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Abstract—In this paper, the performance of segment particle 

swarm optimization (Se-PSO) algorithm was compared with that 

of original particle swarm optimization (PSO) algorithm. Four 

different benchmark functions of Sphere, Rosenbrock, Rastrigin, 

and Griewank with asymmetric initial range settings (upper and 

lower boundaries values) were selected as the test functions. The 

experimental results showed that, the Se-PSO algorithm achieved 

better results in terms of faster convergences in all the testing 

cases compared to the original PSO algorithm. However, the 

experimental results further showed the Se-PSO as a promising 

optimization algorithm method in some other different fields. 
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I. INTRODUCTION 

Within the last two decades, optimization algorithms with 
mathematical programing have proved to be effective in 
solving large complex optimization problems. Recently, swarm 
intelligence techniques have gained popularity because of their 
capacity to locate partially optimal solutions for combinatorial 
optimization problems [1, 2]. These techniques have been 
applied in various areas, such as economics, engineering, 
bioinformatics, and industry. These problems are better solved 
using swarm intelligence techniques because they are usually 
very hard to solve accurately due to the lack of any precise 
algorithm to solve them [1, 2]. The swarm intelligence 
algorithms mainly depend on updating the population of 
individuals by applying some operators according to the fitness 
information obtained from the environment. With these 
updates, the individuals in a population are expected to move 
towards an optimum solution. 

The Particle Swarm optimization (PSO) is one of the 
popular swarm algorithms which were formulated in 1995 by 
Dr. Kennedy and Eberhart. The PSO algorithm simulates the 
flocking behavior of birds and the schooling of fishes in order 
to achieve complex solutions [3-5]. The PSO algorithm is easy 
to execute and requires few parameters to be adjusted; it is 
computationally proficient and has a faster speed and 
premature convergence towards optima compared to Genetic 
Algorithm (GA) and Simulating Annealing (SA) algorithm [4]. 
It also has a flexible and well-balanced mechanism of 
improving its exploration capabilities [6]. The scenario of PSO 
is started by initializing a population of random solutions. Each 
potential solution is assigned with a randomized velocity, and 
the potential solutions are called particles. Each particle has its 

own position, velocity, and fitness used to decide its best or 
bad positions in the solution space. The particle search depends 
on the personal best position (pbest) and the global best 
position (gbest) of each particle [7]. Moreover, the ability of 
PSO to find an optimum solution in reasonable time creates the 
need for its continuous improvement [8]. However, a 
segmentation of the PSO is implemented in this study to 
improve its convergence and accuracy using 4 optimization 
functions problem. 

The rest of this paper is organized thus: the second section 
discusses the methodology of the PSO and the implemented 
Se-PSO algorithms. The third section explains the 
experimental setup and discussion of the results. The fourth 
section provides the conclusions drawn from the study. 

II. METHODOLOGY 

This paper presents the implementation method of Se-PSO 
with the comparison of PSO algorithms. The description of Se-
PSO and PSO is given in Pseudo code in Algo (1 and 2). Se-
PSO algorithm is developed according to conventional PSO 
algorithm. Thus, it has to go through the same procedures 
initialization of the bird’s step, number of birds, iteration, the 
problem dimension, and the position/velocity updating 
evaluation processes. However, the segmentation of the 
problem is added to PSO algorithm in order to reduce the time 
with a few iterations. The segmentation technique is always 
providing a fast convergence that able to achieve the best initial 
local position. 

A. PSO Algorithm 

The PSO algorithm is simulating the behavior of birds 
flocking and fish schooling in order to solve optimization 
problem in D-dimensional search space. This algorithm was 
proposed in 1995 [9]. The initialization of PSO is start by a 
group of random particles (solutions) and then searches for the 
optimum solution by updating generations. Each particle is 
flown through the solution problem space, having its position 
based on the information from its own personal best position 
and the best particle of the swarm. The performance of each 
particle and how close from the global optimum is calculated 
using a fitness function of the optimization problem. Each 
particle   flies through the D-dimensional solution space and 
maintains the current position    of particle  , the personal best 
position    of the particle  , and the current velocity    of 
particle  . The particle keeps track of its coordinates in the 
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solution space which are associated with best solution (fitness) 
it has achieved so far which stored at each iteration. This value 
is called pbest (personal best position). Another value of the 
(best) called gbest (global best position) tracked by the global 
version of the particle swarm optimizer is the overall best 
value, and its location obtained so far by any particle in the 
population. During the particle swarm optimization searching 
calculation for solution, at each time step, changing the 
velocity (accelerating) each particle toward its pbest and gbest. 
Were this calculation mathematically described by this 
equation:                    (         )      (         )                        

Where    is the velocity of particle   it iteration  ,    is the 
position of particle   at iteration  ,       = (       ,        , …,        ) is the personal best position of each particle   till the 
particle number   and       =(       ,        , …,        ) is the 
global best position of the entire particle   till the particle 
number  ;   is an inertia weight parameter,      are 
acceleration coefficients,      are random number between 0 
and 1, and   is the dimension in the solution space. The PSO 
algorithm procedure can be summarized as shown below in 
Algo 1. 

