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Abstract

We address the problem of algorithmic fairness: ensuring that sensitive informa-
tion does not unfairly influence the outcome of a classifier. We present an ap-
proach based on empirical risk minimization, which incorporates a fairness con-
straint into the learning problem. It encourages the conditional risk of the learned
classifier to be approximately constant with respect to the sensitive variable. We
derive both risk and fairness bounds that support the statistical consistency of
our methodology. We specify our approach to kernel methods and observe that
the fairness requirement implies an orthogonality constraint which can be easily
added to these methods. We further observe that for linear models the constraint
translates into a simple data preprocessing step. Experiments indicate that the
method is empirically effective and performs favorably against state-of-the-art ap-
proaches.

1 Introduction

In recent years there has been a lot of interest on algorithmic fairness in machine learning see,
e.g., [1–13] and references therein. The central question is how to enhance supervised learning
algorithms with fairness requirements, namely ensuring that sensitive information (e.g. knowledge
about the ethnic group of an individual) does not ‘unfairly’ influence the outcome of a learning al-
gorithm. For example if the learning problem is to decide whether a person should be offered a loan
based on her previous credit card scores, we would like to build a model which does not unfairly
use additional sensitive information such as race or sex. Several notions of fairness and associated
learning methods have been introduced in machine learning in the past few years, including De-
mographic Parity [14], Equal Odds and Equal Opportunities [2], Disparate Treatment, Impact, and
mistreatment [3]. The underlying idea behind such notions is to balance decisions of a classifier
among the different sensitive groups and label sets.

In this paper, we build upon the notion Equal Opportunity (EO) which defines fairness as the re-
quirement that the true positive rate of the classifier is the same across the sensitive groups. In
Section 2 we introduce a generalization of this notion of fairness which constrains the conditional
risk of a classifier, associated to positive labeled samples of a group, to be approximately constant
with respect to group membership. The risk is measured according to a prescribed loss function
and approximation parameter ✏. When the loss is the misclassification error and ✏ = 0 we recover
the notion EO above. We study the problem of minimizing the expected risk within a prescribed
class of functions subject to the fairness constraint. As a natural estimator associated with this prob-
lem, we consider a modified version of Empirical Risk Minimization (ERM) which we call Fair
ERM (FERM). We derive both risk and fairness bounds, which support that FERM is statistically
consistent, in a certain sense which we explain in the paper in Section 2.2. Since the FERM ap-
proach is impractical due to the non-convex nature of the constraint, in the same section we propose
a surrogate convex FERM problem which relates, under a natural condition, to the original goal of
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minimizing the misclassification error subject to a relaxed EO constraint. We further observe that
our condition can be empirically verified to judge the quality of the approximation in practice. As a
concrete example of the framework, in Section 3 we describe how kernel methods such as support
vector machines (SVMs) can be enhanced to satisfy the fairness constraint. We observe that a par-
ticular instance of the fairness constraint for ✏ = 0 reduces to an orthogonality constraint. Moreover,
in the linear case, the constraint translates into a preprocessing step that implicitly imposes the fair-
ness requirement on the data, making fair any linear model learned with them. We report numerical
experiments using both linear and nonlinear kernels, which indicate that our method improves on
the state-of-the-art in four out of five datasets and is competitive on the fifth dataset. Additional
technical steps and experiments are presented in the supplementary material.

In summary the contributions of this paper are twofold. First, we outline a general framework for
empirical risk minimization under fairness constraints. The framework can be used as a starting point
to develop specific algorithms for learning under fairness constraints. As a second contribution, we
shown how a linear fairness constraint arises naturally in the framework and allows us to develop a
novel convex learning method that is supported by consistency properties both in terms of EO and
risk of the selected model, performing favorably against state-of-the-art alternatives on a series of
benchmark datasets.

