
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

6-1998

Empirical Studies of a Safe Regression Test Selection Technique Empirical Studies of a Safe Regression Test Selection Technique

Gregg Rothermel
University of Nebraska-Lincoln, gerother@ncsu.edu

Mary Jean Harrold
Ohio State University

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

Rothermel, Gregg and Harrold, Mary Jean, "Empirical Studies of a Safe Regression Test Selection
Technique" (1998). CSE Journal Articles. 11.
https://digitalcommons.unl.edu/csearticles/11

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/11?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998 401

Empirical Studies of a Safe Regression
Test Selection Technique

Gregg Rothermel, Member, IEEE, and Mary Jean Harrold, Member, IEEE

Abstract—Regression testing is an expensive testing procedure utilized to validate modified software. Regression test selection
techniques attempt to reduce the cost of regression testing by selecting a subset of a program’s existing test suite. Safe regression
test selection techniques select subsets that, under certain well-defined conditions, exclude no tests (from the original test suite) that
if executed would reveal faults in the modified software. Many regression test selection techniques, including several safe
techniques, have been proposed, but few have been subjected to empirical validation. This paper reports empirical studies on a
particular safe regression test selection technique, in which the technique is compared to the alternative regression testing strategy
of running all tests. The results indicate that safe regression test selection can be cost-effective, but that its costs and benefits vary
widely based on a number of factors. In particular, test suite design can significantly affect the effectiveness of test selection, and
coverage-based test suites may provide test selection results superior to those provided by test suites that are not coverage-based.

Index Terms—Software maintenance, regression testing, selective retest, regression test selection, empirical studies.

——————————���F���——————————

1 INTRODUCTION

EGRESSION TESTING is an expensive testing process that
attempts to validate modified software and ensure that

new errors are not introduced into previously tested code.
One method for reducing the cost of regression testing is to
save the test suites that are developed for a product, and
reuse them to revalidate the product after it is modified.
One regression testing strategy reruns all such tests, but this
retest-all approach may consume excessive time and re-
sources. Regression test selection techniques, in contrast, at-
tempt to reduce the cost of regression testing by selecting a
subset of the test suite that was used during development
and using that subset to test the modified program.

Over the past two decades, much effort has been ex-
pended on research into regression test selection tech-
niques, and many techniques have been described in the
literature [1], [3], [4], [5], [6], [7], [8], [9], [10], [12], [15], [16],
[17], [18], [21], [22], [23], [24], [25], [28], [35], [36], [37], [38],
[39], [40], [41]. These techniques have been evaluated and
compared analytically [33], but only recently have attempts
been made to evaluate or compare them empirically [6], [8],
[11], [29], [30], [34], [40].

In previous work, we developed and described a new
regression test selection technique [34]. We proved that un-
der certain well-defined conditions, our test selection algo-
rithms exclude no tests (from the original test suite) that if
executed would reveal faults in the modified program. Un-
der these conditions, our algorithms are safe, and their fault-
detection abilities are equivalent to those of the retest-all

approach. Despite these analytical results, to draw conclu-
sions about the ability of our algorithms to reduce regres-
sion testing costs and detect faults in practice, we require
empirical data.

To investigate the costs and benefits of using our regres-
sion test selection technique, and the factors that may influ-
ence those costs and benefits, we implemented our algo-
rithms and performed several empirical studies. This paper
presents the results of those studies. In addition to providing
data relevant to the use of our technique, the work provides
insights into the use of regression test selection and safe re-
gression test selection techniques generally; in these respects,
we believe that the results will be of interest to practitioners.
The paper also provides insights into methods for empiri-
cally evaluating regression test selection techniques, and
highlights questions that should be addressed by subsequent
empirical work; in this respect, we believe that the results
will be of interest to other researchers.

2 REGRESSION TEST SELECTION

This section discusses selective retest techniques, describes
the regression test selection algorithm on which our studies
focus, and discusses the cost model that we use to evaluate
results.

2.1 Selective Retest Techniques and the Regression
Test Selection Problem

Let P be a procedure or program, let P′ be a modified version
of P, and let T be a set of tests (a test suite) created to test P. A
typical selective retest technique proceeds as follows:

1)�Select T′ ⊆ T, a set of tests to execute on P′.
2)�Test P′ with T′, establishing the correctness of P′ with

respect to T′.
3)�If necessary, create T′′, a set of new functional or

structural tests for P′.

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� G. Rothermel is with the Department of Computer Science, Oregon State
University, Corvallis, OR 97331. E-mail: grother@cs.orst.edu.

•� M.J. Harrold is with the Department of Computer and Information
Science, Ohio State University, Columbus, OH 43210.
E-mail: harrold@cis.ohio-state.edu.

Manuscript received 19 Sept. 1997; revised 15 Apr. 1998.
Recommended for acceptance by L.K. Dillon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105714.

R

402 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

4)�Test P′ with T′′, establishing the correctness of P′ with
respect to T′′.

5)�Create T′′′, a new test suite and test history for P′, from
T, T′, and T”.

In performing these steps a selective retest technique ad-
dresses several problems. Step 1 involves the regression test
selection problem: the problem of selecting a subset T′ of T
with which to test P′. Step 3 addresses the coverage identifica-
tion problem: the problem of identifying portions of P′ that
require additional testing. Steps 2 and 4 address the test
suite execution problem: the problem of efficiently executing
tests and checking test results for correctness. Step 5 ad-
dresses the test suite maintenance problem: the problem of
updating and storing test information. Although each of
these problems is significant we restrict our attention to the
regression test selection problem.

2.2 Regression Test Selection Techniques
In earlier work [33], we developed a framework for ana-
lyzing regression test selection techniques that consists of
four categories: inclusiveness, precision, efficiency, and
generality. Inclusiveness measures the extent to which a
technique selects tests from T that reveal faults in P′: A 100
percent inclusive technique is safe. Precision measures the
extent to which a technique omits tests in T that cannot re-
veal faults in P′. Efficiency measures the space and time re-
quirements of a technique. Generality measures the ability of
a technique to function in a practical and sufficiently wide
range of situations.

We used this framework to compare and evaluate exist-
ing code-based regression test selection techniques [33].
This analysis suggested a need for a regression test selec-
tion technique that possesses several qualifications. First,
the technique must be safe: It must not exclude tests (from
the original test suite) that if executed would reveal a fault
in the modified program. Second, the technique must be
sufficiently precise: It must omit enough unnecessary tests
to offset its own expense. Third, the technique must be effi-
cient: Its time and space requirements must be reasonable.
Finally, the technique must be general: It must be applicable
to a wide class of programs and modifications.

We developed a family of regression test selection algo-
rithms that traverse graphs to select tests [31], [32], [34].
Our most basic algorithm builds control flow graphs1 for
procedure P and modified version P′, collects test traces
that associate tests in T with edges in the graph for P, and
performs synchronous depth-first traversals of the two
graphs. During these traversals, the algorithm compares
program statements associated with nodes that are simul-
taneously reached in the two graphs. When the algorithm
discovers a pair of nodes N and N′ in the graphs for P and
P′, respectively, such that the statements associated with N
and N′ are not lexicographically identical, the algorithm
selects all tests from T that reached N in P. This approach
identifies tests that reach code that is new in, or modified
for, P′, and identifies tests that formerly reached code that

1. A control flow graph is a directed graph in which nodes represent
program statements and edges represent the flow of control between
statements.

has been deleted from P. This approach can handle whole
programs through its application to pairs of procedures in
the program and modified version; however, a second algo-
rithm performs test selection for whole programs more effi-
ciently by building interprocedural control flow graphs and
traversing them. Enhanced versions of these algorithms
add data dependence information2 to control flow graphs
and use it to select tests more precisely.

We further illustrate our basic algorithm by discussing a
simple example of its operation; additional details can be
found in [34]. Fig. 1 presents procedure avg, and a modified
version of that procedure, avg2, in which statement S7 has
erroneously been deleted and statement S5a has been
added. The figure also shows the control flow graphs for
the two versions of the program (with differences outlined
by dotted boxes) and a test suite with test trace information
for the original version of the program. When called with
avg, avg2, and this test trace information, our algorithm
first constructs the control flow graphs for the two proce-
dures, and then begins a synchronous traversal of these
graphs starting with entry and entry′. The algorithm marks
entry “visited” and then considers the successor of entry, S1.
The algorithm finds that S1′ is the corresponding successor
of entry′, and because S1 is not marked “visited” it com-
pares the statements associated with S1 and S1′ for lexico-
graphic equivalence. Because these statements are lexico-
graphically identical the algorithm next visits the nodes
that are successors of S1 and S1′ and continues its traversal
from there. The traversal continues in this manner on S2
and S2′ and P3 and P3′; in each case the successors of the
nodes have lexicographically identical associated state-
ments. Next, the algorithm must consider two successors of
P3: P4 and S9. Traversal through S9 leads to traversal of S10
and S10′, and then exit and exit′, with no differences located
or tests selected. When the algorithm reaches P4 and P4′ it
first seeks a true child of P4′ to compare with S5; it finds
S5a and compares the statements associated with S5 and
S5a. These statements are not lexicographically identical so
the algorithm locates the test known to reach S5 in avg (t2)
and adds it to a list of selected tests. The algorithm now
seeks a false successor of P4′ and finds S6′; the algorithm
next visits S6 and S6′. The algorithm finds the statements
associated with the successors of these nodes, S7 and S8′,
not lexicographically identical, and adds the test that for-
merly reached S7 (t3) to the list of selected tests. At this
point further traversal is unneeded; the algorithm returns
test suite {t2, t3}.

An analytical evaluation of our test selection algorithms
[34] proves that they are safe for controlled regression test-
ing.3 Several other safe algorithms now exist [3], [8], [21],
[38]; however, our basic algorithm is among the two most

2. Let G be the control flow graph for procedure P, and let G contain
nodes Ni and Nj, such that Ni and Nj correspond to statements Si and Sj,
respectively, in P. Sj is data dependent on Si if and only if Si defines some
variable v, Sj uses v, and there is a path in G from Ni to Nj such that no node
on that path corresponds to a statement in P in which v is defined.

