

Empirical study of software maintenance

Citation for published version (APA):
Genuchten, van, M. J. I. M., Brethouwer, G., & van den Boomen, A. J. H. M. (1993). Empirical study of software
maintenance. Information and Software Technology, 34, 507-512.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/03c78f10-02a2-4185-8140-fc1b55fcb962

Empirical study of software maintenance.
M van Genuchten, G Brethouwer, T van den Boomen and F Heemstra

The paper describes an empirical study O/software maintenance
that was carried out in a system software department in 1989 and
1990. The study Jocused on error occurrence andJault detection.
Over 400 problem reports were studied. The study showed some
unexpected results. It showed, for example, no relation between
the phase of error occurrence and the solution time. An explana-
tion is the gap between the methods as they are supposed to be
applied and reality. Assessment O/the size o[the gap is one O/'the
contributions ~[this kind Of empirical stu~tv.

mahltenanee, d~l~'cts, nwtrics

Maintenance takes up a considerable amount of soft-
ware engineer's time. Conte et al. ~ claim it takes up to 60
per cent of effort, and Lehman 2 states that 70 per cent of
the expenditure on a program is incurred after initial
installation. This paper describes an empirical study of
software maintenance. The goal of the study was to gain
insight into the origin of maintenance. This insight
should enable software engineers and managers to take
improvement measures that should reduce future main-
tenance efforts.

The study is an example of analysis of the software
engineering process. Analysis of a software process
should lead to improvement of that process. Data on the
development process are required to be able to analyse it.
The need for measurement and data collection of soft-
ware development and maintenance is often stressed.
Many organizations do not, however, practise these
activities in software development. For instance, one
survey indicated that 50 per cent of software develop-
ment organizations in the Netherlands do not collect any
data on the software process 3. The study described in this
paper can be perceived as an empirical study on the one
hand. On the other, it is an example of the fact that data
collection in software development can provide an
organization with important insights and that data
collection does not have to be complicated. It is hoped
that this example inspires others to improve their sof-
tware process by analysis that is based on facts and
figures.

The paper consists of four sections. The first section
discusses software maintenance - - the topic under study.
The second section addresses analysis of software deve-

lopment. The third section details the design of the study,
with the results and interpretation appearing in the
fourth section. Finally, the paper is rounded off with
some conclusions.

SOFTWARE MAINTENANCE

Emphasis in software engineering research is on the
development of new software products. In theory, the
software engineer is finished by the time the product
fulfils the requirements and the software is installed. The
introduction to this paper has already revealed that the
majority of the cost is spent after initial installation.
Expenditure after initial installation is usually referred to
as maintenance. The authors are aware of the fact that
maintenance is an inappropriate term for software
because maintenance is in fact prolonged development
and that the terms software development and mainten-
ance could be better replaced by the term software evolu-
tion ~. They are also convinced that control of software
development and control of software maintenance
should be integrated. Control of software engineering
cannot afford to limit its attention to, say, 30 per cent of
the expenditure and consider the remaining 70 per cent
as somebody else's problem 4. This paper uses 'mainten-
ance' in the sense that Swanson introduced when he
distinguished three kinds of maintenance s .

• Corrective maintenance is maintenance performed in
response to processing, performance, or implemen-
tation failures.

• Adaptive maintenance is maintenance in response to
changes in data and processing environments.

• Perfective maintenance is maintenance performed to
eliminate processing inefficiencies, enhance perfor-
mance, or improve maintainability.

Maintenance is often associated with software faults and
failures. The IEEE glossary of terms 6 distinguishes
between failures, faults, and errors. An error is defined as
a defect in the human thought process. Faults are con-
crete manifestations of errors within the software. Fail-
ures are departures of the software system from software
requirements. The terms 'error occurrence' and 'fault
detection' will be used many times in this paper.

