Empirical Model-Building and Response Surfaces

GEORGE E. P. BOX NORMAN R. DRAPER

John Wiley & Sons

New York . Chichester . Brisbane . Toronto . Singapore

Contents

1.	INTRODUCTION TO RESPONSE SURFACE METHODOLOGY	1
1.1.	Response Surface Methodology (RSM)	1
1.2.	Indeterminancy of Experimentation	4
1.3.	Iterative Nature of the Experimental Learning Process	
	(Conjecture—Design—Experiment—Analysis)	7
1.4.	Some Classes of Problems (Which, How, Why)	10
1.5.	Need for Experimental Design	15
1.6.	Geometric Representation of Response Relationships	15
1.7.	Three Kinds of Applications	17
2.	THE USE OF GRADUATING FUNCTIONS	20
2.1.	Approximating Response Functions	20
2.2.	An Example	28
App	endix 2A. A Theoretical Response Function	32
3.	LEAST SQUARES FOR RESPONSE SURFACE WORK	34
3.1.	The Method of Least Squares	34
3.2.	Linear Models	35
3.3.	Matrix Formulas for Least Squares	40
3.4.		47
3.5.	Analysis of Variance for One Regressor	50
3.6.	Least Squares for Two Regressors	53
3.7.	Geometry of the Analysis of Variance for Two Regressors	56
3.8.	Orthogonalizing the Second Regressor. Extra Sum of	
	Squares Principle	57
		1

X	CONTENTS

3.9.	General	ization to p Regressors	62
3.10.		Least-Squares Estimators Arising from an	
	Inadequ	ate Model	66
3.11.	Pure Err	ror and Lack of Fit	70
3.12.	Confiden	nce Intervals and Confidence Regions	74
3.13.	Robust	Estimation, Maximum Likelihood, and Least Squares	79
Appe	endix 3A.	Iteratively Reweighted Least Squares	89
Appe	endix 3B.	Justification of Least Squares by the Gauss-Markov	
		Theorem, and Robustness	90
Appe	endix 3C.	Matrix Theory	91
Appe	endix 3D.	Nonlinear Estimation	99
Appe	endix 3E.	Results Involving V(ŷ)	102
Exer	cises		103
4.	FACTORIA	L DESIGNS AT TWO LEVELS	105
4.1.		ue of Factorial Designs	105
4.2.		vel Factorials	107
4.3.		esign Used in a Study of Dyestuffs Manufacture	115
4.4.		tic Checking of the Fitted Models,	
		tuffs Example	119
4.5.		se Surface Analysis of the 2 ⁶ Design Data	123
App	endix 4A.	Yates' Method for Obtaining the Factorial Effects	
		for a Two-Level Design	127
		Normal Plots on Probability Paper	128
App	endix 4C.	Confidence Regions for Contour Planes	134
Exer	cises		135
5.	BLOCKING	\mathbf{c} and fractionating 2^k factorial designs	143
5.1.	Blocking	g the 2 ⁶ Design	143
5.2.		nating the 26 Design	148
5.3.		ion of a 2 ^{k-p} Factorial Design	154
5.4.	Constru	ction of 2^{k-p} Designs of Resolution III and IV	154
5.5.	Designs	of Resolution V and of Higher Resolution	162
5.6.		tion of Fractional Factorial Designs to Response	
	Surface	Methodology	166
5.7.	Plotting	Effects from Fractional Factorials on	
	Probabi	lity Paper	167
Ever	rises		167

CONTENTS	хi
6. THE USE OF STEEPEST ASCENT TO ACHIEVE PROCESS IMPROVEMENT	182
6.1. What Steepest Ascent Does	183
6.2. An Example. Improvement of a Process Used in	
Drug Manufacture	184
. • • • • • • • • • • • • • • • • • • •	188
	190
	194
11	199
Exercises	202
7. FITTING SECOND-ORDER MODELS	205
7.1. Fitting and Checking Second Degree Polynomial	
	205
7.2. A Comprehensive Test of the Need for Transformation in the	
	216
•	218
7.4. Further Examination of Adequacy of Fit;	
• •	219
7.5. Robust Methods in Fitting Graduating Functions	223
Appendix 7A. Fitting of First and Second Degree Models	227
	230
Appendix 7C. Third-Order Biases in Estimates for Second-Order	
Model, Using the 3 ³ Design	232
Appendix 7D. Analysis of Variance to Detect Possible	
Third-Order Terms	234
	236
Appendix 7F. Orthogonal Effects Associated with Individual	
	239
Appendix 7G. Yates' Algorithm for 3 ^k Factorial Designs	240
Exercises	243
8. ADEQUACY OF ESTIMATION AND THE USE OF TRANSFORMATION	268
8.1. What Can Transformations Do?	268
	275
8.3. Choosing the Response Metric to Validate	
	280
8.4. Estimating Response Transformation from the Data	288

