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Empirical Performance of Alternative Option 
Pricing Models 

GURDIP BAKSHI, CHARLES CAO, and ZHIWU CHEN* 

ABSTRACT 

Substantial progress has been made in developing more realistic option pricing 
models. Empirically, however, it is not known whether and by how much each 
generalization improves option pricing and hedging. We fill this gap by first deriving 
an option model that allows volatility, interest rates and jumps to be stochastic. 
Using S&P 500 options, we examine several alternative models from three perspec- 
tives: (1) internal consistency of implied parameters/volatility with relevant time- 
series data, (2) out-of-sample pricing, and (3) hedging. Overall, incorporating sto- 
chastic volatility and jumps is important for pricing and internal consistency. But for 
hedging, modeling stochastic volatility alone yields the best performance. 

IN THE LAST TWO DECADES, option pricing has witnessed an explosion of new 
models that each relax some of the restrictive Black-Scholes (BS) (1973) 
assumptions. Examples include (i) the stochastic-interest-rate option models of 
Merton (1973) and Amin and Jarrow (1992); (ii) the jump-diffusionlpure jump 
models of Bates (1991), Madan and Chang (1996), and Merton (1976); (iii) the 
constant-elasticity-of-variance model of Cox and Ross (1976); (iv) the Mark- 
ovian models of Rubinstein (1994) and Alt-Sahalia and Lo (1996); (v) the 
stochastic-volatility models of Heston (1993), Hull and White (1987a), Melino 
and Turnbull (1990, 1995), Scott (1987), Stein and Stein (1991), and Wiggins 
(1987); (vi) the stochastic-volatility and stochastic-interest-rates models of 
Amin and Ng (1993), Bailey and Stulz (1989), Bakshi and Chen (1997a,b), and 
Scott (1997); and (vii) the stochastic-volatility jump-diffusion models of Bates 
(1996a,c), and Scott (1997). This list is by no means exhaustive, yet already 
overwhelming to anyone who has to choose among the alternatives. To make 
matters worse, the number of possible option pricing models is virtually 
infinite. Note that every option pricing model has to make three basic assump- 
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are our responsibility alone. 

2003 



2004 The Journal of Finance 

tions: the underlying price process (the distributional assumption), the inter- 
est rate process, and the market price of factor risks. For each of the assump- 
tions, there are many possible choices. For instance, the underlying price can 
follow either a continuous-time or a discrete-time process. Among possible 
continuous-time processes, it can be Markov or non-Markov, a diffusion or a 
nondiffusion, a Poisson or a non-Poisson jump process, a mixture of jump and 
diffusion components with or without stochastic volatility and with or without 
random jumps. For the term structure of interest rates, there are similarly 
many choices. While the search for that perfect option pricing model can be 
endless, we are tempted to ask: What do we gain from each generalized 
feature? Is the gain, if any, from a more realistic feature worth the additional 
complexity or implementational costs? Can any of the relaxed assumptions 
help resolve known empirical biases associated with the Black-Scholes for- 
mula, such as the volatility smiles (e.g., Rubinstein (1985, 1994))? As a prac- 
tical matter, that perfectly specified option pricing model is bound to be too 
complex for applications. Ultimately, it is a choice among misspecified models, 
made perhaps based on (i) "which is the least misspecified?" (ii) "which results 
in the lowest pricing errors?" and (iii) "which achieves the best hedging per- 
formance?" These empirical questions must be answered before the potential of 
recent advances in theory can be fully realized in practical applications. 

The purpose of the present article is to fill in this gap and conduct a compre- 
hensive empirical study on the relative merits of competing option pricing mod- 
els.1 To this goal, we first develop in closed form an implementable option pricing 
model that admits stochastic volatility, stochastic interest rates, and random 
jumps, which will be abbreviated as the SVSI-J model. The setup is rich enough 
to contain almost all the known closed form option formulas as special cases, 
including (i) the Black-Scholes (BS) model, (ii) the stochastic-interest-rate (SI) 
model, (iii) the stochastic-volatility (SV) model, (iv) the stochastic-volatility and 
stochastic-interest-rate (SVSI) model, and (v) the stochastic-volatility random- 
jump (SVJ) model. The constant-volatility jump-diffusion models of Bates (1991) 
and Merton (1976) are special cases of the SVJ. Consequently, we concentrate our 
efforts on the SVSI-J and the five models just described. 

Besides the obvious normative reasons, a common motivation for these new 
models is the abundant empirical evidence that the benchmark BS formula 
exhibits strong pricing biases across both moneyness and maturity (i.e., the 
"smile") and that it especially underprices deep out-of-the-money puts and calls 
(see Bates (1996b) for an insightful review). Such evidence is clearly indicative of 
implicit stock return distributions that are negatively skewed with higher kurto- 
sis than allowable in a BS log-normal distribution. Guided by this implication, the 

1 A few existing studies investigate the internal consistency of implied parameters (Bates (1991, 
1996a,c)), and the pricing or the hedging performance (e.g., Bakshi, Cao, and Chen (1997), Cao 
(1993), Dumas, Fleming, and Whaley (1995), Madan and Chang (1996), Nandi (1996), and 
Rubinstein (1985)), of alternative stochastic-volatility models. Cao studies a stochastic-volatility 
model using currency options; Nandi investigates the pricing and single-instrument-hedging 
performance using the S&P 500 futures. In this article we address the empirical issues from 
different perspectives and under alternative models. 
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search for alternative models has mostly focused on finding the "right" distribu- 
tional assumption. The SV model, for instance, offers a flexible distributional 
structure in which the correlation between volatility shocks and underlying stock 
returns serves to control the level of skewness and the volatility variation coeffi- 
cient serves to control the level of kurtosis. But, since volatility in the SV is 
modeled as a diffusion and hence only allowed to follow a continuous sample path, 
its ability to internalize enough short-term kurtosis and thus to price short-term 
options properly is limited (unless the variation coefficient of spot volatility is 
unreasonably high). The jump-diffusion models, on the other hand, assert that it 
is the occasional, discontinuous jumps and crashes that cause the negative im- 
plicit skewness and high implicit kurtosis to exist in option prices. The fact that 
such jumps and crashes are allowed to be discontinuous over time makes these 
models more flexible than the diffusion-stochastic-volatility model, in internaliz- 
ing the desired return distributions, especially at short time horizons. Therefore, 
the random-jump and the stochastic-volatility features can in principle improve 
the pricing and hedging of, respectively, short-term and relatively long-term 
options. The inclusion of a stochastic term structure model in an option pricing 
framework is, however, intended to improve the valuation and discounting of 
future payoffs, rather than to enhance the flexibility of permissible return distri- 
butions. Thus, while the stochastic-interest-rate feature is not expected to help 
resolve the cross-sectional pricing biases, it should in principle improve the pricing 
fit across option maturity. 

We implement every model by backing out, on each day, the spot volatility 
and structural parameters from the observed option prices of that day. This 
approach is common in the existing literature (e.g., Bates (1996b)), partly out 
of the consideration that historical data reflect what happened in the past 
whereas information implicit in option prices is forward-looking. Backing out 
the BS model's volatility and other model's parameters daily is indeed ad hoc 
since volatility in the BS and the structural parameters in the other models are 
assumed to be constant over time. But, as this internally inconsistent treat- 
ment is how each model is to be applied, we follow this convention so as to 
ensure each model an equal chance. 

In judging the alternative models, we employ three yardsticks. First, are the 
implied structural parameters consistent with those implicit in the relevant 
times-series data (e.g., the implied-volatility time series, and the interest-rate 
time series)? Much of this part of the discussion is based on Bates' (1996a,c) work 
where he studies the relative desirability of the SV versus the SVJ models, using 
stock index futures and currency options. The reasoning is that if an option model 
is correctly specified, its structural parameters implied by option prices will 
necessarily be consistent with those implicit in the observed time-series data. 
Second, out-of-sample pricing errors give a direct measure of model misspecifica- 
tion. In particular, while a more complex model will generally lead to better 
in-sample fit, it will not necessarily perform better out of sample as any overfitting 
may be penalized. Third, hedging errors measure how well a model captures the 
dynamic properties of option and underlying security prices. In other words, 
in-sample and out-of-sample pricing errors reflect a model's static performance, 
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while hedging errors reflect the model's dynamic performance. As shown later, 
these three yardsticks serve distinct purposes. 

Based on 38,749 S&P 500 call option prices from June 1988 to May 1991, we 
find that the SI and the SVSI-J models do not significantly improve the 
performance of the BS and the SVJ models, respectively. To keep the presen- 
tation manageable, we focus on the four models of distinct interest: the BS, the 
SV, the SVSI, and the SVJ. Our empirical investigation leads to the following 
overall conclusions. First, judged on internal parameter consistency, all mod- 
els are misspecified, with the SVJ the least and the BS the most misspecified. 
This conclusion is confirmed from several different angles. For example, ac- 
cording to the Rubinstein (1985) type of implied-volatility graphs, the SVJ 
implied volatility smiles the least across moneyness levels, followed in increas- 
ing order by the SVSI, the SV, and the BS. Second, out-of-sample pricing errors 
are the highest for the BS, the second highest for the SV, and the lowest for the 
SVJ. Overall, stochastic volatility alone achieves the first-order pricing im- 
provement and typically reduces the BS pricing errors by 25 percent to 60 
percent. However, our evidence also confirms the conjectures that (i) adding 
the random-jump feature improves the fit of short-term options and that (ii) 
including the SI feature enhances the pricing fit of long-term options. After 
both stochastic volatility and random jumps are modeled, the remaining pric- 
ing errors no longer exhibit clear systematic biases (e.g., across moneyness). 

Two types of hedging strategy are employed to gauge the relative hedging 
effectiveness. First, we examine minimum-variance hedges of option contracts 
that rely on the underlying asset as the single hedging instrument. As argued 
by Ross (1995), the need for this type of hedge may arise in contexts where a 
perfect delta-neutral hedge may not be feasible, either because of untraded 
risks or because of model misspecifications and transaction costs. In the presence 
of more than one source of risk, single-instrument hedges can only be partial. 
According to results from these type of hedges, the SV outperforms all the others, 
while the SVJ is second. Between the other two models, the BS hedges in-the- 
money calls better than the SVSI, but the SVSI is better in hedging out-of-the- 
money calls. This hedging result is surprising as one would expect the SVSI to 
perform at least as well as the BS, and the SVJ to do better than the SV. 

Next, we implement a conventional delta-neutral hedge, in which as many 
hedging instruments as there are risk sources are used to make the net position 
completely risk-immunized (locally). For the case of the BS, this means that only 
the underlying stock will be employed to hedge a call. For the SV model, however, 
both the price risk and volatility risk affect the value of a call, implying that an 
SV-based delta-neutral hedge will need a position in the underlying stock and one 
in a second option contract. For the SVSI, its delta-neutral hedge will involve a 
discount bond (to control for interest rate risk) in addition to the underlying stock 
and a second option contract. When such internally consistent hedges are imple- 
mented, the hedging errors for the SV, the SVSI and the SVJ are about 50 percent 
to 65 percent lower than those of the BS model, if each hedge is rebalanced daily. 
Furthermore, changing the hedge rebalancing frequency affects the BS model's 
hedging errors dramatically, while only affecting the other models' performance 
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marginally. That is, after stochastic volatility is controlled for, the errors of a 
delta-neutral hedge seem to be relatively insensitive to revision frequency.2 How- 
ever, like in the single-instrument hedging case, once stochastic volatility is 
modeled, adding the SI or the random-jump feature does not enhance hedging 
performance any further. 

Since the delta-neutral hedge for the BS does not use a second option 
contract whereas it does for the other three models, this may have biased the 
delta-neutral hedging results against the BS model. To examine this point, we 
also implement the ad hoc BS delta-plus-vega neutral strategy in which the 
underlying stock and an option contract are used to neutralize both delta risk 
and vega risk (of the BS model). It turns out that in hedging out-of-the-money 
and at-the-money calls, this BS delta-plus-vega neutral strategy performs no 
worse than the other models' delta-neutral hedges. Only in hedging deep 
in-the-money calls do the stochastic volatility models perform better than the 
BS delta-plus-vega neutral strategy. This is true regardless of hedge revision 
frequency. Overall, hedging performance is relatively insensitive to model 
misspecification, since even ad hoc hedges can result in similar errors. 

The rest of the article proceeds as follows. Section I develops the option 
pricing models. Section II provides a description of the S&P 500 option data. In 
Section III we present an estimation procedure, discuss the estimated param- 
eters, and evaluate the in-sample fit of each model. Section IV assesses the 
extent of each model's misspecification. Sections V and VI, respectively, 
present the out-of-sample pricing and the hedging results. Concluding re- 
marks are offered in Section VII. Proof of pricing equations and most formulas 
are provided in the Appendix. 

I. Option Pricing Models 

The purpose of this section is to derive a closed-form jump-diffusion option 
pricing model that includes all those to be studied in the empirical sections as 
special cases. As such, it is then convenient to follow a standard practice and 
specify from the outset a stochastic structure under a risk-neutral probability 
measure. The existence of this measure is equivalent to the absence of free 
lunches, and it allows us to value future risky payoffs as if the economy were 
risk-neutral. First, under the risk-neutral measure, the underlying nondivi- 
dend-paying stock price S(t) and its components are, for any t, given by 

d S(t) 
S (t) = [R(t) - A/tj]dt + V(t)dws(t) + J(t)dq(t) (1) 

dV(t) = [O - KVV(t)]dt + (vV_(t)dcoJ(t) (2) 

2 This finding is in accord with Galai's (1983) results that in any hedging scheme it is probably 
more important to control for stochastic volatility than for discrete hedging (see Hull and White 
(1987b) for a similar, simulation-based result for currency options). 
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ln[1 + J(t)] - N(ln[1 + ,ij] - 1/2 o-j, oj), (3) 

where: 

R(t) is the time-t instantaneous spot interest rate; 
A is the frequency of jumps per year; 
V(t) is the diffusion component of return variance (conditional on no jump 
occurring); 
wS(t) and cov(t) are each a standard Brownian motion, with 
Covt~dois(t), dojv(t)] pdt; 
J(t) is the percentage jump size (conditional on a jump occurring) that is 
lognormally, identically, and independently distributed over time, with 
unconditional mean lij. The standard deviation of ln[1 + J(t)] is oJ;3 
q(t) is a Poisson jump counter with intensity A, that is, Pr{dq(t) = 1} = Adt 
and Pr{dq(t) = 0} = 1 - Adt; 
KV, OV /KV, and ov are respectively the speed of adjustment, long-run mean, 
and variation coefficient of the diffusion volatility V(t); 
q(t) and J(t) are uncorrelated with each other or with ws(t) and cW(t). 

Under the assumed framework, the total return variance can be decomposed 
into two components: 

1 / dS(t)\ 
dt art St) Vt 

2 
where Vj(t)= (1/dt) Vart[J(t)dq(t)] A[,4J + (e'J - 1) (1 + gj)2] is the 
instantaneous variance of the jump component. 