Department Information & Technology, Pav. D-3, Faculty of Indus-
trial Engineering, Eindhoven University of Technology, Post Box 513,
5600 MB Eindhoven, The Netherlands, and Lighthouse Management
Consultants, Post Box 6427, 5600 HK Eindhoven, The Netherlands

CONSTRUCTION VERSUS ANALYSIS

Basili and Rombach distinguish between analytical and
constructive aspects in software development 7. The dis-

Vol 34 No 8 August 1992 0950-5849/92/080507-06 (~) 1992 Butterworth Heinemann Ltd 507

Empirical study of software maintenance

tinction of construction of a software product and analy-
sis of the software process is useful to direct improve-
ment efforts. Analytic and constructive activities are dis-
tinguished, as well as analytic and constructive methods
and tools. Whereas constructive methods and tools are
concerned with building products, analytic methods and
tools are concerned with analysing the constructive pro-
cess and the resulting products. 'We need to clearly dis-
tinguish between the role of constructive and analytical
activities. Only improved construction processes will
result in higher quality software. Quality cannot be
tested or inspected into software. Analytic processes (e.g.
quality assurance) cannot serve as a substitute for con-
structive processes but will provide control of the con-
structive processes. '7 (p 759).

The distinction as made by Basili and Rombach
provides insight into the control of software develop-
ment. Data on the development process are required to
be able to analyse software development. This is the
appropriate place to quote Lord Kelvin from a century
ago: 'when you measure what you are speaking about,
and express it in numbers, you know something about it:
but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre and
unsatisfactory kind; it may be the beginning of know-
ledge, but you have scarcely in your thoughts advanced
to the stage of science. TM.

Analysis and measurement should focus on one or a
few aspects of the software process because they are
time-consuming activities. For example, it is possible to
focus on reasons for delay in software development, on
the impact of new tools, or on the impact of change
requests on the development process. Anyway, the goal
of the analysis should be clear. The goal should be quan-
tified to allow for analysis and measurement. The Goal/
Question/Metric paradigm 7 can be an aid in goal setting
and operationalization of analysis of software develop-
ment. The paradigm represents an approach by which
analysis goals are tailored to the needs of an organi-
zation. The goals are refined into a set of quantifiable
questions that, in its turn, specifies a set of metrics and
data for collection. As such, analysis of software devel-
opment is incorporated into the development process.
The study described in this paper can be perceived as an
example of the application of the Goal/Question/Metric
paradigm.

DESIGN OF S T U D Y

The maintenance study took place in a department that
was concerned with development and integration of
system software in the operating-system and data-com-
munications fields. The department employed 175 soft-
ware engineers and covered a range of 300 products. The
quality assurance department consisted of 10 people and
the methods and tools department employed five people.
The maintenance study was a consequence of an earlier
study on reasons for delay in software development 9.
Reasons for delay were studied because insight revealed
from these can lead to improvement measures that

should enable future projects to follow the plan more
closely.

Analysis of 160 activities, comprising over 15 000
hours of work, resulted in a number of improvement
measures, of which two will be named. The first measure
was the introduction of maintenance weeks. Analysis of
the collected data showed that maintenance activities in
particular were a constant interruption to development
and caused a considerable part of the delay. A number of
possible ways of separating development and mainten-
ance was discussed. It was decided to concentrate the
maintenance work as far as possible in maintenance
weeks and to include two maintenance weeks in each
quarter. By carrying out most of the maintenance during
these two weeks, development could proceed more
quickly and with fewer interruptions during the other
weeks.

A second measure was the start of the study that is
discussed in this paper. The goal of the study was to
increase the insight into the origin of maintenance. The
reasons for the delay study focused on the control
aspects of time and cost, while the maintenance study
focused on the aspect of quality. This study focused on
maintenance reports. Pettijohn 1° pointed out that main-
tenance reports are one of the two primary sources of
quality data; the other source is inspection data. Main-
tenance reports were named 'problem reports" by the
department concerned. A problem report can be written
by engineers within the development department,
employees outside the development department, or cus-
tomers who perceive a problem. A problem can be a
software failure. Problem reports can, however, also be
abused. An additional requirement may be formulated,
incorrectly, by a user as a problem in a problem report.
The term problem will in this paper refer to a short-
coming of a software product, as perceived by the writer
of a problem report. Whether a problem is related to a
software fault is still to be determined.

