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Abstract: Autism spectrum disorder (ASD) is a neurological illness characterized by deficits in
cognition, physical activities, and social skills. There is no specific medication to treat this illness;
only early intervention can improve brain functionality. Since there is no medical test to identify
ASD, a diagnosis might be challenging. In order to determine a diagnosis, doctors consider the
child’s behavior and developmental history. The human face can be used as a biomarker as it is one
of the potential reflections of the brain and thus can be used as a simple and handy tool for early
diagnosis. This study uses several deep convolutional neural network (CNN)-based transfer learning
approaches to detect autistic children using the facial image. An empirical study is conducted to
select the best optimizer and set of hyperparameters to achieve better prediction accuracy using
the CNN model. After training and validating with the optimized setting, the modified Xception
model demonstrates the best performance by achieving an accuracy of 95% on the test set, whereas
the VGG19, ResNet50V2, MobileNetV2, and EfficientNetB0 achieved 86.5%, 94%, 92%, and 85.8%,
accuracy, respectively. Our preliminary computational results demonstrate that our transfer learning
approaches outperformed existing methods. Our modified model can be employed to assist doctors
and practitioners in validating their initial screening to detect children with ASD disease.

Keywords: deep learning; convolutional neural network (CNN); ASD diagnosis; facial image;
transfer learning

1. Introduction

Autism Spectrum Disorder (ASD) is a complicated condition that interferes with a
person’s day-to-day communication [1]. The autistic person mostly experiences minor
disabilities but sometimes requires special care. ASD patients mostly have communication
issues; thus, they cannot express themselves through words, gestures, or facial expressions
while interacting with others. Although medical experts often detect ASD patients based on
the neurophysiological signs caused by ASD, there is no certain biosignature or pathological
procedure that can identify autism at any time [2]. Despite a lack of proper treatment,
an early diagnosis might provide some opportunity to improve the individual’s lifestyle [3].
Due to the flexibility in brain development, an early diagnosis might help children with
ASD symptoms to improve their social life. There is also research supporting that the
children who were intervened before the age of two achieved better IQ scores than those
who got their medical attention after four years of age [4]. A recent study shows that no
more than 30% of ASD children are detected while they are over the age of three [5].

ASD is an ailment that affects various parts of our brain. ASD results from polymor-
phism, which is the genetic influence caused by human gene interaction [6]. According to
the World Health Organization (WHO) report, about 1 in 100 children have ASD. The per-
centage is the highest in the USA, where approximately 1 in 44 children has ASD, and the
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ratio is 4 times higher in boys than girls, according to the Centers for Disease Control and
Prevention (CDC) in 2021 [7].

There is no specific treatment for autism spectrum disorder. However, to lessen the
symptoms, improve cognitive capacity, improve daily living skills, and boost the capabili-
ties of ASD patients, different intervention techniques have been well-thought-out by the
experts [8]. By applying these intervention methods, a proper diagnosis of ASD should be
made as early as possible. There are some known procedures to diagnose this autism spec-
trum disorder. The primary and conventional method used by experts is interview-based,
where the condition of the patients is assessed by the different questionnaire protocols
such as ADOS-2, ADI-R, CARS, Q-CHAT, and AQ-10 [9]. These methods are easy, effective,
and lead to an accurate diagnosis. The main flaw of these methods is biasness, such as the
physician’s competence, skill, and timetable. In addition, the patient’s parents or attendant
cannot always give accurate data or fill out the questionnaire forms correctly. All these
factors can influence the accuracy of interview-based ASD diagnosis.

Another method of diagnosis of ASD is from different modalities of neuroimaging
data such as Magnetic resonance imaging (MRI), Electroencephalography (EEG), Electro-
corticography (ECoG), Functional near-infrared spectroscopy (fNIRS), and Magnetoen-
cephalography (MEG) [10]. However, such techniques are often not affordable to the people
who live in economically depressed areas.

Although there are enough tools for the diagnosis of ASD patients, below are a few
primary reasons for late detection:

• ASD is diagnosed mainly by interactive sessions, so it requires clinical experts to
diagnose children near two years of age [11];

• It is difficult for the parents to visit the specialists, and the availability of such physi-
cians is much lower in rural communities or underdeveloped countries [12];

• Parents who are not familiar with and aware of ASD do not often consider the growth
issues as their children’s disease;

• In addition, children from racial and ethnic minority backgrounds who receive a
primary screening are less likely to have further medical exams due to the high costs
associated with the expensive equipment and skilled personnel required for these
tests [13].