3. Controlled regression testing is the practice of testing a modified ver-
sion under conditions equivalent to those that were used to test the base
program. Controlled regression testing is discussed in detail in [33].

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 403

precise of these algorithms.4 Our analysis also shows that
our algorithms are at least as general as existing techniques,
whether safe or not. Finally, the evaluation shows that in
terms of worst-case runtime analysis, our algorithms are
comparable to the most efficient other algorithms.

We have implemented several versions of our algo-
rithms; for the experimentation reported in this paper we
utilized a hybrid version of our algorithms to produce a
tool that we call “DejaVu”. DejaVu analyzes whole pro-
grams by individually analyzing pairs of procedures from
the old and new versions. (We chose this approach to sim-
plify the implementation effort; it produces test selection
results equivalent to those of our interprocedural-control-

4. Recently, Ball [3] presented a family of control-flow-graph based algo-
rithms that, building on our control-flow-graph based approach, achieve
greater precision than our basic algorithm. However, in all empirical studies
to date of programs not contrived specifically to demonstrate precision, Ball’s
algorithms and our basic algorithm have been observed to be equally precise.

flow-graph based algorithm, although possibly at greater
cost [34].) In cases where variable declarations differ, the
tool postpones test selection until it reaches occurrences of
those variables, and treats the nodes that contain those oc-
currences as modified. This approach adds precision to the
test selection without adding the full cost of, or implemen-
tation effort required to support, complete dataflow analy-
sis. To obtain control flow graphs, variable usage data, and
test history information, we utilized the Aristotle pro-
gram analysis system [14]. Given the functionality provided
by Aristotle, the DejaVu implementation itself required
only 1,220 lines of C code. DejaVu and its interface with
Aristotle are described in detail in [31].

2.3 Cost Models for Regression Test Selection
Techniques

To evaluate the costs and benefits of regression test selec-
tion techniques we require a cost model that accounts for
the factors responsible for those costs and benefits. Leung

Fig. 1. Procedure avg, its modified version, avg2, their control flow graphs, and test trace data for avg.

404 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

and White [26] present such a cost model. Their model con-
siders both test selection and coverage identification, so we
adapt it to consider just the cost-effectiveness of a regres-
sion test selection technique relative to that of the retest-all
approach. For a test selection technique to be more effective
than the retest-all approach, the cost of test selection analy-
sis plus the cost of running and validating selected tests
must be less than the cost of running and validating all
tests. The following inequality summarizes the relationship
that must hold:

A(T, P, P′) + E(T′, P′) + V(T′, P′) < E(T, P′) + V(T, P′).

The left side of this inequality represents the costs associated
with test selection, where A(T, P, P′) is the cost of the analysis
required for test selection, E(T′, P′) is the cost of executing
selected tests on the modified program, and V(T′, P′) is the
cost of validating the results of the selected tests. The right
side of the inequality represents the costs associated with
the retest-all approach, where E(T, P′) is the cost of execut-
ing all tests on the modified program, and V(T, P′) is the
cost of validating the results of all tests.

As Leung and White state, this cost model makes simpli-
fying assumptions. The model assumes equivalent test exe-
cution costs under regression test selection and retest all,
and assumes constant costs for tests. Rosenblum and
Weyuker [30] describe additional assumptions: the model
assumes that costs can be expressed in equivalent units
whereas in practice they can include a mixture of other
factors such as CPU time, human effort, and equipment
expenditures.

Another factor not accounted for by this regression test-
ing cost model is the cost of leaving undetected faults in
modified software. This cost is difficult to quantify in gen-
eral, but where regression test selection techniques are con-
cerned, a meaningful metric exists: the percentage of tests
in T that the test selection technique omits which, if exe-
cuted on P′, would have revealed faults in P′. These fault-
revealing tests would not be omitted by a retest-all approach,
and thus represent an additional cost associated with the
use of test selection techniques. One strength of safe regres-
sion test selection techniques is that they omit no fault-
revealing tests, and thus fare as well in fault detection as
the retest-all technique. Questions that must be answered
empirically, however, are the extent to which the conditions
necessary for safety hold in practice, and the effects on test
selection when they do not.

When we apply the foregoing cost model, it is useful to
distinguish between two phases of regression testing: a pre-
liminary phase and a critical phase. The preliminary phase of
regression testing begins after a release of a version of the
software; during this phase developers enhance and correct
the software in preparation for the next release. Meanwhile,
testers may plan testing activities, or perform tasks such as
test trace collection and coverage analysis that depend
solely on the released version of the software. When cor-
rections are complete the critical phase of regression testing
begins; during this phase regression testing is the domi-
nating activity and typically its time is limited. It is in the
critical phase that cost minimization is most important for
regression testing. Regression test selection techniques can

exploit these phases by delegating analysis tasks to the pre-
liminary phase; however, it is important to realize that
some analysis cannot be performed until after the last
modification has been made.

3 EMPIRICAL STUDIES

To empirically investigate the use of safe regression test
selection techniques in general and the use of our technique
in particular we performed five studies.5 In this section, we
describe each study individually and provide initial discus-
sion of results. In Section 4, after all results have been pre-
sented and can be considered simultaneously, we provide
further interpretation.

3.1 Study 1

3.1.1 Objectives
The objectives of our initial study were to investigate the
feasibility of using our test selection technique and to ob-
tain information that would guide further experimentation.

3.1.2 Subjects
We obtained seven C programs together with a number of
modified versions and tests for those programs. These sub-
jects had been used in an earlier study by researchers at
Siemens Corporate Research to compare controlflow-based
and dataflow-based test adequacy criteria [19].6 Table 1 lists
the subjects. For each subject the table provides the name of
the base program, the number of functions in the program,
the number of lines of code in the program, the number of
modified versions of the program, the number of tests
available for the program, and a brief description of the
program. As the table shows, the programs range in size
from 138 to 516 lines of code, and contain between seven
and 21 functions.

The researchers at Siemens constructed tests for these
programs by following a process described in [19]; we para-
phrase that description here. For each base program they
created a large test pool containing possible tests for the pro-
gram. To create these test pools, they first created an initial
set of black-box tests “according to good testing practices,
based on the tester’s understanding of the program’s func-
tionality and knowledge of … the code” [19, p. 194], using
the category partition method and the Siemens Test Specifica-
tion Language tool [2], [27]. They then augmented this set
with manually-created white-box tests to ensure that each
executable statement, edge, and definition-use pair in the
base program or its control flow graph was exercised by at
least 30 tests. For experimentation they selected a number
of test suites from each test pool. Their distribution of sub-
jects to us did not include these test suites; for this study we
used the entire test pools as test suites.

5. Preliminary versions of Studies 1 and 4 were reported in [34]; the ver-
sions reported here contain additional details, and employ precise meas-
urements in cases where estimates were employed previously.

6. We modified some of the programs and versions slightly to enable
their processing by $ULVWRWOH�

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 405

The researchers at Siemens sought to study the fault-
detecting effectiveness of various coverage criteria. There-
fore, they created faulty modified versions of the seven base
programs by manually seeding those programs with faults,
usually by modifying a single line of code in the base ver-
sion. In a few cases, they modified between two and five
lines of code. Their goal was to introduce faults that were as
realistic as possible, based on their experience with real
programs. To obtain meaningful results, the researchers
retained only faults that were “neither too easy nor too dif-
ficult to detect” [19, p. 196], which they defined as being
detectable by at least three and at most 350 tests in the test
pool associated with each program. Ten people performed
the fault seeding, “mostly without knowledge of each
other’s work” [19, p. 196].

For regression testing experiments, we can view the base
and faulty modified versions of the subjects in either of two
ways. First, we can consider the faulty modified versions of
base programs to be ill-fated attempts to create modified
versions of the base programs. We can then study the effec-
tiveness of DejaVu, and the fault-detection effects of using
DejaVu, on those faulty modified versions. Alternatively,
we can consider each base program to be a corrected ver-
sion of a family of faulty earlier versions, and study the
effort required to regression test the corrected base pro-
gram. It is an interesting characteristic of our test selection
algorithms (though not of all test selection algorithms) that
they select the same tests under either of these interpreta-
tions. To study the fault-detection abilities of test selection
techniques, however, the first interpretation is necessary;
thus, for our studies, we utilized that interpretation.

The programs we used in this study are not large, and
the modifications involve only faults that yield relatively
low fault-detection rates. Furthermore, our use of the entire
test pools as test suites does not reflect realistic testing
practices. These are primarily external threats to validity, that
limit our ability to generalize our results to industrial prac-
tice. Similarly, the use of entire test pools as test suites may
provide savings in test execution time that cannot be
achieved on more practical test suites. To examine the pos-
sible effects of these threats, our subsequent studies vary
the characteristics of subjects, modifications, and test suites;
we then examine the consequent variations in results.

As subjects for an initial study, however, these programs,
versions, and test suites had several advantages. First, we
could easily obtain them, and we were able to use our pro-
totype tools on them after only minor modifications; thus,
the subjects let us quickly address the study’s objectives.
Second, the seeded faults do model real faults and, as such,

yield a set of faulty versions that could occur in practice.
Moreover, these faulty versions were created by persons
other than us, reducing the potential for bias. Finally, the
subjects are suitable for use in controlled studies.

3.1.3 Procedure
We used the following procedure for this study. Given pro-
gram P, versions P1 … Pn, and test pool T, we

1)�used Aristotle to construct the control flow graph
for P,

2)�used Aristotle to instrument P,
3)�ran all tests in T on P, collecting trace information, and

capturing outputs for use in validation,
4)�built test history H from the trace information,
5)�for each version Pi, we

a) used Aristotle to build the control flow graphs
for Pi,

b) ran DejaVu on P, Pi, and H, relevant to Pi,
c) ran and validated outputs for all tests in T on Pi,
d) ran and validated outputs for all selected tests on

 Pi,
e) ran and validated outputs for all nonselected tests

on Pi.