Related Work. Work on algorithmic fairness can be divided in three families. Methods in the first
family modify a pretrained classifier in order to increase its fairness properties while maintaining as
much as possible the classification performance: [2, 15–17] are examples of these methods, however
no consistency properties nor comparison with state-of-the-art proposals are provided. Methods
in the second family enforce fairness directly during the training step, e.g. [3, 18–26]. However
they either provide non-convex approaches to the solution of the problem or derive consistency
results for the non-convex formulation, resorting later to a convex approach which is not theoretically
grounded; The third family of methods implements fairness by modifying the data representation
and then employs standard machine learning methods: [4, 7, 27–30] are examples of these methods.
Again, no consistency property nor comparison with state-of-the-art proposal are provided. Our
method belongs to the second family, in that it directly optimizes a fairness constraint related to the
notion of EO discussed above. Furthermore, in the case of linear models, our method translates into
an efficient preprocessing of the input data, with methods in the third family. Finally our method can
be extended to deal with other frameworks like the multitask learning one [31]. As we shall see, our
approach is statistically consistent and performs favorably against the state-of-the-art. We are aware
that other convex methods exist, e.g. [32–34] which, however, do not compare with other state-of-
the-art solutions and do not provide consistency. In this sense, an exception is [1] but, contrarily
to our proposal, do not enforce a fairness constraint directly in the learning phase. We note that a
more detailed comparison between our proposal and state-of-the-art is reported in the supplementary
material, Section C.

2 Fair Empirical Risk Minimization

In this section, we present our approach to learning with fairness. We begin by introducing our nota-
tion. We let D = {(x1, s1, y1), . . . , (xn, sn, yn)} be a sequence of n samples drawn independently
from an unknown probability distribution µ over X ⇥ S ⇥ Y , where Y = {�1,+1} is the set of

binary output labels, S = {a, b} represents group membership among two groups1 (e.g. ‘female’
or ‘male’), and X is the input space. We note that the input x 2 X may further contain or not the
sensitive feature s 2 S in it. We also denote by D+,g={(xi, si, yi) : yi=1, si=g} for g 2 {a, b}
and n+,g = |D+,g|. Let us consider a function (or model) f : X ! R chosen from a set F of
possible models. The error (risk) of f in approximating µ is measured by a prescribed loss function
` : R⇥Y ! R. The risk of f is defined as L(f) = E [`(f(x), y)]. When necessary we will indicate
with a subscript the particular loss function used, i.e. Lp(f) = E [`p(f(x), y)].

The purpose of a learning procedure is to find a model that minimizes the risk. Since the proba-
bility measure µ is usually unknown, the risk cannot be computed, however we can compute the

empirical risk L̂(f) = Ê[`(f(x), y)], where Ê denotes the empirical expectation. A natural learning
strategy, called Empirical Risk Minimization (ERM), is then to minimize the empirical risk within
a prescribed set of functions.

1The extension to multiple groups (e.g. ethnic groups) is briefly discussed in the supplementary material,
Section I.
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2.1 Fairness Definitions

In the literature there are different definitions of fairness of a model or learning algorithm [1–3,
3], but there is not yet a consensus on which definition is most appropriate. In this paper, we
introduce a general notion of fairness which encompasses some previously used notions and it allows
to introduce new ones by specifying the loss function used below.

Definition 1. Let L+,g(f)=E[`(f(x), y)|y=1, s=g] be the risk of the positive labeled samples in

the g-th group, and let ✏ 2 [0, 1]. We say that a function f is ✏-fair if |L+,a(f)� L+,b(f)|  ✏.

This definition says that a model is fair if it commits approximately the same error on the positive
class independently of the group membership. That is, the conditional risk L+,g is approximately
constant across the two groups. Note that if ✏ = 0 and we use the hard loss function, `h(f(x), y) =
1{yf(x)0}, then Definition 1 is equivalent to definition of EO proposed by [2], namely

P {f(x) > 0 | y = 1, s = a} = P {f(x) > 0 | y = 1, s = b} . (1)

This equation means that the true positive rate is the same across the two groups. Furthermore, if
we use the linear loss function `l(f(x), y) = (1� yf(x))/2 and set ✏ = 0, then Definition 1 gives

E[f(x) | y = 1, s = a] = E[f(x) | y = 1, s = b]. (2)

By reformulating this expression we obtain a notion of fairness introduced in [1]
X

g2{a,b}

�

�E[f(x) | y = 1, s = g]� E[f(x) | y = 1]
�

� = 0.

Yet another implication of Eq. (2) is that the output of the model is uncorrelated with respect to the
group membership conditioned on the label being positive [35], that is, for every g2{a, b}, we have

E
⇥

f(x)1{s=g} | y = 1
⇤

= E
⇥

f(x)|y = 1
⇤

E
⇥

1{s=g} | y = 1
⇤

.