The study addressed four questions that will be dis-
cussed subsequently. They will be referred to as 'analysis
questions' and represent the questions in the Goal/
Question/Metric paradigm.

(1) How much effort does it take to solve a problem?
The study of reasons for delay made it clear that main-
tenance troubled development. It was not yet clear how
much effort it took to correct faults. Knowledge of the
distribution of the correction time can, for example, be
used to plan maintenance activities.

(2) How is error occurrence distributed over the
development phases?
Knowledge of the distribution of error occurrence over
the phases of development pinpoints software construc-
tion problems and, as such, identifies areas for improve-
ment. The long-term solution is improvement of the con-
struction process. A short-term improvement measure
may be to focus inspection and test emphasis on the
phases that are most error prone.

508 Information and Software Technology

M VAN GENUCHTEN, G BRETHOUWER, T VAN DEN BOOMEN AND F HEEMSTRA

X

o

O O

¢'r-

1000

500

200

100

50

20

10

5

2

1

Key:
Larger software projects:

A~;IBM-SSD

n ~ GTE

~ ~%°/~lian (TRW survey)
-.1-20 %

°o° Safeguard
Smaller software projects:
O ~ ~ ~ ~ _ _ ~ 1 " 1 Boehm"

- " ~ 1 I I I I

.5 0~ o 0 > O
O" m <
Il l rr a

I
¢

Phase in which error was detected and corrected

Figure 1. Increase in cost to.fix o1" change software through
development l(/i,-eyclU 1

R e q u i r e m e n t s ' N ~ ~] ~ " V e r i f i e a t i o n

Design ~ Integration

Implementation

Figure 2. V model o[" development and testing ~s

(3) Do late corrections require more effbrt?
It would be expected that the cost to fix faults increases
towards the end of the project because when an error is
detected in a test not only must the fault be corrected, but
also the upstream documents must be updated as well.
Figure 1 gives the relative cost to fix failures in subse-
quent phases of development, as they were found by
Boehm II.

The authors wanted to check whether the figure reflec-
ted the experience in the department concerned. Addi-
tional effort can be spent to avoid errors in the earlier
phases of development if the figure reflected experience.
If not, the department should ask itself why it does not
behave as expected.

(4) Does the V model of development and testing work?
The department had adopted the V model of develop-
ment and testing introduced by Myers ~2 (see Figure 2).

Table 1. Three multiple-choice questions added to problem report

(1) How many hours did it take to solve the problem?
Less than one hour
1 to 2 hours
2 to 4 hours
4 to 8 hours
Over 8 hours

(2) In what phase did the error occur'?
Requ i rements

Design
Implementation
Other

(3) In what test was the fault detected?
Integration test
Verification test
Validation test

The V model shows the phases as distinguished by the
department concerned. The phases are requirements,
architectural design, implementation, integration, and
verification and validation.

The V model shows that a development team tests a
concept exploration document in the validation test, a
requirements specification in the verification test, and a
design document in the integration test. It would be
expected that the fault-detection phase is related to the
error-occurrence phase.

The metric is derived from the four analysis questions
above. The metric consisted of the answers to three mul-
tiple-choice questions that were added to all the problem
reports. The metric represents the third step in the Goal/
Question/Metric paradigm. The multiple-choice ques-
tions are given in Table 1.

