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Abstract: This paper presents a plantar pressure sensor system (P2S2) integrated in the insoles of
shoes to detect thirteen commonly used human movements including walking, stooping left and right,
pulling a cart backward, squatting, descending, ascending stairs, running, and falling (front, back,
right, left). Six force sensitive resistors (FSR) sensors were positioned on critical pressure points on
the insoles to capture the electrical signature of pressure change in the various movements. A total of
34 adult participants were tested with the P2S2. The pressure data were collected and processed using
a Principal Component Analysis (PCA) for input to the multiple machine learning (ML) algorithms,
including k-NN, neural network and Support-Vector Machine (SVM) algorithms. The ML models
were trained using four-fold cross-validation. Each fold kept subject data independent from other
folds. The model proved effective with an accuracy of 86%, showing a promising result in predicting
human movements using the P2S2 integrated in shoes.

Keywords: movement classification; machine learning; smart shoe; footwear sensor; human move-
ment classification

1. Introduction

Physical activity recognition is quickly becoming one of the most important methods of
tracking human health and wellbeing. The desire to know more about our bodies has never
been stronger with the rise of wearable devices such as smartwatches and smartphones.
The rapid advances in the detection capabilities of these devices have shown just how far
the technology can go, and they can detect human activity and movement with reasonable
to high accuracy [1–3]. The demand for a device that can detect every type of daily human
movement for the purpose of health tracking, injury prevention, and fall detection still
exists. The need persists for a low-cost and non-invasive device.

Many methods have been adopted to capture human movement. Among them, one of
the most popular sensors used is inertial measurement units (IMU) [4–7]. Despite its high
accuracy, the IMU revealed discomfort in daily use because of the amount of IMUs that
need be attached to a body and the complex setup procedure. Video capture using cameras
has proven to be relatively accurate as well [8–11]. However, camera-based motion sensing
technology is not feasible when a direct line of sight obstructed. [11]. Other methods such as
a millimeter wave [12] also offer good accuracy but pose the same problems for integration
into real life. Acoustic signal [13] and infrared signal [14] have also been used.

Another solution to this problem is to use a smart shoe using pressure-sensing tech-
nology in combination with machine learning. Smart shoe sensors present simple imple-
mentation to the body while providing comfort while in use. The smart shoe allows for
practical use in day-to-day life. In addition, compared to other methods, this allows for
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a low-cost solution. The main areas of investigation in this field have been in pressure
sensing materials and in the classification of different types of human movement. The
use of multiple different materials such as sponges, textiles, and rubber for pressure sens-
ing [15–18] shows promise for low-profile integration into an insole in a shoe. Pressure
sensing for the use of human movement detection has also been investigated for cases such
as stride counting [19], gait analysis [20], loss of balance and fall detection [21,22], and a va-
riety of other human movements [23–27]. Thirteen frequently used household movements
including lying, sitting, standing, walking, descend and ascend stairs, ergometer cycling,
vacuuming, shelving items, washing dishes, sweeping the floor, and driving a car were
classified in [23]. Walking and stair ascent and descent were classified in [28]. Walking
up and down stairs were examined and classified in [29]. Two studies also investigated
the detection of falling [21,22]. Based on previous research, there is a gap in knowledge
related to more diverse movements, and the development of a system which can detect a
broader set of human movements is in high demand. This will greatly improve the ability
for workers to properly move and provide an approximation of estimated calories burned.
Displayed in Table 1 is an overview of different study approaches and their accuracy in
movement classification.

Table 1. Previous Studies for Human Movement Detections.

Author Application Sensor Number of
Sensors Used

Machine-Learning
Algorithm Type of Movements Accuracy

Crema et al. [5] Physical
movement IMU 1

Linear Discriminant
Analysis, Principal

Component Analysis

9 gym exercises
(bench press, squats,
shoulder press, etc.)

