
Empirical Studies of Software Engineering: A Roadmap

Dewayne E. Perry Adam A. Porter Lawrence G. Votta
Electrical and Computer Engineering Computer Science Motorola

University of Texas at Austin University of Maryland 1501 W. Shure Dr.
Austin, TX 78712 College Park, MD 20742 Arlington Heights, IL 60004
+1 512 471 2050 +1 301 405 2702 +1 847 632 2706

perry@ece.utexas.edu aporter@cs.umd.edu votta@cig.mot.com

ABSTRACT
In this article we summarize the strengths and weaknesses
of empirical research in software engineering. We argue
that in order to improve the current situation we must create
better studies and draw more credible interpretations from
them. We finally present a roadmap for this improvement,
which includes a general structure for software empirical
studies and concrete steps for achieving these goals:
designing better studies, collecting data more effectively,
and involving others in our empirical enterprises.

Keywords
Empirical Studies, Software Engineering

1 INTRODUCTION
An empirical study is really just a test that compares what
we believe to what we observe. Nevertheless, such tests,
when wisely constructed and executed and when used to
support the scientific method, play a fundamental role in
modern science. Specifically, they help us understand how
and why things work, and allow us to use this
understanding to materially alter our world.

Yet in software engineering research, empirical studies
have not had the same success. This seems odd given their
wide use in other sciences. This problem has been widely
discussed and many articles have pointed out possible
causes. We argue, however, that many of these articles are
“implementation-oriented”. That is, they suggest that the
biggest barriers to using empirical studies lie in the details
of conducting them.

For example, Norman Fenton et al. [1] point out that many
empirical studies have poor statistical designs, don’t scale
up to large systems, and are conducted over too short a
time. Victor Basili [2] suggests that the many differences

between individual software projects make comparison
difficult. Philip Johnson also remarks that practitioners may
resist being measured. [3].

Surely, these and many other factors affect the use of
empirical studies. Nevertheless, we believe that even if all
these issues disappeared, empirical studies would still fail
to have the impact they have had in other fields. This is
because there is a gap between the studies we actually do
and the goals we want those studies to achieve.

Our experience in attempting to use empirical studies to
change how a development group builds software has
convinced us that we must also take a “requirements-
oriented” view. That is, that we must think harder about
what experiments really are and how they can be most
effectively used to improve software development.

We came to this conclusion while trying to improve the
software inspection process used in a Lucent development
setting. We found that our greatest difficulties were not in
designing and conducting individual studies (which was by
no means easy). Our greatest difficulties were in
conceptualizing and organizing a body of work that could
be relied on as the basis for changing an organization’s
long-practiced development processes.

Moreover, we believe that this problem – defining and
executing studies that change how software development is
done - is the greatest challenge facing empirical
researchers. Therefore, in this essay we will examine the
nature and purpose of empirical studies, discuss how they
are currently used, and offer some suggestions for
improving them in the future.

2 WHY EMPIRICAL STUDIES?
All large software projects follow some underlying
development process that includes stages such as
requirements definition, functional design, unit
implementation, integration, and so on. The way in which
these stages are conducted, the tools that are used to
support them and the rationale for doing so, however,
varies widely.

Some companies have rigid processes that all projects
follow. Others allow individual managers to make

Taken From:"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000Order number is 592000-1, ISBN 1-58113-253-0. ACM E-Store: http://store.acm.org/acmstore

decisions based on their personal expertise. Others simply
follow institutional traditions for lack of suitable
alternatives. No matter which approach is taken, in almost
all cases, there is little hard evidence to inform these
decisions, and their costs and benefits are rarely
understood. One reason for this is that software engineering
research has failed to produce the deep models and
analytical tools that are common in other sciences.

The situation indicates a serious problem with research and
practice in software engineering. We don’t know the
fundamental mechanisms that drive the costs and benefits
of software tools and methods. Without this information,
we can’t tell whether we are basing our actions on faulty
assumptions, evaluating new methods properly, or
inadvertently focusing on low-payoff improvements. In
fact, unless we understand the specific factors that cause
tools and methods to be more or less cost-effective, the
development and use of a particular technology will
essentially be a random act. Empirical studies are a key
way to get this information and move towards well-founded
decisions.

