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Empirical Perspective on Activity Durations for
Project-Management Simulation Studies

Jeroen Colin1 and Mario Vanhoucke2

Abstract: Simulation has played an important role in project-management studies of the last decades, but in order for them to produce

practical results, a realistic distribution model for activity durations is indispensable. The construction industry often has needed historical

records of project executions, to serve as inputs to the distribution models, but a clearly outlined calibration procedure is not always readily

available, nor are their results readily interpretable. This study seeks to illustrate how data from the construction industry can be used to derive

realistic input distributions. Therefore, the Parkinson simulation model with a lognormal core is applied to a large empirical dataset from the

literature and the results are described. From a discussion of these results, an empirical classification of project executions is presented. Three

possible uses are presented for the calibration procedure and the classification in project management simulation studies. These were

validated using a case study of a construction company. DOI: 10.1061/(ASCE)CO.1943-7862.0001022. © 2015 American Society of Civil

Engineers.

Author keywords: Project management; Empirical data; Classification; Simulated data.

Introduction

The value of Monte Carlo simulations (MCS) for project manage-

ment has long been established (Schonberger 1981; Ragsdale 1989;

Kwak and Ingall 2007). Owing to the advances in information tech-

nology of the last few decades, simulation studies now stand at

the core of newly developed techniques in project management

(Trietsch and Baker 2012; Elshaer 2013; Wauters and Vanhoucke

2014), and serve to test them and quantify their performance

in large computational experiments (Colin and Vanhoucke 2014;

Vanhoucke 2010a). In these simulations, the stochastic activity

durations for the activity networks are drawn from a predefined

distributional model. The parameters for the distributions that are

proposed in the literature, however, are not always as clear and

intuitive as one might hope. Moreover, they often lack a clearly

outlined calibration method with which, in practice, input distribu-

tions can be generated from empirical records of project executions.

A recent exception is the Parkinson distribution with a lognormal

core (Trietsch et al. 2012), for which a calibration procedure was

presented, alongside its theoretical description. This paper expands

on the work of Trietsch et al. (2012) by applying it to the database

of Batselier and Vanhoucke (2015). This database currently con-

sists of 51 real-life projects, predominantly from the construction

industry, which are freely available for researchers (http://www.or

-as.be/research/database) in the ProTrack file format (Vanhoucke

2010a). However, this paper aims not to draw general conclusions,

but rather provide an illustration of how a calibration to a large
empirical database can be performed and how its results can be
interpreted. In order to generate practically applicable activity du-
ration inputs for project management simulation studies, research-
ers and practitioners should always consider the use of their own
historical data of project executions. But, even when the dataset of
Batselier and Vanhoucke (2015) is expanded in the coming years,
some project environments will still be too specific to be correctly
referenced against the real-life project executions in this dataset.

The contribution of this paper is threefold. First and foremost,
the first application is presented of a theoretical distribution to a
large database of empirical records in project management. From
the thirteen projects that confirmed the theoretical distribution and
which were retained for further analysis, eleven were performed in
the construction industry and two were performed in the information
technology (IT) and education industries, respectively. This study is
therefore not restricted to the construction industry, but special atten-
tion is paid to the interpretation of the results from construction
projects. In order to promote the reproducibility of this study and to
encourage its use on practitioner databases, the calibration procedure
by Trietsch et al. (2012) has been implemented in the open source
statistical programming language R (R Core Team 2013). Second, an
empirical classification for records of project executions is presented,
which can assist in the interpretation of historical data and serve as
input for project management simulation studies. Third, it is shown
how the calibration procedure and the empirical classification can be
usefully applied in the project management practice by validating
them in a case study on a Belgian construction company.

The outline of this paper is as follows. The “Literature Over-
view” section introduces the distributional model and calibration
procedure by Trietsch et al. (2012). The “Methodology” section
discusses the data cleaning that was performed on the online dataset
of Batselier and Vanhoucke (2015) and applies the calibration pro-
cedure. Using the outputs of this procedure, the empirical classi-
fication of project executions are proposed in the “Results” section.
The “Discussion and Conclusions” section offers validation for the
use of the calibration procedure and the classification method, us-
ing a case study on project management in a Belgian construction
company. In addition, both the work that was done for this paper
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and its value for future project management research are summa-
rized. In the “Appendix” of this paper, a working R template is pre-
sented to reproduce the results from this paper.

Literature Overview

The distributional model proposed by Trietsch et al. (2012) is in-
troduced in this section. First, the level of detail needed in the em-
pirical data is discussed, along with how these data are interpreted.
Second, the application in our study of the calibration procedure by
Trietsch et al. (2012) is illustrated.

Focus on the Relative Duration of Activities

The desirable level of detail in empirical records for this study lies
at the activity level of the work breakdown structure (WBS) of a
project. Concretely, it is ideal to have planning and progress data as
complete as possible for all activities in a project. The justification
for this is that the application of the calibration procedure is tar-
geted to project-management studies that depart from the schedule
performance of a project. In these studies, the baseline schedule is
considered as a point of reference throughout the execution of the
project, and that together with the real-schedule performance and
the cost associated with it, are compared relative to the baseline
estimates. In the MCS for such project-management studies, the
individual activities are given a duration that might deviate from
the estimated duration that was used for the construction of the
baseline schedule (Vanhoucke 2010b, 2011; Elshaer 2013; Colin
and Vanhoucke 2014). The relation to real-life projects is evident,
since only very seldom a project will go exactly as planned in terms
of the durations of the individual activities and their associated
costs. It is not within the scope of this paper to test and to compare
all the different theoretical distributions for activity durations that
have been proposed for use in project-management studies in the
literature. Among these are the generalized beta distribution (Kuhl
et al. 2007), the lognormal distribution (Mohan et al. 2007) and a
mixture of a beta and a uniform distribution (Hahn 2008). These
distributions are valid in their own right for the generation of ac-
tivity durations in project-management simulations, since they all
adequately model the real-world excess variability and overoccur-
rence of tail area events (McCullagh and Nelder 1989). In order
not to risk presenting an oversimplified summary of these distribu-
tional models, the original papers are referred to for theoretical
background and practical implementations. However, the model
describe proposed by Trietsch et al. (2012) will be described in
more detail, since it has been chosen to implement it in this study
because of the structured manner in which the Parkinson effect and
the influence of rounding errors are incorporated in the accompa-
nying calibration method.