As a result, a simple-to-use tool is required for rapid primary screening without the
involvement of experts or costly pathological tests. The method should be cost-effective,
dependable, and time and resource-efficient. In this regard, detecting ASD from static facial
images of the children via a user interface—such as a website or a mobile application—
could be highly convenient. This procedure avoids unnecessary harm to little infants due to
lengthy medical protocols and is free from human biasness and high costs. Thus, this study
aims to demonstrate the method’s feasibility and precision through appropriate dataset and
accuracy scores. The face is an important human biomarker because the central nervous
system receives and processes information from facial components directly. The ability to
distinguish between different facial expressions is a fundamental feature that can lead to
identifying brain asymmetry or neurodevelopmental disorders [14].

Detecting ASD based on facial expressions is a fairly new area of study, and researchers
are currently conducting feasibility studies and developing the relevant algorithms. Due
to the unique characteristics of each patient, facial recognition can be the most accurate
method of diagnosis. A group of scientists from the University of Missouri found that
children diagnosed with autism have some facial markers, such as a wide upper face,
including wide-set eyes. Their faces are often seen with a shorter middle region, including
the cheeks and nose, which differ from those of children without the disorder [15].

Diagnosing ASD using facial features is a rapidly growing field of research, owing to
the social impact on developing countries. To ease the early detection of ASD, this method
can be a milestone for the primary screening of the ASD or normal child. Recent studies
demonstrate the potentiality of the deep neural network, particularly the application of
CNN models in various disease diagnosis [16–25]. Due to its remarkable ability to learn by
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automatically extracting the hidden features from a large volume of images, convolutional
neural networks (CNNs) are the widely used feature extractors for object detection or
image classification work. Although CNNs are incredibly efficient and accurate, training
the models requires a significant amount of time and computational resources [18]. Thus,
instead of beginning from scratch, it is more convenient to employ pre-trained models that
have previously been developed using supercomputers and massive datasets. Transfer
learning is a concept that involves using the weights and parameters of these pre-trained
models to modify the final output according to the application of the desired tasks, which
results in better classification or prediction accuracy [26].

A systematic literature review is conducted to identify the potential research in ASD
domains that consider facial images. Figure 1 illustrates our systematic approach, which
has been used to determine the referenced literature. The initial search is carried out
using three popular datasets: Scopus, Web of Science, and IEEE Xplore. From the figure,
it can be observed that minimal research has been conducted on ASD diagnosis using
deep learning approaches. To identify additional potential research papers, we have also
randomly searched and selected some of the recent studies from Google Scholar.

Figure 1. Flow diagram of the ASD article selection procedure for ablation study.

Some excellent progress has been made in screening ASD from facial images in recent
times. Akter et al. (2021) introduced transfer learning models to identify the ASD faces with
a 2D image dataset adopted from the Kaggle website. The authors considered both shallow
and deep models for diagnosing Autism in young children ages 2 to 14 and achieved
the highest accuracy with improved MobileNet-V1, applying the k-means clustering al-
gorithm [27]. Hosseini et al. (2022) also used the MobileNet model to improve autism
detection significantly [28]. The image features were extracted from the pre-trained deep
learning models where three fully connected layers topped by a dense layer were used
to predict ASD. However, to achieve higher accuracy, the author ignores the picture of
young children from the datasets. As an effect, they were able to reduce the false positive
and false negative rates, ultimately leading to an accuracy of around 95%. Rahman and
Subashini (2021) later used the same dataset and focused their research on higher-layer
deep learning models such as Xception and EfficientNetB, with a particular emphasis on
the area under the curve (AUC) [29]. Yukti et al. (2021) used the MobileNet, InceptionV3,
and InceptionResNetV2 models and cleaned the duplicates from the dataset using the
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MD5 hash algorithm, although they have reported lower accuracy compared to earlier
research [30]. Alsaade and Alzahrani (2022) trained the CNN-based models, Xception,
VGG19, and NASNETMobile, using the same dataset and got the highest accuracy of 91%
for Xception [31]. All of these CNN-based models used to extract characteristics from
the images in the Kaggle autistic image dataset, which were trained extensively on the
ImageNet dataset, contain 14 million images categorized into 1000 categories.

However, most of the proposed CNN models deal with a higher amount of hyperpa-
rameters, ultimately leading to higher computational time and are not often plausible for
different sizes of datasets. In addition, concerns were raised about the performance of the
existing models, as their performance validity on noisy datasets is frequently questioned,
and their results are typically provided without sufficient statistical measurements. There-
fore, there is a need to develop a CNN architecture that can be used to detect ASD with
minimum hyperparameters, ultimately allowing the development of an efficient CNN-
based ASD diagnosis model. Considering this opportunity, In this work, we use the 2D
facial image and pre-trained deep learning models to diagnose ASD early. The transfer
learning approach is used to extract the feature from the images, and we use the publicly
available Kaggle dataset. The significant contributions of our work can be summarized
as follows:

1. Pre-process the dataset for training after organizing and resizing the images;
2. Conduct the ablation study by tuning hyperparameters during training and validating

the models’ performance after each iteration; As a result, a comprehensive empirical
study was introduced;

3. After determining the optimal set of hyperparameters, the optimizer for model train-
ing explains the facts behind the low accuracy with prediction probabilities;

4. Analyzing model performance to establish the research’s future direction in terms of
dataset pre-processing and imposing feature maps.