Empirical studies take many forms. They are realized not
only as formal experiments, but also as case studies,
surveys, and prototyping exercises as well. No matter what
its form is, the essence of an empirical study is the attempt
to learn something useful by comparing theory to reality
and to improve our theories as a result. Therefore,
empirical studies involve the following steps:

• formulating an hypothesis or question to test

• observing a situation,

• abstracting observations into data,

• analyzing the data, and

• drawing conclusions with respect to the tested
hypothesis.

Of these, the last step – drawing conclusions - is the most
important and too often the least well done. It’s important
because it’s here that we get the information that will
enable us to guide, to change and to push our field. It’s here
that we pinpoint inefficiencies, identify where large
improvements can be made, and determine whether our
still-forming ideas are on-track. It’s the reason why we do
empirical studies. The other steps, however indispensable,
are only prologue.

Of course, doing all of these steps well is difficult. Done
well, however, the payoffs will be large, including that:

• knowledge is encoded more rapidly,

• low-payoff or erroneous research ideas are discarded
quickly,

• high-payoff areas are recognized and correctly valued,
and

• important practical issues are considered.

3 THE STATE OF EMPIRICAL RESEARCH
We have said that empirical studies are used to compare
what we believe to what we see. Ideally, these tests should
allow us to positively affect the practice of software
development. In this section we will explore to what degree
we, as a research community, are living up to this ideal.

Current Strengths
Empirical software engineering has matured considerably
over the last 10-20 years. Consider for example:

In some software engineering sub-fields empirical
validation is considered, if not a standard part, then a
powerful addition to research papers. This has been
especially notable in the testing community.

The quality of the average empirical study is rising.
Researchers are becoming better educated about empirical
studies and how to conduct them. Consequently, we are
seeing increasingly more comprehensive studies conducted
on increasingly realistic programs and processes.

Funding agencies are recognizing the value of empirical
studies. In the U.S. for example, National Science
Foundation (NSF) programs such as the Experimental and
Integrative Activities program supports research with a
decidedly experimental flavor. The recently proposed
Information Technology Research (ITR) program also
stresses that proposals include a strong validation
component. Other examples include National Academy of
Sciences sponsored workshop on the topic of statistics and
software engineering [4].

We’ve had many talks with currently active researchers
who have become interested in and are beginning to do
empirical studies.

And finally, there have been several empirical studies-
related tutorials, panels and state-of-the art presentations at
major software engineering conferences such as ICSE,
FSE, ICSM and others.

Of course many factors contribute to this situation. Many
researchers and practitioners have tackled the problem of
increasing the use and effectiveness of empirical studies.
For example:

There have been several influential and widely quoted
articles attempting to raise our consciousness about the
state of empirical studies in software engineering. Tichy et
al. [5] and Wallace and Zelkowitz [6] both argue that
empirical studies are underused in software engineering
relative to other areas of engineering. Both ferociously
condemn software engineering researchers for not
validating their research ideas and both have been
invaluable making this a high profile issue.

There is a growing awareness that software engineering
researchers must be educated about conducting empirical
studies. To this end, Kitchenham and Pfleeger wrote a
series of articles for ACM SigSoft Software Engineering
Notes. These articles covered a variety of topics including
the logical foundations and design of empirical studies,
their operation, and techniques for collecting, analyzing
and interpreting data.

Several research groups were instrumental in increasing
researcher access to industrial data. Today we find many
papers with significant, detailed accounts of industrial
experience based on industrial data. One of the forerunners
of this approach was the Software Engineering Laboratory
of NASA, the Computer Sciences Corporation, and the
University of Maryland [7].

Finally, many fine researchers have waded in and done
their own empirical studies.

Systemic Problems
Despite, or maybe because of, the strengths listed above
there are some serious problems. These stem from
misunderstandings about what empirical studies are and
why we do them. Before we can improve our use of
empirical studies we have to eliminate some problematic
practices and beliefs.

Often when someone says that we need more empirical
studies in software engineering, they really mean that
research results should be empirically validated. They want
researchers to demonstrate the value of their new ideas as
early as possible. This is a good idea for many reasons. We
believe, however, that it is important to remember that
empirical studies can be used not only retrospectively to
validate ideas after they’ve been created, but also
proactively to direct our research.