We used the Unix time command to measure the work re-
quired to perform each of these steps, and recorded the
“real” (wall clock) time reported by that command.7 To
measure the cost of the retest-all approach we used the time
corresponding to Step 5c. To measure the cost of perform-
ing regression test selection using DejaVu, we added the
times corresponding to Steps 1, 5a, 5b, and 5d. Although we
did not do so here, we could trade time for space by per-
forming Step 1 in the preliminary phase, saving the resul-
tant control flow graphs, and using the precomputed con-
trol flow graphs in Step 5b, avoiding their calculation dur-
ing the critical phase.

To validate outputs in Steps 5c, 5d, and 5e, we used the
base version of the program as an oracle: for a given modi-
fied version and test we compared the output of the base
version on that test to the output of the modified version on
that test, and classified the test as fault-revealing if those
outputs differed.

Steps 2, 3, and 4 of this procedure involve work that
need not be performed during the critical period. We nei-

7. CPU time could also serve as an indicator of cost; however, we believe
that the wall-clock time spent on testing, by humans or machines, is a more
appropriate metric.

TABLE 1
SUBJECTS USED IN STUDY 1

Program
Name

No. of
Functions

Lines of
Code

No. of
Versions

Test Pool
Size

Description of
Program

totinfo 7 346 23 1,052 information measure
schedule1 18 299 9 2,650 priority scheduler
schedule2 16 297 10 2,710 priority scheduler
tcas 9 138 41 1,608 altitude separation
printtok1 18 402 7 4,130 lexical analyzer
printtok2 19 483 10 4,115 lexical analyzer
replace 21 516 32 5,542 pattern replacement

406 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

ther count the time spent performing these steps nor would
it make sense to do so—to run all tests on an instrumented
program during the critical phase in order to determine
which tests we need to run would not be cost-effective. In-
stead, Steps 2, 3, and 4 are initially performed (and ideally,
automated) during testing of the base version (which must
be tested with retest-all because it is the first version). Then,
on subsequent versions, incremental updates required to
keep the information current can be performed during the
preliminary period.8

Step 5e of this procedure lets us determine whether De-
jaVu omitted any fault-revealing tests that a retest-all tech-
nique would not omit.

We performed this procedure on each of the seven base
programs and collected data on each run. We performed all
runs on a Sun Microsystems SPARCstation 1+ with 24 MB
of virtual memory.9 Our testing processes were the only
active user processes on the machine.

3.1.4 Results
Fig. 2 displays test selection statistics for Study 1. For each
of the seven base programs, the figure contains a graph that
shows the percentage of tests selected by DejaVu for each
version of that program. In each graph, the horizontal axis
shows the versions of the program and the vertical axis
shows the percentage of tests selected by DejaVu. For the
seven programs, on average over the modified versions of
the programs, DejaVu selected the following percentages of
tests: 72.6 percent for totinfo, 65.3 percent for schedule1,
93.4 percent for schedule2, 67.4 percent for tcas, 55.8 per-
cent for printtok1, 33.7 percent for printtok2, and 43.3
percent for replace. On average overall, DejaVu selected
54.3 percent of the tests in the test pools.

Fig. 2 also shows that test selection results for DejaVu
varied widely between individual programs and versions.
For example, replace has a test pool of 5,542 tests, of
which DejaVu selected, on average, 2,398 (43.3 percent);
however, the selected test suites vary in size from 52 to
5,520, with no range of sizes predominant. In contrast,
schedule2 has a test pool of 2,710 tests, of which DejaVu
selected, on average, 2,660 (92.4 percent). On eight of the 10
modified versions of this program, DejaVu selected over 95
percent of the tests.

The fact that a test selection technique reduces the num-
ber of tests that must be run at regression testing time does
not guarantee that the technique will be cost-effective. As
the regression testing cost model presented in Section 2 in-
dicates, regression test selection techniques can produce
savings only when analysis costs plus the cost of running
and validating selected tests is less than the cost of running
and validating all tests. To measure the costs of analysis,
test execution, and test validation in this study, we rely on
time statistics. For each of the seven subject programs, Table
2 shows the times in seconds, averaged over all modified

8. An alternative approach applies information gathered on the base ver-
sion to a succession of modified versions. Although not safe, this approach
may support useful test selection in cases where incremental update of test
information is not cost-effective. Further study of the cost-benefits tradeoffs
of this approach is necessary.

9. SPARCstation is a trademark of Sun Microsystems, Inc.

versions of the program, required to accomplish various
tasks. The columns show (from left to right) the time re-
quired to run and validate output for all tests on the modi-
fied versions of the programs, the time required to build
control flow graphs for the base and modified versions and
run DejaVu on those control flow graphs, the time required
to run and validate output for just the selected tests, the
time saved by test selection, the percentage of total time
saved by DejaVu, and the break-even value, which we define
momentarily. The bottom row of the table lists averages
over all 132 versions.

In this study, on average, DejaVu reduced testing effort
(time) by 42 percent, from 14 min, 27 sec to 8 min, 21 sec.
Like test selection results, however, time savings varied
widely over programs and modified versions. To illustrate
the latter, Table 3 shows time statistics for the individual
versions of printtok1. Over the seven versions, the aver-
age savings in time was 41 percent. On four modified ver-
sions, the savings exceeded this average, but on three modi-
fied versions there were no savings—in fact, on these three
versions test selection actually increased total regression
testing time by 13, 14, and 16 sec, respectively. Similar re-
sults occurred on other programs and versions. This wide
variation raises the question of whether it is possible to
predict, in advance of running a test selection tool, whether
or not that tool is likely to produce savings. We discuss this
issue further in Section 4.

Fig. 2. Test selection statistics for Study 1.

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 407

In the tables, the break-even value estimates the number of
tests that DejaVu must eliminate in order to offset the
analysis costs and provide cost (time) savings in regression
testing. The break-even value is calculated by taking the
ratio of analysis time to the time required to execute and
validate a single test. More formally, given program P, ver-
sion P′, and test suite T containing |T| tests, such that the
time required to run all tests in T on P′ is E(T, P′) + V(T, P′)
and the time required to perform the analysis for test selec-
tion on P, P′, and the test history for T is A(T, P, P′), the
break-even value B for P, P′, and T is defined as:

B P P T
A T P P T

E T P V T P(, ,)
(, ,) *

(,) (,)′ =
′

′ + ′

(This number is an estimate because it assumes that the cost
of executing a test is uniform across all tests.) In this study,
for our subject programs, the break-even values range from
an average of 56 for tcas, to 200 for replace, for an over-
all average (over all 132 versions of the programs) of 110.

Our measurements of the fault-detection ability of De-
jaVu showed that in this study, DejaVu never omitted any
fault-revealing tests. In every case, DejaVu’s ability to select
tests that detect faults in the modified program was
equivalent to that of the retest-all technique.

The average, overall time savings achieved by DejaVu in
these studies amounted to a little over six minutes. By ab-
solute measures such savings are insignificant; however,
regression testing of large-scale, commercial software sys-
tems can require hours, days, or weeks of effort, and may
involve considerable human labor. In such cases, even a
small reduction in testing time could be worthwhile, and a
42 percent reduction in testing time could be significant.
Such savings depend, however, on whether DejaVu can

produce analogous results on larger-scale subjects. Our
fourth and fifth studies investigate this question.

3.2 Study 2

3.2.1 Objectives
In practice, we do not expect test suites for programs such
as those we used in Study 1 to contain thousands of tests;
thus, it is reasonable to ask how test selection results and
cost-effectiveness would be affected by the use of more
typical test suites.

The objectives of our second study, therefore, were to in-
vestigate whether the results of Study 1 extend to the case
where realistic code-coverage-based test suites, rather than
test pools, are utilized.

3.2.2 Subjects
For this study, we used the same base programs and modi-
fied versions that we used in Study 1. To obtain test suites for
these programs, we used the test pools for the base programs
and test coverage information generated in the first study to
generate 1,000 branch-coverage-adequate test suites for each
program. More precisely, to generate a test suite T for base
program P from test pool Tp, we used the C pseudo-random-
number generator “rand,” seeded initially with the output of
the C “time” system call, to obtain integers that we treated as
indexes into Tp (modulo |Tp|). We used these indexes to se-
lect tests from Tp; we added each test t to T only if t added to
the cumulative branch coverage of P achieved by the tests
added to T thus far. We continued to add tests to T until T
contained at least one test that would exercise each executa-
ble branch in the base program. Table 4 lists the average sizes
of the branch-coverage-adequate test suites generated by this
procedure for the subject programs.

TABLE 2
STUDY 1: EXECUTION TIMES AND SAVINGS (SECONDS) FOR EACH PROGRAM AVERAGED OVER ITS SET OF VERSIONS

Subject
Time to

Run All Tests
Time to

Perform Analysis
Time to

Run Tests Selected Time Saved
Pct. of

Time Saved
Break-Even

Value

totinfo 339 22 246 71 21 68
schedule1 815 26 536 253 31 84
schedule2 843 28 789 26 3 90
tcas 429 15 288 126 29 56
printtok1 1,253 44 698 511 41 145
printtok2 1,232 47 413 772 63 155
replace 1,633 59 704 870 53 200

all versions 867 33 468 366 42 110

The bottom row lists averages over all 132 versions.

TABLE 3
STUDY 1: EXECUTION TIMES AND SAVINGS (SECONDS) FOR VERSIONS OF PRINTTOK1

Version
Time to

Run All Tests
Time to

Perform Analysis
Time to

Run Tests Selected Time Saved
Pct. of

Time Saved
Break-Even

Value

1 1,294 43 664 547 4 137
2 12,562 44 1,222 –13 0 144
3 1,252 44 12 1,198 95 145
4 1,241 44 1,223 –14 0 146
5 1,238 44 426 783 62 147
6 1,242 44 1,226 –16 0 146
7 1,245 44 114 1,096 87 146

Average 1,253 44 698 511 41 145

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

TABLE 4
BRANCH-COVERAGE-ADEQUATE TEST SUITES

GENERATED FOR STUDY 2

Program
Name

Test Pool
Size

Test Suite
Average Size

totinfo 1,052 7
schedule1 2,650 8
schedule2 2,710 8
tcas 1,608 6
printtok1 4,130 16
printtok2 4,115 12
replace 5,542 19

These test suites are not minimal: for each test suite there
may be a proper subset of that suite that is also branch-
coverage-adequate. Thus, the results we obtain with these
test suites may not generalize to minimal coverage suites.
Nevertheless, we believe that our method of constructing
these test suites—successively adding tests to each suite
until coverage is achieved—represents a realistic process for
generating coverage-adequate test suites.