The rest of this paper is structured as follows: Section 2 discusses the facial image
dataset and pre-trained deep learning models to detect ASD. In Section 3, an ablation study
has been done for hyperparameter optimization to find the best ASD detection CNN model.
In Section 4, the performance of the different models is compared with the findings of
contemporary research. Finally, Section 5 concludes the paper with the contributions of
this research and future work.

2. Materials and Methods

This study aims to predict Autism Spectrum Disorder (ASD) in children at an early age
utilizing a transfer learning-based paradigm for autistic facial recognition. In this research,
we used pre-trained deep learning models to extract robust features automatically, which
were practically impossible to recognize by visual inspection due to their intricacy. We then
fed these features through several layers, where the topmost dense layer resulted in the
diagnosis of ASD.

2.1. Dataset

A large dataset is required to train deep learning models for optimal performance [17].
While training for all potential circumstances, the model will acquire significantly higher
accuracy. We used the Kaggle repository’s autistic children dataset [32] to build our sug-
gested models, as it is the only free available dataset of this kind online. This dataset
contains 2D RGB images of children aged from 2 to 14 years, where most fall between the
ages of 2 and 8. The male-to-female ratio in the dataset was approximately 3:1, whereas
the autistic class and normal control class had a nearly 1:1 ratio. The images are di-
vided into 3 groups training set, testing set, and validation set consisting of 2536 (86.38%),
300 (10.22%), and 100 (3.41%) images, respectively, and each group has a ratio of 1:1 for
ASD and NC class. The contributor, Gerry Piosenka, collected the images from the internet
source, and there is no clinical history, ASD severity, ethnicity, or socioeconomic status
of the children in the dataset. Many of the images are not of the best quality in terms of
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facial alignment, brightness, or image size. To get an accurate and consistent outcome,
the training set for the ML model should comprise a particularly comprehensive collection
of photos that covers the entire spectrum of ASD, covering all these labelings of ASD
severity, ethnicity, or socioeconomic status. Note that EEG or MEG data can also be utilized
to determine the ASD diagnosis and comprehend the brain’s functions [33,34]. However,
gathering this information is hard and time-consuming, whereas obtaining facial images is
relatively easier [35].

2.2. Transfer Learning for ASD Diagnosis

Recent research demonstrates the exceptional capabilities of deep convolutional neural
networks (CNNs) for the classification of image data with an extremely high accuracy
rating [19]. With the development of deep CNN-based models that have established
themselves as a promising tool for facial recognition, computer vision is gaining popularity
day by day [36,37]. Face recognition or object classification models work by extracting
features from a specific object, making it possible to tell the difference between an autistic
and non-autistic face by learning from a huge set of images. Transfer learning is a machine
learning technique that applies a model developed for one task to another. The internal
structure of the model remains the same; however, in this study, the models are utilized to
extract distinct features from autistic and normal faces, and then the topmost layers are
modified for classification purposes. The motivation of this research is to find a suitable
framework to predict autism in children from facial images. To achieve this goal, we have
designed and implemented the research as per the following flow

1. Data attainment: We adopted the image dataset from Kaggle data repository contain-
ing 2940 images of children aged 2–11 years. Then we divided the dataset into three
subsets, train, test, and validation, having 2540, 300, and 100 images, respectively.
The raw data were cleaned, labeled, and resized to give a reasonable shape as the
input for the deep learning models;

2. Select the transfer learning models: The CNN-based models are chosen based on
their demonstrated performance and accuracy in earlier studies. Additionally, we
keep in mind that the model should be lightweight in terms of layers and parameters
and their high accuracy;

3. Ablation study for training parameters: The models are trained multiple times using
the same set of data, and their performance was evaluated using a variety of hyperpa-
rameters. Additionally, we used several optimizers and split ratios of the test-train
data to obtain the high accuracy setting necessary for analyzing and evaluating the
performance of various deep learning models in detail;

4. Evaluation parameters: Multiple metrics such as accuracy, the area under the curve
(AUC), precision, and recall are used to verify the performance of various transfer
learning approaches. We plot the ROC curve and confusion matrix for each transfer
learning model at the optimal hyperparameter and optimizer settings;

5. Choose the best performing model: After evaluating the taken matrices and com-
paring the performance of different transfer learning approaches in terms of various
statistical measures, the optimized model was selected for screening ASD among chil-
dren;

6. Analyze the model’s performance: To determine the effect of the prediction results
on the test set, they were subsequently evaluated on various aspects containing a
variety of different scenarios.

Figure 2 illustrates an overview of the proposed framework that was used to conduct
the ablation study in this research work.
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Figure 2. Proposed framework of the transfer learning approaches used in this study.