This stock-return distributional assumption, similar to the one in Bates 
(1996a) for currency prices, offers a sufficiently versatile structure that can 
accommodate most of the desired features. For instance, skewness in the 
distribution is controlled by either the correlation p or the mean jump jJ whereas 
the amount of kurtosis is regulated by either the volatility diffusion parameter o-v 
or the magnitude and variability of the jump component. But the ability of the 
diffusion component V(t) to generate enough short-run negative skewness or 
excess kurtosis is limited, as V(t) can only follow a continuous sample path. On the 
other hand, the discontinuous jump process can internalize any skewness and 
kurtosis level even in the short run, especially when A, ,u and ouj are substantial. 
Therefore, these two forces capture different aspects of return distributions. 

Next, to ensure proper discounting of future cash flows, we adopt a single- 
factor term structure model of the Cox, Ingersoll, and Ross (1985) type as it 
requires the estimation of only three structural parameters: 

dR(t) = [OR - KRR(t)]dt + R R(t0dWR(t), (5) 

3 See, for example, Bates (1996a,c), Merton (1976), and Scott (1997) for a similar jump setup. 
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where KR, OR/KR, and CR are respectively the speed of adjustment, long-run 
mean, and volatility coefficient of the R(t) process; and coR(t) is a standard 
Brownian motion, uncorrelated with any other process in the economy.4 Of 
course, we can add more factors to the term structure model and make the 
resulting bond price formulas more plausible, but that will also make the 
option pricing formula harder to implement. 

It is important to realize that the exogenous valuation framework given 
above can be derived from a general equilibrium in which the volatility risk 
V(t), interest rate risk R(t), and jump risk J(t)dq(t) are all rewarded. For 
instance, Bakshi and Chen (1997a) and Bates (1996a,c) provide such examples 
in which each risk factor earns a risk premium proportional to the factor itself. 
That is, the factor prices for V(t) and R(t) are respectively bvV(t) and brR(t), for 
some constants bv and br. These factor prices are implicitly reflected in equa- 
tions (2) and (5) and adjusted through KV and KR, respectively. Therefore, factor 
risk premiums are not assumed to be zero in our framework. Rather, they have 
been internalized in the stochastic structure. 

Consider first a zero-coupon bond that pays $1 in T periods from time t, and 
let B(t, T) be its current price. Then, 

/ ft+T 
B(t, T) = EQ1 expt -J R(u) du = exp[-ip(T) - e(T)R(t)], (6) 

where 

(T) = 2 ( KR)T+ 2 1n41 - e K }' 

= 2(1 - e-IT) 2 U 

eO(T) 2s; - [s; - KR (1 - e-ST)9 X - K2R+ 2(J2 

4 This assumption on the correlation between stock returns and interest rates is somewhat 
severe and likely counterfactual. To gauge the potential impact of this assumption on the resulting 
option model's performance, we initially adopt the following stock price dynamics: 

dS(t) S(()) = tt(S, t)dt + VV(6S(t) + US,RR6d(0R(0), 

with the rest of the stochastic structure remaining the same as given above. Under this more 
realistic structure, the covariance between stock price changes and interest rate shocks is 
CovjdS(t), dR(t)] = US, RoRR(t)S(t)dt, so bond market innovations can be transmitted to the stock 
market and vice versa. The obtained closed-form option pricing formula under this scenario would 
have one more parameter Us, R than the one presented shortly, but when we implement this 
slightly more general model, we find its pricing and hedging performance to be indistinguishable 
from that of the SVSI model studied in this article. For this reason, we choose to set Us R = 0. We 
could also make both the drift and the diffusion terms of V(t) a linear function of R(t) and coR(t). In 
such cases, the stock returns, volatility and interest rates would all be correlated with each other 
(at least globally), and we could still derive the desired equity option valuation formula. But, that 
would again make the resulting formula more complex while not improving its performance. 
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and EQ(-) is the expectations operator with respect to the risk-neutral measure. 
For a European call option written on the stock with strike price K and 

term-to-expiration T, its time-t price C(t, T) must, by a standard argument, 
solve 

1 a2C ac a2C 1 a2C ac 
-VS2 2 + [R - Xplj]Sas + PuVS + +2 EQ - VV 

1 a2C aC aC 
+ 2oTRIaR2 + [OR KRI] aR- d-RC 

+ AE{C(t, T; S(1 + J), R, V)- C(t, ; S, R, V)} = 0. (7) 

subject to C(t + , 0) = max{S(t + T) - K, 0}. In the Appendix it is shown that 

C(t, T) = S(t)l1(t, T; S, R, V) - KB(t, I)fl2(t, T; S, R, V), (8) 

where the risk-neutral probabilities, 1I1 and 2, are recovered from inverting 
the respective characteristic functions (see Bates (1996a,c), Heston (1993), and 
Scott (1997) for similar treatments): 

HIj(t, T; S (t), R (t), V(t)) 

1 1 f0 [e`On[K]fj(t, T, S(t) I tR (, (t); 4)1 
2 + - j e R()d d4, (9) 

forj = 1, 2, with the characteristic functions fi respectively given in equations 
(Al0) and (All) of the Appendix. The price of a European put on the same stock 
can be determined from the put-call parity. 

The option valuation model in equation (8) has several distinctive features. 
First, it applies to economies with stochastic interest rates, stochastic volatil- 
ity, and jump risk. It contains most existing models as special cases. For 
example, we obtain (i) the BS model by setting A = 0 and OR = KR = R = o= 

KV = o-v = O; (ii) the SI model by settingA = 0 and Ov = KV o- v = O; (iii) the SV 
model by setting A = 0 and OR = KR -R= 0; (iv) the SVSI model by setting 
A = 0; and (v) the SVJ model by letting OR = KR = CR= 0, where to derive each 
special case from equation (8) one may need to apply L'Hopital's rule. The 
Appendix provides the exact option pricing formulas respectively for the SV, 
the SVSI, and the SVJ models. Second, this general model allows for a flexible 
correlation structure between the stock return and its volatility, as opposed to 
the perfect correlation assumed in, for instance, Heston (1993). Third, when 
compared to the model in Scott (1997), the formula in equation (8) is parsimo- 
nious in the number of parameters; especially since it is given only as a 
function of identifiable variables such that all parameters can be estimated. 

The pricing formula in equation (8) applies to European equity options. But 
in reality most option contracts are American in nature. While it is beyond the 
scope of the present article to derive a model for American options, it is 
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nevertheless possible to capture the first-order effect of early exercise in the 
following manner. For options with early exercise potential, compute the 
Barone-Adesi and Whaley (1987) early-exercise premium, treating it as if the 
stock volatility and the yield-curve were time-invariant. Adding this early- 
exercise adjustment component to the European option price in equation (8) 
should result in a reasonable approximation of the corresponding American 
option price (e.g., Bates (1996a)). Alternatively, one can follow such a nonpara- 
metric approach as in At-Sahalia and Lo (1996) and Broadie, Detemple, 
Ghysels, and Torres (1996) to price American options. 

The closed-form option pricing formula in equation (8) makes it possible to 
derive comparative statics and hedge ratios analytically. In the present context, 
there are three sources of stochastic variations over time, price risk S(t), volatility 
risk V(t) and interest rate risk R(t). Consequently, there are three deltas: 

aC (t, v) 
AS(t, T; K) =Ct as = 17I - 0 (10) 

a C(t, T) s W ll (tT H2 
AV~t T;K aCvr an1 K an2 (11) A a(t, v; K) , S(t) - KB(t, r) 

aCt =5(t) -KB 
AR(t, T; K) - aR R B(t, T){ aR e(T)f2j (12) 

where, for g = V, R and j = 1, 2, 

a 1 f F afl 
ag= - 

o ~JRe [(ip)-le iln[] ag] do. (13) 

The second-order partial derivatives with respect to these variables are provided 
in the Appendix. These analytical expressions for the deltas form a convenient 
basis for constructing hedges such as the ones to be analyzed shortly. 

II. Data Description 

Based on the following considerations, we use S&P 500 call option prices for 
our empirical work. First, options written on this index are the most actively 
traded European-style contracts. Second, the daily dividend distributions are 
available for the index (from the S&P 500 Information Bulletin). Furthermore, 
S&P 500 options and options on S&P 500 futures have been the focus of many 
existing investigations including, among others, Bakshi, Cao, and Chen (1997), 
Bates (1996c), Dumas, Fleming, and Whaley (1995), Madan and Chang (1996), 
Nandi (1996), and Rubinstein (1994). Finally, we also use S&P 500 puts to 
estimate the pricing and hedging errors of all the models and find the results 
to be qualitatively similar. To save space, we only report the results based on 
the calls. 
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The sample period extends from June 1, 1988 through May 31, 1991. The 
intradaily bid-ask quotes for S&P 500 options are obtained from the Berkeley 
Option Database.5 To ease computational burden, for each day in the sample, 
only the last reported bid-ask quote (prior to 3:00 PM Central Standard Time) 
of each option contract is employed in the empirical tests. Note that the 
recorded S&P 500 index values are not the daily closing index levels. Rather, 
they are the corresponding index levels at the moment when the option bid-ask 
quote is recorded. Thus, there is no nonsynchronous price issue here, except 
that the S&P 500 index level itself may contain stale component stock prices 
at each point in time. 

The data on the daily Treasury-bill bid and ask discounts with maturities up 
to one year are hand-collected from the Wall Street Journal and provided to us 
by Hyuk Choe and Steve Freund. By convention, the average of the bid and ask 
Treasury bill discounts is used and converted to an annualized interest rate. 
Since Treasury bills mature on Thursdays while index options expire on the 
third Friday of the month, we utilize the two Treasury-bill rates straddling an 
option's expiration date to obtain the interest rate corresponding to the op- 
tion's maturity. This is done for each contract and each day in the sample. The 
30-day Treasury bill rate is the surrogate for the short rate in equation (5). 

For European options, the spot stock price must be adjusted for discrete 
dividends. For each option contract with T periods to expiration from time t, we 
first obtain the present value of the daily dividends D(t) by computing 

T-t 

D(t T) > eR(ts)sD(t + s), (14) 
s=1 

where R(t, s) is the s-period yield-to-maturity. In the next step, we subtract the 
present value of future dividends from the time-t index level, in order to obtain 
the dividend-exclusive S&P 500 spot index series that is later used as input 
into the option models. This procedure is repeated for all option maturities and 
for each day in our sample. 

Several exclusion filters are applied to construct the option bid-ask price 
data. First, option price quotes that are time-stamped later than 3:00 PM 

Central Standard Time are eliminated. This ensures that the spot price is 
recorded synchronously with its option counterpart. Second, as options with 
less than six days to expiration may induce liquidity-related biases, they are 
excluded from the sample. Third, to mitigate the impact of price discreteness 
on option valuation, price quotes lower than $3/8 are not included. Finally, 
quotes not satisfying the arbitrage restriction 

C(t, T) ? max(O, S(t) - K, S(t) - D(t, T) - KB(t, T)) (15) 

5 Early in the project we used only option transaction price data for the empirical work, but, that 
data set is much smaller, especially for the hedging exercise. Nonetheless, the results based on the 
transaction prices are similar to those based on mid-point bid-ask quotes. 
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Table I 

Sample Properties of S&P 500 Index Options 
The reported numbers are respectively the average quoted bid-ask mid-point price, the average 
effective bid-ask spread (ask price minus the bid-ask mid-point) which are shown in parentheses, 
and the total number of observations (in braces), for each moneyness-maturity category. The 
sample period extends from June 1, 1988 through May 31, 1991 for a total of 38,749 calls. Daily 
information from the last quote (prior to 3:00 p.m. CST) of each option contract is used to obtain 
the summary statistics. S denotes the spot S&P 500 index level and K is the exercise price. OTM, 
ATM, and ITM denote out-of-the money, at-the-money, and in-the-money options, respectively. 

Moneyness Days-to-Expiration 

SIK <60 60-180 >180 Subtotal 

OTM <0.94 $1.68 $4.38 $8.58 
(0.06) (0.16) (0.26) 
{542} {2330} {1847} {4719} 

0.94-0.97 $2.35 $8.02 $15.12 
(0.09) (0.23) (0.35) 

{1943} {1966} {965} {4874} 

ATM 0.97-1.00 $4.83 $12.79 $20.17 
(0.15) (0.29) (0.40) 

{2703} {1919} {1003} {5625} 
1.00-1.03 $10.42 $18.72 $26.44 

(0.23) (0.35) (0.45) 
{2543} {1793} {931} {5267} 

ITM 1.03-1.06 $17.77 $25.52 $33.00 
(0.30) (0.41) (0.50) 

{2255} {1566} {738} {4559} 
?1.06 $39.40 $48.06 $58.12 

(0.37) (0.46) (0.50) 
{5137} {5269} {3299} {13705} 

Subtotal {15123} {14843} {8783} {38749} 

are taken out of the sample. Based on this criterion, 624 observations (approx- 
imately 1.3 percent of the original sample) are eliminated and those calls are 
all deep in-the-money. 

We divide the option data into several categories according to either mon- 
eyness or term to expiration. Define S(t) - K as the time-t intrinsic value of a 
call. A call option is then said to be at-the-money (ATM) if its SIK E (0.97, 1.03); 
out-of-the-money (OTM) if SIK ' 0.97; and in-the-money (ITM) if SIK- 1.03. A 
finer partition resulted in six moneyness categories. By the term to expiration, 
an option contract can be classified as (i) short-term (<60 days); (ii) medium- 
term (60-180 days); and (iii) long-term (>180 days). The proposed moneyness 
and maturity classifications produce 18 categories for which the empirical 
results will be reported. 

Table I describes certain sample properties of the S&P 500 call prices used 
in the study. Summary statistics are reported for the average bid-ask mid- 
point price, the average effective bid-ask spread (i.e., the ask price minus the 
bid-ask midpoint), and the total number of observations, for each moneyness- 
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maturity category. Note that there are a total of 38,749 call option observa- 
tions, with ITM and ATM options respectively taking up 47 percent and 28 
percent of the total sample, and that the average call price ranges from $1.68 
for short-term, deep OTM options to $58.12 for long-term, deep ITM calls. The 
effective bid-ask spread varies from $0.06 (for short-term deep OTM options) to 
$0.50 (for long-term deep ITM options). 

III. Structural Parameter Estimation and In-Sample Performance 

For the empirical work to follow, we concentrate on the four models: the BS, 
the SV, the SVSI, and the SVJ.6 As stated before, the analysis is intended to 
present a complete picture of what each generalization of the benchmark BS 
model can really buy in terms of performance improvement and whether each 
generalization produces a worthy tradeoff between benefits and costs. 