85%

Lu et al. [6] Physical
movement IMU, Image 5

Capsule Networks,
Convolutional Long

short-term
memory (LSTM)

6 cooking activities
(opening fridge,

cracking eggs, stirring
eggs, pouring oil,

pouring bag, stirring
big bowl)

85.8%

Lao et al. [10] Physical
movement Video 1 Continuous Hidden

Markov Model

Left/right hand
pointing, squatting,

raising hands
overhead, lying

86%

Geng et al. [12] Physical
movement

On-body radio
freqency (RF)
receivers and
transmitters

5 SVM

Standing, walking,
running, lying,

crawling, climbing,
and running up stairs

88.69%

Wang et al. [13] Physical
movement Acoustic 2 None Respiration None

Yun et al. [14] Physical
movement Infrared 4

Bayes Net, Decision
Tree, Instance-based
learning, Multilayer
Perception, Naïve

Bayes, SVM

Walking in different
directions 99.9%

Hegde et al. [23] Physical
Movement

FSR,
accelerometer,

and IMU
13 Multinomial logistic

discrimination

Lying, sitting,
standing, walking,

driving, stair
descent/ascent,

cycling, vacuuming,
shelving items, dish
washing, sweeping,
not wearing device

89%

Jeong et al. [24] Physical
movement FSR 3 SVM Walking, stair

ascent/descent 95.2%

Antwi-Afari
et al. [26]

Physical
movement Capacitive 4 SVM Lifting, lowering,

carrying, standing 94.4%
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Table 1. Cont.

Author Application Sensor Number of
Sensors Used

Machine-Learning
Algorithm Type of Movements Accuracy

Sazonov et al.
[27]

Physical
movement

Accelerometer
and FSR 6 SVM

Sitting, standing,
walking, stair

ascent/descent, and
cycling

98%

Nguyen et al.
[29]

Physical
movement FSR 5 SVM

Walking on flat,
inclined, or declined

surface, stair
ascent/descent

97.8%

Leu et al. [30] Physical
movement Mobile phone 2 Decision tree Six types of falls 96.57%

There are a number of footwear systems with the purpose of detecting the plantar
pressure that are used today. One solution presented is an insole equipped with capacitive
sensors with commercial solutions made by Moticon located in Munich, Germany [31].
Furthemore, others have been created for research purposes [32,33] in multiple different
studies for gait tracking and motion analysis [21,34–36]. Other solutions such as the pedar©
system designed by Novel in St. Paul, MN, USA [37] contain more than one hundred
sensors so as to detect the precise pressure distribution across the foot [38,39]. A common
solution was created with force-sensitive resistors placed at specific locations across the foot.
This has been effectively used to detect pressure for a much lower cost than commercial
solutions and allows for significant customizability [40–45].

This paper aims to detect thirteen different human movements using the P2S2 and
machine learning algorithms. The P2S2 was developed in our previous work in [46] and
the details will be provided in Section 2. It allows the system to acquire a more complete
view of the user and makes it highly useful for injury prevention and health tracking.

2. Materials and Methods
2.1. System Design

The basic concept of the pressure-sensing system relies on the use of force-sensitive
resistor (FSR)s. These are sensors that are constructed with a substrate layer, a conductive
film, a spacer, and another substrate with a conductive print on top. When a person’s foot
pushes against the ground, a force is exerted back onto it through the shoe, which is known
as ground reaction force (GRF). The GRF varies in magnitude and location depending
the point of pressure on the foot while in active motion. When this force is applied to an
FSR, the conductive film meets the conductive print on the bottom substrate. This contact
increases with force. As this contact increases, the resistance decreases and more current
flows. This resistance changes logarithmically for a linear increase in force. Because of this
property, the amount of force could be measured.

Figure 1 shows the block diagram of the proposed human-movement sensor system
that was used in our previous work [27,46]. The FSR sensors (Flexiforce A301) [47] were
located at six common points of pressure across the foot. This included the inside (S1)
and outside (S2) of the heel, the inside (S3), middle (S4), and outside (S5) of the midfoot,
and under the big toe (S6). These sensors were connected to a microcontroller with a
Bluetooth Low Energy module (Adafruit Feather M0 Bluefruit LE), a microSD card reader
for data recording [48], and a 3.7 V lithium-ion battery. Each sensor was connected to an
ADC terminal on the microcontroller to detect the analog signal from the pressure sensors.
Drop-down resistors were connected between the ADC terminals and ground, and were
then used to provide a threshold voltage for the pressure sensors. The sensors were placed
on a flexible plastic substrate and copper strips were used to create a common power line
and to route the six signals to the ADC terminals. Another layer of flexible plastic was
placed over the sensors and copper strips to protect them from damage.
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Figure 1. Schematic of the proposed pressure sensing system.