For example, in compiler optimization research empirical
studies have identified common code usage patterns.
Knowing, for instance, that branching behavior is not
usually random, helps identify and justify the potential
value of research on branch prediction, aggressive pre-
fetching, etc. In short, we should use empirical studies also
to drive our research

In program committee meetings we often hear lengthy
discussions over the exact statistical tests used in a study or
whether it wouldn’t have been better to have done one
thing or another. These discussions reflect a vain search for
the perfect study. Well, we’ve done many studies and
we’ve never done one perfectly! Of course, we want to see
proper statistics used. But as we will discuss shortly, what’s
important is not whether the study is textbook perfect, but
whether the study and its conclusions taken as a whole are
credible.

Too many empirical studies study the obvious. As this
sometimes shows that the obvious isn’t so obvious, we

wouldn’t discourage anyone from doing such work.
Nevertheless, it makes us wonder, “if empirical studies
mostly just confirm the intuitively obvious, then what’s
wrong with argument by intuition”. Clearly, we believe that
there are things that are true, but that are not intuitively
obvious. Furthermore, we believe that some of these
findings will be valuable to software research and practice.
Therefore, we need to think much harder about the
questions we are studying empirically.

There are too many papers whose only selling point is that
they have lots of data. Data is not enough. Just presenting
data or simply applying curve-fitting algorithms to them
may be useful. But they don’t usually help us understand
why the data is as it is. Our data should be used to answer
questions, not just to fill graphs.

A more fundamental aspect of this problem is that many
empirical studies simply lack hypotheses. They pose no
questions, they serve no well-defined end. Thus at the end
of the study the researcher can only present observations
about the data. All studies, even case studies, should be
designed to answer some question.

As we said earlier, the most important part of doing an
empirical study is drawing conclusions. Many papers fail to
do anything with their results. We need to learn something
from every study and relate these things to theory and
practice.

Since many researchers are reluctant to draw conclusions
from their data, it’s easy to imagine that they aren’t too
happy to generalize them either. Instead of speaking
thoughtfully about their work they cloak the results in
“weasel words”. So much so that, often, in the end, they
say nothing. There’s obviously a balance to be reached here
because we don’t want researchers to over-generalize, But
on the other hand, if we can’t discuss what a study’s results
might mean then it’s hard to make progress.

4 FUTURE CHALLENGES TO EMPIRICAL
STUDIES

The goal of all research, not just empirical studies, is to
improve the state of research and practice. If we want to
empirical studies to improve software engineering research
and practice, then there are two things that we need to do
better in the future. Said simply, we need to create better
studies and we need to draw more credible conclusions
from them.

Creating Better Empirical Studies
Creating better studies means doing studies that have some
chance of directing our research. It implies that we must be
clear about the goals of our studies, design them more
effectively, and maximize the information we get out of
them.

To do this we should consider at least the following issues.

Our studies should strive to establish principles that are
causal, actionable and general.

For a factor A to cause outcome B it’s necessary that A and
B are correlated, that A precedes B in time and that there is
a constructive, testable theory explaining how A affects B.
Without causality you have no ability to control your
situation.

A principle is actionable if the causal agent A can be
effectively controlled. For example, knowing that larger
systems normally have more bugs may not be an actionable
principle if the developer can’t make the system smaller.

The principles should be applicable in as wide a variety of
circumstances as possible.

When we have a causal relationship we know why
something happens. If the agent is actionable, then we have
a knob that can be turned to control the outcome. If it is
general it will be useful to a wide range of people in a wide
set of contexts.

Our studies should try to address important questions.
There are many questions to answer. Answering some of
them will be cheaper than answering others; using those
answers will have more significance in some cases than in
others. This consideration implies that we need to spend a
good deal of time understanding why we’re doing our
studies and what results might come from them.

Individual studies are rarely, if ever, unequivocal. Instead
of trying to solve large issues with a single study we must
attack it with several; each examining different, but
complementary aspects. Here the critical issue is to use
each new study to generate and refine our hypotheses.

Empirical studies are expensive and take time. If we must
do multiple studies, then we have to find ways to get the
information we need at a low cost. This may also mean that
we have to take some shortcuts in our experimental designs
or tackle smaller, more focused problems.

We will also need to enlist the help of others. Empirical
studies gain credibility when they are redone and
rechecked. We need to find ways to help others to
reproduce our results.

Credible interpretations
The credibility of a study refers to the degree of confidence
we have in its conclusions. If studies aren’t credible, then
the time spent doing them was wasted. To improve the
credibility of our studies we must consider several issues.