To get a sense of what we should look for in any desirable alternative to the 
BS model, let us use the described data set to examine the extent and the 
direction of biases associated with the BS. To do this, we back out a BS implied 
volatility from each option price in the sample. Then, we equally weigh the 
implied volatilities of all call options in a given moneyness-maturity category, 
to produce an average implied volatility. The calculations are similarly done 
for put options. Table II reports the average BS implied-volatility values across 
six moneyness and three maturity categories, for both calls and puts as well as 
for both the entire sample period and different subperiods. Clearly, regardless 
of sample (sub)period and term to expiration, the BS implied volatility exhibits 
a strong U-shaped pattern (smile) as the call option goes from deep ITM to 
ATM and then to deep OTM or as the put option goes from deep OTM to ATM 
and then to deep ITM, with the deepest ITM call-implied and the deepest OTM 
put-implied volatilities taking the highest values. Furthermore, the volatility 
smiles are the strongest for short-term options (both calls and puts), indicating 
that short-term options are the most severely mispriced by the BS model and 
present perhaps the greatest challenge to any alternative option pricing model. 
For a given sample (sub)period and moneyness range, the implied volatility is 
downward-sloping in most cases and exhibits a slight U-shape in some cases, 
as the term to expiration increases. This is again true for both calls and puts. 
These findings of clear moneyness-related and maturity-related biases associ- 
ated with the BS are consistent with those in the existing literature (e.g., Bates 
(1996b)). Therefore, any acceptable alternative to the BS model must show an 
ability to properly price non-ATM options, especially short-term OTM calls and 
puts. As the smile evidence is indicative of negatively-skewed implicit return 
distributions with excess kurtosis, a better model must be based on a distri- 
butional assumption that allows for negative skewness and excess kurtosis. 

6 In an earlier version of the article we also report the performance results for the SI model. 
Since incorporating stochastic interest rates does not help improve performance much, we omit the 
SI model from the discussions to follow. For the same reason, we do not report the SVSI-J model's 
results. 
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Table II 

Implied Volatility from the Black-Scholes Model 
The implied volatility is obtained by inverting the Black-Scholes model separately for each call 
(put) option contract. The implied volatilities of individual calls (puts) are then averaged within 
each moneyness-maturity category and across the days in the sample. Moneyness is determined by 
SIK, where S denotes the spot S&P 500 index level and K is the exercise price. 

Call Options Put Options 
Days-to-Expiration Days-to-Expiration 

Sample Period SIK <60 60-180 >180 <60 60-180 ?180 

June 1988- <0.94 18.27 17.25 16.58 24.64 20.05 18.93 
May 1991 0.94-0.97 16.64 16.89 17.30 17.91 17.57 18.11 

0.97-1.00 16.95 17.76 17.72 16.95 18.00 18.54 
1.00-1.03 18.80 18.95 18.83 18.68 19.25 19.63 
1.03-1.06 21.40 20.04 19.91 21.29 20.37 20.80 

?1.06 28.72 23.14 21.35 26.77 23.72 23.38 

June 1988- <0.94 17.27 16.55 16.09 23.15 19.80 20.10 
May 1989 0.94-0.97 16.21 16.42 16.95 17.66 17.62 19.11 

0.97-1.00 16.33 16.89 17.03 16.11 17.51 18.84 
1.00-1.03 17.70 17.58 18.04 17.42 18.19 19.81 
1.03-1.06 19.63 17.56 18.44 19.04 18.24 20.29 

?1.06 27.03 20.07 18.76 21.84 20.54 22.34 

June 1989- <0.94 16.16 15.64 15.96 23.20 17.80 17.61 
May 1990 0.94-0.97 15.10 15.89 17.02 16.58 16.29 17.55 

0.97-1.00 15.83 16.97 17.53 15.95 16.98 17.98 
1.00-1.03 17.93 18.31 18.53 17.81 18.39 19.19 
1.03-1.06 20.74 19.45 19.91 20.65 19.72 20.62 

?1.06 28.45 23.15 21.40 25.70 23.24 22.95 

June 1990- <0.94 19.70 18.81 17.55 25.64 20.73 18.87 
May 1991 0.94-0.97 18.23 18.24 17.70 18.83 18.63 18.09 

0.97-1.00 18.65 19.25 18.37 18.70 19.43 18.88 
1.00-1.03 20.57 20.64 19.55 20.55 20.87 19.92 
1.03-1.06 23.37 22.02 20.58 23.34 22.27 21.20 

?1.06 30.34 24.94 23.24 29.31 25.57 24.61 

Note that in Table II the implied volatility of calls in a given ITM (OTM) 
category is quite similar to the implied volatility of puts in the opposing OTM 
(ITM) category, which is generally true regardless of sample period or term to 
expiration. Especially, for a fixed term to expiration, calls and puts imply the 
same U-shaped volatility patterns across strike prices. Such similarities in 
pricing structure exist between calls and puts mainly due to the working of the 
put-call parity. It is this link that makes puts and calls of the same strike price 
and the same expiration exhibit similar levels of mispricing, whenever one side 
of the put-call parity is mispriced by an option pricing model. For this reason, 
basing the discussions to follow solely on results obtained from the S&P 500 
calls should not present a biased picture of the candidate models (either 
qualitatively or even quantitatively). 
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A. Estimation Procedure 

In applying option pricing models, one always encounters the difficulty that 
the spot volatility and the structural parameters are unobservable. Take the 
SVJ model, for instance. Suppose that a call option is to be priced or hedged. 
Then, the strike price and the term to expiration are specified in the contract, 
while the spot stock price, the spot interest rate, and the matching T-period 
bond price can be taken from published market data. But, the spot volatility 
(conditional on no jump), its related structural parameters (Kr, OQ, o, p), and 
the jump-related parameters (gj, oj, A) need to be estimated. In principle, one 
can apply econometric tools (such as maximum likelihood or the generalized 
methods of moments) to obtain the required estimates. However, such estima- 
tion may not be practical or convenient, because of its stringent requirement 
on historical data. To circumvent this difficulty, practitioners and academics 
alike have traditionally opted to use option-implied volatility based on the 
model. This practice has not only reduced data requirement dramatically but 
also resulted in significant performance improvement (e.g., Bates (1996a,b,c), 
Bodurtha and Courtadon (1987), and Melino and Turnbull (1990, 1995)). To 
follow this tradition, we implement each model by adapting the steps below: 
Step 1. Collect N option prices on the same stock and taken from the same 
point in time (or same day), for any N greater than or equal to one plus the 
number of parameters to be estimated. For each n = 1, . ., N, let T,n and Kn be 
respectively the time-to-expiration and the strike price of the n-th option; Let 
Cn(t, T,, Kn) be its observed price, and Cn(t, Tn, Kn) its model price as deter- 
mined by, for example, formula (8) with S(t) and R(t) taken from the market. 
The difference between Cn and Cn is a function of the values taken by V(t) and 
by I) {KR, 0R' UR' KV, OVr uVg p, A, Rj, oj}. For each n, define 

Ed[V(t), F] -- Cn(t Tn; Kn) - Cn(t, Tn; Kn). (16) 

Step 2. Find V(t) and parameter vector 'F, to solve 

N 

SSE(t) mmin E IEn[V(t), 9]12. (17) 
V(t),4) n = 1 

This step results in an estimate of the implied spot variance and the struc- 
tural parameter values, for date t. Go back to Step 1 until the two steps have 
been repeated for each day in the sample. 

The objective function in equation (17) is defined as the sum of squared 
dollar pricing errors, which may force the estimation to assign more weight to 
relatively expensive options (e.g., ITM options and long-term options) and less 
weight to short-term and OTM options. An alternative could be to minimize 
the sum of squared percentage pricing errors of all options, but that would lead 
to a more favorable treatment of cheaper options (e.g., OTM options) at the 
expense of ITM and long-term options. Based on this and other considerations, 
we choose to adopt the objective function in equation (17). Among others, Bates 
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(1991, 1996a,c), Dumas, Fleming and Whaley (1995), Longstaff (1995), Madan 
and Chang (1996), and Nandi (1996) have applied this technique for similar 
purposes. Applying such an implied-parameter procedure to implement the 
candidate models should in some sense give each model an "equal" chance, and 
it is also consistent with the existing practice of judging a new option pricing 
model's performance relative to that of the BS when the latter is implemented 
using the model's own (time-varying) implied volatility and time-varying in- 
terest rates. 

B. Implied Parameters and In-Sample Pricing Fit 

In implementing the above procedure, we initially use all call options avail- 
able on each given day, regardless of maturity and moneyness, as inputs to 
estimate that day's spot volatility and relevant structural parameters. This 
estimation is separately done for each model and for each day in the June 1988 
to May 1991 period.7 The group in Table III under the heading "All Options" 
reports the daily average and standard error of each so-estimated parameter/ 
volatility series as well as the daily-averaged sum of squared in-sample pricing 
errors (SSE), respectively for the BS, the SV, the SVSI, and the SVJ models. 
These reported statistics are quite informative about the internal working of 
the models. As such, several observations are in order. First, the implied spot 
volatility is on average less than 0.50 percent apart among the BS, the SV, and 
the SVSI models, except that the average implied standard deviation under 
the SVJ is 1.15 percent higher than under the BS model. For each subperiod 
the implied volatilities (not reported in Table III) are also close across the 
models. This closeness in implied volatility is somewhat surprising. It should, 
however, be recognized that option prices and hedge ratios are generally 
sensitive to the volatility input (see Figlewski (1989)). Even small differences 
in volatility can lead to significantly different pricing and hedging results. 

Second, the estimated structural parameters for the spot volatility process 
generally differ across the SV, the SVSI, and the SVJ models (each assuming 
stochastic volatility). To appreciate these estimates, recall that in the SV 
model the skewness and kurtosis levels of stock returns are respectively 
controlled, for the most part, by correlation p and volatility variation coefficient 
ao; The SVSI model relies on the same flexibility, with the additional caveat of 
having stochastic interest rates to ensure more proper discounting of future 
payoffs; In addition to inheriting all features of the SV, the SVJ model also 
allows price jumps to occur, which can internalize more negative skewness and 
higher kurtosis without making other parameters unreasonable. With this in 
mind, note from Table III that when all calls on a given day are used as input 
for the estimation, (i) the implied speed-of-volatility-adjustment KU is the 
highest for the SVJ; (ii) the implied long-run mean volatility is 18.65 percent, 

7 For every model the daily parameter and spot volatility estimates are reasonably stable from 
subperiod to subperiod. Histogram-based inferences indicate that the majority of the estimated 
values are centered around the mean. To save space, the subsample results are not reported and 
are available upon request. 
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Table III 

Implied Parameters and In-Sample Fit 
Each day in the sample, the structural parameters of a given model are estimated by minimizing 
the sum of squared pricing errors between the market price and the model-determined price for 
each option. The daily average of the estimated parameters is reported first, followed by its 
standard error in parentheses. The parameters in the groups under "All Options", "Short-Term 
Options", and "At-the-Money Options" are obtained by respectively using all the available options, 
only short-term options, and only ATM options in the day as input into the estimation. For each 
model, SSE in a given column group denotes the daily average sum of squared errors for all options 
after the All-Options-Based, Maturity-Based, or Moneyness-Based treatment. The structural 
parameters KV,, 0IK,/K and R, (KR, O/KR, and 0R) are respectively the speed of adjustment, the 
long-run mean, and the variation coefficient of the diffusion volatility V(t) (the spot interest rate 
R(t)). The parameter ,j represents the mean jump size, A the frequency of the jumps per year, and 
oj the standard deviation of the logarithm of one plus the percentage jump size. VJ is the 
instantaneous variance of the jump component. BS, SV, SVSI, and SVJ, respectively, stand for the 
Black-Scholes, the stochastic-volatility model, the stochastic-volatility and stochastic-interest-rate 
model, and the stochastic-volatility model with random jumps. 

All Options Short-Term Options At-the-Money Options 

Parameters BS SV SVSI SVJ BS SV SVSI SVJ BS SV SVSI SVJ 

KV 1.15 0.98 2.03 1.62 1.47 3.93 0.99 0.71 1.74 
(0.03) (0.04) (0.06) (0.09) (0.08) (0.08) (0.02) (0.02) (0.04) 

ov 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

O"V 0.39 0.42 0.38 0.44 0.45 0.40 0.40 0.43 0.40 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

p -0.64 -0.76 -0.57 -0.76 -0.80 -0.52 -0.70 -0.79 -0.58 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

A 0.59 0.61 0.68 
(0.02) (0.02) (0.02) 

-0.05 -0.09 -0.04 
(0.00) (0.00) (0.00) 

7J 0.07 0.14 0.06 
(0.00) (0.00) (0.00) 

\/V? (%) 6.15 12.30 6.65 
(0.22) (0.17) (0.21) 

KR 0.58 0.40 0.69 
(0.02) (0.02) (0.02) 

OR 0.02 0.02 0.02 
(0.00) (0.00) (0.00) 

0CR 0.03 0.03 0.03 
(0.00) (0.00) (0.00) 

Implied 18.23 18.66 18.65 19.38 18.15 18.45 18.54 20.65 18.74 18.48 18.36 19.03 
Volatility (%) (0.14) (0.14) (0.15) (0.16) (0.14) (0.14) (0.14) (0.15) (0.14) (0.14) (0.15) (0.16) 

SSE 69.60 10.63 10.68 6.46 28.09 5.48 5.16 2.63 25.34 5.98 5.45 5.31 
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20.20 percent, and 15.32 percent, respectively, for the SV, the SVSI, and the 
SVJ; and (iii) the variation coefficient av and the magnitude of p are the lowest 
for the SVJ, followed by the SV model. These estimates together present the 
picture that, to the extent that the pricing structure of the calls can be 
explained respectively by each model, the SVJ model's demand on the V(t) 
process is the least stringent as it requires both the lowest av and the lowest 
p (in magnitude), whereas the SVSI requires av and p to be respectively as high 
as 0.42 and -0.76. The SVJ model attributes part of the implicit negative 
skewness and excess kurtosis to the possibility of a jump occurring with an 
average frequency of 0.59 times per year and an average jump size of -5 
percent (with the jump size uncertainty estimated at 7 percent).8 The finding 
that the SVSI implied-parameter values seem to be less reasonable than their 
SV counterparts is surprising, as one would expect the three extra parameters 
(related to the interest rate process) to make the SVSI model fit the data 
better. This poor performance by the SVSI will show up in other measures to 
be examined as well, suggesting that having more parameters in an option 
pricing model does not necessarily mean better performance. Note that under 
the SVSI the parameter estimates for the short-rate process are comparable to 
those reported in Chan et al. (1992). We defer further discussion on the 
reasonableness of the implied parameters until a later point. 

Finally, the fact that incorporating stochastic interest rates does not seem to 
enhance the SV model's fit is further illustrated by each model's sum of 
squared pricing errors (SSE) across all calls on an average day. From the "All 
Options" panel of Table III, the SSE is 69.60 for the BS and 6.46 for the SVJ, 
while it is 10.63 and 10.68 respectively for the SV and the SVSI. Indeed, the 
SVSI and the SV result in similar in-sample fit. Allowing jumps to occur does, 
however, improve the SV model's in-sample fit further. 