Consider a set of projects P in an empirical database. For a
project j ∈ P, that has a number of activities Nj, dij represents
the real duration of activity i ¼ 1; : : : ;Nj in project j. Correspond-
ingly, for that activity, d̂ij denotes the baseline estimate duration
that was used in the construction of the baseline schedule. There-
fore, this requires the empirical records to have data available such
that the relative durations dij=d̂ij for all activities in all projects can
be calculated. If the proportion dij=d̂ij > 1, then activity i of
project j has experienced a delay (tardy). The real duration of
the activity was larger than its anticipated duration when the base-
line schedule was constructed. If dij=d̂ij < 1, the activity was fin-
ished in less time than planned (early). Trietsch et al. (2012) assume
the proportion dij=d̂ij to be lognormally distributed, even though
this might not always be directly observable. In other words, the
natural logarithm of dij=d̂ij is assumed to be normally distributed.

The lognormal distribution is reasoned to effectively incorporate
both the additive and multiplicative effects that are omnipresent in
a real-life project execution environment. This distributional model
was validated by Trietsch et al. (2012) for activity times on several
independent datasets from project scheduling applications by incor-
porating two important practical considerations. These considera-
tions explain why lognormality is not always apparent at first sight
in real-life data. The first consideration is the Parkinson effect

which is translated into the reported data as hidden earliness.
In projects, workers are generally not incentivised to report early
activities. Rather, they will effectively use up all time allotted to
a given task by starting late by multitasking, shifting resources,
or simply reporting the task as on-time (Gutierrez and Kouvelis

1991). Where in reality dij=d̂ij < 1 might have been possible, it is

more likely that dij=d̂ij ¼ 1 will be reported. The second consid-

eration handles rounding effects. In practice, the reporting of activ-
ity performances is mostly done on a coarse time scale and reported
times will be influenced by rounding errors. This problem can be
recognized easily when a project with large differences in baseline
estimate durations is considered. Typically, a single unit for report-
ing the time performance of activities will be chosen. For example,
if a project has a large number of activities that are planned to take a
couple of weeks and a small number of activities that take around
3–5 days, the unit for reporting activity performance is likely to be
days. The rounding that occurs due to the reporting in days will
surely have a larger influence on the analysis from the proportion

dij=d̂ij for the small activities than for the larger activities. Con-

cretely, when the Parkinson effect and the rounding effects are
considered, Trietsch et al. (2012) conjectured that the relative em-

pirical distributions dij=d̂ij follow a Parkinson distribution with a

lognormal core.
In addition to the validation of the Parkinson distribution with a

lognormal core, Trietsch et al. (2012) validated the assumption of
linear association in project management. According to the authors,
the lognormal distribution lends itself to be used when statistical
dependence is modelled using linear association. This will not be
considered further, as this is only relevant for when an actual sim-
ulation model is proposed. A recent application of linear associa-
tion in project management simulation can be found in Colin and
Vanhoucke (2014). Here, the primary concern lies with the calibra-
tion of the inputs to such simulation studies.

Calibration Procedure Proposed by Trietsch
et al. (2012)

In order to guide the reader through the calibration procedure pro-
posed by Trietsch et al. (2012), an illustrative record of an executed
project is introduced. This is a record of a construction project for
a commercial building, taken from the dataset of Batselier and Van-
houcke (2015) (C2013-09: “Urban Development Project”), that has
a total value of around 1.5 million Euro and a planned duration of
291 working days. The scope of the project was development
of an integrated building complex, and the project was actually
completed within 360 working days and experienced a budget
overrun of around 13%. The project schedule consisted of 71 ac-
tivities for which both baseline estimate durations and actual du-
rations were reported. The relative empirical distribution dij=d̂ij
derived from the i ¼ 1; : : : ; 71 activities is depicted in the histo-
gram in Fig. 1. This figure depicts the early activities in white

(dij=d̂ij < 1), the on-time activities in grey (dij=d̂ij ¼ 1), and the

tardy activities in black (dij=d̂ij > 1).

An application of the Parkinson distribution with a lognormal
core to the presented project is now presented. The calibration

© ASCE 04015047-2 J. Constr. Eng. Manage.
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procedure proposed by Trietsch et al. (2012) has been structured in
the following way. A maximum of four hypothesis tests (P0, P1,
P1.1, and P1.2) can be conducted in this order to confirm the
Parkinson distribution with a lognormal core. These tests will be
discussed in Steps 1–4 of this section. The null hypothesis for these
tests will also be explicitly stated.

This procedure follows a sequential testing mechanism, starting
with Step 1. If in a certain step, the hypothesis test is not able to
confirm the Parkinson distribution with a lognormal core, the pro-
cedure proceeds with the next step. Consequently, the test in Step 4
will only be conducted if all prior tests fail to confirm the Parkinson
distribution with a lognormal core.

Step 1 (P0)

A visual inspection of Fig. 1 reveals that the assumption of lognor-
mality for the relative empirical distribution dij=d̂ij seems reason-
able. The null hypothesis H0;P0 for the test P0 is stated and this
hypothesis is tested according to the procedure proposed by
Trietsch et al. (2012) as follows:

H0;P0∶ lnðdij=d̂ijÞ follows a normal distribution

In order to accept or reject H0;P0, Trietsch et al. (2012) suggested
comparing the Pearson’s linear correlation coefficient (R) to the
tabulated values by Looney and Gulledge (1985). The linear
correlation coefficient can be used for testing the assumption of
normality, by the use of normal probability plots. Looney and Gul-
ledge (1985) quantified this use in their paper and shown that a p-
value can be obtained for this normality assumption test. The linear
correlation coefficient R should be calculated from a linear regres-
sion of the empirical values of lnðdij=d̂ijÞ on the Blom scores
(Blom 1958) for these values (Trietsch et al. 2012). Blom proposed
the use of Φðr − 3=8Þ=ðnþ 1=4Þ to estimate the normal scores for
a sample, where r represents the rank of an observation in a sample,
n represents the sample size, and ΦðpÞ is used to denote the pth
quantile of the standard normal distribution.