Algo 1 
1. Start 

2. Initialize the      ,       ,  ,  ; 

3. Initialize the   ,   ,     ,     ; 

4. Calculate the                  

5. If                     

6. For each  ; 

a. Iter  =1,    ; 

b. Updating the velocity    towards fitness: 

c.                    (         )      (         ); 

d. Update the position    towards fitness:  

e.                       ; 

7. If                    ; 

a. Print        of each particles;  

8. If                     return step 2 till the 
iteration found highly solution or finished. 

9. End 

B. Se-PSO Algorithm 

The Segment Particle Swarm algorithm idea is to divide the 
PSO particles to searching groups that can be considered as 
segments [10]. The segmentation means to separate the 
problem into parts or segments which reach the solution easily. 
In addition, the idea of Segmentation PSO algorithm is to 
divide the initial values into segments to help PSO particles 
during the search for the optimal values finding a local best 
position that may the global best position is around it. The 
segmentation can be divided into more than two groups based 
on the dimension. 

Considering Fig. 1 is the scenario of parameters 
segmentation. This scenario contains 3 parameters in search 
space. Each parameter has its own boundaries. Based on the 
significance parameter the segment is proposed to find the best 
position in the parameters boundaries. After the best position is 
found, the new optimum segment is divided by 2 so the PSO 
algorithm starts searching from the new segments as described 
in Fig. 2. 

Each group of particles considered a segment while the 
procedures for finding the optimal solution (optimal segments) 
is following PSO algorithm then the optimal segment for the 
initial parameters will be used as the new initial parameters 
later PSO search in that range toward the optimal solution. The 
segmentation can be described in Fig. 3. 
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Fig. 1. Parameter Segment. 
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Fig. 2. New Segment. 
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Fig. 3. Segment Particles. 

In the above Fig. 3, the segments easily locate many local 
points where point 2 is the best local points, as it’s the best 
individual position of the particle and the best position of the 
entire swarm should be modified to achieve the best optimal 
segment as a fellow in Eq. (1).                                                     (1) 

Then eq. (3) should be modified according to the 
segmentation changes and described as follow in Eq. (2) and 
(3).                                                                                      (2) 

                                        (3) 

Hence the optimal segment can be described in Eq. (4) 
below:                                                        (4) 

Where   is the number of segments. 

Algo 2 

1 BEGIN 

2  Initialize      ; 

3  initialize   ,   ,   ,   ,   ,   , number_segment; 

4   Segment length=initial value/number_segment; 

5 Adopt the         parameters boundaries; 

6     For j= 1 to number of segment;   

7     Determine initial         for segment  ; 
8     Assume              =                ; 

9  If                       ; 

10  For each  ; 

11    iter  =1,  ++; 

12    Updating the velocity    toward  fitness: 

                                                                                                         ; 
13   Update the position       toward  fitness: 

                                      ; 
14   End if, 

15 If fitness               ;   

   Print        of each particles; 
Update the        based of        of each 

kinetic parameters;  
16   If fitness               return step 2 till 

the iteration is finished or discover high-quality 
solution; 

17  End if, 

18  End if, 

19  Global point(j)=       ; 
20  Next, j; 

21  Optimal_segment=max (Global point) ± 
segment length/2; 

22  Repeat algorithm 1 for the new initial values; 

23 End. 

III. EXPERIMENTAL SETUP 

For comparison, for nonlinear functions are used here. The 
first function is the Sphere function described by equation 
(    ): 

     ∑   
    

Where                is an n-dimensional real-valued 
vector. The second function is the Rosenbrock function 
described by equation (     ):       ∑                            

The third function is generalized Rastrigrin function 
described by equation (     ):       ∑                          

The last function is the generalized Griewank function 
described by equation (     ): 
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            ∑         ∏   (  √ )    
    

TABLE I.  LOWER AND UPPER BOUNDARIES 

Function  Lower and upper values   [-5, 5]    [-5, 10]    [-5.12, 5.12]    [-600, 600] 

Following the suggestion in [11] and for the purpose of 
comparison, the lower and upper values are selected to be as 
the original values. Table I lists the initialization of the upper 
and lower values of the four functions. 

