
University of North Carolina at Chapel Hill
The University of North Carolina at Chapel Hill Department of

Biostatistics Technical Report Series

Year  Paper 

Empirical Pathway Analysis, without

Permutation

Yi-Hui Zhou∗ William T. Barry†

Fred A. Wright‡

∗University of North Carolina at Chapel Hill, yihuiz@live.unc.edu
†Duke University, bill.barry@duke.edu
‡University of North Carolina at Chapel Hill, fred wright@unc.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-

cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/uncbiostat/art24

Copyright c©2012 by the authors.



Empirical Pathway Analysis, without

Permutation

Yi-Hui Zhou, William T. Barry, and Fred A. Wright

Abstract

Resampling-based expression pathway analysis techniques have been shown to

preserve type I error, in contrast to simple gene-list approaches which implicitly

assume independence of genes in ranked lists. However, resampling is inten-

sive in computation time and memory requirements. We describe highly accu-

rate analytic approximations to permutations of score statistics, including novel

approaches for Pearson correlation and summed score statistics, that have good

performance for even relatively small sample sizes. In addition, the approach pro-

vides insight into the permutation approach itself, and summary properties of the

data that largely determine the behavior of the statistics. Within the framework of

the SAFE pathway analysis procedure, our approach preserves the essence of per-

mutation analysis, but with greatly reduced computation. Extensions to include

covariates are described, and we test the performance of our procedures using

simulations based on real datasets of modest size.

Keywords: gene set analysis; permutation; hypothesis testing.



Empirical Pathway Analysis, Without Permutation

Yi-Hui Zhou, William T. Barry, Fred A. Wright

Resampling-based expression pathway analysis techniques have been shown to preserve

type I error, in contrast to simple gene-list approaches which implicitly assume independence

of genes in ranked lists. However, resampling is intensive in computation time and memory

requirements. We describe highly accurate analytic approximations to permutations of score

statistics, including novel approaches for Pearson correlation and summed score statistics,

that have good performance for even relatively small sample sizes. In addition, the approach

provides insight into the permutation approach itself, and summary properties of the data

that largely determine the behavior of the statistics. Within the framework of the SAFE

pathway analysis procedure, our approach preserves the essence of permutation analysis, but

with greatly reduced computation. Extensions to include covariates are described, and we

test the performance of our procedures using simulations based on real datasets of modest

size.

Keywords: gene set analysis; permutation; hypothesis testing.
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1 Introduction

A basic approach to gene expression analysis involves the detection of genes significantly

differentially expressed among treatment conditions, or more generally exhibiting association

between expression and a clinical outcome or experimental design variable (hereafter called

the response). This kind of analysis focuses on individual genes. However, researchers

are often interested in association of the response with sets of genes of related biological

function, either to increase power or to provide a more parsimonious, pathway-based view of

the results. A large number of methods and software for gene-set analysis have been proposed

(Dinu et al. (2009)), and can be divided into approaches that implicitly assume uncorrelated

expression data vs. those that acknowledge such correlation (Barry et al. (2008)). As

described in Gatti et al. (2010), approaches that acknowledge correlation via permutation

have vastly superior type I error control compared to methods that assume no correlation

structure, and include GSEA (Subramanian (2005) and Mootha et al. (2003)), SAFE (Barry

et al. (2005)), and additional methods (Pollard & van der Laan (2005)). The globaltest of

Goeman et al. (2004) offers a non-resampling approach, in which the correlations structures

are parametrically modeled, in turn producing estimates of the mean and variability for a

particular score-related statistic.

In addition to its proper handling of correlation structures, the SAFE methodology offers

a useful distinction between local statistics, which measure the association between individ-

ual genes and the response, and global statistics, which are aggregations of local statistics,

and used to describe the overall association of a gene set with the response. The use of

sample permutation-based gene set analysis dates to Virtaneva et al. (2001), in which the

response is permuted relative to the expression data, with the entire dataset analyzed for

each permutation. The appeal of permutation is that it enables conditioning on the existing

gene expression structure without explicit modeling, while reflecting the downstream effect
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of that structure on statistical analysis. As described in detail in Gatti et al. (2010), proper

handling of correlation among genes in a set is essential for error control – otherwise the

coincident appearance of highly correlated genes among a significant gene list appears spu-

riously significant. In addition, permutation enables handling of correlation across different

gene sets. This latter issue is of lesser importance, as false discovery techniques are often

used for error control for multiple gene sets, and are typically robust to positive correlation

of tests (Kim & van de Wiel (2008)).

A downside to permutation approaches is that they are highly computationally intensive,

keeping in mind that all genes and all categories are examined for each permutation. The

SAFE and GSEA procedures compute and store the entire resampled matrices of global

statistics for careful error control. When testing numerous gene sets (which may reach

several thousand), it may be difficult to achieve multiple test-corrected significance unless

the number of permutations is very large. Using standard desktop computing, performing

1000 permutations of the entire dataset is typical (Knijnenburg et al. (2009)), and effective

control of the false discovery rate (FDR) or family-wise error across categories may not be

possible, as the empirical p-values have a minimum 1/(number of permutations).

As an alternative viewpoint, we note that correlation among local test statistics is in-

duced by correlation among genes, as discussed in some detail in Barry et al. (2008). It

is thus worth exploring whether the null distributions of certain local and global statistics

are amenable to parametric approximation, using empirical estimates of correlation struc-

ture. In other words, is it possible to perform gene set testing based conceptually on sample

permutation, but without actually permuting at all? We explore that possibility in this

paper, and provide comparisons to less accurate standard parametric approximations. For a

proposed global statistic comparing each pathway to its complement, we are not aware that

competing parametric approximations have been proposed, due to the perceived difficulty in

handling the correlation structures.

2
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2 Methods

2.1 Notation

We suppose that each sample j = 1, 2, ..., n is associated with a response value yj. We use y

to denote the response vector, which might be discrete or continuous, and we later describe

approximate procedures to handle censored time-to-event data. We use gij to denote the

gene expression level for the ith gene (i = 1, 2, ...,m) and jth sample. Let X be the m × n

normalized gene expression matrix, with xij =
gij−gi.√∑n

j=1(gij−gi.)2/n
, where gi. =

∑
j gij/n. This

normalization produces
∑n

j=1 xij = 0 and
∑n

j=1 x
2
ij = 1, providing convenient simplifications

for later development.

An important choice of local statistic to represent the relationship between the ith gene

and the response is the score statistic, which for linear regression and a variety of generalized

linear models can be expressed as (Schaid & Sommer (1994))

Si =
xT
i.y√

Σn
j=1(yj − y)2/n

=

∑
j xijyj

sy
√
(n− 1)/n

, (1)

where sy is the sample standard deviation of the y values. Our notation thus far largely

follows that of Lee et al. (2011) (except for a square root difference in Si), who obtained

results for score statistics that we use below, although in a different context. Score statistics

have comparable asymptotic power properties as Wald and likelihood ratio statistics for

local departures from the null (Buse (1982)), although in certain small-sample settings other

statistics may have slight advantages (Harris & Peers (1980)). One source of confusion

arises from improper control of type I error, which can produce the illusion of reduced power

for a statistic that otherwise is good at detecting departures from the null. This paper is

concerned with permutation testing, and in such settings the various “standard” statistics

may be one-to-one across permutations (Gatti et al. (2009)), and therefore have equivalent
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Figure 1: For the data shown, the score statistics, Wald statistics and likelihood ratios are
permutation-equivalent. The 9! permutations collapse into

(
9
4

)
= 126 unique values, because

y is dichotomous.

power. Figure 1 illustrates this simple concept for an example of a single simulated gene and

dichotomous response for n = 9, for which the squared score statistics, logistic regression

Wald statistics, and likelihood ratios are monotone with each other.

Hereafter we use the term category to refer to the set of genes under study, which is more

generic than the evocative term pathway. In choosing a global statistic, a key consideration

is whether the direction of expression-response association (positive or negative) is expected

to be the same for the associated genes. Another consideration is whether the appropriate

null distribution should be for the “self-contained” hypothesis (that no gene in the category

exhibits differential expression) or the “competitive” hypothesis that the degree of differential

expression is the same within the category as in the remaining complementary set of genes.