Fig. 2(a) shows the Blom scores for lnðdij=d̂ijÞ plotted against
the empirical values. Fig. 2(a) clearly indicates the large number
of activities that have lnðdij=d̂ijÞ ¼ 0. This means that in this
project, many activities were reported as exactly on-time, since

lnðdij=d̂ijÞ ¼ 0dij=d̂ij ¼ 1. The linear regression line that is shown

in Fig. 2(a) tries to explain the values from lnðdij=d̂ijÞ using a linear
fit on their Blom scores. According to Trietsch et al. (2012), the
intercept and the linear coefficient of this regression model respec-
tively estimate the mean (m̂) and the standard deviation (ŝ) of the

natural logarithm of the relative empirical distribution dij=d̂ij. The

R value found in this regression results in a p-value of 0.004 when
it is compared to the tabulated values of Looney and Gulledge
(1985). Given a level of significance α ¼ 5%, the null hypothesis

must be rejected (p-value <α). The variable lnðdij=d̂ijÞ can not be

assumed to be normally distributed at this point in the analysis.
Therefore, Step 2 of the procedure is now implemented.

Step 2 (P1)

Given the large proportion pp of activities reported as exactly
on-time (pp ¼ 35=71 ¼ 49%, depicted in grey in Fig. 1), it is very
likely that the Parkinson effect is present in these data. In order to
prevent this effect from obscuring the interpretation of the data, the
first step is to remove all activities that were reported as completed
on time. Trietsch et al. (2012) described this step as accounting
for the (pure) Parkinson distribution. Fig. 2(b) shows the plot of
the empirical data and the Blom scores, with these on-time activ-
ities removed. Again, R, m̂ and ŝ are also shown. A new hypothesis
(H0;P1) can now be tested using R and the tabulated values in
Looney and Gulledge (1985)

H0;P1: lnðdij=d̂ijÞ follows a normal distributionwith a Parkinson

effect after the removal of the on-time points

The resulting p-value of 0.006 again leads to the rejection of this
new null hypothesis, using the significance value α of 5%.

In addition to trimming the sample of on-time points, Trietsch
et al. (2012) propose two additional treatments to test whether
dij=d̂ij indeed follows the Parkinson distribution with a lognormal
core. For an extensive coverage and justification for these treat-
ments, refer to the original article. Here, only how they affect the
present discussion of the illustrative empirical record will be
shown. The first treatment is contained in the test that is described
in Step 3. If this test is still unable to accept the Parkinson distri-
bution with a lognormal core for the project data, proceed to the test
in Step 4, which implements the second treatment.

Step 3 (P1.1)

The first treatment that is implemented is the removal of a propor-
tion pp (the proportion of on-time points, depicted in grey in Fig. 1)
of the strictly tardy points (black in Fig. 1). The justification is
that if the Parkinson distribution applies, the resulting data would
constitute a trimmed but complete sample in which early and
tardy points are approximately in the right proportion (Trietsch
et al. 2012)

H0;P1.1: lnðdij=d̂ijÞ follows a normal distributionwith a Parkinson

effect after the removal of on-time points

and after removingpp strictly tardy points

Following the example of Trietsch et al. (2012), and two
trimmed samples are used. From the 22 tardy activities (in black),
11 points [49% (pp) of 22] were removed. This results in two sam-
ples, each having 11 different strictly tardy points. Fig. 2(c) shows
the plots for these two samples where the empirical values are
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depicted against their Blom scores. This first treatment results in

two p-values (0.004 and 0.004 for the first and second trimmed
sample respectively), which both lead to the rejection of the null

hypothesis H0;P1.1 at the 5% significance level. Ultimately, Step 4
will need to be implemented.

Step 4 (P1.2)

The second treatment involves the removal of ties. In Fig. 2(b),
strong grouping (tied Blom scores) can be observed even when

a proportion of the strictly tardy points and the on-time points have

been removed. These ties are due to the rounding that is caused by
the coarse time scale in which activity times are reported. A pos-
sible remedy for this is the calculation of the average Blom score
for all tied points in a group. Fig. 2(d) shows the resulting plots of
the empirical data and the averaged Blom scores with the corre-
sponding regression model for the two samples with 11 tardy points
removed and the ties resolved. A better fit for the regression models
emerges, resulting in higher R values and consequently, higher
p-values (0.959 and 0.986 for the first and second trimmed sample
respectively). These p-values mean that the new null hypothesis
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Fig. 2. Application of the four-step calibration on C2013-09 “Urban Development Project”: (a) hypothesis test for P0 on the relative empirical

distribution; (b) hypothesis test for P1 on the relative empirical distribution; (c) hypothesis test for P1.1 on the relative empirical distribution;

(d) hypothesis test for P1.2 on the relative empirical distribution
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H0;P1.2 can no longer be rejected at the 5% significance level.
Consequently, the variable dij=d̂ij can now be assumed to be fol-
lowing a Parkinson distribution with a lognormal core, according to
the theory of Trietsch et al. (2012)

H0;P1.2: lnðdij=d̂ijÞfollows a normal distributionwith a Parkinson

effect after the removal of on-time points;

after removingppstrictly tardy points

and resolving ties

This section gave an illustrative overview of the mechanism to
test the Parkinson distribution with a lognormal core on real activity
durations using the four-step procedure of Trietsch et al. (2012).
For more detailed information on the mechanism and justification
of the methodology, the reader is referred to the original paper. In
the next section, the procedure of Trietsch et al. (2012) is used on
the project database of Batselier and Vanhoucke (2015).

Methodology

This section discusses the analysis of the online database presented
by Batselier and Vanhoucke (2015). First, the issue of which re-
cords from this database are suited for this study will be discussed.
Second, the Parkinson distribution with a lognormal core procedure
is implemented on these data. Moreover, the p-values and the esti-
mated means and standard deviations for the natural logarithm of
the relative empirical distributions that result from this procedure
are presented.

Discussion of the Empirical Records in the Database
of Batselier and Vanhoucke (2015)

The empirical records discussed in this paper are selected from
the online database of Batselier and Vanhoucke (2015), which
currently consists of 51 real-life projects with actual progress data.
Out of the total 51 projects, 39 are construction projects. This data-
base is one of the largest and most diverse yet with respect to
planned duration and budget at completion, in the project man-
agement literature and is updated and expanded continuously. Fur-
thermore, the quality and authenticity of the data are guaranteed
through the application of a database construction tool called
project cards (Batselier and Vanhoucke 2015).

From this empirical database, those projects that contain com-
plete project progress information at the activity level were se-
lected, such that for all projects j in this set P the relative

empirical distribution dij=d̂ij, ∀ i ∈ 1; : : : ;Nj could be calculated.

Thus, from the total of 51 projects, 24 projects were retained for
further study.