Finally, we observe that our approach naturally generalizes to other fairness measures that are based
on conditional probabilities, e.g. equal odds [2] (see the supplementary material, Section A). Specif-
ically, we would require in Definition 1 that |Ly,a(f)� Ly,b(f)|  ✏ for both y 2 {�1, 1}.

2.2 Fair Empirical Risk Minimization

In this paper, we aim at minimizing the risk subject to a fairness constraint. Specifically, we consider
the problem

min
n

L(f) : f2F ,
�

�L+,a(f)� L+,b(f)
�

�  ✏
o

, (3)

where ✏ 2 [0, 1] is the amount of unfairness that we are willing to bear. Since the measure µ
is unknown we replace the deterministic quantities with their empirical counterparts. That is, we
replace Problem 3 with

min
n

L̂(f) : f2F ,
�

�L̂+,a(f)� L̂+,b(f)
�

�  ✏̂
o

, (4)

where ✏̂ 2 [0, 1]. We will refer to Problem 4 as FERM.

We denote by f⇤ a solution of Problem 3, and by f̂ a solution of Problem 4. In this section we
will show that these solutions are linked one to another. In particular, if the parameter ✏̂ is chosen

appropriately, we will show that, in a certain sense, the estimator f̂ is consistent. In order to present
our observations, we require that it holds with probability at least 1� � that

sup
f2F

�

�L(f)� L̂(f)
�

�  B(�, n,F) (5)

where the bound B(�, n,F) goes to zero as n grows to infinity if the class F is learnable with
respect to the loss [see e.g. 36, and references therein]. For example, if F is a compact subset of
linear separators in a Reproducing Kernel Hilbert Space (RKHS), and the loss is Lipschitz in its
first argument, then B(�, n,F) can be obtained via Rademacher bounds [see e.g. 37]. In this case

B(�, n,F) goes to zero at least as
p

1/n as n grows to infinity, where n = |D|.

We are ready to state the first result of this section (proof is reported in supplementary material,
Section B).
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Theorem 1. Let F be a learnable set of functions with respect to the loss function ` : R⇥ Y ! R,

let f⇤ be a solution of Problem (3) and let f̂ be a solution of Problem (4) with

✏̂ = ✏+
P

g2{a,b} B(�, n+,g,F). (6)

With probability at least 1� 6� it holds simultaneously that

L(f̂)� L(f⇤)  2B(�, n,F) and

�

�

�
L+,a(f̂)� L+,b(f̂)

�

�

�
 ✏+ 2

P

g2{a,b} B(�, n+,g,F).

A consequence of the first statement of Theorem 1 is that as n tends to infinity L(f̂) tends to a value
which is not larger than L(f⇤), that is, FERM is consistent with respect to the risk of the selected
model. The second statement of Theorem 1, instead, implies that as n tends to infinity we have that

f̂ tends to be ✏-fair. In other words, FERM is consistent with respect to the fairness of the selected
model.

Thanks to Theorem 1 we can state that f⇤ is close to f̂ both in term of its risk and its fairness.
Nevertheless, our final goal is to find an f⇤

h which solves the following problem

min
n

Lh(f) : f2F ,
�

�L+,a
h (f)� L+,b

h (f)
�

�  ✏
o

. (7)

Note that the objective function in Problem 7 is the misclassification error of the classifier f , whereas

the fairness constraint is a relaxation of the EO constraint in Eq. (1). Indeed, the quantity
�

�L+,a
h (f)�

L+,b
h (f)

�

� is equal to

�

�P {f(x) > 0 | y = 1,s = a}� P {f(x) > 0 | y = 1,s = b}
�

�. (8)

We refer to this quantity as difference of EO (DEO).

Although Problem 7 cannot be solved, by exploiting Theorem 1 we can safely search for a solution

f̂h of its empirical counterpart

min
n

L̂h(f) : f2F ,
�

�L̂+,a
h (f)� L̂+,b

h (f)
�

�  ✏̂
o

. (9)

Unfortunately Problem 9 is a difficult nonconvex nonsmooth problem, and for this reason it is more
convenient to solve a convex relaxation. That is, we replace the hard loss in the risk with a convex
loss function `c (e.g. the Hinge loss `c = max{0, `l}) and the hard loss in the constraint with the

linear loss `l. In this way, we look for a solution f̂c of the convex FERM problem

min
n

L̂c(f) : f2F ,
�

�L̂+,a
l (f)� L̂+,b

l (f)
�

�  ✏̂
o

. (10)

Note that this approximation of the EO constraint correspond to matching the first order mo-
ment. Other works tries to match the second order moment [20] or potentially infinitely many
moments [38] but these approaches result in non-convex approaches.