The self-contained/competitive nomenclature has been laid out by Goeman & Buhlmann

(2007), and a variety of accompanying global statistics are described in detail in Barry et al.

(2008). Within the score statistic framework, we propose global statistics based on simple

sums and differences, described in further detail below.

4
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2.2 Self-contained testing

Under the complete null hypothesis that no gene shows differential expression, it is reasonable

to focus on one category at a time, ignoring the evidence from the remainder of genes. We

will use {cat} to denote a category containing mcat genes. We (Barry et al. (2008)) have

criticized self-contained testing, as it fails to account for gene effects that are not specific to

a category. Nonetheless, there are a number of situations in which self-contained testing may

be reasonable. These may include situations where (i) few genes are differentially expressed;

(ii) no gene is significant when accounting for genome-wide multiple comparisons, or (iii) a

candidate category is tested, and where any evidence of significance enrichment is of interest.

2.2.1 The directional statistic U

The global statistic U =
∑

i∈cat Si is perhaps the most straightforward directional statistic, in

the sense that it is sensitive to expression-response associations that are in the same direction.

Nonetheless, testing for this statistic will generally be two-sided. A normal approximation

to U might seem appealing, as summation is performed both over n (within Si) and mcat,

and it might seem that the central limit theorem should apply especially well for large mcat.

However, the distribution of U is fundamentally limited by n, as shown by rewriting

U =

∑
i∈cat

∑
j xijyj

sy
√
(n− 1)/n

∝
∑

j

(∑

i∈cat

xij

)
yj =

∑

j

x′

jyj,

for x′

j =
∑

i∈cat xij (with the vector of these values denoted x′). In this formulation, it is

simple to show (Appendix A1) that under permutation U is one-to-one with the Pearson

correlation rU between x′ and permutations of y. This immediately suggests the standard

test statistic for association, tU = rU
√

(n− 2)/(1− r2U) (Jobson et al. (1991)). It is known

that tU follows a tn−2 density under the null of independent x′ and y, provided at least one

of the two variables is normal. Hereafter, we will refer to the corresponding density of rU (a
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signed square root of a beta density) as standard r. For rU under permutation, the variance

is exactly 1/(n − 1), and the standard r density may be used as an approximation, but

accuracy will suffer if the empirical cdfs of both x′ and y are far from normal (see Appendix

A1). For continuous y, the fit of standard r is relatively accurate, especially if the empirical

distribution of y is nearly normal. Although the sample correlation has been extensively

studied, analytic results for non-normal data have been mainly limited to special instances

such as a mixture of bivariate normals (Srivastava & Lee (1984)).

An alternate approach is to use a saddlepoint approximation (Daniels (1954)), which

has been proposed to avoid permutation for two-sample testing (Robinson (1982)), and is

equivalent to testing rU for dichotomous y (Appendix A2). The tail accuracy of two-sample

saddlepoint approximations (equivalent to our rU) have often been compared to that of a

normal approximation (e.g. Robinson (1982), Abd-Elfattah (2009)) although comparison

to the standard r density is more appropriate. Thus the utility of the saddlepoint in this

context is difficult to judge. Moreover, the saddlepoint is not available for continuous y.

As a simple example where standard r can fail, we consider the salivary gland expression

data (E-GEOD-7451, Affymetrix U133 plus 2.0). Of 20 original arrays, two appeared to

be accidental duplicates, and we restrict attention to the remaining 18, of which n1 = 9

with Sojgren’s syndrome were compared to n0 = 9 controls. For the 92 probe sets in

KEGG:00510, N-Glyean, Biosynthesis, Figure 2 shows the distribution of rU over the
(
18
9

)
=

48, 620 unique permutations, overlaid with the standard r. In Appendix B4 we describe an

alternate approximating density for rU , which is a rescaled equal mixture of two standard

r densities, separated by an equal offset about zero. The new approximating density is

unskewed, and we may use its kurtosis to determine the offset value. The new kurtosis-

corrected density provides a superior approximation to the permutation tails(Figure 2).

Importantly, for dichotomous y the kurtosis of rU can be determined directly from the

kurtosis of x′ (treating the observed x′ as a population, Appendix A3), and thus no actual

6

Hosted by The Berkeley Electronic Press



Figure 2: Comparison of fitting rU by the standard r (dashed curve) and kurtosis-corrected
mixture (solid curve) approximations, for exhaustive permutations of the salivary data,
KEGG:00510 .

permutation is required to fit the kurtosis-corrected density.

Finally, although the kurtosis-corrected density already provides accurate fits to rU under

dichotomous y, the fit can be further improved in the tails by considering the permutations

which achieve maximum and minimum rU , which can be easily obtained from the order

statistics for x′. The approximating values at these extremes can then be compared to

the true directional p-values, known to be 1/
(
n
n1

)
. Briefly, the discrepancy between the

approximating and true extreme p-values is expressed in terms of a quantile for the minimum

p-value among
(
n
n1

)
uniformly distributed p-values. This quantile is then used to adjust all

of the kurtosis-corrected estimated p-values that achieve some modest significant level (e.g.,

p < 0.05).
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2.2.2 Examples, and the required accuracy for an effective approximation

To illustrate these concepts, Figure 3 shows the performance of the various approaches for

exhaustive permutation in the two-sample (dichotomous y) setting, using an illustrative

KEGG category for the saliva dataset. Treating the p-values from exhaustive permutation

as a gold standard, the offset-mixture r approximation has generally good performance,

especially with the quantile correction. Its performance is similar to that of the iterative

saddlepoint method, even when the moment-generating function for the saddlepoint is de-

termined exactly from the exhaustive permutations (Appendix A2).

In practice, a random sample of permutations is used, and this number is typically 10,000

or fewer, due to computational constraints. When testing numerous categories, empirical

p-values in the range of 10−4 or smaller may be necessary to achieve significance. Thus,

although random permutation-based p-values are unbiased, the relative variability remains

problematic. In contrast, the analytic approximations described here may be biased, but for

fixed data are not subject to sampling variability.

A natural question arises: when should an analytic approximation to the true permuta-

tion p-value be considered superior to that derived from π random permutations? We adopt

the following heuristic argument, based on mean-squared error (MSE). Suppose α is the

intended type I error, while fα is the true error associated with the analytic approximation.

Thus, f is an error ratio, and values near 1.0 are desired. For small α, the MSE (here equal

to the variance) of permutation rejection proportions is ≈ α/π, while the MSE (bias2) of

the analytic approximation is α2(1 − f)2. When α = 1/π (which occurs for α = 10−4 and

π = 10, 000), a simple computation shows that the MSE for the analytic approximation is

more favorable as long as f ∈ (0, 2). In practice, to guard against excessive conservativeness,

we will consider the analytic approximation to be superior if f ∈ (0.5, 2).

8

Hosted by The Berkeley Electronic Press



Figure 3: Right tail p-values for U , the KEGG:00510 category and the salivary data (n0 =
n1 = 9).

9

http://biostats.bepress.com/uncbiostat/art24



2.2.3 The non-directional statistic V

One of the simplest non-directional global statistics to detect departures from the self-

contained null is a summation of the squared score statistics in the category,

V =
∑

i∈cat

S2
i . (2)

This statistic is now widely used in gene/SNP-set testing for association analysis (Liu (2010)).

Moreover, for the expression context it is equivalent to the globaltest (Goeman et al. (2004))

when the expression data have been scaled by gene (Pan (2009)). Goeman (Goeman et al.

(2004)) have argued that V is optimal when aggregating for small effect sizes, similar to

arguments by Newton et al. (2007). The standard approach to estimating the distribution

of V is to use quadratic form results and moment-matching (Liu et al. (2009)) to obtain

approximations based on non-central (Liu et al. (2009)), or scaled (Duchesne & Micheaux

(2010)) χ2. The “naive” moment estimates here are E(V ) = mcat (following from a χ2
1

approximation for S2
i ), and var(V) = 2trace(RTR), where R = XT

catXcat is the correlation

matrix for the genes in {cat}. However, for small to moderate sample sizes, the departure

from these moments has a noticeable impact on approximation accuracy.