In light of the BS model's moneyness- and maturity-related biases, research- 
ers and especially practitioners have tried to find ways to "live with a smile." 
One of the proposed ways, while arguably ad hoc, is to estimate and use an 
"implied-volatility matrix." For example, if the call option being evaluated is 
ATM and has one month to expiration, use as input to the BS formula the 
volatility implied by one-month calls of similar moneyness. To see how the 
candidate models fare against each other under such a matrix treatment, we 
reestimate and implement the four.models, each time using one of six alter- 
native sets of call options traded on a given day: short-term calls, medium-term 
calls, long-term calls, OTM calls, ATM calls, and ITM calls. Those maturity- 
based or moneyness-based parameter estimates are then applied to price or 
hedge options in the corresponding maturity or moneyness category. 

8 Examining the SV and the SVJ models together, Bates (1996a,c) also finds that the SVJ is less 
demanding than the SV on the volatility process and its correlation with stock price changes. For 
the post-1987 crash years, he identifies an infrequent negative price jump implicit in S&P 500 
futures options of a magnitude similar to ours. His other parameter estimates for the SV and the 
SVJ are also similar to ours in magnitude. 
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Given the space constraint, we present in Table III (i) the parameter sets 
implied by all short-term calls in the sample and (ii) those implied by all ATM 
calls. Short-term options have been the most challenging, and ATM options 
have been much of the focus of empirical option pricing. Let's first look at the 
average parameter values implied by each day's short-term calls in Table III. 
For each model, the estimated structural parameters of the volatility process 
are respectively higher than their counterparts implied by all options of each 
given day. In particular, the volatility coefficient a,, is higher for each model 
than before, meaning that for the short-term options to be priced properly the 
volatility process needs to be more volatile than for all options of any maturity 
to be priced. The implied magnitude of p is also higher than before, for both the 
SV and the SVSI models. More strikingly, even though the implied magnitude 
of p is lower now under the SVJ, the implied jump frequency A, mean jump size 
gj, and jump volatility fj are all higher in magnitude than under "All Op- 
tions." This is to say that for the observed short-term option prices to be 
consistent with the SVJ model, more frequent and more significant market 
crashes (on average, 9 percent price drops) would have to be implicit in the 
underlying stock price process! While the SV and the SVSI attribute the 
relatively high premiums of short-term options to high volatility variations 
and significantly negatively correlated volatility shocks with underlying price 
changes, the SVJ attributes them to the implicit existence of significant and 
somewhat frequent market crashes. 

When only ATM options are used to back out the parameters, the resulting 
estimates for volatility-related parameters do not significantly differ from 
their counterparts under "All Options." But to price the observed ATM option 
prices properly, all the three models with stochastic volatility would require 
volatility shocks to be more negatively correlated with underlying price 
changes. More interestingly, under the SVJ model these option prices imply 
more frequent but lower-magnitude price corrections (on average, 4 percent 
price drops) than either all options or short-term options do. 

As expected, when the parameters and spot volatility are backed out sepa- 
rately using each of the six sets of option prices, the respective in-sample fits 
of the four models are better than when the same one set of parameters is applied 
to all options. This is reflected by the significant reduction in each model's 
daily-averaged SSE. Thus, even though ad hoc, the "implied-parameter matrix" 
treatment helps improve each model's respective in-sample pricing performance. 

The above conclusion has, however, an unfortunate implication as well. That 
is, if each candidate option pricing model were correctly specified, the six sets 
of option prices, formed across either moneyness or maturity, should not have 
resulted in different implied parameter/volatility values nor should the "im- 
plied-parameter matrix" treatment have led to any performance improvement. 
Table III thus indicates that every candidate model is misspecified. 

IV. Assessment of Relative Model Misspecification 

In the two subsections to follow, we assess each model's misspecification 
from a different angle. 
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A. Implied Volatility Graphs 

The first diagnostic of relative model misspecification is to compare the 
implied-volatility patterns of each model across both moneyness and maturity, 
as is done in Rubinstein (1985). For this exercise, we use the subsample data 
from July 1990 to December 1990.9 The basic procedure for backing out each 
model's implied-volatility series is as follows. First, substitute the spot index and 
interest rates of date t as well as the structural parameter values implied by all 
date (t - 1) option prices, into the option pricing formula, which leaves only the 
spot volatility undetermined. Next, for each given call option of date t, find a spot 
volatility value that equates the model-determined price with the observed price 
of the call. Then, after repeating these steps for all options in the sample, obtain 
for each moneyness-maturity category an average implied-volatility value. These 
estimates are grouped into three maturity categories and plotted in Figure 1, 
respectively for the BS, the SV, the SVSI, and the SVJ models. Due to the 
difference in sample periods used, the comparable implied-volatility levels may 
not be exactly the same between Figure 1 and Tables II and III. 

In Figure 1, the SVJ model's implied-volatility pattern smiles the least for 
short-term options, followed in increasing order by the SVSI, the SV, and the 
BS model. However, all models still show some U-shaped moneyness-related 
biases, indicating misspecification by all. For medium-term and long-term 
calls, the implied volatility exhibits a moneyness-related smile only under the 
BS model, but not so under the SV, the SVSI, and the SVJ models. Overall, the 
SV's and the SVSI's patterns are quite close, on a maturity-by-maturity basis. 
Further, relative to other models', the SVJ's implied volatility is persistently 
higher (by about 1.5 percent on average). 

Also in Figure 1, the pricing models (except the SVJ) yield, for each given 
maturity category, virtually identical implied-volatility values for ATM op- 
tions. Take as an example the short-term options. The three implied-volatility 
curves all intersect at about the ATM point. The same is true for the other 
maturity categories. 

B. Internal Consistency of Implied Parameters 

Another way to gauge model misspecification is to follow the approach taken 
by Bates (1996a,c) and examine whether each model's implied parameters are 
consistent with those implicit in the time series of (a) the S&P 500 returns, (b) 
the (implied) volatility, and (c) the spot interest rate. That is, are the daily 
averages of the implied parameters similar in magnitude to those from the 
time series counterparts? The closer the implied parameters, the closer the 
implied time-series path to its observed counterpart for each given variable 
and hence the less misspecified the model. 

9 Since volatility changes over time, we focus on the average implied-volatility patterns for a 
relatively short period of time, rather than for the entire 3-year period. Results from another 
6-month subperiod are similar. 
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Observe that the option-implied parameters correspond to the risk-neutral 
distributions while those estimated from observed time-series data are for the 
true distributions. Thus, before making the desired comparisons, we need to 
separate out the true distributional parameter values from their risk-neutral 
counterparts. For this, we rely on the general-equilibrium models of Bakshi 
and Chen (1997a) and Bates (1996a,c) in which the factor risk premiums are 
proportional to the respective factors and consequently the processes for V(t), 
R(t), q(t) and J(t) under the true probability measure share the same stochastic 
structure as their counterparts under the risk-neutral measure. Specifically, 
O (Tv p, OR9 CR, and oj are the same under either probability; Only Ku , KR, A, 
and ,Rj will change when the probability measure changes from the risk- 
neutral to its true counterpart. Let these parameters under the true probabil- 
ity measure be respectively denoted by R, kR, A, and -j. According to Bates 
(1991), when the risk aversion coefficient of the representative agent is 
bounded within a reasonable range, the parameters of the true distributions 
will not differ significantly from their risk-neutral counterparts. 

For the overall sample period from June 1988 to May 1991, the annualized 
daily S&P 500 returns have a mean of 12.7 percent, a volatility of 17.47 
percent, a skewness of -0.43, and a kurtosis of 6.58. The historical volatility is 
indeed lower than its option-implied counterparts (see Table III). The negative 
skewness and the high kurtosis are in contrast with the skewness (of zero) and 
kurtosis (of 3) allowed by the log-normal distribution in the BS model. The 
distributional assumption of the BS is thus overwhelmingly rejected by the 
data. We only need to focus attention on the relative misspecification of the 
three models with stochastic volatility. In the rest of this subsection, we treat 
the volatility implied by all options in a given day as a surrogate for the 
unobservable true spot volatility of that day. 

Let us first examine the consistency of the option-implied correlation p with 
the sample correlation between daily returns and volatility changes of the S&P 
500 index. If an option model is correctly specified, the average p value implied 
by the option prices must equal its time-series counterpart estimated from the 
daily price and volatility changes. The row marked "Time-series estimate" in 
Table IV provides such estimates of p at - 0.28, - 0.23, and - 0.27, respectively, 
under the SV, the SVJ, and the SVSI model. The magnitudes of these esti- 
mates are much lower than their option-implied counterparts (-0.64, -0.57, 
and -0.76), suggesting that for each model the correlation level implicit in 

Figure 1. The implied volatility graphs are based on the six-month sample period from 
July 1990 through December 1990. Using as inputs (i) current day's interest rate and S&P 500 
index value and (ii) previous day's implied structural parameters, we invert each option formula 
from the market price of a given option, to obtain the model's implied volatility corresponding to 
this option contract. For each model, the reported implied volatility in a given moneyness-maturity 
category is the average of all calls in that moneyness-maturity category and over the entire 
six-month period. BS, SV, SVSI, and SVJ respectively stand for the Black-Scholes, the stochastic- 
volatility model, the stochastic-volatility and stochastic-interest-rate model, and the stochastic- 
volatility model with random jumps. 
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option prices is inconsistent with the time-series relation between stock re- 
turns and implied volatility. Each of the three models is hence significantly 
misspecified. On a relative scale, however, this departure between the average 
implied and the time-series estimated is the weakest for the SVJ, and the 
strongest for the SVSI. Based on his estimated general autoregressive condi- 
tional heteroskedasticity (EGARCH) specification for equity-return dynamics, 
Nelson (1991) gives an estimate of -0.12 for the correlation between stock 
returns and changes in the true volatility, which is closer to our time-series 
estimates than to the average option-implied values of p. 

Next, we adopt the maximum-likelihood (ML) method proposed by Bates 
(1996a) to estimate the structural parameters of V(t) and R(t) (wherever 
applicable) under the true probability measure. Take the volatility process as 
an example. Using the implied-volatility time series as inputs, maximize the 
log-likelihood function 

T 

max E ln{P[ln(V(t + 1))IV(t)]}, (18) 
KU ,0u CU t=1 

where PL I denotes the transition density of the non-central x2 distribution 
given by 

P[ln V(t + At)IV(t)] 

[cV(t + At)]20 6VI2 
0 [c 2V(t)V(t + Kt)ekvAt]j 

exp[cV(t + At) + cV(t)e- KvAt] G[(20U/o-2) +j]j! (19) 
j=O 

where C-1 (1/2KV) oUV (1 - e v At), and G( ) denotes the (statistical) Gamma 
function. The ML estimates of the structural parameters are reported in Table 
IV for the three models. Two observations are in order. First, for each model, 
the ML estimates of KU and OQ are statistically indistinguishable from their 
respective option-implied counterparts (except for the KU estimate of the SVJ 
model). The p-values for the null hypothesis of equality between the ML and 
the option-implied estimates are all in excess of 15 percent (except for the SVJ 
case noted). Second, the implied value of av is, for each model, about four times 
its ML estimate. The volatility process implicit in option prices is therefore 
much too volatile, relative to each implied-volatility time series! According to 
this yardstick, the three models are equally misspecified. This finding is 
similar to those of Bates (1996a,c) using currency and S&P 500 futures options. 

By replacing V(t) in equation (18) with R(t), we also obtain maximum- 
likelihood estimates for 0R KR, and (TR, and report them in Table IV for the 
SVSI (as it is the sole model assuming stochastic interest rates). Unlike the 
previous case for the volatility parameters, the ML estimate of UR is similar to its 
option-implied counterpart, but the ML estimates of OR and RR are several times 
as large as their option-implied counterparts. That is, interest rate volatility 
implicit in option prices is consistent with the interest-rate time series, but the 
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mean-reverting speed and the long-run mean of the spot rate implicit in option 
prices are much lower than the spot rate time series suggests. A possible cause for 
this departure is the existence of a negative interest-rate risk premium, which 
tends to make the risk-neutral KR much lower than the true KR. 

In summary, the models with stochastic volatility each rely on implausible 
levels of correlation p and volatility variation a,, to rationalize the observed 
option prices. While the SV, the SVJ, and the SVSI are clearly misspecified 
(though to a lesser degree compared to the BS),10 how will they perform in 
pricing and hedging options? We answer this question in the sections to follow. 

V. Out-of-Sample Pricing Performance 

We have shown that the in-sample fit of daily option prices is increasingly 
better as we extend from the BS to the SV and then to the SVJ model, even 
though going from the SV to the SVSI does not necessarily improve the fit 
much further. As one may argue, this increasingly better fit might simply be a 
consequence of having an increasingly larger number of structural parame- 
ters. To lower the impact of this connection on inferences, we turn to examin- 
ing each model's out-of-sample cross-sectional pricing performance. For out- 
of-sample pricing, the presence of more parameters may actually cause over- 
fitting and have the model penalized if the extra parameters do not improve its 
structural fitting. 

For this purpose, we rely on previous day's option prices to back out the 
required parameter/volatility values and then use them as input to compute 
current day's model-based option prices. Next, we subtract the model-deter- 
mined price from its observed counterpart, to compute both the absolute 
pricing error and the percentage pricing error. This procedure is repeated for 
every call and each day in the sample, to obtain the average absolute and the 
average percentage pricing errors and their associated standard errors. These 
steps are separately followed for the BS, the SV, the SVSI, and the SVJ models. 
Table V reports the pricing results, where for clarity the standard errors for 
each estimate are omitted as they are generally very small and close to zero. 
Three groups of results are presented to reflect differences in the parameter/ 
volatility values used in the model price calculations. Pricing errors reported 
under the heading "All-Options-Based" are obtained using the parameter/ 
volatility values implied by all of the previous day's call options. Those under 
"Maturity-Based" are obtained using the parameter/volatility values implied 
by those previous-day calls whose maturities lie in the same category (short- 
term, medium-term, or long-term) as the option being priced. Pricing errors 
under "Moneyness-Based" are obtained using the parameter/volatility values 
implied by those previous-day calls whose moneyness levels lie in the same 

10 See Bates (1996c) for other types of consistency tests. He also corrects for measurement- 
error-induced correlations among fitting errors across different contracts. To move on to our 
pricing and hedging exercise, we provide only the consistency tests just discussed. In addition, we 
conduct maximum-likelihood estimations using ATM-option-implied volatilities and find the re- 
sults similar to those reported in Table IV. 
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category (OTM, ATM, or ITM) as the option being priced. In other words, the 
pricing errors under "Maturity-Based" and "Moneyness-Based" respectively 
reflect each model's results from the "implied-parameter matrix" treatments 
based first on maturity and then on moneyness. 