The questions that arise here are whether, f̂c is to f̂h, how much, and under which assumptions. The
following theorem sheds some lights on these issues (proof is reported in supplementary material,
Section B).

Proposition 1. If `c is the Hinge loss then L̂h(f)  L̂c(f). Moreover, if for f : X ! R the
following condition is true

1
2

P

g2{a,b}

�

�

�
Ê
⇥

sign
�

f(x)
�

� f(x)
�

� y = 1, s = g
⇤

�

�

�
 ∆̂, (11)

then it also holds that
�

�L̂+,a
h (f)� L̂+,b

h (f)
�

� 
�

�L̂+,a
l (f)� L̂+,b

l (f)
�

�+ ∆̂.

The first statement of Proposition 1 tells us that exploiting `c instead of `h is a good approximation

if L̂c(f̂c) is small. The second statement of Proposition 1, instead, tells us that if the hypothesis of
inequality (11) holds, then the linear loss based fairness is close to the EO. Obviously the smaller

∆̂ is, the closer they are. Inequality (11) says that the functions sign
�

f(x)
�

and f(x) distribute,
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on average, in a similar way. This condition is quite natural and it has been exploited in previous

work [see e.g. 39]. Moreover, in Section 4 we present experiments showing that ∆̂ is small.

The bound in Proposition 1 may be tighten by using different nonlinear approximations of EO [see
e.g. 7]. However, the linear approximation proposed in this work gives a convex problem, and as we
shall see in Section 5, works well in practice.

In summary, the combination of Theorem 1 and Proposition 1 provides conditions under which a

solution f̂c of Problem 4, which is convex, is close, both in terms of classification accuracy and
fairness, to a solution f⇤

h of Problem 7, which is our final goal.

3 Fair Learning with Kernels

In this section, we specify the FERM framework to the case that the underlying space of models
is a reproducing kernel Hilbert space (RKHS) [see e.g. 40, 41, and references therein]. We let
 : X ⇥ X ! R be a positive definite kernel and let φ : X ! H be an induced feature mapping
such that (x,x0) = hφ(x),φ(x0)i, for all x,x0 2 X , where H is the Hilbert space of square
summable sequences. Functions in the RKHS can be parametrized as

f(x) = hw,φ(x)i, x 2 X , (12)

for some vector of parameters w 2 H. In practice a bias term (threshold) can be added to f but to
ease our presentation we do not include it here.

We solve Problem (10) with F a ball in the RKHS and employ a convex loss function `. As for the
fairness constraint we use the linear loss function, which implies the constraint to be convex. Let ug

be the barycenter in the feature space of the positively labelled points in the group g 2 {a, b}, that is

ug = 1
n+,g

P

i2I+,g φ(xi), (13)

where I+,g = {i : yi=1, si=g}. Then using Eq. (18) the constraint in Problem (10) takes the form
�

�hw,ua � ubi
�

�  ✏.

In practice, we solve the Tikhonov regularization problem

min
w2H

Pn

i=1 `(hw,φ(xi)i, yi) + �kwk2 s.t.
�

�hw,ui
�

�  ✏ (14)

where u = ua � ub and � is a positive parameter which controls model complexity. In particular,
if ✏ = 0 the constraint in Problem (14) reduces to an orthogonality constraint that has a simple
geometric interpretation. Specifically, the vector w is required to be orthogonal to the vector formed
by the difference between the barycenters of the positive labelled input samples in the two groups.

By the representer theorem [42], the solution to Problem (14) is a linear combination of the feature
vectors φ(x1), . . . ,φ(xn) and the vector u. However, in our case u is itself a linear combination of
the feature vectors (in fact only those corresponding to the subset of positive labeled points) hence w
is a linear combination of the input points, that is w =

Pn

i=1 ↵i�(xi). The corresponding function

used to make predictions is then given by f(x) =
Pn

i=1 ↵i(xi,x). Let K be the Gram matrix.
The vector of coefficients α can then be found by solving

min
α2Rn

(

n
X

i=1

`

✓ n
X

j=1

Kij↵j , yi

◆

+�

n
X

i,j=1

↵i↵jKij s.t.