Before describing the moments in detail, we first highlight an alternate formulation,

described in Lee et al. (2011):

V = n
n∑

j=1

λjr
2
j , (3)

where λj is the jth eigenvalue of XT
catXcat, and r2j is the squared Pearson correlation between

the jth principal component of Xcat and y (for j = 1, . . . , n − 1). In other words, rj =

corr(p.j,y), where p.j is the jth column of P, where PT is the right singular matrix in the

singular value decomposition of Xcat.

Equation (3) shows precisely how the rank of Xcat affects V . If mcat < n − 1, some of

10
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the λj will be zero, and even for large mcat, the number of contributing terms cannot exceed

n−1. There is no need to otherwise account for the rank ofXcat. Note that the orthogonality

of the first n − 1 PCs implies that
∑

j r
2
j = 1, while for constant V , (3) is the equation of

an ellipse. An elementary comparison of these two expressions (a circle vs. an ellipse where

each rj is a coordinate) implies that V cannot exceed nλ1. This is among the reasons that

chisquare-based approximations to V can fail in the extreme tail, even if the moments are

specified correctly. Finally, we emphasize that the correspondence between (2) and (3) is

exact, so that permutations of V could be equivalently obtained by instead recomputing (3)

across permutations of principal components.

Here we use (3) to motivate an alternative analytic approximation to the permutation

distribution of V . The standard r approximation implies that each r2j ∼ Beta(1/2, (n−2)/2)

(Fisher (1938)), which has the same variance as the earlier permutation result var(r2j ) =

E(r2j ) = 1/(n − 1), noting that any of the PCs can serve the same role played by x′ in

the earlier subsection. The naive moments can be derived if one assumes (incorrectly) that

E(r2j ) = 1/n, and that the r2j terms are uncorrelated. The {r2j} are actually somewhat

negatively correlated, as shown in a general “correlation of squared correlation” result in

Appendix B2, for predictors that are not necessarily orthogonal. For the orthogonal PCs,

we use a multivariate normality assumption for both y and P to imply that the {r2j} follow

a correlated joint beta density, conceptually related to the multiple correlation coefficient

sampling distribution (Fisher (1928)). The joint density is derived in Appendix B1, but may

be simply described as a recursion of successive r2j . Recalling that rj = cor(p.j,y), we have

the approximation r21 ∼ Beta(1/2, (n−2)/2), and show that for any subset Ω ⊂ {1, ..., n−1}

which doesn’t contain k,

r2k
1−∑

j∈Ω r2j
∼ Beta(1/2, (n− |Ω| − 2)/2).
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Here |Ω| denotes the number of elements in Ω. Therefore if r21 is generated, the remaining

values can be drawn conditionally as r22 = B1 × (1− r21), r
2
3 = B2 × (1− r21 − r22), etc., where

each Bj is an independent draw from Beta(1/2, (n−1− j)/2). Thus V can be approximated

as a sum of weighted correlated beta variates (hereafter referred to as the weighted beta). The

approximation reflects correlation structure that may be non-trivial for moderate sample size,

and with tails that are short enough to be realistic. The recursion applies to any ordering

of the PCs, but ordering by eigenvalues is helpful for the numeric approximation below.

Although the weighted beta approximation is accurate, computing tail probabilities is

computationally intensive. Thus we use a combination of numeric integration for the initial

terms λ1r
2
1 + λ2r

2
2, and a shifted gamma approximation for the remaining terms in (3). The

shifted gamma distribution is an ordinary gamma with an additional location parameter,

and the three parameters are computed using moment-matching from the eigenvalues. The

shifted gamma density in fact provides a reasonable fit to the entire V distribution, but

tends to have overly heavy tails. In our implementation, for extreme V the first two PCs

dominate, so that inaccuracies caused by the gamma fit are minimized.

2.3 Competitive testing

Competitive global test statistics contrast the local statistics within each category vs. those

of the complementary set of genes (Goeman & Buhlmann (2007)). For datasets in which a

large number of genes are associated with y, this approach enables the researcher to focus

on results that are truly related to the category, rather than non-specific results that apply

to all genes. Note that permutation induces a special case of the null hypothesis in which all

genes are null, but competitive tests remain interpretable, reflecting correlation structure in

each category vs. its complement (Barry et al. (2008)).

For aggregations of directional local statistics, a straightforward competitive global statis-

tic is Ucat

mcat
− Ucomp

mcomp
, where {comp} designates the complementary set of genes not in {cat}.

12
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However, for array studies we must consider the role of data normalization, and we note that

Uall = Ucat +Ucomp. If the data have been normalized so that each array has the same mean

expression (which is true for simple centering procedures or for quantile normalization), then

Uall will be constant, and Ucat and Ucomp will have correlation -1 over permutations. Thus

the construction of a competitive global statistic would be redundant. In other words, Ucat

is essentially already a competitive statistic, as these normalization procedures force the

average effect across all genes to be zero. Although this statement is not strictly true for

other normalization procedures, it seems clear that normalization is likely to have a large

impact on inference, and we argue that the original Ucat should not be further modified in

an attempt to make it “competitive.”

2.3.1 The competitive statistic D

The natural competitive global statistic based on sums of squared score statistics is

D = Vcat/mcat − Vcomp/mcomp, (4)

which is not subject to the normalization issues described above. As mcomp is typically much

larger than mcat, one might expect that Vcomp/mcomp could be treated as nearly constant. In

fact, for many datasets, the gene-gene correlation structures are strong enough that variation

in Vcomp/mcomp is non-negligible. Moreover, Vcat and Vcomp are correlated. Although Vcomp

may also be approximated by the beta mixture approach, there is no reason to expect that

the difference D can be easily modeled using any of the procedures above, and we are not

aware of any reported approximations that are applicable. The earlier correlation result

from (2.2.3) can be used to obtain the correlation of Vcat and Vcomp through the correlations

of their respective principal components (involving at most n × n terms), thus providing

the permutation variance of D. However, obtaining higher moments through this approach

13
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appears unwieldy for fast computation.

The primary barrier to approximating the distribution of D is that the form of (2) cannot

be negative, involving sums of squared terms, while its equivalent (3) is critical to the beta-

mixture approach. As we show in detail in Appendix C, this obstacle is neatly overcome

by adding weights wi to the score statistics {S2
i }, where the weights for i ∈ {comp} are

imaginary, resulting in negative squared terms. Formally, we create a new weighted matrix

A = WX, where W is the diagonal matrix with terms {wi}. Here a new equivalent relation

holds,

D =
m∑

i=1

w2
i S

2
i = n

n∑

j=1

γjc
2
j , (5)

where {γj} are the eigenvalues of ATA, and c2j are the observed squared correlations between

the corresponding eigenvectors and y. Our use of imaginary terms is a useful device, but

ATA is a real matrix, and so no complex algebra is required for the decomposition. Moreover,

computation is greatly simplified by computing XTX once, and then computing ATA =

XTX −Xcat
TXcat for each category. Equation (5) shows that D may be approximated by

the beta mixture, but with weights γj that are both positive and negative (and in fact sum

to zero).

2.4 Inclusion of covariates

Suppose z1, z2, ...,zp are a set of n-vector covariates, any of which may be correlated with

X or y, or perhaps both. In principle, score statistics in the presence of covariates involve

straightforward maximization over a restricted null space, which could be applied for each

gene. However, we still need to handle correlation structures across genes, for which per-

mutation is attractive. The proper handling of covariates is a challenge in the permutation

setting, however, as standard permutation forces the investigator to permute the covariates

relative to either X or y. Such an approach is inappropriate if a covariate is correlated with

14
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both X and y. Several permutation approaches in the presence of covariates are described

in Good (2000) for linear regression. All of these approaches involve fitting a full regression

model, including both covariates and effects of interest, followed by construction of new data

in which permuted residuals from the full model are added to fitted values from a reduced

model in which the predictor of interest has been excluded. This approach is difficult to

model analytically, and we consider a simpler approach described below.