As in the above Table I, for each function, the maximum 
number of iteration is set to 50, 100, 150 in the both 
algorithms. The number of birds is set to 20, 40, 60, and 80. In 
order to compare the both algorithms inertia weight is adapted 
to 0.9. The learning factors        . The dimension is 10 for 
both. Each algorithm was tested 10 times to get the Mean 
global best position. 

IV. RESULTS AND DISCUSSION 

In Sphere function, the global best position of Se-PSO 
showed a very improved result in short time when compared to 
PSO. Moreover, as shown in Tables II and III the convergence 
speed of the Se-PSO towards the optimum values was faster 
when compared to PSO. It’s however, noticeable that the 
convergence of Se-PSO was quick in the all function but 
slowed down searching large space for the global best position 
before to be decided by Se-PSO algorithm as it approaches the 
optimal. The Se-PSO it took 0.213s to reach the best global 
position but the PSO reached the global best position in 0.033s. 
Where, Se-PSO takes 0.004s to decide the global best position 
while PSO takes 0.013s are depicted in Tables II and III in the 
self –time column. Moreover, Se-PSO searching large space 
almost 7 times of PSO as it described in the Calls column 
(4920 and 650) respectively. 

Looking at Table IV where Sphere function was tested 
using Se-PSO and PSO on a 10-dimensional space with 5, 15, 
and 25 bird-step and 5, 15, and 25 iterations, the global best 
position of Se-PSO has very good result that is almost 4 times 
as good as the result of PSO. Moreover, the convergence speed 
of Se-PSO toward the optimum values are faster than those of 
PSO as showed in Tables II and III. Moreover, it is easy to 
observe that Se-PSO convergences quickly but slows its 
convergence speed down when reaching the optimum. It takes 
0.004s to get the best global position while PSO takes 0.013s 
as can be seen clearly in Tables II and III. Finally, the total 
performance speed of the both algorithm is 0.213s with 25 
iterations for Se-PSO and 0.033s only for PSO. 

In Rastrigin function, the global best position of Se-PSO 
showed a very improved result in short time when compared to 
PSO in Table VII. Moreover, as shown in Tables V and VI the 
convergence speed of the Se-PSO towards the optimum values 
was faster when compared to PSO. It’s however, noticeable 

that the convergence of Se-PSO was quick in the all function 
but slowed down searching large space for the global best 
position before to be decided by Se-PSO algorithm as it 
approaches the optimal. The Se-PSO it took 0.363s to reach the 
best global position but the PSO reached the global best 
position in 0.048s. Where, Se-PSO takes 0.001s to decide the 
global best position while PSO takes 0.013s are depicted in 
Tables V and VI in the self –time column. Moreover, Se-PSO 
searching large space almost 7 times of PSO as it described in 
the Calls column (4920 and 650), respectively. 

TABLE II.  SE-PSO CONSUMPTION FOR SPHERE FUNCTION 

Function  Calls  Total time  Self-time 

Se-PSO 1 0.213s 0.004s 
PSO 3 0.209s 0.030s 
Sphere 4920 0.179s 0.179s 

TABLE III.  PSO CONSUMPTION FOR SPHERE FUNCTION 

Function  Calls  Total time  Self-time 

PSO 1 0.033s 0.013s 
Sphere 650 0.020s 0.020s 

TABLE IV.  SE-PSO AND PSO RESULTS FOR SPHERE FUNCTION 

Bird step Dimension Iteration 
      of Se-

PSO 

      of 

PSO 

5 10 

5 1.01335e-5 0.0701 

15 2.12225e-06 0.0517 

25 4.25101e-7 0.0074 

15 10 

5 3.25661e-07 0.0158 

15 4.25861e-08 0.0132 

25 1.05843e-08 0.0013 

25 10 

5 1.00035e-08 0.0001 

15 2.03589e-09 0.0011 

25 1.23565e-0.9 0.00002 

TABLE V.  SE-PSO CONSUMPTION FOR RASTRIGIN FUNCTION 

Function  Calls  Total time  Self-time 

Se-PSO 1 0.363s 0.001s 
PSO 3 0.362s 0.028s 
Rastrigin function 4920 0.334s 0.334s 