�

�

�

�

n
X

i=1

↵i



1

n+,a

X

j2I+,a

Kij�
1

n+,b

X

j2I+,b

Kij

�
�

�

�

�

 ✏

)

.

In our experiments below we consider this particular case of Problem (14) and furthermore choose
the loss function `c to be the Hinge loss. The resulting method is an extension of SVM. The fairness
constraint and, in particular, the orthogonality constraint when ✏ = 0, can be easily added within
standard SVM solvers2.

It is instructive to consider Problem (14) when φ is the identity mapping (i.e.  is the linear kernel
on R

d) and ✏ = 0. In this special case we can solve the orthogonality constraint hw,ui = 0 for wi,

where the index i is such that |ui| = kuk1, obtaining that wi = �
Pd

j=1,j 6=i wj
uj

ui
. Consequently

the linear model rewrites as
Pd

j=1 wjxj =
Pd

j=1,j 6=i wj(xj � xi
uj

ui
). In this way, we then see the

2In supplementary material we derive the dual of Problem (14) when `c is the Hinge loss.
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fairness constraint is implicitly enforced by making the change of representation x 7! x̃ 2 R
d�1,

with

x̃j = xj � xi
uj

ui
, j 2 {1, . . . , i� 1, i+ 1, . . . , d}. (15)

In other words, we are able to obtain a fair linear model without any other constraint and by using a
representation that has one feature fewer than the original one3.

4 Experiments

In this section, we present numerical experiments with the proposed method on one synthetic and
five real datasets. The aim of the experiments is threefold. First, we show that our approach is
effective in selecting a fair model, incurring only a moderate loss in accuracy. Second, we provide
an empirical study of the properties of the method, which supports our theoretical observations
in Section 2. Third, we highlight the generality of our approach by showing that it can be used
effectively within other linear models such as Lasso SVM for classification.

We use our approach with ✏=0 in order to simplify the hyperparameter selection procedure. For
the sake of completeness, a set of results for different values of ✏ is presented in the supplemen-
tary material and briefly we comment on these below. In all the experiments, we collect statistics
concerning the classification accuracy and DEO of the selected model. We recall that the DEO is
defined in Eq. (8) and is the absolute difference of the true positive rate of the classifier applied
to the two groups. In all experiments, we performed a 10-fold cross validation (CV) to select the
best hyperparameters4. For the Arrhythmia, COMPAS, German and Drug datasets, this procedure
is repeated 10 times, and we reported the average performance on the test set alongside its standard
deviation. For the Adult dataset, we used the provided split of train and test sets. Unless other-
wise stated, we employ two steps in the 10-fold CV procedure. In the first step, the value of the
hyperparameters with highest accuracy is identified. In the second step, we shortlist all the hy-
perparameters with accuracy close to the best one (in our case, above 90% of the best accuracy).
Finally, from this list, we select the hyperparameters with the lowest DEO. This novel validation
procedure, that we wil call NVP, is a sanity-check to ensure that fairness cannot be achieved by a
simple modification of hyperparameter selection procedure. The code of our method is available at:
https://github.com/jmikko/fair_ERM.

Synthetic Experiment. The aim of this experiment is to study the behavior of our method, in terms
of both DEO and classification accuracy, in comparison to standard SVM (with our novel validation
procedure). To this end, we generated a synthetic binary classification dataset with two sensitive
groups in the following manner. For each group in the class �1 and for the group a in the class
+1, we generated 1000 examples for training and the same amount for testing. For the group b in
the class +1, we generated 200 examples for training and the same number for testing. Each set
of examples is sampled from a 2-dimensional isotropic Gaussian distribution with different mean
µ and variance �2: (i) Group a, Label +1: µ = (�1,�1), �2 = 0.8; (ii) Group a, Label �1:
µ = (1, 1), �2 = 0.8; (iii) Group b, Label +1: µ = (0.5,�0.5), �2 = 0.5; (iv) Group b, Label �1:
µ = (0.5, 0.5), �2 = 0.5. When a standard machine learning method is applied to this toy dataset,
the generated model is unfair with respect to the group b, in that the classifier tends to negatively
classify the examples in this group.