We begin by noting that, in the presence of covariates, the natural analog to our score

statistic is Si,z =
∑mcat

j=1 xij,zyj,z/
√∑

j
(yj,z−yz)

2

n
, where xi.,z and yz have been adjusted for

the n×p covariate matrix Z. For the (continuous) x values, we obtain xi.,z as scaled residuals

from the linear regression of xi. on Z. For continuous y, we obtain yz in the same manner.

Thus Si,z is proportional to the partial correlation between xi. and y after adjusting for Z.

Applying the residualization procedure to each gene, we obtain the adjusted Xz, which

is then used (along with yz) to compute Uz, Vz, and Dz using the methods described earlier.

For large n, this procedure may be highly accurate. However, the rank of Xz is now n −

p − 1, while the permutation procedure does not “know” that the data have been reduced

in rank. Thus we must adjust for the reduced rank, which is especially important for small

sample sizes. Another way to view the problem is that the residualized quantities are no

longer exchangeable, because the actual matching ofXz with yz produces different variability

properties for the observed global statistics than for the permuted versions. In order to

preserve type I error, for Uz we compare the observed rU,z to the standard r density, but using

a “sample size” of n−p. Note that this approach accords with the standard r approximation,

for which standard normal regression results show that E(r2U,z) = 1/(n − p − 1), while

E(r2U) = 1/(n − 1) under the null, either unconditionally for normally distributed y, or

exactly by permutation.

For Vz, two potential correction approaches might be considered. Note that equations

(2) and (3) are still equivalent when using Xcat,z and yz. Based on the argument above,
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we might adjust Vz by the factor (n − p − 1)/(n − 1), following the argument above, on

the grounds that each constituent r2j in equation (3) has effectively been inflated by that

same factor. We could then proceed as usual using eigenvalues of Xcat,z, for which the last

p+1 values are now zero (assuming mcat > n). Although this approach provides the correct

mean value for Vz, the variance is incorrect, as the {r2j} (on the residualized data) now have

stronger correlation due to the covariate adjustment. To see why, note that the number of

orthonormal PCs of Xcat,z that span the space of Xcat and are orthogonal to Z is n− p− 1.

Thus, by the arguments of Appendix B1, only n− p− 1 {r2j,z} terms should be used. Thus,

instead of adjusting Vz, the correct approach is to apply the weighted beta approximation

in the ordinary manner, using the eigenvalues from Xcat,z, but with the smaller effective

sample size. Note that this approach effectively treats the component {r2j,z} terms as if they

have a larger average than that induced under permutation. The same approach to covariate

correction is also used for Dz.

For dichotomous response y, we perform the adjustment using logistic regression resid-

uals yz = (yj − eβ̂Z

1+eβ̂Z
), for which the p + 1 vector β is estimated via maximum-likelihood.

The results of earlier sections already showed that the weighted beta approximation fit re-

markably well for dichotomous data, and after residualization the new yz values are typically

continuous.

2.5 Survival analysis

For censored data, we propose using the martingale residuals

yj = δj − Λ̂0(tj)e
β̂Z ,

(Therneau & Grambsch (1990)), where δj is the death (i.e., non-censored) indicator for the

jth individual at the observed time tj, Λ̂0 is the estimated cumulative hazard, and β̂Z are
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the covariate predictions, if applicable. Martingale residuals have also been used in a version

of globaltest (Goeman et al. (2005)). Once the residualization has been performed, the

safeExpress procedure can proceed in the manner described above.

3 Results

We assessed the performance of our analytic approximations using categories for two datasets:

(i) the saliva data described earlier (n = 18, m=54,675 probe sets), with KEGG annotation,

age as a continuous response, and an n0 = n1 = 9 dichotomous response; (ii) a head and

neck squamous cell carcinoma (HNSCC) dataset (n = 35, E-GEOD-3292, HG-U133+2,

m=54,861 probe sets), in which 8 samples were infected with human papilloma virus (HPV),

27 were uninfected, and for which a single normal continuous phenotype was simulated and

used throughout. We selected KEGG categories for the saliva dataset and Gene Ontology

categories for the HNSCC dataset.

Tables 1 and 2 display the type I error results for U , V and D for illustrative categories.

For the saliva dichotomous response, the results are based on exhaustive permutation, and

for other responses are based on 106 random permutations. To cover the range of useful

category testing thresholds, we display ratioα =(true Type I error)/α, for α ranging from

10−1 to 10−4. The results are strikingly accurate, with ratioα ranging from 0.8 to 1.39,

and with most values very close to 1.0. In addition, for V we show the results from the

scaled central chisquare approximation, using both the naive moments and the corrected

moments based on the weighted beta. For the saliva data, the naive moments are extremely

poor, which is due to the fact that the first few eigenvalues do not dominate, such that the

correlation of {r2j} terms is highly consequential. In fact, for Table 1 the true variance of

V and the naive variance estimate differ by a factor of about 8.68, and the naive scaled

central chisquared approximation produces ratioα near zero. Even when using the corrected
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Figure 4: Observed vs. expected covariate-adjusted p-values for Uz (A) and Vz (B),
KEGG:00150, salivary data, with dichotomous y.

moments, the chisquared approximation is very poor, with ratioα exceeding 2.0 or even much

higher.

To demonstrate the effectiveness of the covariate adjustment, we again use KEGG:00510

(92 genes) for the saliva data. We consider the scenario which provides challenges for proper

covariate adjustment: (i) a small sample size (n = 18); (ii) a dichotomous phenotype, and (iii)

two covariates, one which is correlated with bothXcat and y. Recall that in earlier results, the

data (both expression and response) could be considered fixed, and it was sensible for each

category to create a single permutation distribution to which the analytic approximations

could be compared. If type I error is always controlled, conditioned on the observed data,

then it follows that type I error is also controlled unconditionally. Here, however, in the

presence of covariates, there is no single permutation distribution to be generated. Thus,

although we still treat the gene expression data as fixed, we randomly generated covariates

and the response y according to a model. Then we investigated the type I error behavior of

the approach, which is conditional on Xcat but unconditional for y and Z.

For this example, covariate z1 was generated as 0.2× x′ of Xcat, plus a N(0, 1) error

18

Hosted by The Berkeley Electronic Press



term. Response y was generated using the logistic model with logit(y) = z, and rejection

sampling to ensure that n0 = 9, n1 = 9. Covariate z2 was generated as N(0, 1). After

applying the covariate residualization and proper effective sample size, qqplot results for

10,000 simulations show good performance of the resulting p-values using the standard r

approximation for rU,z (Figure 4A), and the weighted beta approximation for Vz (Figure

4B). Further results for V in Supplementary Figure 1 show that the naive approaches are

very poor, in which the failure to adjust for covariates, or of incorrectly failing to account

for the reduced rank of the weighted beta approximation, produce highly inaccurate p-

values. Similar results hold for continuous phenotypes, for which an example is shown in

Supplementary Figure 2.

To further illustrate the performance of our methods, we analyzed the breast cancer data

of Miller et al., 2005 (GEO dataset GSE3493, Miller et al. (2005)), with 251 Affymetrix

U133A samples and 22,215 probe sets. A total of K = 6701 KEGG and GO categories were

examined, using both safe (π=10,000 permutations) and safeExpress. Although safeExpress

is far faster than safe for individual categories, for this large number of categories safeExpress

was only 4 times faster using Revolution R v.4.3 on a 64-bit Windows PC (16 minutes

vs. 47 minutes). Separate testing using standard R indicated a 2-fold improvement using

safeExpress (29 minutes vs. 68 minutes). However, here the primary advantage is not speed.