Before proceeding with the application of the four-step pro-
cedure of Trietsch et al. (2012), some more data cleaning had to
be performed. First, the progress data at the work package level of
the work breakdown structure (WBS) of the projects had to be re-
moved. The work package level often provides adequate detail to
monitor the progress of a project during its execution, but is of
no use here given this study’s interest merely in the progress data
at the activity level. Second, some points from the calculated values
in dij=d̂ij had to be manually removed, because they had no real
connection to activity progress. Some very large and some very

small values for dij=d̂ij occurred because of errors that were made

in the scheduling phase prior to the project executions. If an activity
in the project was planned but not executed, the ratio between the
actual activity duration and its baseline estimate was very small

and the data point needed to be removed. Alternatively, if during

the project execution. an additional activity was defined that was

not previously incorporated in the baseline schedule, the ratio for

that activity could be very large. An example of such a situation is

when additional work is created, when the scope of the project is

redefined during the execution, or when cleaning-up activities are

performed in the end of the project that were not accounted for

in the scheduling phase. If the project manager did not bother to

accurately adapt the baseline schedule to these situations, erroneous

points in dij=d̂ij occur, which consequently need to be removed

from the analysis. Altogether, the manual removal of data points

was quite futile. Only 7 out of a total of 1,881 activities for the

24 projects had to be removed.

Application of the Parkinson Distribution with a
Lognormal Core

The calibration procedure proposed by Trietsch et al. (2012) was

applied to the 24 projects of the online dataset. For all 24 projects, it

was tested whether the relative empirical distribution dij=d̂ij could

be shown to be Parkinson distributed with a lognormal core. To this

end, the four-step procedure (P0, P1, P1.1, and P1.2) was applied to

the empirical records.
Table 1 presents the results for the hypothesis tests that provided

confirmation of the Parkinson distribution with a lognormal core
for the projects in the empirical database. In between brackets, the
p-values are shown. In addition, the estimated mean (m̂) and stan-
dard deviation (ŝ) of the natural logarithm of the relative empirical
distribution dij=d̂ij are presented for each project. Table 1 only
shows 13 of the 24 projects. The remaining 11 projects yielded
p-values lower than α ¼ 5% for all hypothesis tests (H0;P0, H0;P1,
H0;P1.1 and H0;P1.2). For these projects, each of the null hypotheses
were rejected at the 5% significance level and the assumption that
the data are distributed according to the Parkinson distribution with
a lognormal core could no be withheld. For the 13 projects that are
shown in Table 1, only the result of the hypothesis test is shown that
confirmed the Parkinson distribution with a lognormal core for that
project (p-value >α). Unlike in the previous section, only a single
p value is shown for tests H0;P1.1 and H0;P1.2 in Table 1, although
still the example of Trietsch et al. (2012) was followed and two
trimmed samples were used. However, if both p-values were larger
than 5%, only the results for the sample with the highest p-value are
shown. If one of the two p-values was smaller than 5%, the cor-
responding hypothesis was rejected. From the 13 projects that were
retained for further analysis, only two were not performed in the
construction industry. The “Patient Transport System” and
“Organizational Development” projects were respectively per-
formed in the IT and Education sectors.

The first observation that can be made from Table 1 is that only
1 of the 24 projects in the online dataset is directly lognormally
distributed. The construction project described as “Young cattle
barn” is the only one that has a p-value larger than α ¼ 5% for P0.
For the remaining 12 projects, presented in Table 1, the Parkinson
distribution with a lognormal core is only confirmed for two proj-
ects by P1.2. For the other 10 projects, the distributional model
was confirmed using P1. No occurrence was found of an empirical
record for which P1.1 succeeded in confirming the Parkinson dis-
tribution with a lognormal core. As it appears from the online data-
set, the first treatment (removing tardy points) is only effective to
confirm the distributional model when it is combined with the sec-
ond treatment (resolving ties).

The next section discusses the m̂ and ŝ values of Table 1 and
presents a classification of the data for further research.
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Results

This section discusses the estimated values for the standard
deviation ŝ and the mean m̂ of the natural logarithm of the relative
empirical distributions dij=d̂ij, as shown in Table 1. First, the stan-
dard deviation ŝ will be discussed. Second, the results for the mean
m̂ will be examined more closely. These standard deviations and
means will be used in an empirical classification for project exe-
cution that will be presented at the end of this section.

Standard Deviation of the Natural Logarithm of the
Relative Empirical Distributions

The standard deviations ŝ of the natural logarithm of the relative
empirical distributions dij=d̂ij are discussed in this section. Avisual
inspection will be conducted first, followed by a more thorough
statistical interpretation.

Visual Inspection of s

Fig. 3(c) shows the estimated standard deviations for the natural
logarithm of the relative empirical distributions dij=d̂ij that were
previously presented in Table 1. In order to incorporate the uncer-
tainty that is associated with estimating the standard deviation, 95%
confidence intervals were added to the plot. The confidence interval
around ŝ is calculated using the assumption that ðn − 1Þŝ2=s2 fol-
lows a χ2 distribution with n − 1 degrees of freedom, if the original
population of data is normally distributed. s denotes the population
standard deviation of the natural logarithm of the relative empirical
distributions dij=d̂ij, whereas ŝ was the estimate produced from
a sample, and n denotes this sample size. The confidence limits
around s can then be calculated from the inequality χ2

1−β=2 ≤

ðn − 1Þŝ2=s2 ≤ χ2
β=2, with a confidence level 1 − β. The confi-

dence interval is denoted in grey, while the ŝ value is plotted as
a white circle. Fig. 3(c) shows that the large estimated standard
deviation of the natural logarithm of the relative empirical distri-
bution of the “Organizational Development” project (C2014-03).
This large standard deviation clearly is unique among the proj-
ects examined from the online dataset. For the other projects, a
clear classification is not immediately apparent from a visual
inspection.

Statistical Interpretation of s

A more robust, statistical interpretation of the values for ŝ shown in
Fig. 3(c) is now presented. Therefore, Levene’s test for the homo-
geneity of variances was implemented (Levene 1960). Levene’s test

can be used to verify the assumption that the variances (or standard
deviations) are equal across different samples or groups. To that
end, a statistic W is calculated that under the null hypothesis (ŝ is
equal for all projects in a group) is distributed according to an F

distribution. For details on the calculation of W, the reader is
referred to the original work.

The statistic W is used to test the assumption of homogeneity
of variances for different groups of projects from Table 1 and
Fig. 3(c). Clearly, the “Organizational Development” project
(C2014-03) is unique as no other project can be found in the data-
set for which the assumption of equal variance is not rejected by
Levene’s test at a 5% significance level. A group (High ŝ) was thus
created for this project alone. The question then remains whether
the other projects can be assumed to have equal variances. Levene’s
test confirms this assumption, based on a found p-value of 0.39,
at a 5% significance level [W ¼ 1.06, P½W > 1.06� ¼ 0.39 with
ðd:f. ¼ 11; 223Þ].