xii	CONT	ENTS
8.5. Appe Exerc	Transformation of the Predictor Variables endix 8A. Proof of a Result Used in Section 8.2 cises	293 300 301
9.	EXPLORATION OF MAXIMA AND RIDGE SYSTEMS WITH	
	SECOND-ORDER RESPONSE SURFACES	304
9.1. 9.2.	The Need for Second-Order Surfaces Example: Representation of Polymer Elasticity as a Quadratic	304
	Function of Three Operating Variables	305
9.3.	Examination of the Fitted Surface	313
9.4.	Investigation of Adequacy of Fit: Isolation of Residual	216
	Degrees of Freedom for the Composite Design	316
10.	OCCURRENCE AND ELUCIDATION OF RIDGE SYSTEMS, I	323
10.1.	Introduction	323
10.2.	Factor Dependence	326
10.3.	Elucidation of Stationary Regions, Maxima, and Minima by	
	Canonical Analysis	332
Appe	endix 10A. A Simple Explanation of Canonical Analysis	342
11.	OCCURRENCE AND ELUCIDATION OF RIDGE SYSTEMS, II	346
11.1.	Ridge Systems Approximated by Limiting Cases	346
11.2.	Canonical Analysis in the A Form to Characterize	
	Ridge Phenomena	349
11.3.	•	
	Near Stationary Planar Ridge Maximum	355
11.4.	. , , , ,	
	Ridge Surface	360
11.5.	1	368
11.6.	•	
	and Minima	372
11.7.	9	
	Several Responses	373
App	endix 11A. Calculations for the Analysis of Variance,	200
	Table 11.5	375
	endix 11B. "Ridge Analysis" of Response Surfaces	375
Exer	cises	381

CONTENTS	
12. LINKS BETWEEN EMPIRICAL AND THEORETICAL MODELS	403
12.1. Introduction	403
12.2. A Mechanistic Model	403
12.3. Insight Provided by the Fitted Mechanistic Model	409
12.4. Ridge Properties and the Mechanism	413
12.5. Relationships of Empirical Coefficients to Mechanistic	
Parameters: Their Use in the Identification of Possible	
Theoretical Models	417
Appendix 12A. A More Detailed Analysis of the Fitted	
Mechanistic Model	421
13. DESIGN ASPECTS OF VARIANCE, BIAS, AND LACK OF FIT	423
13.1. The Use of Approximating Functions	423
13.2. The Competing Effects of Bias and Variance	425
13.3. Integrated Mean Squared Error	428
13.4. Region of Interest and Region of Operability in k Dimensions	
13.5. An Extension of the Idea of a Region of Interest:	*
The Weight Function	433
13.6. Designs that Minimize Squared Bias	437
13.7. Ensuring Good Detectability of Lack of Fit	442
13.8. Checks Based on the Possibility of Obtaining a Simple Mode	l
by Transformation of the Predictors	450
Appendix 13A. Derivation of Eq. (13.5.8)	462
Appendix 13B. Necessary and Sufficient Design Conditions to	
Minimize Bias	463
Appendix 13C. Minimum Bias Estimation	464
Appendix 13D. A Shrinkage Estimation Procedure	466
Appendix 13E. Conditions for Efficacy of Transformations on the	:
Predictor Variables	467
Appendix 13F. The Third-Order Columns of the X Matrix for a	
Composite Design	472
Exercises	474
14. VARIANCE-OPTIMAL DESIGNS	477
14.1. Introduction	477
14.2. Orthogonal Designs	478
14.3. The Variance Function	481
14.4. The Alphabetic Optimality Approach	489
14.5. Alphabetic Optimality in the Response Surface Context	495

xiv	CONTENTS
15. PRACTICAL CHOICE OF A RESPONSE SURFACE DESIGN	502
15.1. Introduction	502
15.2. First-Order Designs	506
15.3. Second-Order Composite Designs	508
15.4. Second-Order Designs Requiring Only Three Levels	515
15.5. Designs Requiring Only a Small Number of Runs	520
Exercises	525
ANSWERS TO EXERCISES	529
TABLES	605
A. Tail Area of the Unit Normal Distribution	606
B. Probability Points of the t Distribution	607
C. Probability Points of the χ^2 Distribution	608
D. Percentage Points of the F Distribution	610
BIBLIOGRAPHY	615
INDEX OF AUTHORS ASSOCIATED WITH EXERCISES	657
INDEX OF AUTHORS OF ARTICLES MENTIONED IN THE TEXT	659
GENERAL INDEX	663