If we are trying to establish the existence of causal
relationships, we need to design experiments with high
validity. Validity, as we will explain later, is a
characteristic of an empirical study and is the basis of
establishing credible conclusions. There are three types of
validity that are particularly important: internal, external,
and construct validity.

Our studies (no matter how they are done) should always
have hypotheses. With every study we must define what we
are comparing and why.

Often a study won’t be powerful enough to show a causal
relationship. Still, in many cases we can posit several
alternative explanations for the data and then use other data
to discredit them. This still doesn’t show causality, but it
can at least remove obvious alternative explanations from
consideration.

We should avoid the temptation to measure everything to
the finest possible precision. Sometimes it will be enough
to identify an upper and lower bound; other times it will be
enough to measure at a gross resolution. The definition of
adequate precision will depend on the problem, but using
coarse measurements may be one way to limit study costs,
while still getting important information.

Our data and procedures need to be made public so that
others can understand, analyze and possibly replicate our
studies. Frankly, this can be really difficult, and we haven’t
always managed to keep up ourselves, but we believe it’s
worth the effort.

Designing an Empirical Study
In our careers we’ve designed and conducted a number of
studies. None have been without flaws. Our conclusion is
that no study is perfect and that the real challenge is to
create, design and conduct high-impact, credible studies.
This involves managing trade-offs in such a way that we
maximize:

• accuracy of interpretation - the results we see are not
really the result of some unknown influence,

• relevance - our results tell us something important
about software engineering, and

• impact - our results affect the practice of or research
into software engineering

subject to

• resource constraints - studies are expensive; we must
work within resource limitations, and

• risk - studies, especially those done in industry, can
disrupt or put at risk industrial partners; we must
minimize these problems.

5 THE STRUCTURE OF AN EMPIRICAL STUDY
In this section we discuss the structure and components of
empirical studies. We expect that good empirical studies
will have each of these components and that papers written
about the studies will discuss them as well. These
components are:

• research context,

• hypotheses,

• experimental design,

• threats to validity,

• data analysis and presentation, and

• results and conclusions.

Research Context
All studies focus on a problem. Here the problem is defined
and its terminology explained. This section links the study
goals to what’s currently understood about the problem.
This section has two parts.

Problem Definition: We define the problem and explain it's
important terminology.

Research Review. We provide the historical context
surrounding the problem. We describe what we know about
the problem, what has been done previously, what
questions still remain to be answered and what questions
will we be focusing on.

Hypotheses
Hypotheses are essential. They state the research questions
we are asking. Sometimes there is confusion surrounding
the term hypothesis. In fact there are really two kinds of
hypotheses. The trick is to think of a study as a procedure
for making a comparison. Therefore, we start at with high-
level, abstract questions and refine them into low-level,
concrete questions.

Abstract hypotheses are high-level, natural language
statements that are usually stated in everyday terms. They
say things like, “meetings are an indispensable part of the
inspection process”.

Concrete hypotheses are stated in terms of the study’s
design. They may say things like, “teams who do
inspections with meetings find more defects than teams
who do inspections without them.”

We begin by stating our hypotheses first in everyday terms.
Then we translate them to terms that exist in the study’s
design. To the degree that this mapping is done well,
comparisons made at the level of concrete hypotheses can
be mapped back to the comparisons made at the level of
abstract hypotheses.

Study Design
A study’s design is a detailed plan for creating the data that
will be used to test its hypotheses. It has several
components:

One component is a set of variables that link causes and
effects. Typically, there are two kinds of variables:
dependent and independent.

Independent variables are attributes that define the study
setting. In some cases, especially when comparing two
situations, these variables are actively manipulated.

Dependent variables are end-process outputs whose values
are expected to vary predictably when the values of
independent variables change.

The study design may also include a plan for systematically
manipulating the independent variables while observing the
dependent variables.

The final component is the operational context of the study.
This is a description of the physical, intellectual and
cultural surroundings in which the study takes place. It is
included so that the study’s users can better interpret the
data.

Threats to Validity
Threats to validity are influences that may limit our ability
to interpret or draw conclusions from the study’s data.
There are at least three kinds of validity that must be
protected from such threats.

Construct validity means that the independent and
dependent variables accurately model the abstract
hypotheses.

Internal validity means that changes in the dependent
variables can be safely attributed to changes in the
independent variables.