The 13 projects were threefore classified into two groups: a
group of projects with a Low ŝ and a group of one project with a
High ŝ. The Low ŝ group includes projects C2011-07, C2012-13,
C2013-01, C2013-03, C2013-07, C2013-08, C2013-09, C2013-11,
C2013-12, C2013-13, C2013-15, and C2013-17, while the High ŝ

group includes only C2014-03.
Fig. 3(d) reproduces Fig. 3(c) with a color coding for the two

groups. The High ŝ group is colored in black and the Low ŝ group is
depicted in a light shade of grey. In addition, the pooled standard
deviation, ŝpooled, is added for each group to represent the real stan-
dard deviation of that group. This pooled standard deviation is cal-
culated for each group using

ŝpooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

k
j¼1ðnj − 1Þŝ2j

P

k
j¼1ðnj − 1Þŝj

s

where ŝj = estimated standard deviation of the natural logarithm
of the relative empirical distribution for a project j in a group;
nj = sample size for that project; and k = number of projects in
that group.

Mean of the Natural Logarithm of the Relative
Empirical Distributions

The mean m̂ of the natural logarithm of the relative empirical
distributions dij=d̂ij is closely examined in this section. Again,

Table 1. Discussion of the Activity Times Data Obtained from Batselier and Vanhoucke (2015) Using the Parkinson Distribution with a Lognormal Core
[As Described in Trietsch et al. (2012)]

Project number Project name

Parkinson distribution with lognormal core m̂ ŝ (p-value)

P0 P1 P1.1 P1.2

C2011-07 Patient transport system — 0.47 (0.73) 0.26 — — —

C2012-13 Pumping station — 0.24 (0.09) 0.62 — — —

C2013-01 Wiedauwkaai fenders — 0.45 (0.33) 0.70 — — —

C2013-03 Brussels finance tower — −0.09 (0.45) 0.62 — — —

C2013-07 Family residence — −0.03 (0.59) 0.51 — — —

C2013-08 Timber house — 0.27 (0.15) 0.64 — — —

C2013-09 Urban development project — — — — 0.05 (0.59) 0.73
C2013-11 Recreation complex — 0.20 (0.05) 0.72 — — —

C2013-12 Young cattle barn 0.01 (0.15) 0.57 (0.15) — — — —

C2013-13 Office finishing works (1) — −0.89 (0.59) 0.54 — — —

C2013-15 Office finishing works (2) — −0.31 (0.57) 0.99 — — —

C2013-17 Office finishing works (3) — −0.68 (0.42) 1.03 — — —

C2014-03 Organizational development — — — — 1.05 (0.46) 3.06
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a visual inspection is first undertaken and then a statistical analysis
is added.

Visual Inspection of m

Fig. 3(a) presents the estimated means m̂ of the natural logarithm
of the relative empirical distributions dij=d̂ij that were previously
presented in Table 1. The data points are accompanied by 95%
confidence limits that were calculated from the inequality
tβ=2;n−1 ≤ ðm̂ −mÞs ≤ t1−β=2;n−1. Here, m denotes the population
mean of the natural logarithm of the relative empirical distributions
dij=d̂ij, whereas m̂ was the estimate produced from a sample, and n
denotes this sample’s size. s is given by the ŝpooled value of the
group to which the project belongs, tp;n−1 denotes the pth quantile
of the t distribution with n − 1 degrees of freedom and 1 − β was
chosen as 95%. From a visual inspection of Fig. 3(a), the large
mean for the “Organizational Development” project is apparent.
This project was already identified as unique in terms of its stan-
dard deviation, and its mean does also reflect the unique character
of this project. Moreover, a large group of projects can be observed
that have a logarithmic mean of around 0. Three distinct projects
(C2013-13, C2013-15, and C2013-17) appear to have a somewhat
smaller observed logarithmic mean. This observation will now be
verified using a statistical analysis.

Statistical Interpretation of m

Welsch’s test (Welch 1947) is well-known for its ability to test for

a difference in the means across groups or samples, when the vari-

ance is not necessarily assumed to be equal. Under the assumption

of equal mean (which is the standard null hypothesis for this test)

Welsch’s F statistic is distributed according to an F distribution.

The conclusions for the analysis of the presented m̂ values can be

summarized along the following lines. First, Welsch’s test confirms

that not all means for all 13 projects of Table 1 can be assumed to

be equal as the null hypothesis is easily rejected at the 5% signifi-

cance level [F ¼ 4.16, P½F > 4.16� ¼ 1.9 × 10−4 with ðd:f. ¼ 12;

47.14Þ]. Moreover, the observations from the prior visual inspec-

tion could not be confirmed using Welsch’s test. It is unlikely that

the grouping mentioned earlier for m̂ can be withheld. Although the

three projects with the smaller m̂ can be assumed to have an equal

mean [F ¼ 0.74, P½F > 0.74� ¼ 0.49 with ðd:f. ¼ 2; 10.30Þ], the
hypothesis of equal means for the remaining projects is rejected

[F ¼ 2.72, P½F > 2.72� ¼ 0.015 with ðd:f. ¼ 8; 44.62Þ].
We therefore continue the discussion of m̂ in a more systematic

manner. The “Organizational Development” project is added to the

High m̂ group and the remaining 12 projects are organized into a

Mid m̂ group and Low m̂ group using an enumeration algorithm.
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Fig. 3. Discussion of the results obtained from the application of the four-step calibration procedure on the dataset of empirical records of project

executions: (a) m̂ for the empirical project records according to the Parkinson distribution with a lornormal core; (b) m̂ for the empirical project

records according to the Parkinson distribution with a lornormal core, with the grouping illustrated in color; (c) ŝ for the empirical project records

according to the Parkinson distribution with a lornormal core; (d) ŝ for the empirical project records according to the Parkinson distribution with a

lornormal core, with the grouping illustrated in color
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This algorithm enumerates all possible combinations of the remain-
ing 12 projects and tests the assumption of equal mean for these
combinations. Only six possible combinations were found where
the assumption of equal mean is confirmed within the groups and
rejected between the groups. The combination that had the highest
combined p-value for the Welsch’s tests for the two groups was
selected. The Mid m̂ group then consists of projects C2011-07,
C2012-13, C2013-01, C2013-08, and C2013-11, while the Low m̂

group consists of C2013-03, C2013-07, C2013-09, C2013-12,
C2013-13, C2013-15, and C2013-17.