3.2.3 Procedure
We used the following procedure for this study. Given pro-
gram P, versions P1 … Pk, and universe TU of test suites, we

1)�used Aristotle to construct the control flow graphs
for P,

2)�used Aristotle to instrument P,
3)�for each test suite T ∈ TU, we

a)� ran all tests in T on P, collecting trace information,
and capturing outputs for use in validation,

b)� built test history H from this trace information,
c)� for each modified version Pi of P, we

i� used Aristotle to build the control flow
graphs for Pi,

ii� ran DejaVu on P, Pi, and H,
iii� ran and validated outputs for all tests in T on

Pi,
iv� ran and validated outputs for all selected tests

on Pi,
v� ran and validated outputs for all nonselected

tests on Pi.

As in Study 1, to validate output for a given modified ver-
sion and test, we used the base version as an oracle: we
compared the output of the base version on that test to the
output of the modified version on that test. As in Study 1,
we used the Unix time command to measure the cost of
performing the associated work, recording the “real” (wall
clock) time reported by that command. To measure the cost
of retest-all we used the time corresponding to 3ciii; to
measure the cost of DejaVu we added the times corre-
sponding to 1, 3ci, 3cii, and 3civ. We performed this proce-
dure on each of the seven base programs and collected data
on each run. We performed all runs on the same Sun Micro-
systems SPARCstation 1+ used in Study 1. Our testing pro-
cesses were the only active user processes on the machine.

3.2.4 Results
Fig. 3 displays test selection statistics for Study 2. The figure
contains a separate graph for each of the seven subject pro-

grams. Each graph plots percentages of tests selected (verti-
cal axis) against modified versions of the base program
(horizontal axis). Results for each version are depicted by a
box plot—a standard statistical device for representing data
sets [20]. In each box plot, the dashed crossbar represents
the median percentage at which tests were selected over the
1,000 test suites of that version. The box shows the range of
percentages in which the middle 50 percent of the test se-
lection results occurred (the interquartile range). Often, this
range is evenly partitioned by the crossbar, indicating an
even distribution of the data in the interquartile range
about the median. In other cases, the data is skewed to one
side of the crossbar, indicating an uneven distribution. In
yet other cases, only the crossbar appears, indicating that
the box has length 0: At least half of the results were
equivalent to the median result. The whiskers that extend
below and above the box indicate the range over which the
lower 25 percent and upper 25 percent of the data, respec-
tively, occurred. Consider, for example, the graph for
totinfo, displayed in the upper left corner of the figure.
The box plot in the leftmost column of this graph depicts
test selection results for version 1 of totinfo, for the 1000
test suites of that program. The box plot shows that the
median test selection for that version occurred at 22 per-
cent, with half of the test selection results between 14 and
33 percent and with the interquartile data skewed slightly
toward 100 percent; the plot also shows that the test selec-
tion ranged between 9 and 80 percent overall, with the
complete data skewed significantly toward 100 percent.

The graphs illustrate several facts about test selection. As
in Study 1, test selection results vary widely between indi-
vidual programs and versions. Some programs, such as
replace, exhibit a wide range of test selection results be-
tween versions. Other programs, such as schedule2, ex-
hibit similar results for most versions. Within individual
versions, test selection results also vary between test suites:
on average over all 132 versions of the seven programs, the
interquartile range covers a spread of 9.4 percent. As the
median test selection percentage approaches one of the ex-
tremes (i.e., 0 or 100 percent), the interquartile range fre-
quently becomes smaller, which indicates less variability in
the results, and becomes more skewed in the direction op-
posite to the extreme, which indicates a tendency to vary
more away from the extreme than toward it.

Overall, these test selection results are comparable to
those observed in Study 1, indicating that the selectivity
results achieved on the test pools used in that study do
generalize to the coverage-based test suites that we gener-
ated for this study.

Table 5 shows the average time statistics that we col-
lected for the seven programs in this study. In every case,
the time required to execute and validate all tests is small,
and the time required to analyze the base program and
modified version exceeds the time required to run and
validate all tests. In this case, the break-even values (the
number of tests that must be omitted in order to realize
savings) are lower than those calculated for Study 1, be-
cause of the lower costs of analysis associated with the re-
duced-size test suites. Despite this fact, for each program
the break-even value exceeds the number of tests in the test

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 409

Fig. 3. Test selection statistics for Study 2.

TABLE 5
STUDY 2: EXECUTION TIMES AND SAVINGS (SECONDS) FOR EACH PROGRAM

AVERAGED OVER ITS SET OF VERSIONS

Subject
Time to

Run All Tests

Time to
Perform
Analysis

Time to
Run Tests
Selected

Time
Saved

Pct. of
Time Saved

Break-Even
Value

totinfo 2 17 2 –17 0 53
schedule1 2 18 1 –19 0 58
schedule2 2 16 2 –16 0 51
tcas 1 11 1 –11 0 41
printtok1 3 21 1 –19 0 69
printtok2 2 16 1 –15 0 53
replace 5 26 2 –23 0 88

all versions 2 17 1 –16 0 59

The bottom row lists averages over all 132 versions.

410 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

suites for the program. In cases such as these, test selection
techniques—no matter how successful at reducing the
number of tests that must be run—cannot provide savings.

In this analysis it is important to remember that break-
even values depend on the cost of executing individual
tests. For the subjects examined in this study, tests are inex-
pensive, requiring only between 0.27 and 0.32 sec apiece to
execute and validate (on average). If these tests required 10
times this effort (that is, if they required a mere 3 to 4 sec
apiece), the break-even values for these subjects would be
reduced by a factor of 10, and test selection would fre-
quently have been cost-effective. Such an increase in effort
could occur if, for example, some portion of the test execu-
tion and validation effort were not automated.

Finally, as in Study 1, our test selection technique did
not omit any tests from the original test suites that, if exe-
cuted, exposed faults in the modified version. In every
case, DejaVu selected tests that detected faults as well as
the retest-all technique.10

3.3 Study 3

3.3.1 Objectives
In practice, test suites may not be designed to meet code-
based adequacy criteria. In this case, the code coverage
achieved by test suites may be distributed among program
components differently than the coverage achieved by
code-coverage-adequate suites, and this may affect test se-
lection results.

The objective of our third study, therefore, was to inves-
tigate the effects on test selection of using non-coverage-
based test suites instead of coverage-based test suites.

3.3.2 Subjects
To address the foregoing objective in a controlled fashion,
we required subjects equivalent to the subjects used in our
second study in all respects except for the test suites. Thus,
we used the same programs and versions as those used in
the second study, and we generated test suites of the same
size as those used in that study, except that we did not gen-
erate those suites for coverage.

We chose random test selection from test pools as our
mechanism for creating non-coverage-based test suites. To
obtain the required test suites, for each branch-coverage-

adequate test suite TC used in Study 2, we created a test

suite TR containing the same number of tests as TC, made
up of tests randomly selected from the test pool without
regard for coverage. More precisely, we used the following
procedure, which we repeated for each of the seven subject

programs. Given program P, SC = T T TC C C
1 2 1,000, , K the set of

1,000 coverage-adequate test suites for P created for Study
2, and U the test pool for P, we

1)� let SR be the set of 1,000 non-coverage-based test
suites to be created, initially empty

2)� for k = 1 to 1,000

10. This result does not imply that either 'HMD9X or retest-all always re-
vealed the fault in each modified version, because not every coverage-based
test suite revealed each fault.

a)� let Tk
R be a test suite to be created, initially empty

b)� while T Tk
C

k
R≠

i� select a test t randomly from U
ii� T T tk

R
k
R= <

c)�SR = SR < Tk
R

Test suites created by this procedure may not be repre-
sentative of non-coverage-based test suites created in prac-
tice, which more typically are created by some nonrandom
process such as that of covering functional requirements.
Thus, test selection results obtained on these test suites may
not reflect results that would be obtained on realistic test
suites. However, these test suites let us investigate, in a
controlled manner, the effects on test selection of using non-
coverage-adequate test suites instead of coverage-based test
suites. In our fourth and fifth studies, we utilize realistic
non-coverage-based test suites.

3.3.3 Procedure
This study utilized the same procedure as Study 2. We ap-
plied the procedure to each of the seven subject programs
with its modified versions, and collected data on each run,
on the same machine and under the same operating condi-
tions as in Study 2.

3.3.4 Results
Fig. 4 displays test selection results for Study 3, using the
same format we used to depict the results of Study 2.
Again, results vary widely between programs, modified
versions, and test suites. Again, as the median test selection
approaches an extreme, the interquartile range tends to be-
come smaller.

The data also reveals additional trends in comparison to
the results of Study 2, where individual test suites are con-
cerned. First, consider cases in which the median test selec-
tion for the coverage-based test suites is between 20 and 80
percent. In these cases, most of the boxplots for non-coverage
suites exhibit greater spread than the corresponding boxplots
for coverage-based test suites—an effect reflected in an in-
creased size of interquartile ranges and an increased length
of whiskers. This result is particularly apparent for sched-
ule1, where it holds for all versions other than version 9.

Second, in cases in which the median test selection result
for the coverage-based test suites is above 80 percent or
below 20 percent, the interquartile range for non-coverage
suites is typically smaller, and the data is typically skewed
significantly more toward 50 percent, than for the corre-
sponding coverage suites. This result is particularly appar-
ent for schedule2, where, for six of the 10 versions of the
program, median test selection for the coverage-based test
suites exceeds 80 percent. For all six of these versions, the
interquartile range for non-coverage based suites is signifi-
cantly smaller (all data points in the range occur at 100 per-
cent) than the interquartile range for the corresponding
coverage-based suites.