We begin with the absolute and the percentage pricing errors, respectively 
given in Panels A and B of Table V, corresponding to "All-Options-Based." 
First, both pricing error measures rank the SVJ model first, the SVSI second, 
the SV next, and the BS last, except that for a few categories either the SV or 
the SVSI performs slightly better than the others. According to both measures, 
the SVSI does slightly better than the SVJ in pricing the deepest OTM calls 
(regardless of maturity) and the long-term deepest ITM calls. The second part 
of the last statement may not be surprising since one would expect the 
long-term deep ITM calls to be the most sensitive to interest rates. But, the fact 
that the SVJ does not surpass the SVSI in pricing deep OTM calls is somewhat 
a surprise because one would expect the opposite to be true. Second, regardless 
of option moneyness or maturity, incorporating stochastic volatility produces 
by far the most important improvement over the BS model, reducing the 
absolute pricing errors typically by 20 percent to 70 percent. Pricing improve- 
ment for both OTM (especially the deepest OTM) and ITM calls is particularly 
striking. For example, take a typical OTM call with moneyness less than 0.94 
and with less than 60 days to expiration. From Table I, the average price for 
such a call is $1.68. When the BS is applied to value this call, the resulting 
absolute pricing error is, on average, $0.78 as shown in Table V, but when the 
SV is applied, the average error goes down to $0.42. As another example, for 
calls of the deepest moneyness (S/K 2 1.06) and the longest term-to-expiration 
(greater than 180 days), their average price is $58.12, the BS gives an average 
pricing error of $1.57, and the SV results in an average error of $0.65. Table V, 
together with Figure 1, thus suggests that once stochastic volatility is modeled, 
adding other features will usually lead to second-order pricing improvement. 
Third, for a given moneyness category and regardless of the pricing model, the 
absolute pricing errors typically increase from short- to medium- to long-term 
options. By the percentage pricing error measure, while the BS exhibits clear 
moneyness- and maturity-related biases, the other three models do not except 
for short-term options. In fact, except for the deepest OTM calls as well as 
short-term calls, the percentage pricing errors are all below 1 percent in 
magnitude for the SV, the SVSI, and the SVJ. 

A possible concern about the relatively large mispricing of short-term as well 
as OTM options is that the objective function in equation (17) is biased in favor 
of more expensive calls (i.e., long-term and ITM calls). In addition, as shown in 
Table I, far more sample observations are in the more expensive, ITM catego- 
ries, which is also to the disadvantage of OTM options. As each estimation tries 
to minimize the sum of squared dollar pricing errors, these two factors must 
have exaggerated the extent of poor fit for short-term and OTM options by each 
candidate pricing model. This possible exaggeration, however, should not 
affect the overall conclusion regarding the pricing structure of short-term and 
OTM options relative to others. The reason is that in both Table II and Figure 
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Table V 

Out-of-Sample Pricing Errors 
For a given model, we compute the price of each option using the previous day's implied param- 
eters and implied stock volatility. The reported absolute pricing error is the sample average of the 
absolute difference between the market price and the model price for each call in a given 
moneyness-maturity category. The reported percentage pricing error is the sample average of the 
market price minus the model price, divided by the market price. The results under "All-Options- 
Based" are obtained using the parameters implied by all of the previous day's calls; those under 
"Maturity-Based" using the parameters implied by the previous day's options of a given maturity 
(short-, medium-, or long-term) to price the current day's options of the same maturity; those under 
"Moneyness-Based" using the parameters implied by the previous day's options of a given mon- 
eyness (Out-, At-, or In-the-money; OTM, ATM, ITM) to price the current day's options of the same 
moneyness. The sample period is June 1988-May 1991, with a total of 38,749 call option prices. 
BS, SV, SVSI, and SVJ, respectively, stand for the Black-Scholes, the stochastic-volatility model, 
the stochastic-volatility and stochastic-interest-rate model, and the stochastic-volatility model 
with random jumps. 

All-Options-Based Maturity-Based Moneyness-Based 

Moneyness Days-to-Expiration Days-to-Expiration Days-to-Expiration 

S/K Model <60 60-180 ?180 <60 60-180 ?180 <60 60-180 ?180 

Panel A: Absolute Pricing Errors 

<0.94 BS $0.78 $1.39 $1.89 $1.02 $1.48 $1.78 $0.41 $0.63 $0.78 
SV 0.42 0.43 0.61 0.38 0.42 0.58 0.32 0.36 0.53 
SVSI 0.37 0.39 0.57 0.38 0.40 0.52 0.30 0.36 0.53 
SVJ 0.37 0.40 0.59 0.27 0.40 0.58 0.33 0.36 0.54 

0.94-0.97 BS 0.76 1.02 1.16 0.73 1.07 1.15 0.45 0.53 0.69 
SV 0.46 0.41 0.54 0.33 0.41 0.54 0.34 0.38 0.53 
SVSI 0.40 0.40 0.55 0.34 0.41 0.52 0.34 0.38 0.52 
SVJ 0.38 0.38 0.53 0.25 0.39 0.53 0.33 0.38 0.51 

0.97-1.00 BS 0.61 0.62 0.66 0.51 0.64 0.66 0.70 0.74 0.94 
SV 0.48 0.41 0.53 0.39 0.41 0.52 0.40 0.43 0.60 
SVSI 0.47 0.41 0.54 0.39 0.42 0.51 0.39 0.42 0.60 
SVJ 0.42 0.40 0.52 0.31 0.40 0.51 0.36 0.41 0.63 

1.00-1.03 BS 0.52 0.69 0.81 0.45 0.65 0.84 0.47 0.50 0.69 
SV 0.41 0.43 0.53 0.40 0.41 0.51 0.38 0.43 0.54 
SVSI 0.43 0.42 0.53 0.41 0.41 0.49 0.38 0.42 0.52 
SVJ 0.40 0.42 0.51 0.37 0.41 0.50 0.37 0.41 0.51 

1.03-1.06 BS 0.76 1.21 1.30 0.77 1.14 1.37 0.51 0.85 1.76 
SV 0.45 0.47 0.55 0.41 0.41 0.51 0.48 0.48 0.67 
SVSI 0.42 0.45 0.54 0.41 0.41 0.50 0.48 0.48 0.66 
SVJ 0.39 0.44 0.53 0.39 0.41 0.51 0.39 0.42 0.53 

?1.06 BS 0.82 1.39 1.57 0.79 1.35 1.64 0.56 0.62 0.72 
SV 0.54 0.49 0.65 0.47 0.40 0.51 0.44 0.41 0.54 
SVSI 0.52 0.51 0.51 0.48 0.42 0.47 0.43 0.41 0.52 
SVJ 0.43 0.43 0.56 0.36 0.39 0.50 0.40 0.42 0.54 
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Table V-Continued 

All-Options-Based Maturity-Based Moneyness-Based 

Moneyness Days-to-Expiration Days-to-Expiration Days-to-Expiration 

S/K Model <60 60-180 ?180 <60 60-180 >-180 <60 60-180 >180 

Panel B: Percentage Pricing Errors 

<0.94 BS -65.78% -41.87% -26.85% -82.99% -44.08% -25.30% -29.21% -18.59% -9.87% 
SV -26.48 -2.78 -3.50 6.63 1.82 0.32 -15.04 -1.21 0.71 
SVSI -17.22 -1.38 -1.43 5.26 1.38 -0.41 -10.62 -0.65 -1.71 
SVJ -19.79 -1.44 2.13 2.88 0.14 -0.43 -12.39 -1.58 0.11 

0.94-0.97 BS -38.23 -15.14 -7.39 -35.52 -15.86 -7.18 -15.38 -2.34 2.73 
SV -17.29 -1.80 0.28 1.85 -1.42 -0.55 -9.26 0.13 -0.06 
SVSI -11.59 -0.70 0.12 2.14 -1.08 -0.17 -8.13 0.06 0.08 
SVJ -11.99 -1.03 0.06 -0.39 -0.81 -0.48 -6.97 0.07 -0.04 

0.97-1.00 BS -13.73 -3.11 -1.25 -11.61 -3.60 -1.18 -17.64 -5.62 -3.63 
SV -9.87 -0.47 -0.25 -5.08 -1.04 -0.24 -6.17 0.97 0.03 
SVSI -8.84 -0.57 -0.39 -5.01 -1.10 -0.29 -5.04 0.89 -0.02 
SVJ -6.87 -0.33 -0.32 -0.81 -0.63 -0.17 -3.11 0.25 -0.74 

1.00-1.03 BS 1.09 2.61 2.00 1.58 2.28 2.41 -0.55 0.91 0.12 
SV -1.16 0.54 -0.32 -1.09 -0.30 0.16 -0.68 0.75 -0.36 
SVSI -1.73 0.05 -0.50 -1.16 -0.46 -0.09 -0.79 0.64 -0.31 
SVJ -1.11 0.31 -0.26 0.05 -0.20 0.20 -0.35 0.47 -0.36 

1.03-1.06 BS 3.90 4.57 3.70 4.02 4.29 4.01 -0.51 -2.76 -5.05 
SV 1.47 0.92 -0.32 1.05 0.09 0.25 -1.01 -0.58 0.33 
SVSI 1.00 0.50 -0.42 1.04 -0.01 -0.05 -1.07 -0.62 0.44 
SVJ 0.69 0.55 -0.20 0.22 0.03 0.24 0.26 0.34 -0.12 

?-1.06 BS 2.49 3.27 2.85 2.41 3.16 3.01 1.45 0.89 -0.30 
SV 1.46 0.79 -0.66 1.18 0.32 -0.02 0.80 0.25 -0.23 
SVSI 1.36 0.74 -0.28 1.21 0.40 0.03 0.72 0.22 -0.16 
SVJ 0.86 0.50 -0.41 0.09 0.17 -0.04 0.65 0.36 -0.36 

1, even when the BS implied volatility is estimated for each option individually 
(so that no weighting across options is involved), the volatility smile is clearly 
the sharpest for short-term options. 

Observe that all four models produce negative percentage pricing errors for 
options with moneyness SIK c 1.00, and positive percentage pricing errors for 
options with S/K -1.03, subject to their time-to-expiration not exceeding 180 
days. This means that the models systematically overprice OTM calls while 
they underprice ITM calls. But the magnitude of such mispricing varies dra- 
matically across the models, with the BS producing the highest and the SVJ 
the lowest errors. 

The "Maturity-Based" results in Table V are obtained following the rule that 
short-term-options-implied parameter/volatility estimates are used to price 
the next day's short-term options, medium-term-options-implied estimates to 
price the next day's medium-term options, and so on. Given that short-term 
options are the most mispriced by every model (in terms of percentage pricing 
errors), this maturity-based treatment should work in favor of short-term options 
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in particular. While the maturity-based results in Table V do not affect the 
relative ranking of the four models, they do show differential ability by the models 
to benefit from this treatment. First, according to the absolute pricing errors, the 
BS model's performance is better under this treatment than under "All Options- 
Based" parameters only for some moneyness categories of a given maturity, and 
it is actually worse for other moneyness categories of the same maturity. For the 
other three models with stochastic volatility, the absolute pricing errors under 
this treatment are lower than their respective values under "All-Options-Based," 
with the improvement for short-term and long-term calls particularly noticeable. 
Among the four models, the SVJ shows the best ability in improving the pricing of 
short-term options (over what can be achieved under "All-Options-Based" param- 
eters), while the SVSI is ahead of the others in further improving the pricing of 
long-term options. The same conclusions can be reached regarding the models 
even according to the percentage pricing errors. 

Results from the moneyness-based treatment, in which OTM-options-based 
parameters are used to price OTM options and so on, also do not affect the 
relative ranking of the models. These results in Table V demonstrate, however, 
that each model can benefit differently from this moneyness-based treatment: 
the BS model benefits the most while the SVJ benefits the least. This finding 
may not be surprising given that in Figure 1, the BS shows the strongest 
moneyness-related biases whereas the SVJ shows the weakest such biases. 

To further understand the structure of remaining pricing errors, we appeal 
to a regression analysis to study the association between the errors and factors 
that are either contract-specific or market condition-dependent. We first fix an 
option pricing model, and let En(t) denote the n-th call option's percentage 
pricing error on day t. Then, we run the regression below for the entire sample: 

S(t) 
En(t) = 130 + 31 K + [32Tn + 133 SPREADJ(t) + 134 SLOPE(t) 

n 
+ 05 LAGVOL(t - 1) + 'qn(t), (20) 

where Kn is the strike price of the call, Tn the remaining time to expiration, and 
SPREADn(t) the percentage bid-ask spread at date t of the call (i.e., (Ask - 
Bid)1[0.5(Ask + Bid)]), all of which are contract-specific variables. The vari- 
able, LAGVOL(t - 1), is the (annualized) standard deviation of the previous 
day's intraday S&P 500 returns computed over 5-minute intervals, and it is 
included in the regression to see whether the previous day's volatility of the 
underlying may cause systematic pricing biases. The variable, SLOPE(t), 
represents the yield differential between one-year and 30-day Treasury bills, 
and it provides information on whether the single-factor Cox-Ingersoll-Ross 
(1985) term structure model assumed in the present paper (for the SVSI) is 
sufficient to make the resulting option formula capture all term structure- 
related effects on the S&P 500 index options. In some sense, the contract- 
specific variables help detect the existence of cross-sectional pricing biases, 
whereas LAGVOL(t - 1) and SLOPE(t) serve to indicate whether the pricing 
errors over time are related to the dynamically changing market conditions. 
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Table VI 

Regression Analysis of Pricing Errors 
The regression results below are based on the equation: 

en(t) = 1o + 13i K( + I32Tn + f33 SPREADn(t) + f4 SLOPE(t) + f35 LAGVOL(t - 1) + r1n(t), 
Kn 

where en(t) is the percentage pricing error of the nth call on date-t; S/Kn and Tn respectively 
represent the moneyness and the term-to-expiration of the option contract; the variable 
SPREADn(t) is the percentage bid-ask spread; SLOPE(t) the yield differential between the 1-year 
and the 30-day Treasury bill rates; and LAGVOL(t - 1) the previous day's (annualized) standard 
deviation of S&P 500 index returns computed from 5-minute intradaily returns. The standard 
errors, reported in parentheses, are W7hite's (1980) heteroskedasticity consistent estimator. The 
percentage pricing errors under the group "All-Options-Based" are obtained using the parameters 
implied by all of the previous day's calls. Those under "Maturity-Based" are obtained using the 
parameters implied by the previous day's options of a given maturity (short-, medium-, or 
long-term) to price current day's options of the same maturity. Those under "Moneyness-Based" 
are obtained using the parameters implied by the previous day's options of a given moneyness 
(Out-, At-, or In-the-money; OTM, ATM, or ITM) to price current day's options of the same 
moneyness. The sample period is June 1988-May 1991 for a total of 38,749 observations. BS, SV, 
SVSI, and SVJ, respectively, stand for the Black-Scholes, the stochastic-volatility model, the 
stochastic-volatility and stochastic-interest-rate model, and the stochastic-volatility model with 
random jumps. 