External validity means that the study’s results generalize
to settings outside the study.

Data Analysis and Presentation
Two general approaches to presenting and analyzing data
are called Quantitative and Qualitative analysis.

Quantitative analyses, as the name suggests, deal mainly
with comparing numeric data. The comparisons are
typically aimed at rejecting or not rejecting a null
hypothesis. Two of the tools used in quantitative analysis
are hypothesis testing and power analysis.

Hypothesis testing determines the confidence level at
which the null hypothesis can be rejected. The confidence
level is a measure of the probability that the null hypothesis
will be erroneously rejected. Some people believe that this
confidence level must be less than 1 in 20 or 0.05 for a
result to be significant. It doesn’t have to be. In situations
where data is plentiful and measurements precise, higher
confidence levels may be called for. Since data is often
limited and measurement imprecise in studies of software
engineering, lower confidence levels may be justified. In
any event, we suggest that researchers report the
confidence level (without predetermining the significance
level) and let the reader decide its significance.

Power analysis determines the likelihood that the null
hypothesis will not be rejected when it really should be.
This analysis depends on the magnitude of the effect and
the amount of data we have. This isn’t quite a standard
practice yet, but something that we should consider more.

Qualitative analysis, on the other hand, tends to use data
that is less readily quantified: observations, interviews,
diaries and such. These techniques tend to be used when we
want to understand people’s perspectives of a situation.
Typically, researchers must be very careful about how their
biases affect their data. One technique for doing qualitative
analysis is call Grounded Theory [8]

In software engineering research qualitative analysis is less
widely-used than quantitative analysis, but we can expect
to see more of it in the future. As Glasser and Strauss [8]
point out “In many instances, both forms of data are
necessary—not quantitative used to test qualitative, but
both used as supplements, as mutual verification and, most
important for us, as different forms of data on the same
subject.”

Results & Conclusions
After analyzing the data we have to make sense of it. This
steps leads us back to our original questions. Here we need
to focus on the following things.

We have to understand and explain the limits of the study.
What conclusions can we draw? Where are we limited in
drawing conclusions? What might have influenced our
results?.

Given our understanding of the validity limits and any
other information we might have, what does the data really
say? Are there ambiguities in our interpretation? Can we
think of other explanations for the data we see? Are our
results really believable?

Tie results back to the initial questions. Try to explain what
questions we answered; don’t simply present the data.

Discuss the practical significance of the results. If these
results proved to be general what could a manager or
developer do with them?

Ensure that you have given enough information to others to
help them repeat the study if they want to.

6 CONCRETE STEPS
As we argued above, software engineering researchers must
realign their thinking about the goals of empirical studies
and improve how they conduct and evaluate them. In this
section we discuss some concrete strategies for doing so.

Designing the Studies
Asking Insightful Questions
Ultimately, the most important thing researchers can do is
to ask insightful questions. Just as with software
development, clear requirements improve the likelihood of
a high quality outcome. Note however that an important
question isn’t necessarily an insightful one, especially if it’s
very difficult to answer. For instance, it’s certainly
important to ask whether object-oriented programming is
effective, but it’s hard to see how a small number of studies
can be expected to answer it. Instead, we have to narrower

the questions, make them more precise, and ask the ones
that lead to important answers.

Knight and Leveson’s study on N-Version programming is
a good example of such an insightful question [9]. N-
Version programming refers to using software redundancy
in the hopes of achieving very high reliability. Knight and
Leveson noted that this hope depends heavily on the
assumption that redundant modules fail independently. If
they did not, then the reliability of the total system would
not be as high as expected.

Thus, they studied whether independently-developed
modules do indeed fail independently. The conclusion was,
instead, that the module failures were not independent and
that, therefore, N-Version programming did not deliver on
its promise of high reliability.

This sparked a great deal of discussion, raising questions
about the validity of the study itself, the exact effect of
dependent failures on the reliability calculations, and
whether failure dependence could be avoided. This is
exactly what a good study can do.

Families of Studies
Not every question lends itself to a single empirical study
as well as N-Version programming did. For many issues we
will have to do many studies. In these cases we design and
conduct not just a study, but a family of studies. Here we
have to think about the range of questions we will ask and
design individual studies to support our overall goals.