TABLE VI.  PSO CONSUMPTION FOR RASTRIGIN FUNCTION 

Function  Calls  Total time  Self-time 

PSO 1 0.048s 0.013s 
Rastrigin Function 650 0.035s 0.035s 

TABLE VII.  SE-PSO AND PSO RESULTS FOR RASTRIGIN FUNCTION 

Bird step Dimension Iteration  
      of Se-

PSO 

      of 

PSO 

5 10 

5 1.1237e-05 1.0835 

15 8.3919e-06 0.2655 

25 3.5864e-06 0.9891 

15 10 

5 1.6515e-06 0.0028 

15 2.2586e-07 0.0359 

25 4.2056e-07 0.0026 

25 10 

5 3.0125e-08 0.0085 

15 2.0123e-08 0.0064 

25 1.0213e-09 0.003 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

484 | P a g e  
www.ijacsa.thesai.org 

In the Rosenbrock function, the global best position of Se-
PSO showed a very improved result in short time when 
compared to PSO in Table X. Moreover, as shown in 
Tables VIII and IX, the convergence speed of the Se-PSO 
towards the optimum values was faster when compared to 
PSO. It’s however, noticeable that the convergence of Se-PSO 
was quick in the all function but slowed down searching large 
space for the global best position before to be decided by Se-
PSO algorithm as it approaches the optimal. The Se-PSO it 
took 0.158s to reach the best global position but the PSO 
reached the global best position in 0.03s. Where, Se-PSO takes 
0.004s to decide the global best position while PSO takes 
0.013s are depicted in Tables VIII and IX in the self –time 
column. Moreover, Se-PSO searching large space almost 7 
times of PSO as it described in the Calls column (4920 and 
650) respectively. 

Looking at Table X above, where Rosenbrock function was 
tested using Se-PSO and PSO on a 10-dimensional space with 
5, 15, and 25 bird-step and 5, 15, and 25 iterations, the global 
best position of Se-PSO has very good result that is almost 4 
times as good as the result of PSO. Moreover, the convergence 
speed of Se-PSO toward the optimum values are faster than 
those of PSO as showed in Tables VIII and IX. Moreover, it is 
easy to observe that Se-PSO convergences quickly but slows 
its convergence speed down when reaching the optimum. It 
takes 0.004s to get the best global position while PSO takes 
0.013s as can be seen clearly Tables VIII and IX. Finally, the 
total performance speed of the both algorithm is 0.158s with 25 
iterations for Se-PSO and 0.030s only for PSO. 

The global best position of Se-PSO showed a very 
improved result in short time when compared to PSO in 
Griewank function depicted in Table XIII. Moreover, as shown 
in Tables XI and XII the convergence speed of the Se-PSO 
towards the optimum values was faster when compared to 
PSO. It’s however, noticeable that the convergence of Se-PSO 
was quick in the all function but slowed down searching large 
space for the global best position before to be decided by Se-
PSO algorithm as it approaches the optimal. The Se-PSO it 
took 0.037s to reach the best global position but the PSO 
reached the global best position in 0.014s. Where, Se-PSO 
takes 0.002s to decide the global best position while PSO takes 
0.013s are depicted in Tables XI and XII in the self –time 
column. Moreover, Se-PSO searching large space almost 7 
times of PSO as it described in the Calls column (4920 and 
650), respectively. 