Even with 10,000 permutations, safe cannot provide p-values of sufficient resolution for the

K categories. If, for a particular category, none of the permutations is as extreme as the

observed data, then a conservative approach is to use p-value 1/π. Applying the Bonferroni

procedure results in a minimum adjusted p-value K/π = .67, and the results are unlikely

to be significant by any multiple test procedure. Alternately, for such a category one might

report p-value = 0, because no permutation was extreme as that observed. However, this

approach can vastly overrepresent the true significance, does not allow for proper multiple

test correction, and fails to distinguish among the most significant categories.
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Using safeExpress, we found several highly significant GO categories for two response

vectors y under various scenarios: (i) the dichotomous p53 mutation status; (ii) p53 mutation

status for estrogen-receptor positive (ER+) tumors only(n=213); (iii) p53 mutation status

after adjusting for ER status in all patients, and (iv) the continuous martingale residuals for

disease-free survival in all patients. The most significant categories, with Holms’ adjusted

p-values applied to each of U , V , and D are provided as supplementary files. Here we

highlight just a few results from (iii) and (iv), with potential supporting literature. Results

for (iii) included GO:0000778, Condensed Nuclear Chromosome Kinetochore (p=5.2× 10−15

for U) and other categories related to mitotic chromosome condensation (Chi et al. (2009)),

and GO:0045767, Regulation of Anti-apoptosis (p=8.5 × 10−10 for D). The last finding

accords with the role of p53 in apoptosis (Amaral et al. (2009)). For disease-free survival

response (iv), fewer categories were significant after multiple test correction. These included

GO:0051087, Chaperone Binding (p=3 × 10−6 for U) (Marx et al. (2007)), and GO:0009896

Positive Regulation of Catabolic Process (p=1 × 10−7 for D) (Wallace et al. (2000)), a

category that includes IGF-1 , widely studied for its role in breast and other cancers (Chong

et al. (2011)) For this last result, a “safe-plot” of the ranks of local statistics Si within the

category is shown in Figure 5. Note that the genes tend to have extreme positive or negative

score statistics, representing poor or good prognosis when expression is high, respectively.

The ranks of the scores depart markedly from the expected uniform cdf diagonal.

The results in earlier sections had illustrated the accuracy of our approximations for

individual categories. Supplementary Figure 4 compares the −log10(p)-values of safe permu-

tation vs. the safeExpress approximations for U , V , and D, across all 6701 categories for the

p53 mutation status response. The agreement is close, and variation for large −log10(p) is

largely due to sampling variation from the permutations. Note that the permutation p-values

cannot be less than 10−4, while the safeExpress values are not limited, and thus can display

the true significance of each category and differentiate levels of significance among highly
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Figure 5: Safe-plot of ranks of local S statistics, using disease-free survival for the breast
cancer data, GO: 0009896.

significant categories.

4 Discussion

We have demonstrated that a careful modeling approach provides highly accurate approxi-

mations to permutation p-values for gene category testing. Although confined to statistics

that involve linear operations, our results include several novel techniques that are likely

useful in other contexts. The kurtosis-corrected r approximation can apply generally to

two-sample problems, and the weighted beta approximation applies to sums of squared score

statistics, which are widely used in ensemble hypothesis testing. Finally, we are not aware

that any accurate analytic approximations to mean differences of squared score sums (D, in

our context) have been previously proposed.

Extensions to this work include applications in SNP-set testing, sequence-based asso-

ciation analysis, and other ’omics applications involving sets of correlated statistics. For
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those applications, the accuracy of the approximations must be demonstrated to even more

stringent thresholds to account for an even larger number of tests.
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Table 1: Performance of the p-value approximations for KEGG:00940 (18 genes), saliva
dataset. Entries in the table are ratioα =(true type I error table)/α.

threshold Continuous y Discrete y Scaled central χ2 Corrected SC χ2

α U V D U V D Vcontinuous Vdiscrete Vcontinuous Vdiscrete

10−1 1.00 1.02 1.02 1.00 1.12 1.16 0.02 0.65 1.65 1.09

10−2 1.03 1.06 1.06 1.01 1.24 1.32 0.00 0.22 4.41 1.66

10−3 1.01 1.10 1.09 1.03 1.52 1.56 0.00 0.04 15.71 2.51

10−4 1.09 1.17 1.11 1.03 0.82 1.65 0.00 0.00 54.71 4.11
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Table 2: Performance of the p-value approximations for GO:0031012 (286 genes), HPV
dataset. Entries in the table are ratioα =(true type I error table)/α.

threshold Continuous y Discrete y Scaled central χ2 Corrected SC χ2

α U V D U V D Vcontinuous Vdiscrete Vcontinuous Vdiscrete

10−1 1.00 1.01 1.00 1.00 0.98 1.01 0.83 0.84 0.92 0.93

10−2 1.03 1.04 1.04 1.00 0.91 1.02 1.44 1.37 2.07 2.05

10−3 1.05 1.06 1.02 1.00 0.82 1.03 2.88 2.41 5.71 5.19

10−4 1.22 1.15 1.16 1.00 0.50 1.20 5.50 4.60 16.50 12.40
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1 Appendix A1: Simple results for U and rU

1.1 U is monotone with rU .

We have

rU = corr(x′
i.,y)

=

∑
j x

′
jyj − nxy

sxsy

=
U

sxsy
(1)

because x = 0 and the sample standard deviations sx, sy are constant
over permutations. Therefore rU is one-to-one with U over the permutations.

1.2 E(r2)= 1

n−1
.

For any vectors x,y, we assume without loss of generality that they have
been scaled so that

∑

j

xj = 0,
∑

j

x2j = 1,
∑

j

yj = 0,
∑

j

y2j = 1.

For such scaling,

r2 = (
∑

j

xjyj)
2

=
∑

j

(xjyj)
2 +

∑

j′ 6=j

xjyjxj′yj′ . (2)

For a randomly chosen j, we have E(x2j) =
1
n
, which follows from

∑
x2j = 1.

Also, for a randomly chosen pair j, j′ 6= j,

1
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E(xjxj′) =
∑

j

∑

j′j

xjxj′xjxj′p(xj, xj′)

=
∑

j

xj(−xj)
1

n(n− 1)

=
1

n(n− 1)

∑

j

−x2j

= − 1

n(n− 1)
. (3)

For the permutations, we consider the (n!)2 arrangements of fixed x and y,
and let EΠ denote expectation over the permutations. We have

EΠ(r
2) = EΠ[(

∑

j

xjyj)
2]

= EΠ(
∑

j

(xjyj)
2) + EΠ(

∑

j

∑

j′ 6=j

xjyjxj′yj′)

= n
1

n2
+ n(n− 1)

(
− 1

n(n− 1)

)2

=
1

n− 1
. (4)

1.3 The distribution of r when one of the two variables

is normal

The following result is widely known, but a number of sources give the
incorrect impression that it requires bivariate normality. As described in
Lehmann and Romano (Problem 564, page 207), for fixed x1,..., xn, and nor-
mal random y and true correlation = 0, the distribution of (n− 2)r/

√
1− r2

follows a central t with n − 2 degrees of freedom. As x is arbitrary, it fol-
lows that the same result holds unconditionally for random x. Furthermore,
corr(x, y) = corr(y, x), and so the role of x and y is arbitrary. It follows
that only one of the two variables need be normal in order for r to follow the
standard density.

2
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In our setting, we are sampling without replacement, and thus the val-
ues are slightly dependent. Nevertheless, the approximation appears to be
accurate as long as either x or y is nearly (empirically) normal.