All-Options-Based Maturity-Based Moneyness-Based 

Coefficient BS SV SVSI SVJ BS SV SVSI SVJ BS SV SVSI SVJ 

Constant -0.01 0.20 0.07 0.13 -0.04 0.05 0.01 0.02 0.03 0.11 0.04 0.07 
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) 

S/K 0.13 -0.16 -0.05 -0.10 0.17 -0.04 -0.00 -0.02 0.00 -0.09 -0.03 -0.06 
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

T -0.02 0.05 0.02 0.04 -0.01 0.01 0.01 0.00 0.02 0.03 0.02 0.01 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

SPREAD -5.37 -1.86 -1.26 -1.26 -5.18 -0.27 -0.20 -0.12 -2.78 -1.07 -0.81 -0.78 
(0.10) (0.06) (0.06) (0.06) (0.10) (0.06) (0.06) (0.05) (0.08) (0.05) (0.05) (0.05) 

SLOPE 2.70 0.33 0.08 0.15 1.85 -0.13 -0.30 -0.37 1.79 0.12 0.03 0.08 
(0.13) (0.07) (0.07) (0.07) (0.13) (0.07) (0.07) (0.06) (0.09) (0.06) (0.07) (0.06) 

LAGVOL 0.11 0.03 0.03 0.02 -0.00 0.00 0.00 0.03 0.12 0.04 0.04 0.04 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Adj. R2 0.31 0.09 0.06 .0;5 0.31 0.00 0.00 0.00 0.19 0.05 0.03 0.02 

Table VI reports the regression results based on the entire sample period, 
where the standard error for each coefficient estimate is adjusted according to 
the White (1980) heteroskedasticity-consistent estimator and is given in the 
parentheses. The three groups of results under headings "All-Options-Based," 
"Maturity-Based," and "Moneyness-Based" have the same respective interpre- 
tations as in Table V. We first examine the results for the group under 
"All-Options-Based." Regardless of the model, each independent variable has 
statistically significant explanatory power of the remaining pricing errors. 
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That is, the pricing errors from each model have some moneyness, maturity, 
intra-daily volatility, bid-ask spread, and term-structure related biases. The 
magnitude and sign of each such bias, however, differ among the models. The 
pricing errors due to the three models with stochastic volatility are always 
biased in the same direction. To look at some point estimates, the BS percent- 
age pricing errors will on average be 2.70 points higher when the yield spread 
SLOPE(t) increases by one point, whereas the SV and the SVSI percentage 
errors will only be, respectively, 0.33 and 0.08 points higher in response. The 
SVSI is the only model whose pricing errors are statistically insensitive to 
SLOPE (t), which is expected since it is the only model incorporating a dynamic 
term structure setup. This points out that modeling stochastic interest rates 
can lead to pricing improvement, albeit small. Other noticeable patterns in- 
clude the following. The BS pricing errors are significantly, while the SV, the 
SVSI, and the SVJ pricing errors are only barely, increasing in the underlying 
stock's volatility on the previous day, which confirms that modeling stochastic 
volatility is important. The deeper in-the-money the call or the wider its 
bid-ask spread, the lower the SV's, the SVSI's, and the SVJ's mispricing. But, 
for the BS model, its mispricing increases with moneyness and decreases with 
bid-ask spread. 

Even though all four models' pricing errors are, in most cases, statistically 
significantly related to each independent variable, the collective explanatory 
power of these variables is quite high only for the BS but not so for the others. 
The adjusted R2 is 31 percent for the BS formula's pricing errors, 9 percent for 
the SVs, 6 percent for the SVSI's, and 5 percent for the SVJ model's. 

The Maturity-Based and the Moneyness-Based results together present a 
rather intriguing picture about the four models. After the Maturity-Based 
pricing treatment, the SV, the SVSI, and the SVJ models' remaining pricing 
errors no longer show any biases at all in relation to moneyness, term-to- 
expiration, or lagged volatility from the previous day, while the BS model's are 
still as moneyness-related as under All-Options-Based parameters. The ad- 
justed R2 for the SV, the SVSI, and the SVJ is now zero. In contrast, the BS 
model's adjusted R2 stays at 31 percent, close to its previous magnitude. 
Therefore, applying the maturity-based pricing treatment helps the models 
with stochastic volatility eliminate all contract-specific pricing biases, but it 
does not help the BS model improve its performance much. 

The Moneyness-Based treatment produces just the opposite result: it helps 
improve the BS model's performance by a wide margin, but does not help the 
other three. This conclusion is supported by comparing the four model's re- 
spective R2 values and coefficient estimates to those either under All-Options- 
Based or under Maturity-Based parameters. Strikingly, the Moneyness-Based 
treatment is supposed to neutralize any moneyness-related pricing biases by 
any model, but the resulting moneyness-related biases for the SV, the SVSI, 
and the SVJ are actually stronger than those obtained under the Maturity- 
Based treatment. It does however clear the BS of any remaining moneyness- 
related bias. 
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To see why the Moneyness-Based treatment favors the BS the most while 
the Maturity-Based favors the other three, look again at the results in Panel 
B of Table V. In the group under All-Options-Based, the dramatic pricing 
errors for the BS come mostly from OTM calls (in the first two rows), whereas 
the large errors for the other three models are all associated with short-term 
calls (in the first column). Outside of the OTM categories in the first two rows, 
the BS percentage pricing errors show no particular relation to maturity or 
moneyness. For medium-term and long-term calls, the pricing errors due to the 
SV, the SVSI, or the SVJ are quite random across strike prices (also see the 
relatively flat implied-volatility graphs in Figure 1, for the three models and 
corresponding to medium-term and long-term options). Therefore, using Mon- 
eyness-Based implied volatilities for the BS and Maturity-Based parameter/ 
volatility estimates for the other three models serves to correct for their 
respective weaknesses. 

VI. Dynamic Hedging Performance 

For all the hedging exercises conducted in this section, the spot S&P 500 
index, rather than an S&P 500 futures contract, is used in place of the "spot 
asset" in each hedge.1" We divide our discussion into two parts: (i) single- 
instrument hedges and (ii) delta-neutral hedges. 

A. Single-Instrument Hedges 

We first examine hedges in which only a single instrument (i.e., the under- 
lying stock) can be employed. Under this constraint, dimensions of uncertainty 
that move a target option value but are uncorrelated with the underlying stock 
price cannot be hedged by any position in the stock and will necessarily be 
uncontrolled for. But, as discussed before, such factors as model misspecifica- 
tion and transaction costs may render this type of hedge more practical to 
adopt. 

To make the point precise, imagine a situation in which a financial institu- 
tion intends to hedge a short position in a call option with T periods to 
expiration and strike price K. As before, we use the SVSI-J model as the point 
of discussion. Let Xs(t) be the number of shares of the stock to be purchased 
and X0(t) be the residual cash position, so that the time-t value of a replicating 

1" This is done out of two considerations. First, the spot S&P 500 and the immediate-expiration- 
month S&P 500 futures price generally have a correlation coefficient close to one. This means that 
whether the spot index or the futures price is used in a hedge, the conclusions are most likely the 
same. Second, if a futures contract is used in constructing a hedge, a futures pricing formula has 
to be adopted. That will introduce another dimension of model misspecification (due to stochastic 
interest rates), which will, in turn, produce a compounded effect on the hedging results. For these 
reasons, using the spot index may lead to a cleaner comparison among the four option models. 
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portfolio is XO(t) + Xs(t)S(t). Solving this standard minimum-variance hedging 
problem under the SVSI-J model, we obtain 

XS =- 
Covt[dS(t), dC(t, T)] v 

(t ) + O (t ) V 
Var[dS(t)] V'+n A(,r+ pvA(, S(V + Vi) 

A 
+ S(V + VA ) [Al(t) - A2(t) - lljC(t, T)], 

(21) 

where Al(t) and A2(t) are respectively given in equations (A19) and (A20) of the 
Appendix, and the resulting cash position for the hedge is 

XO(t) = C(t, T) - XS(t)S(t). (22) 

This solution is quite intuitive. First, if there is no jump risk (i.e., A = 0) and 
stock volatility is deterministic (i.e., o-,, = 0) (or stock returns are not correlated 
with volatility changes, i.e., p = 0), then one only needs to be long AS(t) shares 
of the stock. However, if volatility is stochastic and correlated with stock 
returns, the position to be taken in the stock must control not only for the 
direct impact of underlying stock price changes on the target option, but also 
for the indirect impact of that part of volatility changes which is correlated 
with stock price fluctuations. This is reflected in the second term on the 
right-hand side of (21), which shows that the additional number of shares 
needed besides As is increasing in p (assuming o-,, > 0). Furthermore, if jump 
risk is present as well, the position to be taken in the underlying stock must 
also hedge the impact of jump risk on the target option, which is reflected in 
the last term of equation (21). This term is increasing in A and Zj, meaning 
that the larger the random-jump risk, the more adjustment need be made in 
the hedging position. Therefore, by considering an option model with jumps, 
one makes the resulting hedging strategy also immunized against jump risk. 

In theory the constructed partial hedge requires continuous rebalancing to 
reflect the changing market conditions. In practice, only discrete rebalancing 
is possible. To derive a hedging effectiveness measure, suppose that portfolio 
rebalancing takes place at intervals of length At. As described above, at time 
t short the call option, go long in Xs(t) shares of the stock and invest the 
residual, XO(t), in an instantaneously maturing riskfree bond. The combined 
position is a self-financed portfolio. Next, at time t + At calculate the hedging 
error as follows: 

H(t + At) = Xs(t)S(t + At) + XO(t)eR(t)At - C(t + At, T - At). (23) 

At the same time, reconstruct the self-financed portfolio, repeat the hedging 
error calculation at time t + 2At, and so on. Record the hedging errors 
H(t + lAt), for 1 = 1, ..., M (T - t)lAt. Finally, compute the average 
absolute hedging error as a function of rebalancing frequency At: H(At) = (1/M) 
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E= I H(t + lAt) I, and the average dollar-value hedging error: H(At) = (1/M) 
E>=2 H(t + lAt). 

Single-instrument hedging errors under the BS, the SV, the SVSI, and the 
SVJ models are similarly determined accounting for their modeling differ- 
ences. In the case of the SVJ model, the same three terms as in equation (21) 
still determine the single stock position, except that the characteristic func- 
tions used in the calculations should be adjusted to reflect the constant- 
interest-rate assumption. For the SV and the SVSI models, the jump risk- 
related term (the last term) does not appear and the other two terms remain. 
For the BS model, only the first term in equation (21) is used to determine the 
minimum-variance hedge. 

To obtain the hedging results presented in Table VII, we follow the three 
steps below. First, estimate the set of parameter/volatility values implied by 
all call options of day t - 1. Next, on day t, use these parameter/volatility 
estimates and the current day's spot index and interest rates, to construct the 
desired hedge as given in equation (21) or its model-specific version. Finally, 
calculate the hedging error as of day t + 1 if the hedge is rebalanced daily or 
as of day t + 5 if the rebalancing takes place every five days. These steps are 
repeated for each option and every trading day in the sample. The average 
absolute and the average dollar hedging errors for each moneyness-maturity 
category are then reported for each model in Table VII. Note that hedging 
results obtained respectively from the Maturity-Based and the Moneyness- 
Based treatments are almost the same as these in Table VII and hence not 
reported. 

Based on the absolute hedging errors in Table VII, the SV model is the best 
overall performer, followed by the SVJ model, and then by the SVSI. But, 
according to the dollar hedging errors, the SVSI performs the best among all 
four in hedging both OTM calls (irrespective of maturity) and long-term ITM 
calls. It is also clear from both Panels A and B that, regardless of hedge 
rebalancing frequency, the real significant improvement by the stochastic- 
volatility models over the BS occurs only when OTM calls are being hedged. 
When other categories of calls are the hedging target, the performance is in 
most cases virtually indistinguishable among the four models. The hedging- 
based ranking of the models is thus in sharp contrast with that obtained 
earlier based either on out-of-sample pricing or on internal consistency of a 
model's estimated structural parameters. 

The finding that the SVJ does not improve over the SV's hedging perfor- 
mance seems somewhat surprising, especially given the SVJ's better out-of- 
sample pricing performance (Table V). As discussed by Bates (1996a) in a 
different context, a possible explanation is as follows. In Table III, the average 
implied jump-intensity parameter A (under "All Options") is 0.59 times per 
year, which means it takes, on average, about a year and a half for a jump of 
the average magnitude to occur. In Table VII, the results are obtained when 
each hedge is either rebalanced daily or once every five days. Clearly, during 
a one-day or five-day interval the chance for a significant price jump (or fall) to 
occur is very small. Thus, once stochastic volatility is modeled, hedging per- 
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Table VII 

Single-Instrument Hedging Errors 
In this table, all hedges of calls use only the underlying asset as the hedging instrument. Parameters and 
spot volatility implied by all options of the previous day are used to establish the current day's hedges, 
which are then liquidated the following day or five days later. For each target call option, its hedging 
error is, as of the liquidation day, the difference between its market price and the replicating portfolio 
value. The average absolute hedging error and the average dollar hedging error are reported for each 
model and for each moneyness-maturity category. The sample period is June 1988-May 1991. In 
calculating the hedging errors generated with daily (or 5-da7y) hedge rebalancing, 15,041 (or 11,704) 
observations are used. BS, SV, SVSI, and SVJ respectively stand for the Black-Scholes, the stochastic- 
volatility model, the stochastic-volatility and stochastic-interest-rate model, and the stochastic-volatility 
model with random jumps. 

1-Day Revision 5-Day Revision 

Moneyness Days-to-Expiration Days-to-Expiration 

S/K Model <60 60-180 2180 <60 60-180 ?180 

Panel A: Absolute Hedging Errors 

<0.94 BS NA $0.35 $0.43 NA $0.95 $0.83 
SV 0.25 0.37 0.57 0.71 
SVSI 0.27 0.39 0.62 0.78 
SVJ 0.27 0.39 0.59 0.74 

0.94-0.97 BS 0.24 0.33 0.42 0.70 0.77 0.80 
SV 0.23 0.32 0.43 0.59 0.66 0.72 
SVSI 0.23 0.34 0.46 0.60 0.72 0.80 
SVJ 0.23 0.33 0.44 0.60 0.69 0.78 

0.97-1.00 BS 0.36 0.36 0.45 0.74 0.74 0.81 
SV 0.30 0.35 0.42 0.75 0.71 0.73 
SVSI 0.31 0.38 0.43 0.77 0.77 0.79 
SVJ 0.30 0.36 0.43 0.77 0.73 0.76 

1.00-1.03 BS 0.37 0.38 0.44 0.78 0.73 0.75 
SV 0.38 0.37 0.43 0.80 0.68 0.68 
SVSI 0.39 0.39 0.45 0.83 0.75 0.75 
SVJ 0.37 0.37 0.44 0.79 0.70 0.71 

1.03-1.06 BS 0.41 0.37 0.45 0.69 0.65 0.77 
SV 0.39 0.38 0.45. 0.70 0.65 0.71 
SVSI 0.40 0.40 0.48 0.73 0.73 0.76 
SVJ 0.39 0.38 0.46 0.68 0.66 0.75 

?1.06 BS 0.37 0.38 0.46 0.51 0.55 0.67 
SV 0.36 0.39 0.45 0.50 0.55 0.62 
SVSI 0.36 0.41 0.46 0.51 0.60 0.66 
SVJ 0.35 0.39 0.46 0.50 0.55 0.62 

formance may not be improved any further by incorporating jumps into the 
option pricing framework (at least when the hedge is rebalanced frequently). 