2.3. Transfer Learning Models for Feature Extraction

One of the key goals of this ablation study is to provide an overview of the algo-
rithms used in previous research and compare their overall efficacy to detect differences
or build superior approaches. This research relies on the existing peer-reviewed literature
because there is no standard procedure or general criteria for selecting the best pre-trained
algorithms. Therefore, the study is based on five pre-trained deep learning models based
on CNNs: VGG19 [38], Xception [39], ResNet50V2 [40], MobileNetV2 [41], and Efficient-
NetB0 [42]. These models were selected due to their promising performance introduced
by several referenced literature. Additionally, during the existing model modification,
the layer of the CNN models was kept minimum in order to make it more feasible for
mobile-based apps. Table 1 below states the accuracy of different transfer learning models’
size, accuracy, and depth. From the table, it can be observed that the Xception model
demonstrates the highest accuracy in terms of selecting the top 1 to top 5 objects compared
to the existing referenced models [43].

Table 1. Model accuracy, parameters, and depth.

Model Size Top-1 Top-5 Parameters Depth(MB) Accuracy Accuracy

VGG19 549 0.713 0.9 143.7 M 19
Xception 88 0.79 0.945 22.9 M 81
ResNet50V2 98 0.76 0.93 25.6 M 103
MobileNetV2 14 0.713 0.901 3.5 M 105
EfficientNetB0 29 0.771 0.933 5.3 M 132

2.3.1. VGG19 Model

VGG19 is a CNN-based image recognition architecture with extremely small (3 × 3)
convolution filters, demonstrating that increasing the depth to 19 weighted layers improves
prior art design. This model was developed for the 2014 ImageNet Challenge, where the
developer Karen Simonyan and Andrew Zisserman won the contest due to localizing
and classifying tasks, attaining state-of-the-art performance. They have made VGG19
models publicly available to allow further study on the use of deep visual representations
in computer vision. The VGG19 requires a 224 × 224 RGB picture as input. The only pre-
processing is performed here by subtracting the mean RGB value derived from the training
set from each pixel. The image is processed through a stack of convolutional (Conv.) layers,
each with a very narrow receptive field: 3 × 3 (the smallest size that adequately captures
the concepts of left/right, up/down, and center). Five max-pooling layers follow several
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of the conventional layers to perform spatial pooling. After stacking convolutional layers,
whose depths can vary considering on the architecture, three fully connected (FC) layers
are utilized: the first 2 layers contain 4096 channels each, and the 3rd layer comprises
1000 channels incorporated with a soft-max function that can be used to make the final
prediction [38].

2.3.2. MobileNetV2 Model

MobileNetV2 is a cutting-edge module that utilizes inverted residuals and a linear
bottleneck. This simple model can be extended for use in mobile phone applications.
The model may accept a low-dimensional input, reduce the number of operations, and con-
sume less memory while maintaining a greater level of accuracy. This model uses depth-
wise separable convolution, which divides the convolution operation into two distinct
layers. The first layer is depth-wise convolution, which is highly efficient because it per-
forms just one filtering operation. The second layer acquires additional characteristics due
to the linear calculation of the inputs. MobileNetV2 significantly lowered the computa-
tional cost of standard model layers by a factor of k2, thus often saving 8 or 9 times the
computational resources required for 3 × 3 depth-wise separable convolution than other
conventional models [41].

2.3.3. EfficientNetB0 Model

EfficientNet is a scaled-up model that optimizes both efficiency and accuracy. The Effi-
cientNetB0’s fundamental layer is a mobile inverted bottleneck MBConv with compound
scaling of all three components—depth, width, and resolution—where α, β, and γ are
the constants associated with depth, width, and resolution, respectively. These constants
should be derived for the best outcome; larger models take more system resources. Ef-
ficientNetB0 may search for these scaling coefficients with less system capacity being a
smaller model and then use the same for other heavy models [42].

2.3.4. ResNet50V2 Model

This model comprises several residual units that propagate both forward and back-
ward utilizing identity mapping. Propagation can occur between blocks with a high degree
of accuracy in terms of classification performance. Training will be significantly more
accessible and more generalized with the assistance of these residual mappings. ResNet
models are often over 100 layers deep and exhibit exceptional accuracy in ImageNet or
COC competitions [40].

2.3.5. Xception Model

This model is based on Google’s Inception model and has a straightforward modu-
lar structure. The model is based on three major blocks—entry, center, and exit—using
a separable convolutional layer with Relu activation functions. The output of the con-
volution layer has been max-pooled incorporated with residual networks at the end of
each compartment . To get the output, the input picture of size 299 × 299 × 3 is passed
through the entry flow, and then the output will consist of feature maps of 19 × 19 × 728
at the end. Even after nine passes through the segment, the image’s feature size remains
constant at the middle flow’s end. For a standard-sized input image, the output of the last
component contains 2048 features. Lastly, the prediction layer gets the features through
a fully connected (FC) layer. The final layers will be modified for binary classification to
train and test the models on the ASD dataset. [39]. Figure 3 illustrates the architecture of
modified Xception regarding the number of layers, weight, and height.
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Figure 3. Modified Xception model structure (number of layers height, width, and filter size).