The multiple-choice questions are derived from
questions proposed by Basili and Rombach 14. The three
questions were stated for every problem that was solved
during four months. Eleven project leaders and some of
their team members were involved in data collection. The
data collection did not take much time for the project
leaders involved. The authors' experience is that this is a
prerequisite for successful data collection in software
development. Another prerequisite is feedback of the
results to the participating project leaders. This will be
returned to when the results of the study are discussed in
the next section.

R E S U L T S

Over 400 problem reports were analysed. The most
important results of the study are presented in Table 2
and Figures 3 5. Table 2 comprises the answer to the
first two analysis questions stated in the previous section.
It shows the correction time versus the phase of error
occurrence. For example, 22 errors that were incurred in
the requirements phase took less than an hour to solve.

A large number of errors is classified in Table 2 as
"other'. It became clear during the study that some
problems that were reported were not related to software
errors or could not be attributed to a particular phase.

Vol 34 No 8 August 1992 509

Empirical study of software maintenance

Table 2. Number of problem reports, distributed over correction
time and error occurrence

Phase of error
Occurrence

Time to correct fault (hours)

>8 Total (%)

40 10
31 7

163 40
177 43

Total 230 80 44 14 43 411 100
% 56 20 11 3 10 100

<1 I-2 2-4 4-8

Requirements 22 10 7 0 1
Design 12 8 6 1 4
Implementation 93 37 15 6 12
Other 103 25 16 7 26

Design (13%)

80

E
..Q
£.

0
Z

70 ~ Key :
I I Specification 60

/ ~ Design
50 I- '7 Coding
4O
3 0 -

lO
o

integration
w

Verification Validation

Phase

Figure 5. Error-occurrence phase versus fault-detection
phase

pecification (17%)

Im

(7(

Figure 3. Distribution o f error occurrence

l-- Specific=ion
~- ® 4oL- • J J I~Z/~ Design //

/
a~ ¢, 3 0 ~ g~

20 i ' lO

o <1 1-2 2-4 4-8 >8
Correction time (h)

Figure 4. Distribution o f error occurrence over classes o f
correction time

An example of the first case is change requests that are
reported as problems.

Now focus is switched to the analysis questions that
were stated in the third section. The first analysis
question was 'How much effort does it take to solve a
problem?' Table 2 shows that over 50 per cent o f the
problems are solved within just one hour. Apparently,
most of the problems are not too difficult to solve. A
conclusion is that the maintenance problem is more a
lead-time than an effort problem: it takes more time to
get the problem to the right developer than to solve the
problem.

The second analysis question was 'How is the occur-
rence of errors distributed over the project?' The distri-

bution of errors over the requirements, design, and
implementation phases is given in Table 2 and is pre-
sented in the pie chart in Figure 3. The errors that were
classified as other are left out of the diagram.

Figure 3 shows that the majority of errors was
reported as implementation errors. A comparison with
other studies shows that error distributions depend on
the development processes and environments. Two stud-
ies by Basili et al. j4J5 show different results. The first
study concerned a general-purpose program for satellite
planning studies. The error distributions shows that 48
per cent of the errors was attributed to incorrect or
misinterpreted functional specifications or require-
ments tS. The second study concerned a ground support
system. A large amount of software was reused. The
error distribution showed that 78 per cent of the errors
was related to design or implementation errors of a single
component ~4. The two studies by Basili et al. and the
study described in this paper show that the error distri-
butions are determined by the software engineers, the
kind of application, and the development process. It is
recommended that every software development organi-
zation gains insight into the distribution of errors to be
able to take improvement measures that allow the
number of errors to be reduced in the future.

The third analysis question stated was 'Do late correc-
tions require more effort?' Figure 4 shows the distribu-
tion percentages of requirements, design, and implemen-
tation errors, distributed over the classes of correction
time. For example, 55 per cent of requirements errors, 39
per cent of design errors, and 57 per cent of implemen-
tation errors are solved within the hour.

It was expected to find that, for example, requirements
errors take more time to solve than design and imple-
mentation errors. At first sight there is no relation
between error occurrence and correction time.