2 Appendix A2: The saddlepoint approxima-

tion for rU when y is dichotomous

The problem of permutation-based comparison of two samples was considered
by Robinson (1982), which correspond in our case to dichotomous y (assumed
to consist of n0 zeros and n1 ones). Here we follow the Robinson notation,
with modifications to accord with our notation. New standardized quantities
are computed,

aj = (x′j − x′)/[
n∑

i=1

(x′j − x′)2]
1

2 ,

and the Robinson test statistic is

tn = w
− 1

2

n

∑

j∈{y=1}
aj,

where wn = npq/(n − 1) and p = n0/n, q = 1 − p. As
∑

j∈{y=1} x
′
j =∑n

j=1 x
′
jyj, it is simple to show (as in Appendix A1) that tn and rU are

equivalent statistics.
The saddlepoint approximation involves computing quantities

mn = w
− 1

2

n

∑

j

ajK
′
j

and
σ2
n = w−1

n {
∑

j

a2jK
′′ − (

∑

j

ajK
′′)2/

∑

j

K ′′
j },

where (i) K(x) = log(peqx + qe−px); (ii) Kj, K
′
j and K ′′

j denote K(x), K ′(x)

and K ′′(x) evaluated at x = uajw
−1/2
N + α(u), where α(u) solves

∑
j K

′
j = 0

and u is described below. Upon differentiation we haveK ′ = 1
peqx+qe−px (pqe

qx−
pqe−px) and K ′′ = (peqx+qe−px)(pq2eqx+p2qe−px)

(peqx+qe−px)2
− (pqeqx−pqe−px)2

(peqx+qe−px)2
.

The choice of u simultaneously solves mn(u) = tn (where tn is the realized
statistic of the permutation-random Tn) and

∑
j K

′
j = 0, and u is obtained
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numerically using optim() in R. Finally, the saddlepoint approximate tail
probability is given by

Qn(u)exp(−umn + (1/2)u2σ2
n)(1− Φ(uσn)),

where Q is the moment generating function for Tn, σ
2 is computed for u, and

Φ is the cdf of a standard normal density. Knowledge of the moment gen-
erating function technically requires knowing the desired distribution of Tn.
Thus, in typical saddlepoint applications, the moment generating function
must be further approximated in order that the approach be practically use-
ful. However, as we have performed exhaustive permutation in our examples,
we can exactly compute the mgf

Qn(u) =
1

|Π|
∑

Π

exp(utn,Π),

which we use in our examples order to present a best-case scenario for the
saddlepoint.

We compared our results to the two two-sample datasets in Robinson
(1982), and obtained identical results as reported by the author.

3 Appendix A3: Kurtosis of r vs. kurtosis of

x

The (excess) kurtosis is invariant under linear transformation, hence

kurtosisΠ(U) = kurtosisΠ(rU),

and we emphasize that Π signifies a population that is created conditional
on the data x′ and y. The main result of this section is that, when y is
dichotomous, the kurtosis of rU over permutations is determined entirely by
the kurtosis of the observed n-vector x′. In order to avoid confusion over
“population” and “sample” quantities, here the kurtosis will always refer to
a population parameter. For this purpose the observed x′ will be considered
a population of size n, and probability 1/n assigned to each element.

As U ∝

∑n
j=1 x

′
jyj =

∑
j∈{y=1} x

′
j, it follows that U is the same as the

summation of a random sample of size n1 from a population of size n. More-

over U = n1

∑
j∈{y=1} x

′
j

n1

= n1µ̂, where µ̂ is the sample mean of drawing n1
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values from the population of size n, without replacement. Thus the kurtosis
of µ̂ is equal to that of rU . Formulas for moments of µ̂ up to order 4 are
provided in Kendall & Stuart (1969) Chapter 12, using cumulant notation
and “symmetric k” statistics to simplify computation. We denote the kth
central moment of x′ as

µk = (1/n)
∑

j

(x′j − x′)k.

Also, using the following definition (Kendall & Stuart (1969), chapter 12,
formula 12.29),

K4 =
n2
1

(n1 − 1)(n1 − 2)(n1 − 3)
{(n1 + 1)µ4 − 3(n1 − 1)µ2

2},

we have

E((µ̂− µ)4) = K4{(
1

n3
1

− 1

n3
)− 4

n
(
1

n2
1

− 1

n2
) +

6

n2
(
1

n1

− 1

n
)}

+ 3
n− 1

n+ 1
(σ4 − K4

n
){( 1

n2
1

− 1

n2
)− 2

n1

(
1

n1

− 1

n
)},

(5)

where we follow the Kendall notation σ2 = µ2n/(n − 1), and a simple
finite-sampling result shows that var(µ̂) = σ2( 1

n1

− 1
n
). Finally, we compute

the kurtosis of the sample mean (and therefore for rU) as

E
(
(µ̂− µ)4

)

var2(µ̂)
− 3.

4 Appendix A4: An improved approximation

to r for dichotomous y

We will denote the standard r density as fn(r), and the subscript signifies the
dependence on n. The variance of r is always 1/(n− 1) under permutation,
and if n0 ≈ n1, then the permutation distribution will be nearly symmetric
(exactly so if n0 = n1). Thus we focus on the kurtosis of r, which is solved
in Appendix A3 as a function of kurtosis(x′), to provide the basis for an
improved fit. To improve upon the standard approximation, we consider the

5
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impact of a hypothetical outlier xj in the comparison of a continuous x vector
to dichotomous y. Suppose that in the absence of the jth observation, the
standard r approximation was accurate, so that r ∼ fn−1(r). Then in the
presence of the outlier, we model the density as being “offset” by a value c,
according to whether the outlier coincides with y = 0 or y = 1, with equal
probability symmetrically about zero. Thus the new density would take the
form fnew(r) = 1

2
{fn−1(r − c) + fn−1(r + c)}. However, the variance of r

should still be constrained to 1/(n−1), and we replace fn−1 with fn in order
that the standard density hold in the special case that c = 0. The final
approximation is

fnew(r) =
K

2
{fn(rK − c) + fn(rK + c)}

where K =
√
1 + c2(n− 1). The new approximation accords with fn

when c = 0, and tends to have lower (i.e. more negative) kurtosis as c
increases, although the kurtosis is not strictly monotone with c near zero.
Thus if there are multiple real solutions for a desired kurtosis, we chose the
c solution nearest zero.

Below we solve for c for a given kurtosis(r). We note that the motiva-
tion above envisions a new random variable rnew = r + cB, where r follows
the standard density, and B is an independent random variable assuming
the values −1 and 1 each with probability 1/2. Note that in this setup
rnew has not been rescaled to have the correct variance, but this is irrele-
vant, as the kurtosis is invariant to linear scaling. For this subsection we
will let k denote the desired kurtosis(r), and we will solve for c such that
k=kurtosis(rnew). The expectations are over exhaustive permutations. We

have k = kurtosis(rnew) =
E((rnew−E(rnew))4)

σ4 − 3 = E(r4new)
(var(r)+c2)2

− 3

E(r4new) = E(r4 + 4r3cB + 6r2c2B2 + 4rc3B3 + c4B4) (6)

= E(r4 + 6r2c2B2 + c4B4) (7)

= E(
3

n2 − 1
+ 6c2B2 1

n− 1
+ c4B4) (8)

=
3

n2 − 1
+ 6c2

1

n− 1
+ c4 (9)

Therefore

6

http://biostats.bepress.com/uncbiostat/art24



k =
3

n2−1
+ 6

n−1
c2 + c4

( 1
n−1

+ c2)2
− 3 (10)

=
3

n2 − 1
+

6

n− 1
c2 + c4 = (k + 3)[

1

(n− 1)2
+ c4 + 2

c2

n− 1
] (11)

and

(k + 2)c4 +
2k

n− 1
c2 + { k + 3

(n− 1)2
− 3

n2 − 1
} = 0.

The quadratic solution for c2 is

c2 =
− k

n−1
±

√
(k/(n− 1))2 − (k + 2)(k + 3)/(n− 1)2 + 3(k + 2)/(n2 − 1)

k + 2
(12)

=
− k

n−1
±

√
−5k−6
(n−1)2

+ 3 k+2
n2−1

k + 2
. (13)

We solve for c =
√
c2, and use the real root nearest zero, or c = 0 if there are

no real roots.

5 Appendix B1: The weighted beta distribu-

tion

Let y = (y1, y2, ..., yn)
T be i.i.d normally distributed with variance σ2 and

independent of all the orthonormal basis p.j, j = 1, ..., n in Rn. Denote
(y1 + y2 + ... + yn)/n as y, and let bk =

∑
j yjp1j. Then since the mean of

p.k is zero, the sample correlation between y and p.k for k ≥ 1 is given by

rk ≡ bk/
√
S2
n,

where S2
n =

∑
i(yi − y)2.

