (c),

showing the power is spread over a wide range of frequencies,

exhibiting several bursts at high frequency.

B. 3D Rotational Mode Extraction

We shall now demonstrate the ability of the proposed algo-

rithm to extract the 3D rotational modes from the signal. This

may be useful in applications where phase relation between

signal components is of relevance. For illustration, we use a

synthetic Hodgkin–Huxley-based neuron model [24] to gen-

erate regular spikes. A known delay is added to the original

signal to generate multiple channel components, and the noise

is then added channel-wise. The three channels are then com-

bined to form a synthetic quaternion signal using (23), as shown

in Fig. 9(a).

Fig. 9(b) shows the IMFs extracted after applying the

trivariate EMD method to the input signal [shown in Fig. 9(a)].

The first few IMFs, represented by large-scale non-rotating

modes in Fig. 9(b), correspond to the high-frequency noise

embedded in the data. The most dominant rotational mode

(quaternion IMF) corresponding to the original spike signal

was the fourth IMF in our simulation, also illustrating the mode

alignment property of quaternion IMFs. Fig. 10 shows 3D plots

of the input signal [Fig. 10(a)] and the relevant IMF [Fig. 10(b)].

The 3D rotating modes are expected to give information re-

garding the phase relationship between the components of the
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Fig. 9. A synthetic spiking cortical neuron signal with added noise, together
with its delayed versions. (a) The three components are combined to form a
pure quaternion signal. (b) The components of the first six quaternion IMFs
(X: dotted line, Y: solid line, Z: dashed line) obtained by decomposing the signal
in (a).

multivariate signals and may be used in applications requiring

phase synchronization.

VII. CONCLUSION

We have proposed an extension of empirical mode decom-

position (EMD) in order to make it suitable for the processing

of trivariate signals. The trivariate signal is represented as a

pure quaternion, and the rotation property of unit quaternions

Fig. 10. The synthetic trivariate spiking neuron signal and the relevant rota-
tional mode. (a) 3D plot of the input signal (b) 3D plot of the relevant rotational
mode.

is employed to obtain multiple projections of the input signal

along “equi-longitudinal” lines on the sphere, thus offering

a compact and convenient mathematical representation. The

method extracts the 3D rotating components of the input

trivariate signal and also generates common oscillatory modes,

facilitating the fusion of information from multiple sources.

Simulations on real-world 3D data have also illustrated the

potential of the proposed method in the time-frequency analysis

of trivariate signals.
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