Schneiderman et al. [10] did a family of studies on the
value of flowcharts as a programming aid. They began by
determining how flowcharts might theoretically be useful.
That is, they decided that flowcharts might support
program composition, program comprehension, program
debugging, and program modification. Next, they studied
each of these four possibilities in isolation. In all cases they
could not demonstrate that having a flowchart was better
than not having one. Thus they concluded that flowcharts
were not as useful many people believed them to be.

In some cases, we will not know the range of questions
beforehand but find them as we conduct our experiments.
It may well be that we raise more questions than we answer
and so need a sequential family of studies to resolve these
related issues as they arise.

The key observation here is that with some thought we can
design and conduct a series of studies that together help us
answer a larger question.

Building Partnerships
The kinds of experiments we’re suggesting often will be
difficult for a single individual. Deepening the questions
and broadening the number of studies will make it more
unlikely that any one person will have all the required
information or resources. One way to handle this problem
will be to create partnerships.

One kind of partnership involves placing students in
industrial environments. This serves several purposes. The
student can conduct and monitor the study, while at the
same time learning about the practice of software
engineering and developing professional contacts. Another
important benefit is that the student can handle some
study’s paperwork, relieving the developers of that burden.
This is a powerful benefit as the fear of extra work was one
reason our industrial partners had for not wanting to
participate in studies.

Another kind of partnership involves creating
interdisciplinary research teams. Sometimes a problem is so
large that different areas of expertise are needed. In these
cases it can be useful to create partnerships with people
outside of software engineering.

One example is the Code Decay Project [11] based at
Lucent Technologies. It is a long-term, multidisciplinary
project examining the fundamental causes, symptoms, and
remedies for code decay. The primary data source is the
Lucent 5ESS™ switching system. It is composed of more
than 50 subsystems and contains over 18 million lines of
code. Along with the source the data includes the system’s
change control history for the past 15 years covering 3.6
million code changes implementing 672,000 change
requests. There is also data on its planned and actual
development milestones, effort and testing data,
organizational history, development policies, and coding
standards. The goals of this project are to define response
variables and document the existence of code decay,
develop code decay indices, identify factors causing it, and
create and evaluate prevention strategies.

Obviously one person can’t carry out such a project. In fact,
the project team contains researchers in Statistics,
Experimentation, Organizational Theory, Programming
Languages, Software Engineering, and Visualization.

Long-running, in vivo, experiments
Many people argue that empirical studies can’t be done in
live software developments (in vivo or in situ). Their
reasoning is that since different groups can’t be asked to
build copies of the same system, there are no controls. This
isn’t false, but the example assumes that we always want to
study entire development projects and that doing the project
twice is the only way to have controls.

These assumptions aren’t always correct. Some
development tasks such as bug-fixing, testing, and
inspections lend themselves to in vivo studies. This is so
because they are executed frequently, are of short duration,
and, relative to an entire project, are inexpensive. Also, we
can establish controls by insuring that tasks are randomly
assigned to different treatments.

Nevertheless, care must taken in any study to preserve the
rights of the subjects. This problem is harder still in in vivo

studies because the studies often last longer subjects and
the subjects have many other work responsibilities.

One thing we have done in both in vitro and in vivo studies
is to give each study participant a “bill of rights”,
reminding them of their right to withdraw from the study at
anytime with no recriminations from the researchers or
their management [12]. We ask each participant to
acknowledge this right at the beginning of the study by
signing a release form.

Another important problem is knowing when to stop the
study. Studies using professional developers creating
professional products can have very strong validity, but can
put the participating project at risk. One solution is to
discontinue any problematic treatment once there are
enough observations to convince yourself that nothing
“unlucky” has happen. This will require some statistical
modeling and will definitely require closely monitoring the
study.

Getting the Data
Many studies get their data by measuring subjects as they
perform predetermined tasks. This is a costly way to get
data. We should, therefore, explore other methods for
collecting data.

Retrospective artifact analyses
One resource to which we haven’t paid enough attention is
the version control system (VCS). Many analyses of the
long-term effects of different processes and tools depend on
the ability to recreate snapshots of the software at different
points in time. A version control system (VCS) tracks each
change a developer makes to the system and, as a result,
can recreate a consistent snapshot at any point in time.
Examples of VCSs include RCS [13] and SCCS [14].
While this basic functionality of VCSs is essential for
version control, there is much data in a VCS that is ignored
when simply using it to extract snapshots of source code.