2.3.6. Classification Layer

After completing the final level of deep CNN models, facial features were extracted.
The features were max-pooled and fed to the FC layer having 512 hidden units. In order
to avoid overfitting, a drop-out layer weighted 0.5 was introduced at this stage. Finally,
a dense layer is used to forecast the ASD classes after the investigation (refer to Figure 4).

Figure 4. Demonstration of (a) max-pooling and average-pooling, and (b) classification layers.

2.4. Evaluation Matrices

We used some of the most widely used statistical measures such as accuracy, precision,
and recall to represent our study findings and compare them with others. The mathe-
matical equation of Accuracy, Precision, and Recall can be calculated using the following
formula [18]:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

Precision =
Tp

Tp + Fp
(2)

Recall =
Tp

Tn + Fp
(3)
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where,

• True Positive (Tp) = ASD children identified as ASD children;
• True Negative (Tn) = Healthy children identified as healthy;
• False Positive (Fp) = Healthy children identified as ASD children;
• False Negative (Fn) = ASD children identified as healthy.

3. Result

This section details the various stages of the ablation study we conducted to optimize
the performance of ASD detection from static RGB facial image data. The codes were
executed using the Kaggle platform and were written in the Python programming language.
Kaggle is an incredible platform that enables a user to run the code on a dedicated GPU,
provides the opportunity to share the user’s dataset, and publish the results. We conducted
a series of ablation studies evaluating the accuracy and AUC to determine the optimal
hyperparameter and optimizer combination. We completed the training using deep transfer
learning models using the Keras API Library. Several data processing libraries such as
matplotlib, sklearn, and pandas are used to analyze and visualize the models performance.
To observe the CNN-based models’ performance with different optimizers, we have taken
a fixed set of hyperparameters-epochs of 50, a learning rate of 0.001, and a batch size
of 32. To select the best optimizer for these 5 models, we split the train image set into
a 90–10 percent ratio for validation; such a split is more common in machine learning
domains [17]. The Kaggle ASD dataset contains 2940 images, where 2540 were used for
training, 300 for testing, and 100 for validation purposes. The image was labeled as ‘0’
for Normal control (NC) children and ‘1’ for ASD children while generating a data frame,
as shown in Table 2.

Table 2. Characteristics of the Kaggle image datasets used during the study.

Dataset Number Class Label

Training set 2540 Normal Control (NC) NC-0
Testing set 300 Autistic (ASD) ASD-1
Validation set 100

Table 3 summarizes the comparative testing accuracy of the deep learning models
following training and validation with a 90–10 split ratio for the different optimizers.
The optimizer Adagrade, Adam, and Adamax were selected as many referenced literature
exhibits better model performance using these three optimizers [17]. According to Table 3,
the highest accuracy and AUC values are 86.61% and 91.74%, respectively. We obtained the
best result with the Adagrade optimizer and an initial accumulator value of 0.01.

Table 3. Model performance for different optimizers.

Model
Adagrade Adam Adamax

Accuracy AUC Accuracy AUC Accuracy AUC

VGG19 0.8169 0.8927 0.7857 0.8621 0.7991 0.8922
Xception 0.8571 0.9174 0.8080 0.8894 0.8303 0.8887
ResNet50V2 0.8661 0.8966 0.8169 0.8858 0.7991 0.8682
MobileNetV2 0.7991 0.8842 0.6875 0.7321 0.8258 0.8727
EfficientNetB0 0.7053 0.8143 0.6607 0.7465 0.4821 0.5075

Therefore, Adagrade was selected as the optimizer to train the model in subsequent
experiments. During this time, we arbitrarily used the learning rate of 0.01, 0.001, and 0.0001
and obtained different performance results. The test results of the various learning rates are
shown in Table 4. The learning rate of a model indicates how quickly it can learn features
from a given dataset and is directly related to other hyperparameters such as epoch and



Bioengineering 2022, 9, 710 10 of 18

batch size. As illustrated in Table 4, accuracy and AUC are increased when the learning
rate is set to 0.001.

Table 4. Model performance for different learning rates.