Table 6 provides additional data, showing the average
interquartile ranges for coverage-based suites and non-
coverage suites on each of the seven subject programs. The
data shows that overall, the average interquartile range for
noncoverage suites exceeds the average interquartile range

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 411

TABLE 6
AVERAGE INTERQUARTILE RANGES FOR COVERAGE-BASED

SUITES AND NON-COVERAGE-BASED SUITES
FOR THE SUBJECT PROGRAMS

Program
Name

Average Interquartile
Range

(coverage-based
suites)

Average Interquartile
Range

(non-coverage-based
suites)

totinfo 5.5 14.0
schedule1 15.4 18.5
schedule2 12.1 5.1
tcas 13.5 15.8
printtok1 9.4 7.3
printtok2 11.2 15.3
replace 7.3 11.6

all versions 9.5 13.5

for non-coverage-based suites by 43 percent. Not all of the
seven programs contribute to this effect; schedule2 in par-
ticular differs, exhibiting a substantially smaller interquartile
range for non-coverage-based suites than for coverage-based
suites. This difference reflects the preponderance of test se-
lection results in excess of 80 percent for that program.

Given our procedure for obtaining subjects for and per-
forming this study, we know that these differences in the
spread and skew of test selection data are caused by differ-
ences between the coverage-based and non-coverage-based
test suites. The following discussion attempts to further
explain the causes of those differences. First, in cases in
which DejaVu selects a small percentage of the coverage-
based tests, it is because the code changes in the modified
version involve code that is relatively infrequently executed.
In such cases, the modified code may be even less fre-
quently executed, on average, by random program inputs,

Fig. 4. Test selection statistics for Study 3.

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

resulting in lower selection statistics for the non-coverage-
based suites. Second, in cases in which DejaVu selects a
large percentage of the coverage-based tests, it is because
the code changes in the modified version involve code that
is relatively frequently executed. In such cases, the modi-
fied code may be even more frequently executed by ran-
dom program inputs, resulting in higher selection statistics
for the non-coverage-based suites. Finally, in cases in which
DejaVu selects a midrange percentage of the coverage-
based tests, randomly chosen inputs may exhibit greater
variance in code coverage than inputs utilized in coverage-
based test suites, in some cases duplicating coverage, and in
others omitting coverage, resulting in greater variance in
test selection statistics for the non-coverage-based suites.
Coverage suites, conversely, reduce variance in coverage by
mandating inclusion of tests through hard-to-reach code,
and excluding tests that only duplicate coverage. As we
shall discuss in Section 4, these results have implications for
test-suite-design for regression testability.

Other results obtained in this study are similar to those
obtained in Study 2. Time statistics on test-execution and
test-selection costs, shown in Table 7, are nearly identical to
those displayed in Table 5. This is not surprising given the
equivalence of subjects and test suite sizes across the two
studies. Again, for these subjects, with their test execution
and analysis times and consequent break-even values, test
selection is not cost-effective. However, just as in Study 2, if
test execution and validation were more expensive, the re-
ductions in test suite size produced by DejaVu could fre-
quently have resulted in savings.

Finally, in this study, our test selection technique again
did not omit any tests from the original test suites that, if
executed, exposed faults in the modified version.

3.4 Study 4

3.4.1 Objectives
The objective of our fourth study was to investigate the
results of applying our test selection technique to a non-
trivial software system.

3.4.2 Subject
Table 8 describes the subject we used in this study. The base
program, player, is the largest subsystem in the software
distribution for the Internet game Empire. As the table indi-
cates, the base version contains 766 functions (all written in
C) and 49,316 lines of code. The player program is essen-
tially a transaction manager that operates as a server; its
main routine consists of initialization code followed by a
five-statement event loop in which execution pauses and
waits for receipt of a user command. The player program is
invoked and left running on some system; a user then com-
municates with player by running a small client program
that receives the user’s inputs and passes them as commands
to player. When a command is received by player, code in
the event loop invokes a routine that processes the com-
mand—possibly invoking many more routines to do so—
and then waits to receive the next command. As it processes
commands, player may return data to the user’s client pro-
gram for display on the user’s terminal, or write data to a
local database (a directory of ASCII and binary files) that
keeps track of game state. The event loop and the program
terminate when a user issues a “quit” command.
Since its creation in 1986, the Empire code has been en-
hanced and corrected many times; most changes involve
the player subsystem. We located a “base” version of
player for which five distinct modified versions, which
were created independently by various coders for various
purposes, were available; that base version and those modi-
fied versions constitute the source and versions we used in
this study. Table 9 describes the five versions of player
that we located. As the table illustrates, the versions vary in
terms of lines-of-code and functions modified. Note that
these versions do not form a sequence of modifications of
the base program; rather, each is a unique modified version
of the base version.

TABLE 7
STUDY 3: EXECUTION TIMES AND SAVINGS (SECONDS) FOR EACH PROGRAM AVERAGED OVER ITS SET OF VERSIONS

Subject
Time to

Run All Tests
Time to

Perform Analysis
Time to

Run Tests Selected
Time

Saved
Pct. of

Time Saved
Break-Even

Value

totinfo 3 19 2 –18 0 59

schedule1 3 18 2 –17 0 58

schedule2 3 17 3 –17 0 55

tcas 2 14 1 –13 0 52

printtok1 5 20 2 –17 0 66

printtok2 4 19 1 –16 0 62

replace 6 22 3 –19 0 75

all versions 4 18 2 –17 0 58

The bottom row lists averages over all 132 versions.

TABLE 8
SUBJECT USED IN STUDY 4

Program
Name

No. of
Functions

Lines of
Code

No. of
Versions

Test Pool
Size

Description of
Program

player 766 49,316 5 1,033 transaction manager

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 413

TABLE 9
MODIFIED VERSIONS USED IN STUDY 4

Versions Functions Modified Lines of Code Changed

1 3 114
2 2 55
3 11 726
4 11 62
5 42 221

The player program is an interesting subject for several
reasons. First, the program is part of an existing software
system that has a long history of maintenance at the hands of
numerous coders, and in this respect, the system is similar to
many existing commercial software systems. Second, as a
transaction manager, the player program is representative
of a large class of software systems that receive and process
interactive user commands, such as database management
systems, operating systems, menu-driven systems, and com-
puter-aided drafting systems. Third, we were able to locate
real modified versions of one base version of player. Finally,
although not huge, the program is not trivial.

There were no tests available for player. To construct a
realistic test suite, we used the Empire information files,
which describe the 154 commands that are recognized by
player and describe the parameters and special effects
associated with each command. We treated these informa-
tion files as an informal specification for the system and
used them to construct a suite of tests for player that exer-
cises each parameter, special effect, and erroneous condi-
tion described in the files. Because the complexity of com-
mands, parameters, and effects varies widely across the
various player commands, this process yielded between
one and 30 tests for each command, and ultimately pro-
duced a test pool of 1,033 tests. To avoid a possible source
of bias, we constructed this test suite prior to examining the
code of the modified versions.

Each test that we created by the foregoing process con-
sists of a sequence of between one and 28 lines of ASCII
text, and constitutes a sequence of inputs to the client
program; the client feeds these inputs to player. For
each sequence of inputs to be valid and test the player
functionality that it is targeted to test, the game database
must be initialized to a specific state prior to applying that
sequence of inputs. Thus, to automate the regression testing
process, we created a script that iterates through the tests,
and for each test performs the following steps:

1)�restore the required start state of the database,
2)�invoke the player program as a background process

(this process remains running in the background until
explicitly killed),

3)�invoke the client program and issue the sequence of
inputs that constitutes the test (note that this sequence
always ends in the issuance of a “quit” command that
causes the client to terminate), saving for use in vali-
dation any outputs that are returned,

4)�kill the player program process,
5)�save the contents of the database for use in validation,
6)�compare output and database contents with those ar-

chived for the base version.

Although the particulars of this testing process apply only
to the player program, analogous processes are used to
automate the regression testing of a variety of other software
systems: the system is initialized, test inputs are applied, and
outputs are captured and compared to previously captured
outputs. More generally, in this and other testing processes
each test requires effort to execute and validate. That effort
may take the form outlined above or some other form; the
important factors to consider where regression test selection
is concerned are not the particular processes by which tests
are executed and validated, but rather the costs of analysis,
test execution, and validation, the ability of the test selection
technique to reduce the number of tests that must be run,
and the ability of the regression testing activity to reveal
faults. Thus, our use of this particular testing process does
not represent a threat to validity.

The test suite generated for player contains black-box,
functional tests, rather than tests designed for code coverage.
In view of our discoveries in the preceding two studies, we
cannot claim that results obtained using this test suite will
generalize to code-coverage-based suites. Our test suite may,
in fact, be redundant in terms of code coverage, and mini-
mizing the test suite for code coverage might reduce its size.
However, the test suite is nonredundant in the sense that no
two tests cover the same functional requirements, and in
practice, few testers would minimize such a test suite. Thus,
we believe that, as created, this test suite is representative of
a large class of test suites utilized in practice, and that the
results we obtain using this test suite are indicative of results
that could be expected to occur in practice.

3.4.3 Procedure
Because of limitations in our prototype code instrumenter,
we could not instrument all of the player code; thus, we
could not obtain test history information for player.11 Be-
cause DejaVu requires test history information, we could
not use the tool to select tests for player. We were able,
however, to simulate the test selection effects of DejaVu.
Because the simulation process may be useful for future
experimentation with regression test selection, we describe
it in detail, as follows.

For each modified version player′ of player, we used
the Unix diff utility to locate differences between player
and player′. We then edited player′ and instrumented it
as follows. At each executable code location where the two
versions differed, we inserted the function call “dejavu()”.
In cases where variable declarations differed, we found the
locations in the code where those variables occurred, and
instrumented those locations as if they contained modified
code—this approach produces results equivalent to those
achieved by the implementation of DejaVu that we utilized
in Studies 1 through 3. The dejavu() function, which we
supplied, opens a file result, writes the phrase “selected”
to that file, and closes it. We also edited function main in
player′, and inserted, as the first executable statements in
that function, code that opens the result file, writes the
phrase “not selected” to that file, and closes it. We then

11. These limitations are due only to our particular code instrumenter,
which is a prototype and is not sufficiently robust to accommodate the
variety of C usages found in SOD\HU.