B. Delta-Neutral Hedges 

Now, suppose that one can use whatever instruments it takes to create a 
perfect delta-neutral hedge. The need for a perfect hedge can arise in situa- 
tions where not only is the underlying price risk present, but also are volatility, 
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Table VII-Continued 

1-Day Revision 5-Day Revision 
Moneyness Days-to-Expiration Days-to-Expiration 

SIK Model <60 60-180 ?180 <60 60-180 ?180 

Panel B: Dollar Hedging Errors 

<0.94 BS NA $-0.03 $-0.02 NA $-0.33 $-0.19 
SV -0.03 -0.01 -0.12 -0.10 
SVSI -0.02 -0.00 -0.08 -0.09 
SVJ -0.04 -0.02 -0.16 -0.11 

0.94-0.97 BS -0.13 -0.07 -0.00 -0.49 -0.20 -0.12 
SV -0.03 -0.02 -0.02 -0.19 -0.12 -0.10 
SVSI -0.02 -0.01 -0.01 -0.16 -0.12 -0.09 
SVJ -0.04 -0.03 -0.02 -0.22 -0.13 -0.11 

0.97-1.00 BS -0.05 -0.03 0.00 -0.34 -0.09 -0.06 
SV -0.04 -0.02 0.00 -0.28 -0.13 -0.09 
SVSI -0.04 -0.02 0.00 -0.28 -0.15 -0.12 
SVJ -0.04 -0.03 0.00 -0.30 -0.14 -0.11 

1.00-1.03 BS -0.08 -0.01 0.00 -0.37 -0.09 -0.11 
SV -0.04 -0.02 0.00 -0.32 -0.13 -0.12 
SVSI -0.04 -0.01 0.00 -0.30 -0.14 -0.11 
SVJ -0.05 -0.02 -0.01 -0.33 -0.12 -0.12 

1.03-1.06 BS -0.04 -0.02 -0.03 -0.31 -0.08 -0.18 
SV -0.05 -0.02 -0.02 -0.27 -0.12 -0.14 
SVSI -0.05 -0.01 -0.01 -0.26 -0.11 -0.09 
SVJ -0.05 -0.02 -0.03 -0.28 -0.10 -0.16 

?1.06 BS -0.05 -0.03 -0.02 -0.18 -0.09 -0.09 
SV -0.05 -0.03 -0.01 -0.16 -0.11 -0.08 
SVSI -0.05 -0.02 -0.01 -0.16 -0.12 -0.07 
SVJ -0.05 -0.03 -0.02 -0.16 -0.11 -0.07 

interest rate and jump risks. In conducting this exercise, however, we should 
first recognize that a perfect hedge may not be practically feasible in the 
presence of stochastic jump sizes (e.g., for the SVJ and the SVSI-J models). 
This difficulty is seen from the existing work by Bates (1996a), Cox and Ross 
(1976), and Merton (1976). For this reason, whenever jump risk is present, we 
follow Merton (1976) and only aim for a partial hedge in which diffusion risks 
are completely neutralized but jump risk is left uncontrolled for. We do this 
with the understanding that the overall impact on hedging effectiveness of not 
controlling for jump risk can be small or large, depending on whether the 
hedge is frequently rebalanced or not. 

Suppose again that the target is a short position in a call option with - 

periods to expiration and strike price K. Taking the SVSI-J model as the point 
of discussion, the hedger will need a position in (i) some X (t) shares of the 
underlying stock (to control for price risk), (ii) some XB(t) units of a i-period 
discount bond (to control for R(t) risk), and (iii) some Xc(t) units of another call 
option with the same maturity but a different strike price K (or any option on 
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the stock with a different maturity) to control for volatility risk V(t). The time-t 
value of this replicating portfolio is then XO(t) + Xs(t)S(t) + XB(t)B(t, T) + 
XC(t)C(t, T; K), where XO(t) denotes the residual cash position. Deriving the 
dynamics for the replicating portfolio and comparing them with those of 
C(t, T; K), we find the following solution: 

X =AV(t, 
T; K) Xc(t) 

= 
(t K ) (24) 

XS(t) = As(t, T; K) - AS(t, T; K)Xc(t) (25) 

XB (t) =B(t, T)e(T) {AR(t, T; K)Xc(t) - AR(t, T; K)} (26) 

XO(t) = C(t, T; K) - Xs(t)S(t) - XC(t, T; K) -XB(t)B(t, i-), (27) 

where all the primitive deltas, As, AR and Av, are as determined in equations 
(10)-(12). 

To examine the hedging effectiveness, at time t short the call option and 
establish the hedge as just described. After the next interval, compute the 
hedging error according to 

H(t + At) = XoeR(t)At + Xs(t)S(t + At) + XB(t)B(t + At, T - At) 

+ XC(t)C(t + At, T - At; K) - C(t + At, T - At; K). (28) 

Like in the previous case, repeat this calculation for each date t and every 
target call in the sample to obtain a collection of hedging errors, which is then 
used to compute the average absolute and the average dollar-value hedging 
errors, both as functions of rebalancing frequency At. 

For the BS model, the delta-neutral hedge is the same as the previous 
single-instrument hedge and its hedging error measures are similarly calcu- 
lated as in (28), except that A = XB(t) = Xc(t) = 0 and Xs(t) is the BS delta. 
Thus, the BS delta-neutral hedge involves no other instrument than the 
underlying stock. In the case of the SV model, set A = XB(t) = 0 and let As and 
Av be as determined in the SV model. Its delta-neutral hedge hence consists of 
a position in both the stock and the second option contract. For the SVJ model, 
set XB(t) = 0 and let As and Av be as determined in the SVJ model. Clearly, 
when A = 0, the hedge created in equations (24)-(27) becomes the one corre- 
sponding to the SVSI model. 

In the cases of the SV, the SVSI, and the SVJ models, the hedge in equation 
(28) requires (i) the availability of prices for four time-matched target and 
hedging-instrumental options: C(t, T; K), C(t, T; K), C(t + At, T - At; K), C(t + 
At, T - At; K) and (ii) the computation of As, Av, and AR for both the target and 
the instrumental option. Due to this requirement, we use as hedging instru- 
ments only options whose prices on both the hedge-construction day and the 
following liquidation day were quoted no more than 15 seconds apart from the 
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times when the respective prices for the target option were quoted. This 
constraint guarantees that the deltas for the target and instrumental options 
on the same day are computed based on the same spot price. The remaining 
sample for both this delta-neutral hedging exercise and the previous single- 
instrument hedging contains 15,041 matched pairs when hedging revision 
occurs daily, and 11,704 matched pairs when rebalancing takes place at 
five-day intervals. 

As before, we use the current day's spot index and interest rates, but 
parameter/volatility values implied by all of the previous-day's options, to deter- 
mine the current day's hedging positions for each target call. Table VIII presents 
the average absolute and the average dollar hedging errors across the 18 money- 
ness-maturity categories and for each of the four models. A striking pattern 
emerging from this table is that, irrespective of moneyness-maturity category, the 
three models with stochastic volatility have virtually identical delta-neutral hedg- 
ing errors. Therefore, consistent with the results of the previous subsection, 
adding jumps or stochastic interest rates to the SV model does not improve its 
hedging performance, at least with respect to our sample data. 

When the hedges are revised daily, the BS delta-neutral hedging errors are 
usually two to three times as high as the corresponding hedging errors for the 
other three models. Improvement by the stochastic-volatility models is even 
more evident when the hedge revision frequency changes from daily to once 
every five days: the BS hedging errors increase dramatically while the other 
models' do not increase by much. This seems to suggest that the other three 
models perform much better than the BS. 

The last observation perhaps raises more questions than answers. Is the 
hedging improvement by the three models with stochastic volatility a consequence 
of better model specification, or is it mostly due to the inclusion of a second option 
in their delta-neutral hedges? Is the fact that hedge revision frequency does not 
affect the hedging effectiveness of the three models by as much as it affects the 
performance of the BS a consequence of better model specification, or is it due to 
the indirect effect of the second call option on the position gamma measure? 

To answer the first question, we implement the so-called delta-plus-vega- 
neutral hedge for the BS model, in which the underlying stock and a second call 
option are used respectively to neutralize the sensitivity of the hedge to underly- 
ing price risk and volatility risk. This type of strategy is clearly inconsistent with 
the BS setup, but such a treatment may in some sense give the BS a fairer chance. 
In particular, if the BS delta-plus-vega-neutral hedge results in hedging errors 
comparable to those from the delta-neutral hedges of the other three models, it 
will simply suggest that model misspecification may only have a secondary effect 
on hedging. We report the average hedging errors of this BS delta-plus-vega- 
neutral strategy under the abbreviation "BSDV' in Table VIII. Except for the ITM 
categories, hedging performance is indistinguishable between the BS delta-plus- 
vega-neutral strategy and the delta-neutral strategies for the other three models. 
For the two ITM call option groups (with SIK > 1.03), however, incorporating 
stochastic volatility does improve upon the BS delta-plus-vega-neutral hedging 
performance. Thus, for hedging these ITM calls, more appropriate model specifi- 
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Table VIII 

Delta-Neutral Hedging Errors 
In this table, all delta-neutral hedges of calls use as many hedging instruments as there are 
sources of risk (except the jump risk) assumed in a given option model. The only exception is the 
BS delta-plus-vega-neutral strategy, denoted by BSDV, which uses the underlying asset and a 
second call option to neutralize both the delta and vega risks of the target call, based on the 
Black-Scholes model. Parameters and spot volatility implied by all options of the previous day are 
used to establish the current day's hedges, which are then liquidated the following day or five days 
later. For each target call option, its hedging error is, as of the liquidation day, the difference 
between its market price and the replicating portfolio value. The average absolute hedging error 
and the average dollar hedging error are reported for each model and for each moneyness-maturity 
category. The sample period is June 1988-May 1991. In calculating the hedging errors generated 
with daily (once every five days) hedge rebalancing, 15,041 (11,704) observations are used. BS, SV, 
SVSI, and SVJ, respectively, stand for the Black-Scholes, the stochastic-volatility model, the 
stochastic-volatility and stochastic-interest-rate model, and the stochastic-volatility model with 
random jumps. 

1-Day Revision 5-Day Revision 
Days-to-Expiration Days-to-Expiration 

Moneyness 
SIK Model <60 60-180 ?180 <60 60-180 ?180 

Panel A: Absolute Hedging Errors 

<0.94 BS NA $0.35 $0.43 NA $0.95 $0.83 
BSDV 0.15 0.18 0.18 0.28 
SV 0.14 0.20 0.16 0.31 
SVSI 0.14 0.22 0.16 0.33 
SVJ 0.14 0.21 0.16 0.32 

0.94-0.97 BS 0.24 0.33 0.42 0.70 0.77 0.80 
BSDV 0.08 0.13 0.19 0.11 0.15 0.24 
SV 0.08 0.13 0.20 0.09 0.14 0.25 
SVSI 0.08 0.13 0.20 0.09 0.14 0.25 
SVJ 0.08 0.13 0.20 0.10 0.14 0.27 

0.97-1.00 BS 0.36 0.36 0.45 0.74 0.74 0.81 
BSDV 0.13 0.13 0.16 0.16 0.16 0.22 
SV 0.13 0.13 0.16 0.15 0.15 0.22 
SVSI 0.13 0.13 0.16 0.15 0.15 0.22 
SVJ 0.13 0.13 0.16 0.15 0.15 0.22 

1.00-1.03 BS 0.37 0.38 0.44 0.78 0.73 0.75 
BSDV 0.13 0.14 0.16 0.16 0.16 0.22 
SV 0.13 0.14 0.16 0.16 0.16 0.22 
SVSI 0.13 0.14 0.16 0.16 0.16 0.22 
SVJ 0.14 0.14 0.17 0.17 0.17 0.23 

1.03-1.06 BS 0.41 0.37 0.45 0.69 0.65 0.77 
BSDV 0.16 0.13 0.16 0.18 0.16 0.21 
SV 0.15 0.13 0.16 0.17 0.16 0.20 
SVSI 0.15 0.13 0.16 0.16 0.16 0.21 
SVJ 0.16 0.13 0.16 0.17 0.15 0.20 

?1.06 BS 0.37 0.38 0.46 0.51 0.55 0.67 
BSDV 0.19 0.16 0.23 0.22 0.21 0.33 
SV 0.15 0.14 0.19 0.17 0.17 0.25 
SVSI 0.15 0.14 0.19 0.16 0.17 0.24 
SVJ 0.15 0.14 0.20 0.17 0.17 0.26 



Empirical Performance of Alternative Option Pricing Models 2041 

Table VIII-Continued 

1-Day Revision 5-Day Revision 

Moneyness Days-to-Expiration Days-to-Expiration 

SIK Model <60 60-180 ?180 <60 60-180 ?180 

Panel B: Dollar Hedging Errors 

<0.94 BS NA $-0.03 $-0.02 NA $-0.33 $-0.19 
BSDV 0.01 -0.01 0.02 0.00 
SV 0.01 -0.00 0.02 0.01 
SVSI 0.01 -0.00 0.02 0.00 
SVJ 0.01 -0.00 0.02 0.01 

0.94-0.97 BS -0.13 -0.07 -0.00 -0.49 -0.20 -0.12 
BSDV -0.04 -0.01 0.00 -0.03 0.00 -0.01 
SV 0.01 -0.01 0.00 0.00 -0.01 -0.01 
SVSI 0.01 -0.01 0.00 0.00 -0.01 0.00 
SVJ 0.01 -0.01 0.00 0.02 -0.01 -0.03 

0.97-1.00 BS -0.05 -0.03 0.00 -0.34 -0.09 -0.06 
BSDV 0.01 0.01 0.01 0.06 0.01 0.03 
SV 0.01 0.00 0.01 0.03 0.00 0.02 
SVSI 0.01 0.00 0.01 0.02 0.00 0.01 
SVJ 0.01 0.00 0.01 0.00 0.00 0.02 

1.00-1.03 BS -0.08 -0.01 0.00 -0.37 -0.09 -0.11 
BSDV -0.01 -0.00 0.01 -0.01 -0.00 0.03 
SV -0.01 -0.00 0.01 -0.01 0.00 0.02 
SVSI -0.01 -0.00 0.01 -0.00 0.00 0.03 
SVJ -0.01 0.00 0.01 -0.02 0.00 0.02 

1.03-1.06 BS -0.04 -0.02 -0.03 -0.31 -0.08 -0.18 
BSDV 0.01 0.00 -0.01 -0.05 -0.01 -0.03 
SV 0.01 0.00 -0.00 -0.02 -0.02 -0.03 
SVSI 0.01 0.00 -0.00 -0.01 -0.01 -0.02 
SVJ 0.01 0.00 -0.01 -0.03 -0.01 -0.03 

?1.06 BS -0.05 -0.03 -0.02 -0.18 -0.09 -0.09 
BSDV -0.02 -0.01 -0.01 -0.05 -0.02 -0.02 
SV -0.01 -0.01 -0.00 -0.03 -0.02 -0.01 
SVSI -0.01 0.00 0.00 -0.02 -0.00 0.01 
SVJ -0.01 -0.01 0.00 -0.03 -0.02 -0.01 

cation matters, whereas for hedging other calls, even ad hoc hedging strategies 
based on the BS may do just fine. 