Model

Learning Rate

0.01 0.001 0.0001

Accuracy AUC Accuracy AUC Accuracy AUC

VGG19 0.6875 0.7234 0.8169 0.8927 0.8438 0.8910
Xception 0.7901 0.8724 0.8571 0.9174 0.7991 0.8747
ResNet50V2 0.7857 0.8674 0.8661 0.8966 0.8259 0.8859
MobileNetV2 0.8571 0.8844 0.7991 0.8842 0.7813 0.8552
EfficientNetB0 0.6250 0.6712 0.7053 0.8143 0.7009 0.7824

The learning rate was set to 0.001 for the subsequent experiments based on the perfor-
mance evaluation. We used Adagrade as an optimizer and trained the models for 50 epochs
while splitting the training set into different percent ratios for validation. The ratio of 100%
in Table 5 indicates that the entire training set of 2540 images is used for training, while
the validation set of 100 images is used for validation. Following that, experiments were
performed to validate the performance after segmenting the training dataset by percentage.
Previously, we used a split of 90–10 percent, but as illustrated in Table 5, the model performs
optimally when we use a training and validation set of 2540 and 100 images, respectively,
for training and validation. The reason for this result is that by using a larger number of
images for model training, the learning process is improved, resulting in higher accuracy
and AUC values.

Table 5. Model performance for different train test split ratios.

Model
Ratio

VGG19 Xception ResNet50V2 MobileNetV2 EfficientNetB0

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

100% 0.8645 0.9214 0.9201 0.9625 0.9097 0.9571 0.8368 0.9230 0.8264 0.8990
90–10% 0.8169 0.8927 0.8571 0.9174 0.8661 0.8966 0.7991 0.8842 0.7054 0.8143
80–20% 0.8125 0.8604 0.8521 0.9161 0.8375 0.9143 0.8500 0.9132 0.7875 0.8686
70–30% 0.8021 0.8913 0.8247 0.8951 0.8207 0.8871 0.8057 0.8844 0.6957 0.7683
60–40% 0.8191 0.9229 0.8523 0.9414 0.8934 0.9083 0.8523 0.9146 0.8590 0.9253

The following two ablation studies determine the optimal batch size and epoch as
described in Tables 6 and 7. While conducting the training, we encountered a few issues. Larger
batch sizes require more system resources; during training for the Xception model, the system
collapsed several times with a batch size of 64 images. The run time for a larger batch size is
long when training the model. According to the Table 6, the optimal batch size is 32.

Table 6. Accuracy and AUC values for different batch sizes.

Batch
VGG19 Xception ResNet50V2 MobileNetV2 EfficientNetB0

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

16 0.8446 0.8988 0.9132 0.9610 0.8750 0.9374 0.8819 0.9399 0.8541 0.9229
32 0.8645 0.9214 0.9201 0.9625 0.9097 0.9571 0.8368 0.923 0.8264 0.899
64 0.8672 0.9258 0.8945 0.9489 0.8789 0.9418 0.8281 0.9005 0.793 0.9075

As a result of the previous experiments, we now have all the parameters necessary
to train the models and perform detailed metrics evaluations. The final component of our
ablation is the epoch size, which is specified in Table 7. Initially, we employed a number
of epochs and discovered that fewer than 50 and more than 100 led to overfitting and
underfitting of models, respectively. For instance, the performance of all models is not
identical, as when the iteration size is increased, some models, such as MobileNetV2 and
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EfficientNetB0, perform better in terms of accuracy. While other models become overfitted
after 50 epochs. Thus, we attempted another training for EfficientNetB0 that is more than
100 epochs, but it quickly overfitted after 100 epochs. If we want to consider the highest
accuracy and optimize the system’s resources, 50 epochs are the optimal number.

Table 7. Model performance for epochs 50 and 100 (accuracy).

Epoch VGG19 Xception ResNet50V2 MobileNetV2 EfficientNetB0

50 0.8645 0.9201 0.9097 0.8368 0.8264
100 0.8646 0.8819 0.8750 0.8819 0.8646

We obtained the optimal set of model training parameters: the batch size of 32,
the learning rate of 0.001, the optimizer set to Adagrade, and finally, categorical cross-
entropy is considered as a loss function. For 50 epochs, we trained and validated the model,
and the graphs for model accuracy are displayed in Figure 5.

Figure 5. Plots of model accuracy of (a) Xception, (b) VGG19, (c) EfficientNetB0, (d) MobileNetV2,
and (e) Resnet50V2 following each epoch applied to both training and validation set.

Figure 6 displays the models loss during each epochs.

Figure 6. Plots of model loss of (a) Xception, (b) VGG19, (c) EfficientNetB0, (d) MobileNetV2,
and (e) Resnet50V2 following each epoch applied to both the training and validation set.
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The various metrics for each of the five models are listed in Table 8. This evaluation
is based on the 300 test samples where the best value of accuracy is 92.01%. The highest
AUC is 0.9625, which correctly describes the very high probability of detecting an autistic
or normal child.

Table 8. Model performance for the best setting achieved from the ablation study.