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

compiled and linked player′. Given these edits, when our
instrumented player′ is invoked, it immediately writes
“not selected” to the result file, and subsequently, if and
only if modified code is encountered, it invokes the de-
javu() function. In that case, the dejavu() function
overwrites the results file with the phrase “selected.” Be-
cause the file is opened and closed anew on each call to the
dejavu() function, the file always contains exactly one
line; after the file contains the phrase “selected” it retains
that phrase until the program terminates.

Given the foregoing instrumentation, when we run a test
t on player′, we know that t is modification-traversing and
would be selected by DejaVu if and only if the results file
contains the phrase “selected” when player terminates.
The simulation requires us to run all tests in order to de-
termine which tests DejaVu would select, and thus is of
interest only as a simulation; however, the simulation lets
us measure test selection results in the absence of the test
history information required by DejaVu.

We were able to precisely measure most of the costs as-
sociated with test selection for player. First, we were able
to precisely measure the cost of running the tests for
player and the cost of running selected tests, by running
those tests and timing the runs. Second, we were able to
precisely determine the cost of constructing control flow
graphs for player and its modified versions—this con-
stitutes one component of the cost of the analysis per-
formed by DejaVu.12 In the absence of test history infor-
mation, however, we could not precisely determine the
analysis time (beyond the time required for control flow
graph construction) required by DejaVu. Instead, we es-
timated the rest of the tool’s cost. To obtain this estimate
we created a modified version of DejaVu, DejaVuSim,
that performs all graph traversals and comparison opera-
tions performed by DejaVu (on precomputed control flow
graphs), and on completion of its traversal, performs n set
union operations on sets containing k tests, where n and k
are parameters supplied at invocation. By running Deja-
VuSim on player with player itself, we forced the tool to
completely traverse all control flow graphs for player,
providing an overestimate of the cost of traversals. By set-
ting n to the number of dejavu() calls present in the
modified version, and k to the number of tests known to
be selected for that version, we forced the DejaVuSim tool
to perform the maximum number of set operations that it
could have performed in practice.13

12. For an initial version of this study, summarized in [34], we could only
estimate control flow graph construction costs, because our control flow
graph constructor functioned only on a subset of the code in SOD\HU. We
have since corrected the control flow graph constructor; the control flow
graph construction costs reported here are precise.

13. The latter step of this simulation may somewhat understate the cost of
the work that it simulates, because it postpones all set operations until the
completion of the graph traversal rather than distributing them throughout
the program’s operation. As a result, set operations may require less time
due to improved instruction cache effects. Interestingly, a recent paper by
Ball [3] presents a version of our basic algorithm that, while walking the
graphs, simply selects a set of edges, and then performs all set unions at the
end; by reducing the number of set unions that may be required this ap-
proach improves the worst case time bound on the algorithm from
O(|E|*|E′|*|T|) to O(|E|*|E′| + |E| * |T|) (where E and E′ are the
number of edges in the control flow graphs for the base and modified ver-
sion, respectively). Our simulation more accurately measures the cost of
this less expensive variant of our algorithm.

We used the following procedure for this study. Given
base player version P, modified versions P1 … Pn, and test
suite T, we

1)�used Aristotle to construct the control flow graphs
for P,

2)�ran DejaVuSim on P to estimate the balance of analy-
sis costs,

3)� for each version Pi, we

a)� used Aristotle to build the control flow graphs
for Pi,

b)� inserted probes as described above to let us
simulate DejaVu’s test selection on P and Pi,

c)� ran Pi on T, collecting test selection results in a
log file,

d)� ran and validated all tests on Pi,
e)� ran and validated all selected tests on Pi.

To validate results, we again used the base version as an
oracle. We compared the output of the base program
(screen output and output to database files) to the corre-
sponding outputs of the modified version. We used the
Unix time command to measure costs, using the time for
3d as a measure of the cost of using retest-all, and summing
the times for 1, 2, 3a, 3b, and 3e as a measure of the cost of
performing test selection using DejaVu. We ran the player
executable on the same Sun Microsystems SPARCstation 1+
used in Study 1. Due to a tendency of the client program to
dump core unpredictably under SunOS, we ran the client
program on a Sun Microsystems UltraSparc1/140 running
Solaris 2.5.1. Our testing processes were the only active user
processes on the machines. We could not similarly restrict
network activity; however, we performed the study at a
time when such activity was low.

3.4.4 Results
Fig. 5 depicts test selection results for Study 4. The figure
contains a graph that shows the percentage of tests selected
by DejaVu for each version of player. On average, over
the five versions, DejaVu reduced test suite size over 95
percent; results varied from a reduction of 99 percent on
version 2 to a reduction of 89 percent on version 3.

Table 10 shows the time savings achieved by using De-
jaVu in this study. For each version, the table shows the
hours and minutes required to perform various tasks. The
columns show (from left to right) the version number, the
time required to run and validate all tests on the version,
the time required to build control flow graphs for the base
program and version and traverse them, the time required
to run and validate selected tests, the time saved overall by
test selection, the percentage of total time saved by test se-
lection, and the break-even value. On average over the five
modified versions, DejaVu reduced testing time from 7 hr
and 40 min to 1 hr and 1 min; an overall reduction of 87
percent. The break-even value for the versions averaged 78;
this means that in order to provide savings, DejaVu needs
to eliminate only 78 (7.6 percent) of the 1,033 tests (assum-
ing test costs are equal).

Of the 34–36 minutes spent on analysis in the test selec-
tion process in this study, 32 minutes were required to build
control flow graphs for the base and modified versions.
DejaVuSim required between two and four minutes to per-

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 415

form graph traversals and set operations. The control flow
graphs for the base version could be calculated and stored
during the preliminary period, trading critical period test-
ing expense for space. On-demand construction of graphs
could also reduce control flow graph construction time.

These results show that test selection can provide signifi-
cant savings. The facts that player is a real, nontrivial pro-
gram, representative of a significant class of programs, and
that the test suite we utilized in our experimentation was a
realistic, specification-based test suite of a sort we could
expect to find in practice suggest that the technique may
generalize to a significant class of practical regression test-
ing situations.

5 Study 5

3.5.1 Objectives
The objective of our fifth study was to investigate the appli-
cability of DejaVu to a commercial software system for
which actual modified versions and tests were available.

3.5.2 Subject
For this study we obtained a commercial program, nine
modified versions of the program, and the test suite that
had been developed for and used to regression test the pro-
gram. The program, which we call “commercial,” is an
interactive Windows NT application driven by a graphical
user interface and utilized by the general end-user popula-
tion. Table 11 describes the program and Table 12 shows
statistics for modified versions. Note that in this case (in

contrast to our previous studies) the versions constitute a
sequence of versions, each modifying the previous version;
the modification information shown in Table 12 is calcu-
lated accordingly.

The test suites that were provided with commercial
consisted of three automated scripts. Each of these scripts
invoked the application, applied a number of inputs and
validated their outputs, and then closed the application; in
total, the three scripts applied and validated 388 inputs. We
can treat these test scripts either as three tests or as 388
tests. We ultimately employed both interpretations in this
study; we discuss the reasons for and ramifications of this
decision later.

The commercial program presented some advantages
not presented by the subjects used in our other studies, be-
cause although the program is relatively small, it is com-
mercial software, and its versions and test suites were pro-
vided with the system, not constructed solely to facilitate
empirical studies.

3.5.3 Procedure
The software for commercial contains C constructs that Ar-
istotle cannot process. Thus, we could not instrument,
build control flow graphs for, or run DejaVu on commer-
cial. Whereas in Study 4 we could precisely calculate the
costs of constructing control flow graphs for the programs
and versions, and using these control flow graphs, we could
estimate the cost of the rest of the DejaVu analysis, in this
study we could not do this. However, by using part of the
simulation procedure used in Study 4, we were able to de-
termine the test selection results achievable by our algorithm.

To perform the simulation we inserted probes into modi-
fied versions, in a manner similar to that used in Study 4
with one exception: rather than insert code to initialize the
results file in main, we initialized the file from the test
scripts. Using this approach, we were able to measure test
selection results when interpreting the scripts as providing
either three or 388 tests. By initializing the results file
only at the beginning of each script, we obtained results in
which each script was treated as a test—for a total of three
tests. By initializing the results file in each script prior to
application and validation of each input, and after each
validation saving the contents of the results file to a log
file, we obtained results in which each input was treated as
a test—for a total of 388 tests. Again, because the versions
here represent a sequence of versions, our instrumentation
of the (k + 1)th version (k > 0) was arranged to reveal the
tests that would be selected if DejaVu were run on the kth
and (k + 1)th versions.

Fig. 5. Test selection statistics for Study 4.

TABLE 10
STUDY 4: EXECUTION TIMES AND SAVINGS (HR:MIN)

Version
Time to

Run All Tests
Time to

Perform Analysis
Time to

Run Tests Selected
Time

Saved
Pct. of Time

Saved
Break-Even

Value

1 7:43 0:34 0:05 7:02 91 76

2 7:43 0:34 0:01 7:06 92 76

3 7:40 0:36 1:08 5:58 78 80

4 7:33 0:35 0:16 6:42 89 80

5 7:42 0:36 0:40 6:28 84 78

average 7:40 0:35 0:26 6:39 87 78

416 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

TABLE 12
MODIFIED VERSIONS USED IN STUDY 5

Version
Functions
Modified

Lines of Code
Changed

1 1 1
2 2 12
3 1 1
4 12 264
5 1 3
6 3 4
7 3 245
8 2 15
9 2 44

We used the following procedure for Study 5. Given ini-
tial version P, succession of modified versions P1 … Pk, and
test suite T, for each modified version Pi (i > 0), we

1)�inserted probes into the source code as just described,
and

2)�ran Pi, collecting test selection results in a log file.