Fig. 3(b) shows the grouping and the corresponding pooled
mean estimates m̂pooled. These where calculated for each group as

m̂pooled ¼

P

k
j¼1 njm̂j
P

k
j¼1 nj

where m̂j = estimated mean of the natural logarithm of the relative
empirical distribution for a project j in a group; nj = sample size for
that project; and k = number of projects in that group. These m̂pooled

estimate the real logarithmic means of the groups of project exe-
cutions, even though this mean is not observed directly from the
data. In Fig. 3(b), the High m̂ group is colored black, the Mid m̂

group has a grey color, and the Low m̂ group was given a lighter
shade of grey. Table 2 shows the results for the Welsch’s test for the
constructed groups.

Empirical Classification for Project Executions

It has been established (Williams 1999) that project-management
simulation studies need to incorporate empirical data in order to
produce practical results. However, it is not a straightforward task
to incorporate empirical data into simulation models of project ex-
ecutions. In order to facilitate this task, a classification for project
executions is proposed that results from the grouping of the m̂ and
ŝ values in the previous section. Next, two ways to classify new
(real or simulated) project executions are proposed. Finally, the pro-
posed classification is discussed from a construction-industry point
of view.

Given the grouping of the empirical records of Batselier and
Vanhoucke (2015) for both the m̂ and ŝ values, the classifications
given in Table 3 are proposed. The six classes of project executions
in Table 3 all combine a value from the m̂pooled estimates with a
value from the ŝpooled estimates. A project execution, whether it is
real or simulated, can then be referenced against these six classes.
This can be done in two ways.

The first way to classify a new project execution would be
to apply the procedure of Triesch et al. (2012). If the Parkinson
distribution with a lognormal core is confirmed for that project
execution, the estimates m̂ and ŝ can be used. Levene’s and
Welsch’s tests can then be deployed to check whether the natural
logarithm of the relative distribution of the new project execution
has respectively an equal standard deviation or an equal mean with
any of the groups from the analysis in this paper. This would iden-
tify the project execution as belonging to a single class of Table 3.
However, this would mean that the empirical records, which were
needed to obtain the classification in Table 3, need to be consulted
for each new project execution.

Therefore, an alternative procedure is proposed that relies only
on the estimates for ŝpooled and m̂pooled of Table 3. Again, for each
new project execution, the Parkinson distribution with a lognormal
core would need to be confirmed, and the m̂ and ŝ estimates calcu-
lated. Calculation of a confidence interval (e.g., the 95% confidence
interval) is suggested for both the ŝ and m̂ value. Then, for each cell
in Table 3, one should compare the m̂pooled and ŝpooled values for the
corresponding groups to the appropriate confidence interval. If the
m̂pooled for a certain group (Low m̂, Mid m̂, or High m̂) is contained
within the confidence interval around m̂ and if the ŝpooled value of a
certain group (Low ŝ or High ŝ) is contained within the confidence
interval around ŝ, then it can be assumed that the project execution
belongs to the class of Table 3 that is characterized by these m̂pooled

and ŝpooled values. This will be illustrated with examples in the
“Discussion and Conclusions” section.

Now the use of the classification of Table 3 for construc-
tion projects will be discussed. As noted earlier, the database of
Batselier and Vanhoucke (2015) predominantly contains records of
construction projects. However, some other sectors (IT and educa-
tion) were included in this study to produce the classification in this
section. Most notably, the “Organizational Development” project
(education) has influenced the proposed classification greatly. The
empirical evidence shows that, for construction projects, only the
two classes in the top left corner of Table 3 should be considered.
Since, in the dataset of Batselier and Vanhoucke (2015), the con-
struction projects were found to belong to the Low m̂ and Mid m̂

groups with respect to the mean of the natural logarithm of the rel-
ative empirical distributions, and to the Low ŝ group with respect
to the standard deviation of the natural logarithm of the relative
empirical distributions. For these two classes, the coefficient of

variation (c.v.) was calculated with c:v: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
ŝ2
pooled − 1

p

. The
formula for the c.v. of a lognormally distributed variable X

follows from: E½X� ¼ emþs2=2 and sd½X� ¼ emþs2=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

es
2

−1
p

¼

E½X�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

es
2

−1
p

⇒

ffiffiffiffiffiffiffiffiffiffiffiffiffi

es
2

−1
p

¼ sd½X�=E½X� ¼ c:v. The c.v. is inde-
pendent of the expected value of a lognormally distributed variable
and therefore, m̂pooled is not incorporated in the formula. The value

of 0.5 for the Low ŝ group confirms the findings of Trietsch et al.
(2012) for the construction industry, as it is between their values
of 0.3 and 0.8, found for respectively low and mid variance con-
struction projects.

The issue of how the empirical classification of Table 3 can be
put to work in future simulations studies for project management
will be discussed in the next section.

Discussion and Conclusions

This section first provides a discussion of the empirical classifica-
tion that is proposed in this paper. The discussion offers three pos-
sible uses for the empirical classification in the project management
practice. These three possible uses are validated through a case

Table 2. Summary of Welsch’s Tests for m̂

Value F p.value (d:f:1; d:f:2)

Low 2.42 0.06 (6; 21.62)
Mid 1.17 0.34 (4; 24.9)
High —

a (0; -)

aNo value could be found since the group consists out of a single project.

Table 3. Empirical Classification of Project Executions

m̂pooled

ŝpooled

0.47 3.06

-0.09 Low m̂=Low ŝ Low m̂=High ŝ

0.26 Mid m̂=Low ŝ Mid m̂=High ŝ

1.05 High m̂=Low ŝ High m̂=High ŝ
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study performed in a construction company. Second, overall con-
clusions for the study are presented.

Discussion

The use of the empirical classification presented in Table 3 is
validated using a case study on the project management practice in
a construction company. First, three projects that were performed
in a construction company are disccused, then then three possible
uses for the classification in Table 3 are shown. In combination with
the empirical data from the construction company, it is shown how
Table 3 can lead to the implementation of a SPC project control
tool, the planning of management reserve and execution of a sched-
ule risk analysis.