Model Accuracy AUC Precision Recall

VGG19 0.8645 0.9214 0.8645 0.8645
Xception 0.9201 0.9625 0.9097 0.9097
ResNet50V2 0.9097 0.9571 0.9097 0.9097
MobileNetV2 0.868 0.9483 0.868 0.868
EfficientNetB0 0.8576 0.9214 0.8576 0.8576

The Xception model performs the best in terms of accuracy and AUC compared to
the other four referenced transfer learning approaches. The ROC plot in Figure 7 clearly
shows that the area under the curve is larger, implying that the prediction rate for various
test samples is higher in the real-world scenario.

Figure 7. ROC curve of the models.

The confusion matrix in Figure 8 graphically depicts these models’ prediction perfor-
mance following training and validation. Each model is evaluated based on a 300-image
test set. The number in the brown box represents the images that were incorrectly predicted
for each class. The overall performance of Xception is evident by the fact that the number
of incorrect predictions is lower than that of other models. Only 12 images from each class
are incorrectly predicted, which is a small number in comparison to other models. Overall,
24 images from both classes are incorrectly classified as the opposite class, as illustrated in
Figure 8. The wrongly predicted images are shown in Figure 9.

Figure 8. Confusion matrix of the five models (a) VGG19, (b) EfficientNetB0, (c) Xception, (d) Mo-
bileNetV2, and (e) ResNet50V2.
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Figure 9. The 12 images in the top row are of (a) autistic children, and those misclassified as normal
and vice-versa for the images are shown in (b) the lower row, which belong to normal control child
(prediction of Xception).

The most prevalent causes of this misprediction occasionally include poor image
quality, the existence of strong facial expressions, and in the majority of cases, alignment
issues. If the image quality is inadequate for RGB photos due to low brightness, small
size, or blurriness, most of the elements that distinguish a picture from NC to ASD will
be lacking. Similarly, when an image of an NC child has an intense facial expression, it
tends to have the same facial traits as an ASD child, resulting in a misinterpretation. Finally,
if the photo is not correctly aligned or comprises just one side of the face, essential features
will be difficult to extract from the photos, resulting in incorrect prediction and decreased
detection accuracy.

There is another version of the dataset containing 3014 images where Hosseini et al. (2021)
considered only faces that are properly aligned and resized [28]. The details of the dataset
are stated in Table 9. On the test data, the Xception model demonstrated the best perfor-
mance by achieving the highest accuracy of 95%, while ResNet50V2 and MobileNetV2
obtained 94% and 92% accuracy, respectively.

Table 9. Assignment of the second dataset used for the ablation study.

Dataset Number Class Label

Train 2654 Normal Control (NC) NC-0
Test 280 Autistic (ASD) ASD-1
Valid 160

Table 10 shows the preliminary computational results on the cleaned dataset in-
troduced by Hosseini et al. (2021) [28]. As can be seen from the table, it is clear that,
the improved Xception model outperforms all other models across all measures.

Table 10. Model performance on the second test dataset, obtained from [28].

Model Accuracy AUC Precision Recall

Xception 0.95 0.98 0.95 0.95
ResNet50V2 0.94 0.96 0.94 0.94
MobileNetV2 0.92 0.96 0.92 0.92

The ROC plot in Figure 10 clearly shows that the area under the curve is larger, imply-
ing that the prediction rate for various test samples is higher in the real-world scenario.

In Figure 11 confusion matrices were shown to understand the overall performance of
the prediction better. The figure shows that our modified Xception models showed the best
performance by misclassifying only 14 images, and MobileNetV2 demonstrated the worst
performance by misclassifying 23 images.
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Figure 10. ROC curves for all models using the dataset introduced by Ref. [28].

Figure 11. Confusion matrix of model (a) Xception (b) ResNet50V2 (c) MobileNetV2 on second
test dataset.

4. Discussion

This study aims to conduct empirical research to detect ASD using an improved deep
learning-based diagnosis tool from the facial images of the children. To detect autistic
children, there are quite a few methods already that are serving in the current diagnosis
process. The oldest and most accurate way to evaluate is the interview-based approach;
however, the average detection trend in children takes more than three years to manifest.
The importance of early detection stems from the fact that early intervention offers the best
chance for ASD children to reclaim their regular lives. Thus, the justification for this type of
research is obvious: to develop a simple and accurate detection approach that may be used
at an early age. The most current development in new-age research is image processing,
pattern recognition, and face recognition.

Additionally, because facial characteristics reflect the psychological qualities of the
human brain, the facial image is an excellent candidate for ASD prediction. There are
extremely few studies explicitly conducted in this field of study. To our knowledge, this is
the first study to conduct a systematic ablation of various parameters and settings to achieve
the highest accuracy of ASD detection from facial images. To improve the model’s predictive
abilities, the bias in the training dataset is a significant bottleneck. While the dataset should
contain all conceivable variations, the referenced Kaggle dataset is overpopulated with
white children, posing identification challenges for black and other ethnicities.