The analysis question was stated in terms of the
hypothesis 'There is no relationship between the error
occurrence phase and the solution time'. Loglinear
analysis ~6 was used to test this hypothesis. Loglinear
analysis can be used to analyse cross-tables. The cross-
table concerned (Table 2) gives the distribution of
problems over the error-detection phase on the one hand

510 Information and Software Technology

M VAN GENUCHTEN, G BRETHOUWER, T VAN DEN BOOMEN AND F HEEMSTRA

and correction time of the fault on the other. The struc-
ture of the table can be described by the independence
and the association model as well. The hypothesis is
therefore not rejected. This indicates that there is no
relation between error occurrence and solution time,
contrary to what the authors expected and what Boehm ~
has found. The reasons behind this will be discussed after
the last analysis question, related to the one just dis-
cussed, has been dealt with.

The last analysis question was 'Does the V model of
development and testing work?' Figure 5 gives the
number of requirements, design, and implementation
faults found in the various tests, with the integration,
verification, and validation tests on the horizontal axis.
The number of faults that are detected is distributed over
the phases in which the errors occurred. For example,
three requirements errors, one design error, and 19
implementation errors are found in the integration test.

At first glance, there is no clear relation between the
kind of error and the phase in which a fault was detected.
This was confirmed when the hypothesis 'There is no
relationship between the kind of error and the phase in
which a fault is detected' was tested. Loglinear analysis
showed that the hypothesis did not need to be rejected. It
is concluded that the empirical data did not reflect the
use of the V model.

The answer to the last two analysis questions did not
confirm expectations. The results were discussed with the
relevant project leaders and their manager. The authors
consider it to be important to discuss the results with the
participants. This is a general starting point that Bemel-
roans has called closed-loop information supply ~7. The
idea is that the people who have to provide input to an
information system should benefit from the output of
that information system. The fact that they benefit from
correct output and are harmed by incorrect output is the
incentive to provide accurate input. The principle could
be summarized by "nothing for nothing'. The closed-loop
principle can be applied to information supply in soft-
ware development: the data that are collected by soft-
ware engineers should support the engineers in doing
their job.

From discussion of the results, the authors concluded
that there was a serious misfit between the methods as
they were supposed to be applied and reality. There will
always be some kind of gap betweeh the theoretical con-
cepts and the application in reality; it is important, how-
ever, to assess the size of the gap. For example, one
explanation for the fact that there was no relation
between the kind of error and the solution time could be
the fact that any fault is resolved in the code. It is to be
expected that a requirements error that is detected in a
test will take more time to solve because upstream docu-
ments, such as design and requirements documents, will
have to be updated. If the upstream documents are not
updated there is a serious gap between theory and prac-
tice, returning to code and fix practices. The facts illumi-
nated the misfit between theoretical concepts and reality.
This has led to a renewed discussion of the role of theore-

tical concepts and their application in the department
concerned. A major difference is that the discussions can
now be based on facts provided by this empirical study.

Another result of the study is the questions that it
raised. For example, the fact that this study showed that
handling maintenance is mainly a lead-time problem
raised the question 'How can maintenance be organized
so that lead time is shortened?' A second question that
was raised was: 'Are change requests handled properly?'
This question was raised because this study has shown
that many users formulated their change requests as
problem reports. The answering of these and similar
questions will require additional data collection and
analysis that should result in further improvement of the
software development process.

C O N C L U S I O N S A N D
RECOMMENDATIONS

This paper has discussed an empirical study of software
maintenance. Maintenance takes a considerable part of
the total expenditure on software. The study is an exam-
ple of analysis of the software process, The distinction of
construction of a software product and analysis of the
software process is useful to direct improvement efforts.
Basili and Rombach 7 state that there needs to be a clear
distinction between the role of constructive and analyti-
cal activities. Analysis requires measurement and data
collection in software development. The lack of data
collection in current software processes indicates a lack
of interest in analysis of the software process.