Since y =
∑n−1

k=0 < y,p.k > p.k, where < y,p.k > is the inner product of
y and p.k, it is easy to see

y − y =
n−1∑

k=1

bkp.k.

7
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Moreover,

S2
n/σ

2 = ||y − y||2/σ2 =
n−1∑

k=1

b2k/σ
2.

On the other hand, conditioning on p.1, ..., p.n, each bk follows a normal
distribution with mean zero, variance σ2 and Cov(bk, bl) = 0. This implies
that each Zk ≡ b2k/σ

2, k = 1, ..., n− 1 are i.i.d and distributed χ2
1.

Therefore, using a fact Gupta & Nadarajah (2004)

χ2
m

χ2
m + χ2

l

∼ Beta(m/2, l/2),

we have

r2k = b2k/(S
2
n) =

Zk∑n−1
j=1 Zj

∼ Beta(1/2, (n− 2)/2),

then for any subset Ω ⊂ {1, ..., n− 1} which doesn’t contain k,

r2k
1−∑

j∈Ω r
2
j

=
Zk∑
j*Ω Zj

∼ Beta(1/2, (n− |Ω| − 2)/2).

Since the distributions are independent of the p.k’s, these distributions are
also unconditional distributions.

The joint density is

p(r21, r
2
2, ..., r

2
n−1) = p(r21)p(r

2
2|r21)...p(r2n−1|r21, r22, ..., r2n−2).

Following the results above, the product includes terms

p(r2j |r21, ..., r2j−1) =
1

djB(1/2, (1/2)(n− j − 1))
(r2j/dj)

−1/2(1−r2j/dj)(1/2)(n−j−3),

where dj = 1−
∑j−1

j′=1 r
2
j′ and B() denotes the beta function.

Although sums of subsets of these correlated {r2j} are themselves dis-
tributed as beta, we are not aware that the density of the weighted sum
V = n

∑n
j=1 λjr

2
j has a tractable form. Numerical integration over all n− 2

free r2j terms is infeasible, even for modest n. In practice, a shifted gamma
density, with shape, scale, and location parameters, provides a reasonable
approximation to V . However, the quality of the fit tends to degrade in the

8
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extreme right tail. As a compromise between these extremes, we have cho-
sen to fit the joint beta density of {r21, r22} over a numeric grid, while fitting
V − λ1r

2
1 − λ2r

2
2 using a shifted gamma density. The first three moments for

the gamma fit are obtained using the weighted beta moments as described
in Appendix B3 below, but using only eigenvalues λ3, ..., λn−1.

The final p-value is obtained as

P (V ≥ vobserved) =

∫ 1

0

∫ 1

0

p(r21, r
2
2)P (V ≥ vobserved|r21, r22)dr21 dr22

and using the shifted gamma as the integrand. This simple grid approach
is most accurate in the right tail, where accuracy is most desired, and for
typical sample sizes can be computed for over 1000 gene categories in a few
minutes.

6 Appendix B2: Correlation of squared cor-

relations

To obtain moments for the approximation of V , and to better understand the
behavior of the global statistic D, here we consider the correlation of paired
quantities r2P1

= corr2(P1,y) v.s. r
2
Q = corr2(Q,y), expressed in terms of the

observed correlations of vectors P1 and Q with each other.
The derivations assume y is random and normally distributed, for fixed

P1 and Q.
Suppose P1 and Q are normalized vectors, not necessarily orthogonal. We

claim that

Corr2(r2P1
, r2Q) = − 1

n− 2
+
n− 1

n− 2
corr2(P1, Q),

where Corr2(r2P1
, r2Q) is determined over random y, while corr2(P1, Q) is the

sample Pearson correlation between P1 and Q. Without loss of generality,
we can choose another vector, orthogonal to P1 (which we’ll denote P2), such
that Q = aP1 + bP2.

We have

r2Q = corr2(Y, a P1 + b P2)

= (a corr(Y, P1) + b corr(Y, P2))
2

= a2corr2(Y, P1) + b2corr2(Y, P2) + 2abScorr(Y, P1)corr(Y, P2)

= a2r2P1
+ b2r2P2

+ 2ab rP1
rP2

. (14)

9
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Using previous results on Beta densities for random r2, we have

E(r3P1
rP2

)− E(rP1
rP2

)E(r2P1
) = E(E(r3P1

sign(rP2
)(B

1

2

1 (1− r2P1
)
1

2 )|P1))

− E(rP1
sign(rP2

)B
1

2

1 (1− r2P1
)
1

2 )E(r2P1
)

= E(r3P1
{(1− r2P1

)
1

2 )}sign(rP2
)E(B

1

2

1 )

− E(r3P1
{(1− r2P1

)
1

2 )}sign(rP2
)E(B

1

2

1 )

= 0. (15)

Thus

Corr2(r2P , r
2
Q) = a2 + b2(− 1

n− 2
) + 2abcorr(rP1

rP2
, r2P2

)

= a2 + (1− a2)(− 1

n− 2
) + 2ab{E(r3P1

rP2
)− E(rP1

rP2
)E(r2P2

)}

= − 1

n− 2
+
n− 1

n− 2
a2

= − 1

n− 2
+
n− 1

n− 2
corr2(P1, Q). (16)

Note that if Q is orthogonal to P1, then the correlation of squared correla-
tions is −1/(n−2), which proves the desired result for any r2j , r

2
j′ in Equation

(3). In contrast to the result of Appendix A1 1.2, which is exact over permu-
tations, the result of this section is not exact, as it relies on the correlated
beta distribution. However, simulations as described in the text indirectly
show that the approximation has high accuracy, as the distributional approx-
imation for V relies crucially on this correlation.

7 Appendix B3: The first three moments of

the weighted beta approximation to V

The expectations computed in this section are unconditional, for which both
y and the PC matrix P are considered to be random (and multivariate nor-
mal). However, the eigenvalues are considered fixed.

Since E((r21)
2) = var(r21) + E2(r21), and a standard beta distributional

result is that E((r21)
k) = α+k−1

α+β+k
E((r21)

k−1) where r21 follows a beta density

with α = 1/2, β = (n− 2)/1, we have the moments

10
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E(r21) =
1/2

1/2 + (n− 2)/2

=
1

n− 1
(17)

E((r21)
2) =

1/2 + 2− 1

1/2 + (n− 2)/2 + 2− 1
E(r21)

=
3

n2 − 1
. (18)

E((r21)
3) =

1/2 + 3− 1

1/2 + (n− 2)/2 + 3− 1
E((r21)

2)

=
5

n+ 3

3

n2 − 1
(19)

E(r21 − 2(r21)
2 + (r21)

3) = E(r21)− 2E((r21)
2) + E((r21)

3)

=
1

n− 1
− 2

3

n2 − 1
+

5

n+ 3

3

n2 − 1

=
n(n− 2)

(n+ 3)(n2 − 1)
(20)

Also, for B1 as defined in Section 2 of the manuscript,

E(B1) =
1/2

1/2 + (n− 3)/2

=
1

n− 2
(21)

E(B2
1) = E(B1)

1/2 + 1

1/2 + (n− 3)/2 + 1

=
3

n

1

n− 2

=
n− 3

n(n− 2)
(22)

11
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E(B1 − B2
1) = E(B1)− E(B2

1)

=
1

n− 2
− 3

n

1

n− 2
(23)

E(B2) =
1/2

1/2 + (n− 4)/2

=
1

n− 3
(24)

We also have

E(r21r
2
2) = E(r21B1(1− r21)

= E(E(r21B1(1− r21)|r21)
= E(E(B1(r

2
1 − r41)))

= E(E(B1)E(r
2
1 − r41))

= E(
1

n− 2
(

1

n− 1
− 3

n2 − 1
))

=
1

n2 − 1
, (25)

and

E(r21r
2
2r

2
3) = E(r21B1(1− r21)B2(1− r21 − r22))

= E(r21(1− r21)B1B2(1− r21 − B1(1− r21)))

= E(r21(1− r21)
2B1(1− B1)B2)

= E(r21 − 2(r21)
2 + (r21)

3)E(B1 − B2
1)E(B2)

=
n(n− 2)

(n+ 3)(n2 − 1)

n− 3

n(n− 2)

1

n− 3

=
1

(n+ 3)(n2 − 1)
. (26)

The correlation between different r2j is
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corr(r2j , r
2
j′) =

E(r2j r
λ
′2j′)− E(r2j )E(r

2
j′)

sr2j sr2j′

=

1
n2−1

− 1
(n−1)2

2(n−2)
(n−1)2(n+1)

= − 1

n− 2
.