3.5.4 Results
Fig. 6 depicts test selection statistics for this study. The
graph on the left depicts results in which each script was
treated as a test. The graph on the right depicts results in
which each individual input in a script was treated as a test.

A comparison of these results is interesting, and reveals
our motivation for employing the two interpretations of the
tests. Under the three-test interpretation, DejaVu selected
three tests twice, two tests twice, one test thrice, and zero
tests twice, reducing the number of tests required by 48
percent overall. Under the 388-test interpretation, in all but
three cases, DejaVu reduced the percentage of testing re-
quired by a greater amount than in the three-test interpre-
tation; the overall average reduction in tests under this in-
terpretation was 66 percent. In the other three cases—two in
which no tests were selected and one in which one was se-
lected—test selection results were the same under each in-

terpretation. These results illustrate that the “granularity”
of the tests in a test suite can affect the ability of DejaVu to
reduce test suite size using test selection.

An interesting additional observation is that for two of
the nine modified versions considered in the study (ver-
sions 2 and 5), DejaVu selected no tests. In these two cases,
there were no inputs in the test scripts that caused code
modified for those versions to be executed. Thus, even if a
retest-all approach were used on these programs, modified
code in the versions would not be tested.

4 INTERPRETATION OF RESULTS

The studies we have described, like any other, have several
threats to their validity, that we have detailed in the previ-
ous sections. Keeping these threats in mind, we draw sev-
eral observations from these studies.

Studies 1, 4, and 5 illustrate that our regression test se-
lection technique, and thus, safe test selection techniques,
can reduce the cost of regression testing. Encouragingly, as
Study 4 illustrates, the technique can yield greater savings
when applied to larger, more complex programs than when
applied to smaller, simpler programs. Furthermore, Studies
1, 2, and 3 indicate that our test selection technique can in-
deed achieve safety in practice. In these cases, the technique
demonstrates fault-detection abilities equivalent to those of
the retest-all technique.

All five studies illustrate that safe regression test selection
alone is not sufficient either for reducing the cost of regres-
sion testing or for increasing the quality of that testing. As
the studies illustrate, there exist programs, modified ver-
sions, and test suites for which safe test selection offers little
reduction in test suite size. Characteristics of the base pro-
gram, modified version, and test suite can conspire or act
independently to affect test selection results. For example, as
a program’s structure grows more complex, the probability
that an arbitrary test will execute an arbitrary modification in
that program decreases. A straight-line program that con-
tains no decision statements yields a case in which, regard-

TABLE 11
SUBJECT USED IN STUDY 5

Program
Name

No. of
Functions

Lines of
Code

No. of
Versions

Test Pool
Size

Description of
Program

commercial 27 2,145 9 3/388 Windows NT application

Fig. 6. Test selection statistics for Study 5.

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 417

less of the nature of modifications and test suites, our test
selection technique always selects all tests in T. As a second
example, in an arbitrary program, a code modification that is
conditionally executed is less likely to be reached by an arbi-
trary test than a code modification that is necessarily exe-
cuted. For the version of our test selection technique utilized
in these studies, a modification in any statement of P that
precedes all branches in P necessitates selection of all tests
through P, regardless of the structure of P or the nature of the
tests in T. As a third example, if a given test executes a large
percentage of the statements in an arbitrary program, the
probability that the test will be selected for an arbitrary
modified version of that program is greater than the prob-
ability that a test that executes a small percentage of the
statements in the modified program will be selected. If a test
executes every statement in P, then regardless of the struc-
ture of P and the location of modifications in P, our test se-
lection technique will select that test.

Even when test selection reduces the number of tests
that must be executed, the analysis required to select tests
can outweigh reductions in test execution and validation
costs. As an extreme example, in our second and third
studies, analysis time always outweighed the time required
to reexecute all tests. Thus, for certain programs and test
suites, test selection cannot be cost-effective. This result
does not imply that test selection cannot be cost-effective
for small programs; rather, the result reflects the fact that
cost-effectiveness depends on both the cost of analysis and
the cost of executing tests. The potential for regression test
selection to provide savings for a particular software sys-
tem and its test suite must therefore be assessed in terms of
both of these factors.

Given the observed potential for variations in test selec-
tion results, we would like to find plausible predictors that
can tell us in advance, with a reasonable degree of certainty,
whether or not test selection is likely to be effective. Toward
this end, Rosenblum and Weyuker [30] propose coverage-
based predictors for use in predicting the cost-effectiveness of
selective regression testing strategies. Their predictors use
the average percentage of test cases that execute covered
entities—such as statements, branches, or functions—to
predict the number of tests that will be selected when a
change is made to those entities. Subsequent empirical
studies by Harrold, Rosenblum, Rothermel and Weyuker
[13] show that, although the Rosenblum-Weyuker predictor
is relatively effective at predicting the average effectiveness
of a regression test selection strategy, it may significantly
under- or overestimate test selection results for particular
versions. The authors show how to improve the predictive
power of the Rosenblum-Weyuker predictor both generally
and for specific versions by incorporating information on
the distribution of modifications.

Even when regression test selection is effective, it may
not be adequate. Our fifth study, in particular, demonstrates
this, in the cases where no tests through modified code
were found. A regression test selection technique selects a
subset of an existing test suite; given a program that is not
adequately tested by its existing test suite, it is not likely
that any subset of that test suite will be adequate for a
modified version of that program. Furthermore, even if the

previous version of a program had been adequately tested
by its existing test suite, the tests in that suite may no
longer be adequate for the modified program. Regression
test selection techniques, as we have defined them, address
only the problem of selecting tests from an existing test
suite; safe techniques promise only to not omit tests, from
the original test suite, that would reveal faults if executed.
A complete regression testing effort should look beyond
existing test suites. Many of the selective retest techniques
cited in Section 2 of this paper consider this regression
testing adequacy problem in addition to the problem of test
selection; however, to our knowledge, with the exception of
recent work by Binkley [6], these techniques have not been
empirically investigated.

Data calculated from the results of Studies 2 and 3 sup-
port a hypothesis that for purposes of regression test selec-
tion, code-coverage-based test suites may be preferable to
non-coverage-based test suites. This support comes in two
forms. First, in cases where selection of a large percentage
or a small percentage of tests predominates, non-coverage-
based test suites display a greater tendency than coverage-
based test suites to require selection of almost all, or very
few, of the tests in the suites, respectively. In the former
case, the chance that test selection can be cost-effective is
reduced; in the latter case, the chance that test selection can
locate tests through modified code (and locate errors in that
code) is reduced. Second, in cases where test selection se-
lects between 20 and 80 percent of the test suite, non-
coverage-based test suites are associated with greater vari-
ance in test selection results than coverage-based test suites.
This fact may make accurate prediction of test selection
results for a particular testing load more difficult for non-
coverage-based test suites than for coverage-based suites.
Moreover, our intuition suggests that the amount of
retesting required for a given modification should be more
closely related to the modification than to the test suite, but
noncoverage suites accentuate the role of the test suite in
test selection.

Finally, as the results of Study 5 in particular illustrate,
test granularity is an important factor in determining the
success of test selection. Finer granularity tests increase the
likelihood of achieving efficiency gains with regression test
selection, by decreasing the likelihood (on average) that
tests will execute modified code. However, these potential
gains must be balanced against potential losses: finer
granularity tests may require greater overhead than coarser
granularity tests. For example, in Study 5, the finest possi-
ble test granularity could require us to open an application
388 times, as opposed to three times, significantly increas-
ing overall testing time. Furthermore, finer granularity tests
may decrease the opportunity to identify faults that arise
due to code interactions.

5 CONCLUSIONS

In this paper, we have presented the results of several em-
pirical studies of a safe regression test selection technique.
Our results indicate that safe regression test selection can be
cost-effective, and that in practice it can indeed avoid omit-
ting tests that would not be omitted by a retest-all approach.

418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

The results also indicate, however, that the cost-
effectiveness of test selection can vary widely based on a
number of factors. In particular, the cost of analysis neces-
sary for test selection and the cost of executing and vali-
dating tests interact to affect cost-effectiveness. By calcu-
lating break-even values we may be able to determine, for a
given software product and test suite, whether test selection
can ever be cost-effective for that product and test suite. In
cases where break-even values indicate that test selection
may be cost-effective, however, that cost-effectiveness is
still not guaranteed: it depends on factors of the test suite,
such as code-coverage characteristics and test granularity,
and also on locations of modifications.

Further experimentation with a wider range of pro-
grams, versions, and test suites is necessary, to determine
the extent to which, and conditions under which, these re-
sults may generalize to industrial practice.

Given the dependence of test selection effectiveness on
test suite characteristics and code modification patterns,
our results also suggest that in practice, it may be possible
to design test suites that promote the use of regression test
selection techniques. If such test suites can be constructed
without loss to other aspects of test adequacy, design for
regression testability may be appropriate and possible. It
may be similarly possible to specify code modification
practices that promote the use of test selection. We are cur-
rently investigating these issues.

In addition to experiments with individual test selection
algorithms, comparative experiments of various algorithms
are also mandated. To date, only two such experiments have
been reported in the literature [11], [29]. Such experiments
should examine the relative cost-benefits of different families
of test selection algorithms: for example, minimization ver-
sus safe algorithms. Such experiments should also examine
the relative cost-benefits of algorithms within the same fam-
ily, such as the various safe algorithms, or the various ver-
sions of our graph-walk-based algorithms. The work we re-
port here provides an infrastructure for such further experi-
mentation, by ourselves and by other researchers.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Microsoft,
Inc.; by the National Science Foundation under National
Young Investigator Award CCR-9696157 to Ohio State Uni-
versity; by the National Science Foundation Faculty Early
Career Development Award CCR-9703108 to Oregon State
University; by the National Science Foundation Award
CCR-9707792 to Ohio State University and Oregon State
University; and by an Ohio State University Research
Foundation Seed Grant. Siemens Corporate Research pro-
vided some of the subjects. The anonymous reviewers pro-
vided suggestions that materially improved the paper.