Analysis of Construction Projects

Data were obtained from three residential building projects per-
formed by a Belgian construction company in the beginning of
2014. An associated researcher worked as a project management
consultant for this construction company in the first six months of
2014, providing both planning and control services. Due to confi-
dentiality, only the necessary details were abstracted from these
projects and made available online in R data format (“Validation
Dataset” at the statistical project control page on http://www
.projectmanagement.ugent.be). These new projects, performed by
a single construction company, are currently being processed to be
included in the database of Batselier and Vanhoucke (2015), and
can be retrieved using the names C2014-05, C2014-06, and
C2014-07. These projects constitute a homogeneous set in terms of
their scope (structural construction work), duration (30–70 days)
and budget (140,000–210,000 Euro). A qualitative analysis indi-
cated that from the three projects, only C2014-06 was perceived
as successful by the project management team that was responsible
for the execution of the projects. A quantitative analysis supported
this finding. For project C2014-06, a budget overrun and schedule
delay of around 10% were observed, while the two other projects
experienced a budget overrun of around 17–19% and were finished
with a 24% schedule delay.

Table 4 shows the result of the four-step procedure of Trietsch
et al. (2012) applied to projects C2014-05, C2014-06, and
C2014-07. The estimates m̂ and ŝ for these projects are also
depicted in Fig. 4(a), along with their 95% confidence limits.
Fig. 4(a) allows the projects to be identified as belonging to either
of the empirical classes presented in this study. From the m̂ and ŝ

grid in Fig. 4(a), projects C2014-05 and C2014-07 were classified
as Mid m̂=Low ŝ and project C2014-06 was classified as Low
m̂=Low ŝ. This detailed inspection of the activity durations for
these projects explains the budget overruns and schedule delays
that were observed by the project management team. Moreover, the
empirical classification effectively allows the quantification of the
subjectively perceived success of project C2014-06, by the project
management team. In the construction company that is the subject
of this case study, a project belonging to the Low m̂=Low ŝ class is
perceived as successful. Consequently, this class can be used as a
reference for future project executions. It will now be demonstrated

how this class can be used in three project simulation applications
that incorporate the projects of the validation set. In addition, the
use of the two top left classes of Table 3 for construction projects is
validated by these independent data.

Statistical Process Control (SPC) Application for Project

Management

The implementation of a SPC procedure for project control was
proposed for the construction company, based on the preceding
classification of the projects in the case study. For such a SPC pro-
cedure for project control, a major prerequisite is the ability of the
process (in this case the projects that are executed) to “speak for
itself” (ReVelle 2004) and the control approach should be able to
accurately reflect the “voice of the process” (Wheeler 1995). Effec-
tively, this means that empirical data from the construction com-
pany needed to be incorporated in the SPC procedure. Fig. 4(b)
shows the SPC procedure proposed by Leu and Lin (2008). A re-
cent study (Colin and Vanhoucke 2015) shows that this approach
outperforms the other SPC procedures that were proposed in the
literature for project control. For details on the calculation of
the control limits (and consequently, the zones A, B, and C) and
the simulation from which these can be calculated, the reader is
referred to the original article and the comparative study. Here, it
suffices that the simulations incorporate the Low m̂=Low ŝ class
into the definition of the “in control” reference. Moreover, the
observations for project C2014-05 were added to the SPC chart
(diamonds). If this had been done dynamically during the execution
of the project, the SPC chart would have signalled an “out of
control” situation when the project was around 50% completed, on
account of more than four consecutive observations falling within
the C zone (Leu and Lin 2008; Small 1958). Project C2014-05
would have been identified as unlikely to be belonging to the
Low m̂=Low ŝ, and the project management team would have been
given an early warning signal on which they could have made a
decision to steer the project back towards this class. In conclusion,
Fig. 4(b) shows how the empirical classification of Table 3 allows
the implementation of SPC charts for project control.

Management Reserve Planning Application for Project

Management

In the construction company that is the subject of our case study,
the practice of running MCS in order to estimate possible budget
overruns and schedule delays was not previously adopted. The
planning of a management reserve was therefore done consistently
based on personal experience and rules-of-thumb. The main reason
provided for this was that it requires a detailed input analysis, for
which the know-how was not present within the construction com-
pany. After the identification of the successful historical project
(C2014-06) as belonging to the Low m̂=Low class, they were
shown how this class could serve as an input to future simulation
studies. Fig. 4(c) shows a grey area of actual cost curves for ficti-
tious executions of project C2014-06 that would belong to the
Low m̂=Low class. The simulation that was used to produce these
fictitious project executions was described in Colin and Vanhoucke
(2015). The probability of these actual cost curves is indicated by

Table 4. Discussion of the Activity Times Data of the Validation Dataset from the Case Study in a Belgian Construction Company

Project number Project name

Parkinson distribution with lognormal core m̂ ŝ (p-value)

P0 P1 P1.1 P1.2

C2014-05 Structural construction works (1) — 0.37 (0.09) 0.30 — —

C2014-06 Structural construction works (2) — 0.05 (0.61) 0.33 — —

C2014-07 Structural construction works (3) — 0.34 (0.21) 0.31 — —
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the dotted lines that are superimposed onto the grey area. From top
to bottom, these respectively represent the 100th, the 75th, the 50th,
the 25th, and the 0th quantile. The full black line represents the
baseline schedule for project C2014-06, and the real execution is
depicted using white triangles. Even though the simulation was run
after the completion of the project, it could have been done as easily
during its planning and negotiation phase. This would have given
the construction company insights into the risks that they are ex-
posed to when performing the project. A schedule reserve could be
taken into consideration when engagements are made with respect
to the actual duration of the project with the project owner or the
other possible stakeholders. In addition, a budget reserve could be
taken into account when a price is set for the execution of the
project in a contractual agreement. The probabilistic outputs of
the simulation for the actual cost and the total project duration were
added to Fig. 4(c) as histograms opposing respectively the y-axis
and the x-axis. These histograms, and the information that can be
retrieved from them, show the value of the presented empirical clas-
sification for Monte Carlo simulations in the project planning and
negotiation phase.