This study is an example of the fact that measurement
and analysis can be done in a way that is simple and
provides useful insights. It is not possible to measure
everything at the same time, and therefore attention
should be limited to one or a few aspects of the software
construction process. The Goal/Question/Metric para-
digm 7 may be helpful in this focus. Examples of analysis
studies that are similar to this study have been
reportedH,~L

This study focused on maintenance, particularly error
occurrence and fault detection. It was not possible to
show a relation between phase of error occurrence and
phase of fault detection. It was also not possible to show
a relation between the phase of error occurrence and
solution time. This indicated a gap between the methods
as they were supposed to be applied and reality. The
study also showed, once more, that data should be
collected and used by every software department. It
makes little sense to try to gain insight from somebody
else's data because software development differs consi-
derably from place to place. An important requirement
for data collection and analysis in software development
is the cooperation of the engineers involved.

Another typical result of this study was that it raised
more questions than it answered. The authors intend to
continue to raise and answer questions that increase
insight into the software engineering process.

Vol 34 No 8 August 1992 511

Empirical study of software maintenance

ACKNOWLEDGEMENTS

The authors thank the participating project leaders for
their cooperation in the study. They also thank Ben Smit
and Rob Stobberingh for their support and for entertain-
ing discussions during the study. Finally, thanks to Ste-
phen Speirs for his comments.

REFERENCES
l Conte, S D, Dunsmore, H E and Shen, V Y Software engi-

neering metrics and models Benjamin/Cummings (1986)
2 Lehman, M M 'Program evolution' Inf. Process. Manag.

Vol 20 Nos 1-2 (1984)
3 Siskens, W J A M, Heemstra, F J and van der Stelt, H 'Cost

control in automation projects, an empirical study' In[or-
matie Vol 31 (January 1989) (in Dutch)

4 Genuchten, M J I M van Towards a software factory Kluwer
Academic, Dordrecht, The Netherlands (1991)

5 Swanson, E B 'The dimensions of maintenance' in Proc. 2nd
Int. Conf. Software Engineering (October 1976)

6 IEEE 'IEEE standard glossary of software engineering
terminology' Rep. IEEE std~729-1983 IEEE (1983)

7 Basili, V R and Rombach, H D 'The TAME project; towards
improvement oriented software environments' IEEE Trans.
Soft. Eng. Vol 14 No 6 (1988) pp 758-773

8 Gilb, T Principles 0/ software engineering management
Addison-Wesley (1988)

9 Genuehten, M J I M van 'Why is software late? An empirical
study of reasons for delay in software development' IEEE
Trans. Soft. Eng. Vol 17 No 6 (June 1991)

10 Pettijohn, C L 'Achieving quality in the development pro-
cess' AT&T Tech. J. Vol 65 No 2 (March/April 1986)

i I Boehm, B W Software engineering economics Prentice Hall
(1981)

12 Myers, G J S¢~f?ware reliabilio'." principles and practices
John Wiley (1976)

13 Boomen, T and Brethouwer, G 'On the analysis of software
development' Master's thesis University of Technology,
Eindhoven, The Netherlands (April 1990)

14 Basili, V R and Rombaeh, H D 'Tailoring the software
process to project goals and environments' in Proc. 9th Int.
Con/i Software Engineering (1987)

15 Basili, V R and Perrieone, B T "Software errors and com-
plexity: an empirical investigation' Commun. ACM Vol 27
No 1 (January 1984)

16 Fox, J Linear statistical models and related methods': with
applications to social research John Wiley (1984)

17 Bemelmans, T M A 'Management information systems;
questions, no answers' Informatie Vol 31 (June 1989) (in
Dutch)

18 Weiss, D M and Basili, V R 'Evaluating software develop-
ment by analysis of changes: some data of the SEL' IEEE
Trans. So/?. Eng. Vol 11 No 2 (February 1985)

512 Information and Software Technology