TABLE VIII.  SE-PSO CONSUMPTION FOR ROSENBROCK FUNCTION 

Function  Calls  Total time  Self-time 

Se-PSO 1 0.158s 0.004s 

PSO 3 0.154s 0.026s 

Rosenbrock function 4920 0.128s 0.128s 

TABLE IX.  PSO CONSUMPTION FOR ROSENBROCK FUNCTION 

Function  Calls  Total time  Self-time 

PSO 1 0.030s 0.013s 

Rosenbrock function 650 0.016s 0.016 

TABLE X.  SE-PSO AND PSO RESULTS FOR ROSENBROCK FUNCTION 

Bird step Dimension Iteration  
      of Se-

PSO 

      of 

PSO 

5 10 

5 0 0.8743 

15 0 0.3272 

25 0 0.0545 

15 10 

5 0 0.6533 

15 0 0.942 

25 0 0.7522 

25 10 

5 0 0.539 

15 0 0.6945 

25 0 0.2477 

TABLE XI.  SE-PSO CONSUMPTION FOR GRIEWANK FUNCTION 

Function  Calls  Total time  Self-time 

Se-PSO 1 0.037s 0.002s 

PSO 3 0.035s 0.022s 

Griewank function 4920 0.013s 0.013s 

TABLE XII.  PSO CONSUMPTION FOR GRIEWANK FUNCTION 

Function  Calls  Total time  Self-time 

PSO 1 0.014s 0.013s 

Griewank function 650 0.001s 0.001 

TABLE XIII.  SE-PSO AND PSO RESULTS FOR GRIEWANK FUNCTION 

Bird step Dimension Iteration  
      of Se-

PSO 

      of 

PSO 

5 10 

5 4.5368e-05 0.1176 

15 8.1222e-07 0.0446 

25 4.1117e-09 0.0023 

15 10 

5 3.6206e-09 0.0075 

15 8.4574e-10 0.3777 

25 5.2106e-11 0.3637 

25 10 

5 9.2952e-12 0.0137 

15 3.5258e-13 0.0024 

25 4.2586e-14 0.0019 

V. CONCLUSION 

The Se-PSO algorithm was introduced in this study through 
the incorporation of a segmentation solution during the 
searching process by the particles into the original version of 
the PSO. After this, the best segment position of Se-PSO 
algorithm was projected as the new search dimension to find 
the optimum values. To investigate the proposed method, four 
functions were employed. The results of the experiments 
showed that the Se-PSO exhibited fast convergence when 
compared with the ABO. Although it was observed that the Se-
PSO algorithm worked efficiently, the need for further 
experiments on more complex multimodal, separable and non-
separable functions cannot be ruled out in order to further 
validate the search capacity of the Se-PSO. Moreover, there is 
a need to apply the proposed Se-PSO to other optimization 
search landscapes such as urban transportation problems, job 
scheduling, dynamic modeling, and vehicle routing. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

485 | P a g e  
www.ijacsa.thesai.org 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the financial support 
from the Universiti Malaysia Pahang and FSKKP under 
PGRS190312 and FRGS under Grant RDU 160101. The 
authors would like to thank Dr. Tuty Asmawaty Abdul Kadir, 
who supervised this work.  

REFERENCES 

[1] Soliman, Soliman Abdel-Hady, and Abdel-Aal Hassan 
Mantawy. Modern optimization techniques with applications in electric 
power systems. Springer Science & Business Media, 2011. 

[2] Venter, Gerhard. "Review of optimization techniques." Encyclopedia of 
aerospace engineering (2010). 

[3] Kennedy, James. "Particle swarm optimization." Encyclopedia of 
machine learning. Springer, Boston, MA, 2011. 760-766. 

[4] Eberhart, Russell C., and Yuhui Shi. "Comparison between genetic 
algorithms and particle swarm optimization." International conference 
on evolutionary programming. Springer, Berlin, Heidelberg, 1998. 

[5] Khare, Anula, and Saroj Rangnekar. "A review of particle swarm 
optimization and its applications in solar photovoltaic system." Applied 
Soft Computing 13.5 (2013): 2997-3006. 

[6] Banks, Alec, Jonathan Vincent, and Chukwudi Anyakoha. "A review of 
particle swarm optimization. Part I: background and 
development." Natural Computing 6.4 (2007): 467-484. 

[7] Banks, Alec, Jonathan Vincent, and Chukwudi Anyakoha. "A review of 
particle swarm optimization. Part II: hybridisation, combinatorial, 
multicriteria and constrained optimization, and indicative 
applications." Natural Computing 7.1 (2008): 109-124. 

[8] Shi, Yuhui. "Particle swarm optimization: developments, applications 
and resources." evolutionary computation, 2001. Proceedings of the 
2001 Congress on. Vol. 1. IEEE, 2001. 

[9] Poli, Riccardo, James Kennedy, and Tim Blackwell. "Particle swarm 
optimization." Swarm intelligence 1.1 (2007): 33-57. 

[10] Jaber, Aqeel S., Abu Zaharin Ahmad, and Ahmed N. Abdalla. "A new 
parameters identification of single area power system based LFC using 
Segmentation Particle Swarm Optimization (SePSO) algorithm." Power 
and Energy Engineering Conference (APPEEC), 2013 IEEE PES Asia-
Pacific. IEEE, 2013. 

[11] Shi, Yuhui, and Russell C. Eberhart. "Empirical study of particle swarm 
optimization." Evolutionary computation, 1999. CEC 99. Proceedings of 
the 1999 congress on. Vol. 3. IEEE, 1999. 

 