Schedule Risk Analysis Application

A third possible use for the proposed empirical classification is in
the application of a schedule risk analysis (SRA) for project man-
agement. SRA are not conducted regularly for projects in the con-
struction company, due to the difficulties that are associated with
deriving a probabilistic input for the MCS. However, given the

identification of the successful historical project as belonging to
the Low m̂=Low class, the required input analysis is drastically
reduced. Fig. 4(d) shows the SRA that was conducted post-hoc for
project C2014-07. Here, the schedule sensitivity index (SSI) is
shown as grey bars for all activities. Although the proposed ap-
proach is not restricted to the SSI, the illustration is limited to this
single indicator, since it was found to deliver the best possible re-
sults in a project control application (Vanhoucke 2010b). For more
details regarding the characteristics and the calculations required in
a SRA, refer to more extensive studies on the subject (Vanhoucke
2010a; Elmaghraby 2000). Moreover, the observed SSI for the real
execution of project C2014-07 is shown using white squares in
Fig. 4(d). Since the real execution of C2014-07 was found to be-
long to the Mid m̂=Low class [Fig. 4(a)], substantial differences
in the SSI for certain activities can be observed. This indicates a
possibly larger variance for activity durations with respect to the
Low m̂=Low class, which confirms the findings of the classification
in Fig. 4(d). Moreover, Fig. 4(d) illustrates that the proposed clas-
sification allows to test the robustness of a SRA, which shows its
value for the development and testing of project control approaches
which are based on SRA.

Conclusion

This paper analysed the empirical data for activity distribu-
tions of an existing dataset using the distributional model of
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ŝ

Validation projects

C2014-05 (Mid m̂/Low ŝ)
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Fig. 4. Validation of the empirical classification for project executions on a case study in a Belgian construction company: (a) m̂ and ŝ for the for the

validation dataset (C2014-05, C2014-06, C2014-07); (b) a SPC application for project control, depicting project C2014-05; (c) a management reserve

planning application for project C2014-06; (d) a schedule risk-analysis application for project C2014-07
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Trietsch et al. (2012). The purpose of this application was to show
the relevance of such an analysis in future project management
studies in which data of new projects will be used. This new data,
coming from historical observations or simulation studies, can then
be compared and validated against the classification, shown in this
paper. The potential value of the proposed classification has been
demonstrated on a case study in a construction company.

The analysis that was conducted in this paper was made possible
by the extensive dataset of project executions provided by Batselier
and Vanhoucke (2015). To this dataset, the distributional model
and calibration procedure proposed by Trietsch et al. (2012) were
applied. This model assumes the relative empirical distribution
dij=d̂ij to be lognormally distributed, when the Parkinson effect
and the occurrence of rounding errors are correctly accounted
for, known as the Parkinson distribution model with a lognormal
core. The large majority of the historical records in the database of
Batselier and Vanhoucke (2015), that were suited for this analysis,
are from the construction industry. For 54% of these records, con-
firmed the Parkinson distribution model with a lognormal core was
confirmed.

During our analysis, estimates were obtained for the standard
deviation ŝ and the mean m̂ of the natural logarithm of the relative
empirical distributions (dij=d̂ij). These estimates were used to
find, respectively, two and three groups of project executions for
ŝ and m̂. The validity of these groups was confirmed using a stat-
istical analysis with Levene’s test for the homogeneity of variances
and Welsch’s test for equal means. The two groups that were found
for ŝ have values 0.47 and 3.06 for the pooled standard deviation
of the natural logarithm of the relative empirical distributions. The
three groups for m̂ have values −0.09, 0.26, and 1.05 for the
pooled mean of the natural logarithm of the relative empirical dis-
tributions. For construction projects, the findings of Trietsch et al.
(2012) were confirmed with respect to the observed coefficients of
variation of 0.5 for the Low ŝ group of project executions, and
validated the use of the Low m̂=Low and Mid m̂=Low on inde-
pendent data.

The grouping of the historical records from the dataset of
Batselier and Vanhoucke (2015) into two and three groups, for
respectively ŝ and m̂, supported the proposition of an empirical
classification for project executions, using six classes. Subse-
quently, the ways in which this classification can be useful in the
project management practice were demonstrated using a case study
in a construction company. The empirical classification can be
deployed to develop SPC charts for project control, for planning
applications of the management reserve, and for SRA studies. It is
also believed that the proposed classification method and the sug-
gested applications can lead to more generalizable results in future
research in the project-management domain.

Appendix. R Template for the Proposed
Classification of the Project Data

This appendix presents a working R template to reproduce the
classification of the empirical records of Batselier and Vanhoucke
(2015). The results that are presented in this paper are subject to

some numerical instability and therefore, small differences can be
expected when the R template is run. In particular, the uncertainty

associated with the estimation of the coefficients for the linear
regression models might cause slightly different coefficients for
each execution of the R template. In this appendix, the files that

should be present on the workstation where this R template is
executed are listed. Second, the outline of the R template is pre-

sented, and finally, the actual R code is shown.

Required Inputs

From the statistical project control research page available at the

OR&S website (OR&S 2014) the following files should be down-

loaded to the working directory of the R process:
• Colin_and_Vanhoucke_2015_template: The R template to run

the method proposed in the paper;
• Batselier_Vanhoucke_2015.xlsx: The data for the 24 projects,

including baseline and real durations;
• Trietsch_etal_2012.R: The R syntax for the four-step procedure

of Trietsch et al. (2012);
• Grouping_tests.R: The R syntax for the classification as pre-

sented in the paper; and
• Looney_and_Gulledge_1985.txt: The table that is input for the

R files.

Outline

Preamble

The preamble of the R template includes statements to clear the

workspace, to load a package to read Excel files, and to define some

subsidiary functions.

Fig. 5. Colin and Vanhoucke (2015) template
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Data

The activity-level data from the projects in the dataset of Batselier
and Vanhoucke (2015) are read from the Microsoft Excel file
(Batselier_Vanhoucke_2015.xlsx). This Microsoft Excel file con-
tains the planned and actual durations for all activities in the 24
projects that are suited for the analysis.

Four-Step Procedure of Trietsch et al. (2012)

The four-step procedure of Trietsch et al. (2012) is applied to these
24 projects. If the Parkinson distribution with a lognormal core is
not confirmed for a certain project, the four-step procedure returns
NA as output. If however, the distributional model for a project is
confirmed, the function returns a list for that project that includes
• The step (P0, P1, P1.1, P1.2) in which the hypothesis was

confirmed;
• The s and m estimates (ŝ and m̂);
• The p value; and
• A list of the values in the empirical relative distribution.

Classification

The classification of Table 3 was produced from the grouping of the
projects with respect to their ŝ and m̂ values. This grouping can be
reproduced through the application of Levene’s and Welsch’s tests
to the output of the four-step procedure. First the statistical inter-
pretation of ŝ can be reproduced, and next, the statistical interpre-
tation of m̂ can be repeated. The latter includes the implementation
of the enumeration algorithm.

Template

The actual R code is shown in Fig. 5.
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