Additionally, the quantity of photos is relatively small compared to any conventional
dataset, while the visual quality is subpar in some cases. Additionally, we learned from
the results that for accurate recognition, the facial expression should be neutral; otherwise,
it creates confusion during prediction. The backgrounds of photos should be identical,
and their alignment and brightness should be precise. Additionally, the RGB image is
insufficient to extract facial features fully; instead, an image or video dataset of different
modalities can significantly increase the accuracy.

Table 11 compares the findings and performance of some recent research. Table 11
exhibits the achieved accuracy from the recent research. Although computationally quite
expansive, the Xception model performed the best in most research. MobileNet-V1 is an-
other efficient model that demonstrated promising results. For instance, Tania et al. (2021)
achieved a lower AUC value despite achieving the same 92% accuracy as our suggested
model after adopting K means clustering using MobileNet-V1. Our Xception model in-
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dicates a prediction AUC of 96.26%, close to Rahman and Subashini’s (2022), but their
reported accuracy was 90% only. Apart from these, our suggested model for ASD diagnosis
outperforms the other referenced literature listed in Table 11.

Table 11. Performance comparison of the recent research.

Author Dataset Used Suggested Model Accuracy

Khosla et al. (2021) [30] Kaggle [32] MobileNet 87%
Rahman and Subashini (2022) [29] Kaggle [32] Xception 90%
Akter et al. (2021) [27] Kaggle [32] MobileNet-V1 92%
Alsaade and Alzahrani (2022) [32] Kaggle [32] Xception 91%
Our study Kaggle [32] Xception 92%

For another version of the dataset containing 3014 images, Hosseini et al. (2022) asserted
that they achieved a 94.6% accuracy using MobileNet [28]. Additionally, Rabbi et al. (2021)
demonstrated an accuracy of 92.31% using their CNN-based models [44]; however, the pro-
cess and supporting evidence are lacking. Additionally, Ahmed et al. (2020) have shown
an accuracy of 95% on the same test dataset with the MobileNet model [45]. However,
our proposed model outperformed the study conducted by Ref. [45] by achieving an
accuracy of 95% accuracy and an AUC value of 0.98, which is higher than what they re-
ported in the literature. Figure 12 shows the comparison of the different works plotting the
accuracy performance.

Figure 12. Graph illustrating the best accuracy on second dataset and compared with referenced
literature [28,44,45].

Other researchers such Saranya and Anandan (2021) attained 92% accuracy using their
CNN-based models. The work was on recognizing facial emotions in ASD patients for the
aid of caregivers. They used the AFFECTNET [46] dataset to train their models, with Kag-
gle [31] serving only as a validation purpose. Angelina and Perkowski (2021) achieved a
classification accuracy of 95% using the VGG16 model [47]. However, the accuracy was
demonstrated in the East Asian dataset, which has 1154 photos and only 32 images from the
Kaggle dataset. They also established that ethnic bias plays a crucial part in this diagnosis
process and that a different ethnic dataset should be created for each demographic race.
This idea is directly contradicted by the robustness of a particular model and could be
troublesome during the model implementation.

5. Conclusions

This study aims to find the best transfer learning model for ASD classification. As an
effect, We have conducted an empirical study to tune hyperparameters and optimizers
for model training considering five existing and widely used CNN based models: VGG19,
EfficientNetB0, Xception, MobileNetV2, and ResNet50V2. Our study reveals that VGG19
performs with 86.5% accuracy, ResNet50V2 with 94% accuracy, while MobileNetV2 and
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EfficientNetB0 gives 92% and 85.76% prediction accuracy respectively. The modified
Xception model demonstrates the best performance, with an accuracy of 95%, AUC of 98%,
a precision of 95%, and recall values of 95%. The modified Xception models performance
was further explored by visualizing using ROC curve, where more area coverage for
Xception indicates a better level of prediction likelihood.

We also used a confusion matrix to evaluate each model’s performance for both the
positive and negative classes. Based on our observation, we found that poor image quality,
the presence of extreme facial emotions, and, in the majority of cases, alignment problems
are the most common causes of lower prediction rates. In the future, image augmentation
may be used to help mitigate these issues. Obtaining ASD features from different modalities
of data, such as thermal or 3D images, can shed new light on how to improve accuracy.
The features collected by the models were not forced but instead chosen spontaneously by
the model, allowing us to place attention blocks on certain regions containing discernible
elements in the future. At the next level, we should also focus on the distinct actions
and behavioral patterns of autistic children that have been medically demonstrated by
experts using videos and can ensemble results from various modality data. The proposed
approach will provide insights to future researchers and practitioners who want to make
ASD screening easier, faster, and less expensive. In addition, implementing the proposed
model on mobile devices as one of the feasible solutions will be one of our primary concerns
in future research.
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