The first moment of V is

E(n
n∑

j=1

r2jλj) = n

n∑

j=1

λjE(r
2
j )

=
n

n− 1

n∑

j=1

λj

=
mcatn

n− 1
. (27)

The second moment of V is

E
(
(n

n∑

j=1

r2jλj)
2
)

= n2E(
n∑

j=1

(λj)
2(r2j )

2) + 2n2E(
n∑

j=1

n∑

j′=1

r2jλjr
2
j ′λ′)

= n2

n∑

j=1

λ2jE((r
2
j )

2) + 2n2

n∑

j=1

n∑

j′=1

λjλ′E(r
2
j r

2
j ′)

=
n∑

j=1

λ2j
3n2

n2 − 1
+

n∑

j=1

n∑

j′=1

λjλj′
2n2

n2 − 1
(28)

Also,

E((r21)
2r22) = E(E(r21)

2r22|r21)
= E(E((r21)

2B1(1− r21)|r21))
= E(B1)E(r

4
1 − r61)

=
1

n− 2
(

3

n2 − 1
− 5

n+ 3

3

n2 − 1
)

=
1

n− 2

3

n2 − 1

n− 2

n+ 3
. (29)
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E(
n∑

j=1

r2jλj)
3 = E(

n∑

j=1

(r2j )
3λ3j)

+ 3E(
n∑

j=1

n∑

j 6=j′=1

(r2j )
2r2j′λ

2
jλj′)

+ E(
n∑

j=1

n∑

j′=1

n∑

j′′=1

r2j r
2
j′r

2
j′′λjλj′λj′′)

=
n∑

j=1

λ3jE((r
2
j )

3) + 3
∑

j

∑

j′
λ2jλ′E((r

2
j )

2r2j ′)

+
n∑

j=1

n∑

j′=1

n∑

j′′=1

λjλj′λj′′E(r
2
j r

2
j′r

2
j′′)

=
5

n+ 3

3

n2 − 1

n∑

j=1

λ3j + 3
1

n− 2

3

n2 − 1

n− 2

n+ 3

∑

j

∑

j′
λ2jλ′

+
n∑

j=1

n∑

j′=1

n∑

j′′=1

λjλj′λj′′
1

(n+ 3)(n2 − 1)
(30)

Hence the non-central third moment of V is E
(
(n

∑n
j=1 r

2
jλj)

3
)
, which is

n3(
5

n+ 3

3

n2 − 1

n∑

j=1

λ3j+
9

(n2 − 1)(n+ 3)

∑

j

∑

j′
λ2jλ′+

n∑

j=1

n∑

j′=1

n∑

j′′=1

λjλj′λj′′
1

(n+ 3)(n2 − 1)
).

Claim :
n∑

j=1

λj = mcat.

Proof: Since X is normalized,
∑n

j=1 x
2
ij = 1 and

∑n
j=1 xij = 0. We have that

XcatX
T
cat is a matrix with diagonal entries 1, so trace(XcatX

T
cat) = mcat. A

standard result holds that the singular value decomposition of Xcat yields sin-
gular values that are the square roots of the eigenvalues of XcatX

T
cat, implying

trace(XcatX
T
cat) =

∑n
j=1 λj = mcat = mcat.
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8 Appendix C: Extension of the weighted beta

approach to D

Suppose A is the weighted gene expression matrix, i.e. A = WX, where

W = diag[
1√
mcat

,
1√
mcat

, ...,
1√
mcat︸ ︷︷ ︸

mcat

,
1

√
mcomp

I, 1
√
mcomp

I, ..., 1
√
mcomp

I
︸ ︷︷ ︸

mcomp

].

Here we use I to represent
√
−1, to avoid confusion with the gene index

i. It is simple to show that D = V cat
mcat

− V comp
mcomp

=
∑

i(wiSi)
2, and thus we have

the desired form, similar to Equation (2).
According to the spectral decomposition, the symmetric matrix ATA can

be decomposed as ΦΨΦT , where Φ is an orthogonal matrix, and here assumed
orthonormal without loss of generality. Since the vectors φ.j, j=1,2,...,n form

an orthonormal basis in Rn space, and rj = cor(φ.j, y) =
φT
.jy

SDφ.j
SDy

, it can be

15

Hosted by The Berkeley Electronic Press



shown that y = φ.jrjsφ.j
sy.

D =

∑m
i=1(A

T
i.y)

2

∑n
j=1(yj − y)2/n

=

∑m
i=1(y

TAi.A
T
i.y)∑n

j=1(yj − y)2/n

=

∑m
i=1 y

T (
∑n

j=1 rjφijφ
T
ij)y∑n

j=1(yj − y)2/n

=

∑m
i=1(

∑n
j=1 ψjφijφ

T
ij)y

Ty
∑n

j=1(yj − y)2/n

=

∑n
j=1 var(φ.j)var(y)(

∑m
i=1 ψjφijφ

T
ij)(φ.jrj)

T (φ.jrj)∑n
j=1(yj − y)2/n

=

∑n
j=1

1
n−1

var(y)ψjr
T
j φ

T
.jφ.jrj∑n

j=1(yj − y)2/n

= n

n∑

j=1

ψjr
T
j φ

T
.jφ.jrj

= n

n∑

j=1

ψjr
2
j

Claim:
n∑

j=1

γj = 0

We have constructed a new matrix A=

[
Xcat√
mcat

Xout√
out
i

]
,

ATA =
[

Xcat√
mcat

Xout√
comp

i
] [ Xcat√

mcat

Xcomp√
comp

i

]
(31)

=

[
XT

catXcat

mcat
0

0 −XT
compXcomp

mcomp

]
(32)

(33)
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We have

trace(ATA) =
∑

(diag(ATA))

=
∑

(diag(XT
catXcat))/mcat −

∑
(diag(XT

compXcomp))/mcomp

= 1− 1

= 0. (34)
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Supplementary Figure 1: p-values for V in the presence of two covariates,
with 10,000 simulations for the saliva data, KEGG:00150, with one covariate
correlated with both X and a dichotomous y. Upper left: the result of failing
to adjust for the covariates. Upper right: the result of adjusting for the co-
variates by residualizing X and y, but failing to account for that adjustment
in computing p-values. Lower left: the result of attempting adjust Vz by a
scaling factor, which fails to account properly for the variance. Lower left:
the correct approach of considering the effective sample size to be reduced
by the number of covariates (here, p=2).
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Supplementary Figure 2: p-values for V in the presence of two covariates,
with 10,000 simulations for the saliva data, KEGG:00150, with one covariate
correlated with both X and continuous y. The different panels follow the
adjustments described above for Supplementary Figure 1.
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Supplementary Figure 3: p-values for V in the presence of a covariate, with
10,000 simulations for the saliva data, KEGG:00150, with the covariate cor-
related with both X and a dichotomous y. Upper left: the result of failing
to adjust for the covariate. Upper right: the result of adjusting for the co-
variate by residualizing X and y, but failing to account for that adjustment
in computing p-values.
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Supplementary Figure 4: p-value comparisons between safe (10,000 permu-
tations) and safe-express on the breast cancer data. Each point corresponds
to a single GO/KEGG category. Note that the permutation p-values are lim-
ited to 10−4 as a minimum value, while many safe-express values show much
greater true significance. The variation in the scatterplot largely results from
sampling variability due to permutation.
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