For instance, A VCS tags each change with a substantial
amount of additional contextual information. Knowing
what code was changed, when it was changed, who made
the change, and so on, can yield valuable insights into what
actually went on in the course of code development,
sometimes better than developers’ memories. Also, VCS
data is amenable to automated analysis. Furthermore, most
large software development organizations employ some
form of VCS. Thus analysis methods built for VCSs will be
widely applicable to many software projects.

Furthermore, this kind of data can be used in many other
ways.

• It can be the basis for building program testbeds (well-
documented, publicly-available artifacts that can be
used by other researchers);

• it can be used to better study system evolution;

• it can be used to help understand work patterns (for
creating benchmarks, for example); and

• it can be used to study fault and failure models for new
programming languages.

Simulation and Mathematical Modeling
Another way to generate data may be by using simulations
or mathematical models. These approaches can be very
powerful, but have their own limitations. We’d like to see
greater use of simulation and modeling together with
directed studies.

One interesting example of this is a study of system
integration strategies done by Solheim and Rowland [15].
For this study the researchers built a number of artificial
systems (shells of the systems with only rudimentary code
inside) whose failure characteristics they could alter. They
then tested these systems under different integration
strategies and measured their fault detection ability and
system reliability. Other examples include using
mathematical models to examine the cost-effectiveness of
certain maintenance changes [16] and the use of
experimental design theory to generate test cases [17].

Involving Others
Meta-Analysis
No single study gives unequivocal results. Therefore, it is
imperative that the research community integrates and
compares studies that address common hypotheses. This is
the only way to gain confidence that empirical results are
real and not just due to random variation. Below we outline
three approaches.

Integrating multiple studies in a credible way isn’t simple.
Two studies can address the same issue, but be conceived
and executed quite differently. Thus, direct comparison of
the results is often impossible because the studies differ
considerably in their designs, instrumentation, subject
population, and analysis methods.

A classic approach to understanding what several studies
say about some phenomenon is to conduct a literature
review, qualitatively summarize existing results, and
manually synthesize them. The drawback of this approach
is that it lacks precise methods for combining different
results.

A statistical approach for integrating multiple studies is
called Meta-analysis [18]. This approach has two steps.
First, the experimenters attempt to reconcile the primary
experiments—i.e., define a common framework with which
to compare different studies. This involves defining
common terms, hypotheses, and metrics, and characterizing
key differences. Next, the data from the primary
experiments are transformed or recalculated according to
agreed upon definitions. In the second step the transformed
primary data is combined and reanalyzed. Unfortunately, it
is not always clear when Meta-analysis is appropriate, what

statistical models should be used, or when it is acceptable
to combine data from disparate sources.

And, of course, there are ad hoc approaches that fall
between the two. Sometimes you can reconcile two
experiments without combining any of their data. This
process will often highlight similarities and differences
between the two experiments, allowing you to better
understand what data are comparable and which are not
[19].

Educational Laboratories
Several authors claim that the quality of many CS
experiments is poor. Whether or not you agree with these
assessments, it is clear that the quality of CS experiments
needs to be improved. One factor contributing to this
situation is that researchers are rarely trained to perform
high quality experiments. An easy way to remedy this is to
integrate experimental methods into the CS graduate
curriculum.

One way to do this is to create short (say 4-week) teaching
modules in which students perform experiments, collect
and analyze data, and test hypotheses as part of their
graduate software engineering courses.

These teaching modules would support three primary
objectives.

• Show how experiments can be used to evaluate
hypotheses concerning open research issues,

• Teach students to design and conduct experiments to
evaluate their own research, and

• Teach basic statistical procedures for collecting and
analyzing data from their own experiments.

These modules could be captured in the form of
educational laboratories. Educational laboratory exercises
are a standard part of physical science education. These
“labs” require students to learn and apply the scientific
method, and examine physical principles. While conducting
a lab a student monitors a physical process, gathers and
analyzes data about the process, and uses the data to test
hypotheses—which often challenge his or her intuition.

To construct these labs researchers would package
empirical studies into a laboratory “manual.” The manual
contains the training materials for lectures, reference
articles, sample specifications, data collection forms, a
description of the experimental procedures, and a post-
experiment survey and take-home assignment.