We trained different models, varying the value of the hyperparameter C, and using the standard
linear SVM and our linear method. Figure 1 (Left) shows the performance of the various generated
models with respect to the classification error and DEO on the test set. Note that our method gener-
ated models that have an higher level of fairness, maintaining a good level of accuracy. The grid in
the plots emphasizes the fact that both the error and DEO have to be simultaneously considered in
the evaluation of a method. Figure 1 (Center and Left) depicts the histogram of the values of hw,xi
(where w is the generated model) for test examples with true label equal to +1 for each of the two
groups. The results are reported both for our method (Right) and standard SVM (Center). Note that
our method generates a model with a similar true positive rate among the two groups (i.e. the areas
of the value when the horizontal axis is greater than zero are similar for groups a and b). Moreover,

3In supplementary material is reported the generalization of this argument to kernel for SVM.
4The regularization parameter C (for both SVM and our method) with 30 values, equally spaced in loga-

rithmic scale between 10
−4 and 10

4; we used both the linear or RBF kernel (i.e. for two examples x and z, the

RBF kernel is e−γ||x−z||2 ) with � ∈ {0.001, 0.01, 0.1, 1}. In our case, C =
1

2λ
of Eq. (14).
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Figure 1: Left: Test classification error and DEO for different values of hyperparameter C for
standard linear SVM (green circles) and our modified linear SVM (magenta stars). Center and
Rights: Histograms of the distribution of the values hw,xi for the two groups (a in blue and b
in light orange) for test examples with label equals to +1. The results are collected by using the
optimal validated model for the classical linear SVM (Center) and for our linear method (Right).

Arrhythmia COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO

s not included in x

Naïve Lin. SVM 0.75±0.04 0.11±0.03 0.73±0.01 0.13±0.02 0.78 0.10 0.71±0.06 0.16±0.04 0.79±0.02 0.25±0.03
Lin. SVM 0.71±0.05 0.10±0.03 0.72±0.01 0.12±0.02 0.78 0.09 0.69±0.04 0.11±0.10 0.79±0.02 0.25±0.04
Hardt - - - - - - - - - -
Zafar 0.67±0.03 0.05±0.02 0.69±0.01 0.10±0.08 0.76 0.05 0.62±0.09 0.13±0.10 0.66±0.03 0.06±0.06
Lin. Ours 0.75±0.05 0.05±0.02 0.73±0.01 0.07±0.02 0.75 0.01 0.69±0.04 0.06±0.03 0.79±0.02 0.10±0.06
Naïve SVM 0.75±0.04 0.11±0.03 0.72±0.01 0.14±0.02 0.80 0.09 0.74±0.05 0.12±0.05 0.81±0.02 0.22±0.04
SVM 0.71±0.05 0.10±0.03 0.73±0.01 0.11±0.02 0.79 0.08 0.74±0.03 0.10±0.06 0.81±0.02 0.22±0.03
Hardt - - - - - - - - - -
Ours 0.75±0.05 0.05±0.02 0.72±0.01 0.08±0.02 0.77 0.01 0.73±0.04 0.05±0.03 0.79±0.03 0.10±0.05

s included in x

Naïve Lin. SVM 0.79±0.06 0.14±0.03 0.76±0.01 0.17±0.02 0.81 0.14 0.71±0.06 0.17±0.05 0.81±0.02 0.44±0.03
Lin. SVM 0.78±0.07 0.13±0.04 0.75±0.01 0.15±0.02 0.80 0.13 0.69±0.04 0.11±0.10 0.81±0.02 0.41±0.06
Hardt 0.74±0.06 0.07±0.04 0.67±0.03 0.21±0.09 0.80 0.10 0.61±0.15 0.15±0.13 0.77±0.02 0.22±0.09
Zafar 0.71±0.03 0.03±0.02 0.69±0.02 0.10±0.06 0.78 0.05 0.62±0.09 0.13±0.11 0.69±0.03 0.02±0.07
Lin. Ours 0.79±0.07 0.04±0.03 0.76±0.01 0.04±0.03 0.77 0.01 0.69±0.04 0.05±0.03 0.79±0.02 0.05±0.03
Naïve SVM 0.79±0.06 0.14±0.04 0.76±0.01 0.18±0.02 0.84 0.18 0.74±0.05 0.12±0.05 0.82±0.02 0.45±0.04
SVM 0.78±0.06 0.13±0.04 0.73±0.01 0.14±0.02 0.82 0.14 0.74±0.03 0.10±0.06 0.81±0.02 0.38±0.03
Hardt 0.74±0.06 0.07±0.04 0.71±0.01 0.08±0.01 0.82 0.11 0.71±0.03 0.11±0.18 0.75±0.11 0.14±0.08
Ours 0.79±0.09 0.03±0.02 0.73±0.01 0.05±0.03 0.81 0.01 0.73±0.04 0.05±0.03 0.80±0.03 0.07±0.05