Given the performance of the BSDV in Table VIII, it is apparent that the 
relative insensitivity of the other three models' hedging errors to revision 
frequency must be mostly due to the use of the instrumental call option. It is 
the instrumental option position that not only neutralizes the volatility risk 
but also dramatically reduces the remaining gamma risk in the hedge. To see 
this point, take the SV delta-neutral hedge as an example. Denote the gamma 
(with respect to the spot price) of the target call by Fs(t, r, K) and that of the 
instrumental call by Fs(t, r, K), a detailed expression of which is provided in the 
Appendix. Since the position in the instrumental call is Xc(t) = [Av (tg r, K)]i[Av(tg 
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K)], the remaining gamma value of the SV delta-neutral hedge is given by 
rs(t, T; K) - XC(t)AS(t, T; K). For a typical delta-neutral hedge under stochastic 
volatility, the remaining gamma value is close to zero. The following are some 
examples based on June 3, 1988, when the spot S&P 500 was at 265.42: 

* For hedging the ATM call with strike price 265, the position taken in the 
chosen instrumental option is Xc = 0.97 and the remaining SV gamma 
value in the hedge is 0.020 - 0.97 x 0.022 = -0.001; 

* For hedging the ITM call with strike price 250, Xc = 0.81 and the 
remaining SV gamma of the hedge is 0.011 - 0.81 x 0.014 = -0.001; 

* For hedging the OTM call with strike price 275, Xc = 0.97 and the 
remaining SV gamma of the hedge is 0.022 - 0.97 x 0.022 = 0.001. 

For a typical BSDV hedge, the remaining BS gamma is also close to zero, which 
explains why the BSDV hedging errors are relatively insensitive to revision 
frequency as well. 

Another pattern to note from Table VIII is that the BS model's dollar 
hedging errors are always negative, indicating that the model overhedges each 
target option, whereas the dollar hedging errors of the other models are more 
random and can take either sign. Therefore, the BS formula exhibits a sys- 
tematic hedging bias, while the others do not. 

Comparing Tables VII and VIII, one can see that for a given option model, 
the conventional delta-neutral hedge (using as many instruments as there are 
sources of uncertainty) performs far better than its single-instrument counter- 
part, for every moneyness-maturity category. This may not be surprising as the 
former type of hedge involves more instruments (except under the BS model).12 

VII. Concluding Remarks 

We have developed a parsimonious option pricing model that admits sto- 
chastic volatility, stochastic interest rates, and random jumps. It is shown that 
this closed-form pricing formula is practically implementable, leads to useful 
analytical hedge ratios, and contains many known option formulas as special 
cases. This last feature has made it relatively straightforward to study the 
relative empirical performance of several models of distinct interest. 

Our empirical evidence indicates that regardless of performance yardstick, 
taking stochastic volatility into account is of the first-order importance in 

12 According to Rubinstein (1985), the volatility smile pattern and the nature of pricing biases 
are time-dependent. To see whether our conclusion may be reversed, we separately examine the 
pricing and the hedging performance of the models in three subperiods: June 1988-May 1989, 
June 1989-1990, and June 1990-May 1991. Each subperiod contains about 10,000 call option 
observations. The subperiod results are qualitatively the same as those, respectively, in Tables V 
and VII. Separately, we examine the pricing and hedging error measures of each model when the 
structural parameters are not updated daily. Rather, we retain the structural parameter values 
estimated from the options of the first day of each month and then, for the remainder of the month, 
use them as input to compute the corresponding model-based prices for each traded option, except 
that the implied spot volatility is updated each day based on the previous day's option prices. The 
obtained absolute pricing and hedging errors for the subperiod June 1990-May 1991 indicate that 
the performance ranking of the four models also remains the same. 
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improving upon the BS formula. In terms of internal consistency, the SV, the 
SVJ, and the SVSI are still significantly misspecified. In particular, to ratio- 
nalize the negative skewness and excess kurtosis implicit in option prices, each 
model with stochastic volatility requires highly implausible levels of volatility- 
return correlation and volatility variation. But, such structural misspecifica- 
tions do not necessarily preclude these models from performing better other- 
wise. According to the out-of-sample pricing measures, adding the random- 
jump feature to the SV model can further improve its performance, especially 
in pricing short-term options; whereas modeling stochastic interest rates can 
enhance the fit of long-term options. With both the SVSI and the SVJ, the 
remaining pricing errors show the least contract-specific or market-conditions- 
related biases. For hedging purposes, however, incorporating either the jump 
or the SI feature does not seem to improve the SV model's performance further. 
The SV achieves the best hedging results among all the models studied, and its 
remaining hedging errors are generally quite small. Therefore, the three 
performance yardsticks employed in this article can rank a given set of models 
differently as they capture and reveal distinct aspects of a pricing model. 
Overall, our results support the claim that a model with stochastic volatility 
and random jumps is a better alternative to the BS formula, because the 
former not only performs far better but also is practically implementable. 

The empirical issues and questions addressed in this article can also be 
reexamined using data from individual stock options, American-style index 
options, options on futures, currency and commodity options, and so on. Even- 
tually, the acceptability of option pricing models with added features will be 
judged not only by its implementability, its internal consistency, and its 
pricing and hedging performance as demonstrated in this paper, but also by its 
success or failure in pricing and hedging other types of options. These exten- 
sions are left for future research. 

APPENDIX 

Proof of the Option Pricing Formula in Equation (8). The valuation partial 
differential equation (PDE) in equation (7) can be rewritten as: 

1 2C / 1 \aC a2C 1 2C - v + R-A44- V) I + pU ,V + 2V 2 L\2 aL aLaV 2 v 

aC 1 2a2C aC ac 
+ [HV -KvV1 aV + URRaR2 + [OR- KRR] - -RC 2l aR aT 

+ XEQ{C(t, T; L + ln[1 + J], R, V) - C(t, T; L, R, V)} = 0, (Al) 

where we have applied the transformation L(t) ln[S(t)]. Inserting the con- 
jectured solution in equation (8) into (Al) produces the PDEs for the risk- 
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neutralized probabilities, flj forj = 1, 2: 

1 a2H(l 1 Hl a2Hl 12 a2Hl 
- aL2 +RX-AJ+ 2 V d (TV 2v -vaLL+PaL VaLaV 2 aV2 

aH1 1 a 2HI 1 aHII1 aHI 
+ [O - (Kv - puf)V]~ + -oURR + F[OR -KRR] aV 2 aR2 aR aT_ 

- AjfH1 + AEQ{(1 + ln[1 + J])1ll(t, T; L + ln[1 + J], R, V) 

- H1(t, T; L, R, V)} = 0, (A2) 

and 

1 a2 1 1 V\ aH12 + (va2H2 
1 a2 ___ 

2 L2+1RX- V+-J2V V 2 + 2 aL +P VaLaV 2 u dV 

aH2 1 a2H2/ o-R2 aB(t,iT) aH aH 
[O -KV] -o-,R+I R-KR- RI + [Ov-K aV]dV+ 2 aR B(t T) aR aR aT 

+ AEQ{112(t, T; L + ln[1 + J], R, V) - H2(t, ; L, R, V)} = 0. (A3) 

Observe that equations (A2) and (A3) are the Fokker-Planck forward equations 
for probability functions. This implies that ll, and HI2 must indeed be valid 
probability functions, with values bounded between 0 and 1. These PDEs must 
be solved separately subject to the terminal condition: 

fIj(t + T, 0) = 1L(t+T)'K j = 1, 2. (A4) 

The corresponding characteristic functions for H1 and HI2 will also satisfy 
similar PDEs: 

1 a 2fl/ 1\aff 2f1 1 
-V p+ R-Xwj+-V I+p(72V 2 2 aL + P(v aLaV 2 V a2 

af'1 1 2a 2f1 af'1 af' 
+ [Ov - (Kv- PUV)V] V + 2 URRR aR2 + [OR- KRR]aR - a 

- AIjf1 + AEQ{(1 + ln[1 + J])f1(t, i-; L + ln[1 + J], R, V) 

-fi(t, T; L, R, V)} = 0, (A5) 

and 

1 a2f2 1 TV f a2t' 1 a2f2 - V -JL2 + (R - AJ -i - V A + P(TVV X + -2 7-2V -, + 
0V 

- KvV] 22 aL/\aLaVaL 2 v aV2+[vK ] 

at2 1 2 at'2 ( _R af ) R1 at2 af2 
aV +2 RRaR2+ORV R B(t, T) aR aR aT 

+ AEQ{tf2(t, T; L + ln[1 + J] R, V) - f2(t, T; L, R, V)} = 0. (A6) 
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with the boundary condition: 

fj(t + T, 0; 4) = eioL(t+T) j = 1, 2. (A7) 

Conjecture that the solution to the PDEs (A5) and (A6) is respectively given by 

fi(t, T, S(t), R(1;), V(t); 0) 
= exp{u(T) + Xr(T)R(t) + xv(T)V(t) + i4 ln[S(t)]} (A8) 

f2(t;, T S(1;), R(1;), V(1;); 4)) 
= exp{z(T) + Yr(T)R(t) + yv(T)V(t) + i4 ln[S(t)] - ln[B(t, )]} (A9) 

with u(O) = xr(O) = x,(O) = 0 and z(O) = Yr(O) = YJ() = 0. Solving the resulting 
systems of differential equations and noting that B(t + T, 0) = 1 respectively 
produce the following desired characteristic functions: 

f (t ) exJ{ OR[ 2l1- ( [R - KR](1 e - ) 

- a2 [2 ln(l - - K2 + (1 + +i)pcUj( KReT))] 

-v [v Kv + (1 + i4)pofv)1T + i4 ln[S(t)] 
ov 

+ 2io(l - e -RT) Rt 
2G- [GR - KR](l - e -RT) Rt 

+ A(l + pkj)T[(l + ,kJ)i0e(i0/2)(1+i0)Y-j1]2-AitjT 

+ - i4o(ic + l)(1 
- 

e-v)V(t)I (AlO0) 
2&u [(- Kv + (1 + i4)p0u]v(l e vT) } J0 

and, 

3 P{ ~ [21 n(l [R - KR](1 - eT)) [ ] 

- 2 Iln(1 -[ + ( -Re ) + []T- u + 

+ i4 ln[S(t)] - ln[B(t, r)] + 2(* - e- KR](l - e~ R(t) 

+ A2(1 + VKj)iie(icl2)(i&1)c-ei - 1] - Ahelijr 

i(i-l)(- - 1)(1 - e-6T 

2(* - [(* - KV + i4puJv](l - e-6) V(t) (Al) 
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where 

= VK2 - 2Ri4, [Kv -(1 + i4)pff]2 - i4(i4j + 1)oU2 

(R K - 2o(i -1), and v= 4[KV -Vip.]2-ik(ik-l)o 

The SI, the SV, the SVSI, the SVJ models are all nested within the general 
formula in equation (8). In the SVJ case, for instance, the partial derivatives 
with respect to R vanishes in equation (Al). The general solution in equations 
(A8)-(A9) will still apply except that now R(t) = R (a constant) and B(t, ) = 

e . The final characteristic functions fj for the SVJ model are respectively 
given by 

f, exp{-i4 ln[B(t, T)] - - [2 ln(1 - [(, - ( +)POv](l eV))1 

- 
v 

- 1% + (1 + i5)pof)1T+iq5 ln[S(t)] 
ov 

+ A(l + 11j)T[(l + j,j)ie"(i /2)(1+iO)Y- 1] - Ai?/j1jT 

+ 24, - i4(i4o + 1)(1 - e-'vT) Vt + 
2& K[, 

(>K + (1 + iOp)pa](l- e-r) -V() (A12) 

and 

f2= exp{-i1 n[B(t, T)] - 2 ln(1 + (l - 

ov 
- [v- KV + ipuv]T + ip ln[S(t)] 

+ AT[(1 + j)"-e (iO12)(iO-1)o-j1]- Ai4iljTX 

+ 2i - (- + ipj(1 - ee V(T) (A13) 

The characteristic functions for the SV and the SVSI models can be obtained 
by respectively setting A = 0 in (A12)-(A13) and in (AlO)-(A11). Q.E.D. 

Expressions for the gamma measures. The various second-order partial de- 
rivatives of the call price in equation (8), which are commonly referred to as 
gamma measures, are given below for the SVSI-J model: 

Fs - 2(, = - Re (i1F-1-i1e n[Kfl - d4 > 0. (A14) as2 - as R e(ta )ef a(1 

rv a2C(t, T) a2171 a2n12 (A15) 
av2 = 5(t a2 -KB(t, T) aV2 
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a2C(t, T) _2_1 [a2r12 _H2_ 

r - aR2 = S(t) aR2KB(t, T) aRT2 -2(T) + 2(T)2. 

(A1 6) 

a2C(t, ) =all1, 1 'I -lFi nK sf11 
Fsr aSdV aV T Re (i()- do. (A17) 

where forg =V, R andj =1, 2: 

ag2j=- Re (i()-le-ioln[K] ag2jdP. (A18) 

Q.E.D. 

Proof of the Minimum Variance Hedge in equation (21). To derive a closed- 
form expression for Covt[dS(t), dC(t, r)], one needs to evaluate Et[JC(S(1 + J), 
R, V)]. With the aid of equations (3) and (8), derive this conditional expectation 
directly, which upon simplification results in equation (21) with 

Al(t) = 2 [IJ + pJ + (e - 1)(1 + 11J)2] 

+s () -1K]1' 
)i-l 

J Re[e "k ln[Kf d4 (A19) 

KB(t,9 T)p[j KB(t, T) f F. f2(t,9 T)'~ 
A2(t) 

K 
2 + JRe[e -'n[K] 

i J d4 (A20) 

where 

ml = expL(2 + i4)(ln[1 + pij] - + +2 i4)2] 

-exp (1 + i 4) (ln[1 + Iy]- ) +- (1 +i + i)27j2 

M2 exp[(1 + i4)(ln[1 + /,J] - 2') + 2( i4)2] 

- exp[ i ( n[ + -j] - a) - 42 J] 

Q.E.D. 
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