After the lab has been performed the instructor collates the
data, recoding it to ensure the anonymity of the
participants. Next, the hypotheses behind the experiment
are fully explained and the students are taught the statistical
rationale for the experimental design, and learn statistical
procedures for data analysis and hypothesis testing.

The final step could involve a take-home assignment in
which the students are required to propose an experiment to
evaluate some hypotheses in which they are interested.

7 SUMMARY
This article has provided an overview of the current state of
empirical studies and delineated its strengths and
weaknesses. We also discussed the important issues that
must be addressed in creating a rigorous and credible
empirical discipline for software engineering.

To improve this current state, we must create better designs
and draw more credible interpretations from them. As a
background for where we need to go in the future, we have
outlined a general structure for software empirical studies.
We concluded with concrete steps that can be used
achieving these goals: designing better studies, getting the
data and in involving others in our empirical enterprises.

While we are still relatively immature as an empirical
discipline compared with other sciences and engineering
disciplines, progress has been made and we are optimistic
that we can and will achieve the needed rigor that will
underpin the development of deep understandings of
software engineering.

8 REFERENCES

1. N. Fenton, S.L. Pfleeger, and R. Glass, Science
and Substance: A Challenge to Software Engineers. IEEE
Software, 1994. 11(4): p. 86-95.

2. V. Basili, Editorial. Empirical Software
Engineering Journal, 1996. 1(2).

3. P.M. Johnson, Project LEAP: Lightweight,
Empirical, Anti-measurement dysfunction, and Portable
Software Developer Improvement, in Department of
Information and Computer Sciences. 1997, University of
Hawaii, Honolulu.

4. D. Pregibon, et al., Statistical Software
Engineering, . 1996, National Academy of Sciences:
Washington, D.C.

5. W.F. Tichy, P. Lukowicz, L. Prechelt, and E.A.
Heinz, Experimental Evaluation in Computer Science: A
Quantitative Study. Journal of Systems and Software, 1995.
28(1): p. 9-18.

6. M.V. Zelkowitz and D. Wallace, Experimental
validation in software technology. Information and
Software Technology, 1997. 39(11): p. 735-744.

7. V.R. Basili, et al. The Software Engineering
Laboratory--An Operational Software Experience Factory.
in 14th International Conference on Software Engineering.
1992. Melbourne, Australia.

8. B. Glasser and A. Strauss, The discovery of
grounded theory: Strategies for qualitative research. 1977,
Chicago: Aldine Publishing.

9. J. Knight and N. Leveson, An Experimental
Evaluation of the Assumption of Independence in Multi-
Version Programming. IEEE Transactions on Software
Engineering, 1986. SE-12(1): p. 96-109.

10. B. Schneiderman, R. Mayer, D. McKay, and P.
Heller, Experimental Investigations of the Utility of
detailed Flowcharts in Programming. Communications of
the ACM, 1977. 20(6): p. 373-381.

11. S.G. Eick, et al., Does Code Decay? Assessing the
Evidence from Change Management Data. IEEE
Transactions on Software Engineering, (to appear).

12. C.M. Judd, E.R. Smith, and L.H. Kidder, Research
Methods in Social Relations. 1991, Fort Worth, TX: Holt,
Rinehart and Winston, Inc.

13. W.F. Tichy, Design, Implementation, and
Evaluation of a Revision Control System, in Proceedings of
the Sixth International Conference on Software
Engineering. 1982: Tokyo, Japan. p. 58—67.

14. M.J. Rochkind, The Source Code Control System.
{IEEE} Transactions on Software Engineering, 1975.
1(4): p. 364—370.

15. J.A. Solheim and J.H. Rowland, An Empirical
Study of Testing and Integration Strategies Using Artificial
Software Systems. IEEE Transactions on Software
Engineering, 1993. 19(10): p. 941-949.

16. W. Harrison. Change-Prone Modules, Limited
Resources, and Maintenance. in wess. 1996. Monterey,
CA.

17. S.R. Dalal and C.L. Mallows, Factor-covering
designs for testing software. Technometrics, 1998. 40: p.
234-243.

18. G.V. Glass, B. McGaw, and M.L. Smith, Meta-
analvsis in social research. 1981, Beverly Hills, CA: Sage.

19. A.A. Porter and P.M. Johnson, Assessing Software
Review Meetings: Results of a Comparative Analysis of
Two Experimental Studies. IEEE Transactions on Software
Engineering, 1997. 23(3): p. 129-145.