REFERENCES

[1]� H. Agrawal, J. Horgan, E. Krauser, and S. London, “Incremental
Regression Testing,” Proc. Conf. Software Maintenance, pp. 348–357,
Sept. 1993.

[2]� M. Balcer, W. Hasling, and T. Ostrand, “Automatic Generation of
Test Scripts from Formal Test Specifications,” Proc. Third Symp.
Software Testing, Analysis, and Verification, pp. 210–218, Dec. 1989.

[3]� T. Ball, “On the Limit of Control Flow Analysis for Regression
Test Selection,” Proc. Int’l Symp. Software Testing and Analysis,
ISSTA, Mar. 1998.

[4]� S. Bates and S. Horwitz, “Incremental Program Testing Using
Program Dependence Graphs,” Proc. 20th ACM Symp. Principles of
Programming Languages, Jan. 1993.

[5]� P. Benedusi, A. Cimitile, and U. De Carlini, “Post-Maintenance
Testing Based on Path Change Analysis,” Proc. Conf. Software
Maintenance, pp. 352–361, Oct. 1988.

[6]� D. Binkely, “Semantics Guided Regression Test Cost Reduction,”
IEEE Trans. Software Eng., vol. 23, no. 8, Aug. 1997.

[7]� D. Binkley, “Reducing the Cost of Regression Testing by Seman-
tics Guided Test Case Selection,” Proc. Conf. Software Maintenance,
Oct. 1995.

[8]� Y.F. Chen, D.S. Rosenblum, and K.P. Vo, “TestTube: A System for
Selective Regression Testing,” Proc. 16th Int’l Conf. Software Eng.,
pp. 211–222, May 1994.

[9]� K.F. Fischer, “A Test Case Selection Method for the Validation of
Software Maintenance Modification,” Proc. COMPSAC’77, pp.
421–426, Nov. 1977.

[10]� K.F. Fischer, F. Raji, and A. Chruscicki, “A Methodology for
Retesting Modified Software,” Proc. Nat’l Telecommunications Conf.
B-6-3, pp. 1–6, Nov. 1981.

[11]� T.L. Graves, M.J. Harrold, J-M. Kim, A. Porter, and G. Rothermel,
“An Empirical Study of Regression Test Selection Techniques,”
Proc. 20th Int’l Conf. Software Eng., Apr. 1998.

[12]� R. Gupta, M.J. Harrold, and M.L. Soffa, “An Approach to Regres-
sion Testing Using Slicing,” Proc. Conf. Software Maintenance, pp.
299–308, Nov. 1992.

[13]� M.J. Harrold, D.S. Rosenblum, G. Rothermel, and E.J. Weyuker,
“Empirical Studies of a Prediction Model for Regression Test Se-
lection,” Technical Report OSU-CISRC-2/98-TR55, Ohio State
Univ., Feb. 1998.

[14]� M.J. Harrold and G. Rothermel, “Aristotle: A System for Research
on and Development of Program-Analysis-Based Tools,” Techni-
cal Report OSU-CISRC-3/97-TR17, Ohio State Univ., Mar. 1997.

[15]� M.J. Harrold and M.L. Soffa, “An Incremental Approach to Unit
Testing During Maintenance,” Proc. Conf. Software Maintenance,
pp. 362–367, Oct. 1988.

[16]� M.J. Harrold and M.L. Soffa, “An Incremental Data Flow Testing
Tool,” Proc. Sixth Int’l Conf. Testing Computer Software, May 1989.

[17]� J. Hartmann and D.J. Robson, “RETEXT—Development of a Se-
lective Revalidation Prototype Environment for Use in Software
Maintenance,” Proc. 23rd Hawaii Int’l Conf. System Sciences, pp. 92–
101, Jan. 1990.

[18]� J. Hartmann and D.J. Robson, Techniques for Selective Revalida-
tionk” IEEE Software, vol. 16, no. 1, pp. 31–38, Jan. 1990.

[19]� M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the Effectiveness of Dataflow and Controlflow-based Test
Adequacy Criteria,” Proc. 16th Int’l Conf. Software Eng., pp. 191–
200, May 1994.

[20]� R. Johnson, Elementary Statistics, sixth edition. Belmont, Calif.:
Duxbury Press, 1992.

[21]� J. Laski and W. Szermer, “Identification of Program Modifications
and Its Applications in Software Maintenance,” Proc. Conf. Soft-
ware Maintenance, pp. 282–290, Nov. 1992.

[22]� J.A.N. Lee and X. He, “A Methodology for Test Selection,” J. Sys-
tems and Software, vol. 13, no. 1, pp. 177–185, Sept. 1990.

[23]� H.K.N. Leung and L. White, “Insights into Regression Testing,”
Proc. Conf. Software Maintenance, pp. 60–69, Oct. 1989.

[24]� H.K.N. Leung and L. White, “Insights into Testing and Regression
Testing Global Variables,” J. Software Maintenance, vol. 2, pp. 209–
222, Dec. 1990.

[25]� H.K.N. Leung and L.J. White, “A Study of Integration Testing and
Software Regression at the Integration Level,” Proc. Conf. Software
Maintenance, pp. 290–300, Nov. 1990.

[26]� H.K.N. Leung and L.J. White, “A Cost Model to Compare Regres-
sion Test Strategies,” Proc. Conf. Software Maintenance, pp. 201–
208, Oct. 1991.

[27]� T.J. Ostrand and M.J. Balcer, “The Category-Partition Method for
Specifying and Generating Functional Tests,” Comm. ACM, vol.
31, no. 6, June 1988.

[28]� T.J. Ostrand and E.J. Weyuker, “Using Dataflow Analysis for Re-
gression Testing,” Proc. Sixth Ann. Pacific Northwest Software Qual-
ity Conf., pp. 233–247, Sept. 1988.

ROTHERMEL AND HARROLD: EMPIRICAL STUDIES OF A SAFE REGRESSION TEST SELECTION TECHNIQUE 419

[29]� D.S. Rosenblum and G. Rothermel, “An Empirical Comparison of
Regression Test Selection Techniques,” Proc. Int’l Workshop for Em-
pirical Studies of Software Maintenance, pp. 89–94, Oct. 1997.

[30]� D.S. Rosenblum and E.J. Weyuker, “Using Coverage Information
to Predict the Cost-Effectiveness of Regression Testing Strategies,”
IEEE Trans. Software Eng., vol. 23, no. 3, pp. 146–156, Mar. 1997.

[31]� G. Rothermal, “Efficient, Effective Reqression Testing Using Safe
Test Selection Techniques,” Technical Report 96–101, Clemson
Univ., Jan. 1996.

[32]� G. Rothermel and M.J. Harrold, “A Safe, Efficient Algorithm for
Requression Test Selection,” Proc. Conf. Software Maintenance, pp.
358–367, Sept. 1994.

[33]� G. Rothermel and M.J. Harrold, “Analyzing Reqression Test Se-
lection Techniques,” IEEE Trans. Software Eng., vol. 22, no. 8, pp.
529–551, Aug. 1996.

[34]� GT. Rothermel and M.J. Harrold, “A Safe, Efficient Regression
Test Selection Technique,” ACM Trans. Software Eng. and Methdol-
ogy, vol. 6, no. 2, pp. 173–210, Apr. 1997.

[35]� B. Eherlund and B. Korel, “Modification Oriented Software Test-
ing,” Conf. Proc.: Quality Week, pp. 1–17, 1991.

[36]� B. Sherlund and B. Korel, “Logical Modification Oriented Software
Testing,” Proc. 12th Int’l Conf. Testing Computer Software, June 1995.

[37]� A.B. Taha, S.M. Thebaut, and S.S. Liu, An Approach to Software
Fault Localization and Revalidation Based on Incremental Data
Flow Analysis,” Proc. 13th Ann. Int’l Computer Software and Appli-
cations Conf., pp. 527–534, Sept. 1989.

[38]� F. Vokolos and P. Frankl, “Pythia: A Regression Test Selection Tool
Based on Textual Differencing,” Proc. Third Int’l Conf Reliability,
Quality, and Safety of Software Intensive Systems, ENCRESS’97, May
1997.

[39]�L.J. Wshite and H.K.N. Leung, “A Firewall Concept for Both Con-
trol-Flow and Data-Flow in Regression Integration Testing,” Proc.
Conf. Software Maintenance, pp. 262–270, Nov. 1992.

[40]� L.J. White, V. Narayanswamy, T. Friedman, M. Kirschenbaum, P.
Piwowarski, and M. Oha, “Test Manager, A Regression Testing
Tool,” Proc. Conf. Software Maintenance, pp. 338–347, Sept. 1993.

[41]� S.S. Yau and Z. Kishimoto, “A Method for Revalidating Modified
Programs in the Maintenance Phase,” COMPSAC’87: Proc. 11th Ann.
Int’l Computer Software and Applications Conf., pp. 272–277, Oct. 1987.

Gregg Rothermel received the BA degree in
philosophy from Reed College; an MS degree in
computer science from SUNY Albany; and the
PhD degree in computer science from Clemson
University. He is currently an assistant professor
in the Computer Science Department of Oregon
State University. His research interests include
software engineering and program analysis,
with an emphasis on the application of program
analysis techniques to problems in software
maintenance and testing. He is a recipient of the

National Science Foundation’s Faculty Early Career Development
Award. Previous positions include vice president, quality assurance
and quality control, Palette Systems, Incorporated. Dr. Rothermel is a
member of the IEEE and the ACM.

Mary Jean Harrold received the MS and MA
degrees in mathematics from Marshall Univer-
sity, and the MS and PhD degrees in computer
science from the University of Pittsburgh. She is
currently an associate professor in the Depart-
ment of Computer and Information Science at
Ohio State University, where she leads the Ar-
istotle Research Group. Her research interests
include program analysis and testing, and test-
ing of object-oriented software. She is a recipi-
ent of the National Science Foundation’s Na-

tional Young Investigator Award. Dr. Harrold is a member of the IEEE,
and the ACM.

	Empirical Studies of a Safe Regression Test Selection Technique
	

	Microsoft Word - 401.doc