Table 1: Results (average ± standard deviation, when a fixed test set is not provided) for all the
datasets, concerning accuracy (ACC) and DEO .

due to the simplicity of the toy test, the distribution with respect to the two different groups is also
very similar when our model is used.

Real Data Experiments. We next compare the performance of our model to set of different methods
on 5 publicly available datasets: Arrhythmia, COMPAS, Adult, German, and Drug. A description of
the datasets is provided in the supplementary material. These datasets have been selected from the
standard databases of datasets (UCI, mldata and Fairness-Measures5). We considered only datasets
with a DEO higher than 0.1, when the model is generated by an SVM validated with the NVP. For
this reason, some of the commonly used datasets have been discarded (e.g. Diabetes, Heart, SAT,
PSU-Chile, and SOEP). We compared our method both in the linear and not linear case against: (i)
Naïve SVM, validated with a standard nested 10-fold CV procedure. This method ignores fairness
in the validation procedure, simply trying to optimize accuracy; (ii) SVM with the NVP. As noted
above, this baseline is the simplest way to inject the fairness into the model; (iii) Hardt method [2]
applied to the best SVM; (iv) Zafar method [3], implemented with the code provided by the au-
thors for the linear case6. Concerning our method, in the linear case, it exploits the preprocessing
presented in Section 3.

Table 1 shows our experimental results for all the datasets and methods both when s is included in
x or not. This result suggests that our method performs favorably over the competitors in that it

5Fairness-Measures website: fairness-measures.org
6Python code for [3]: https://github.com/mbilalzafar/fair-classification

7

fairness-measures.org
https://github.com/mbilalzafar/fair-classification


Figure 2: Results of Table 1 of linear (left) and nonlinear (right) methods, when the error and the
DEO are normalized in [0, 1] column-wise and when s is included in x. Different symbols and
colors refer to different datasets and method respectively. The closer a point is to the origin, the
better the result is.

decreases DEO substantially with only a moderate loss in accuracy. Moreover having s included in
x increases the accuracy but - for the methods without the specific purpose of producing fairness
models - decreases the fairness. On the other hand, having s included in x ensures to our method
the ability of improve the fairness by exploiting the value of s also in the prediction phase. This
is to be expected, since knowing the group membership increases our information but also leads to
behaviours able to influence the fairness of the predictive model. In order to quantify this effect,
we present in Figure 2 the results of Table 1 of linear (left) and nonlinear (right) methods, when the
error (one minus accuracy) and the DEO are normalized in [0, 1] column-wise both when the s is
included and not included in x. In the figure, different symbols and colors refer to different datasets
and methods, respectively. The closer a point is to the origin, the better the result is. The best
accuracy is, in general, reached by using the Naïve SVM (in red) both for the linear and nonlinear
case. This behavior is expected due to the absence of any fairness constraint. On the other hand,
Naïve SVM has unsatisfactory levels of fairness. Hardt [2] (in blue) and Zafar [3] (in cyan, for the
linear case) methods are able to obtain a good level of fairness but the price of this fair model is a
strong decrease in accuracy. Our method (in magenta) obtains similar or better results concerning
the DEO preserving the performance in accuracy. In particular in the nonlinear case, our method
reaches the lowest levels of DEO with respect to all the methods. For the sake of completeness, in
the nonlinear (bottom) part of Figure 2, we show our method when the parameter ✏ is set to 0.1 (in
brown) instead of 0 (in magenta). As expected, the generated models are less fair with a (small)
improvement in the accuracy. An in depth analysis of the role of ✏ is presented in supplementary
material.

Application to Lasso. Due to the particular proposed methodology, we are able in principle to apply
our method to any learning algorithm. In particular, when the algorithm generates a linear model we
can exploit the data preprocessing in Eq. (15), to directly impose fairness in the model. Here, we
show how it is possible to obtain a sparse and fair model by exploiting the standard Lasso algorithm
in synergy with this preprocessing step. For this purpose, we selected the Arrhythmia dataset as the
Lasso works well in a high dimensional / small sample setting. We performed the same experiment
described above, where we used the Lasso algorithm in place of the SVM. In this case, by Naïve
Lasso, we refer to the Lasso when it is validated with a standard nested 10-fold CV procedure,
whereas by Lasso we refer to the standard Lasso with the NVP outlined above. The method of [2]
has been applied to the best Lasso model. Moreover, we reported the results obtained using Naïve
Linear SVM and Linear SVM. We also repeated the experiment by using a reduced training set in
order to highlight the effect of the sparsity. Table 2 reported in the supplementary material shows
the results in the case when s is included in x. It is possible to note that, reducing the training sets,
the generated models become less fair (i.e. the DEO increases). Using our method, we are able to
maintain a fair model reaching satisfactory accuracy results.

The Value of ∆̂. Finally, we show experimental results to highlight how the hypothesis of Propo-
sition 1 (Section 2.2) are reasonable in the real cases. We know that, if the hypothesis of inequality
(11) are satisfied, the linear loss based fairness is close to the EO. Specifically, these two quantities

are closer when ∆̂ is small. We evaluated ∆̂ for benchmark and toy datasets. The obtained results
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are in Table 3 of supplementary material, where ∆̂ has the order of magnitude of 10�2 in all the
datasets. Consequently, our method is able to obtain a good approximation of the DEO.

Arrhythmia dataset

Method Accuracy DEO Selected Features

Naïve Lin. SVM 0.79± 0.06 0.14± 0.03 -
Linear SVM 0.78± 0.07 0.13± 0.04 -

Naïve Lasso 0.79± 0.07 0.11± 0.04 22.7± 9.1
Lasso 0.74± 0.04 0.07± 0.04 5.2± 3.7
Hardt 0.71± 0.05 0.04± 0.06 5.2± 3.7
Our Lasso 0.77± 0.02 0.03± 0.02 7.5± 2.0

Arrhythmia dataset - Training set reduced by 50%

Method Accuracy DEO Selected Features

Naïve Lin. SVM 0.69± 0.03 0.16± 0.03 -
Linear SVM 0.68± 0.03 0.15± 0.03 -

Naïve Lasso 0.73± 0.04 0.15± 0.06 14.1± 6.6
Lasso 0.70± 0.04 0.09± 0.05 7.9± 8.0
Hardt 0.67± 0.06 0.08± 0.07 7.9± 8.0
Our Lasso 0.71± 0.04 0.03± 0.04 9.0± 7.3

Table 2: Results (average ± standard deviation) when the model is the Lasso, concerning accuracy,
DEO and the number of features with weight bigger than 10�8 over the 279 original features. The
experiment has been repeated also reducing the training set. In this case s is included in x.

Dataset ∆̂

Toytest 0.03
Toytest Lasso 0.02

Arrhythmia 0.03
COMPAS 0.04
Adult 0.06
German 0.05
Drug 0.03

Table 3: The ∆̂ for the exploited datasets. A smaller ∆̂ means a better approximation of the DEO in
our method.

5 Conclusion and Future Work

We have presented a generalized notion of fairness, which encompasses previously introduced no-
tion and can be used to constrain ERM, in order to learn fair classifiers. The framework is appealing
both theoretically and practically. Our theoretical observations provide a statistical justification for
this approach and our algorithmic observations suggest a way to implement it efficiently in the set-
ting of kernel methods. Experimental results suggest that our approach is promising for applications,
generating models with improved fairness properties while maintaining classification accuracy. We
close by mentioning directions of future research. On the algorithmic side, it would be interesting
to study whether our method can be improved by other relaxations of the fairness constraint beyond
the linear loss used here. Applications of the fairness constraint to multi-class classification or to
regression tasks would also be valuable. On the theory side, it would be interesting to study how
the choice of the parameter ✏ affects the statistical performance of our method and derive optimal
accuracy-fairness trade-off as a function of this parameter.
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