So as to provide for the largest possible participant pool, we found that the average
shoe size in the United States for a male was 10.5 and for a female was 8.5, respectively [49].
For this reason, the pressure-sensing system was built into two different pairs of shoes: one
a size 10.5 and one a size 8.5. The insole sensor system was placed underneath the included
insole in each of the shoes, while the microcontroller was attached to the outside of each
shoe with Velcro. A slit was made in the side of each of the shoes to feed the wiring from
the insole sensor system to the microcontroller. Both shoes with their respective sensor
systems are shown in Figure 2.
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(b) women’s size 8.5 shoe with insole pressure system and microcontroller shown.

2.2. Movement Description

Data were acquired for thirteen different movements during testing. These movements
were chosen as an extensive collection of movements that every person performs across the
average day. The chosen movements are displayed below in Table 2.
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Table 2. Detailed description of all recorded motions.

Motion Name Figure Description Duration
(Minutes)

Falling
(split into 4 directions: left,
right, forward, backward)
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Table 2. Cont.

Motion Name Figure Description Duration
(Minutes)

Ascending stairs
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2

2.3. Experimental Procedure

Testing for this study took place at the University of Alabama College of Nursing.
Participants were provided with the shoes equipped with the insole pressure sensing
system and were instructed to perform the series of movements. For start and end time
verification, the participants were instructed to perform a heel raise before a new motion
was performed. This is because the GRF profiles during a heel raise are prominent and
easily distinguishable in consecutive movements. This was particularly important for
movements such as squatting and stooping as to divide a test of multiple squats or stoops
into individual movements for input to the machine learning algorithm.

A total of 34 subjects were tested for the study. This consisted of 12 males and
22 females with an average age of 22.6 years. All subjects provided written, informed
consent to the study before any data were taken. Displayed in Table 3 is the information
collected about each of the 34 test subjects.

2.4. Data Collection

Pressure data from the participants were collected from the P2S2 by using the microSD
card reader to write to a text file. The written data included pressure data for each of
the sensors, as well as a timestamp that was recorded in terms of the number of samples
taken since microcontroller system start-up. The data were captured at a sampling rate
of 50 Hz, corresponding to data capture every 20 ms ± 2 ms. This implies that the time
needed to take one sample is 20 ms. The pressure data were recorded using a 10-bit ADC
with the received values ranging from 0 to 1024. These were then scaled on a relative
pressure scale of 0 to 100 for each sensor. Once the raw data were gathered, the text file
generated on the SD card was imported onto a computer. Individual movement tests
were separated from the text file using a MATLAB script which detected heel raises and
separated them into individual movements. This script also normalized the time for all
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the samples. These individual tests were then visualized and processed into smaller pieces
using the MATLAB Signal Analyzer. The movements of walking, running, stair ascent
and descent, and pushing and pulling a cart were broken into folds of two steps each that
overlap by one step each. For example, a test of ten steps of walking was split into nine
individual datapoints, each of which consisted of two steps. For all other motions, each
individual movement was captured. For example, a test where the subject squatted ten
times was split into ten datapoints of one squat each. This trimmed data was then prepared
for feature extraction and then input into the k-NN algorithm for training.

Table 3. Participant’s information.

Subject Sex Age Height (Inch) Weight (Lb) Shoe Size (Inch)

1 Female 21 5′3′′ 120 8.5

2 Female 21 5′4′′ 185 8.5

3 Female 21 5′7′′ 130 10.5

4 Female 21 5′7′′ 135 8.5

5 Female 41 5′1′′ 150 8.5

6 Male 21 5′11′′ 180 10.5

7 Female 21 5′9′′ 170 10.5

8 Female 21 5′8′′ 125 8.5

9 Female 21 5′4′′ 165 8.5

10 Male 21 6′1′′ 170 10.5

11 Female 20 5′7′′ 140 8.5

12 Male 24 5′10′′ 185 10.5

13 Male 21 5′11′′ 170 10.5

14 Female 20 5′7′′ 140 8.5

15 Female 29 5′3′′ 145 8.5

16 Male 23 5′10′′ 175 10.5

17 Male 21 6′1′′ 150 10.5

18 Female 21 5′4′′ 150 8.5

19 Female 23 5′5′′ 155 8.5

20 Male 19 6′1′′ 135 10.5

21 Male 21 5′8′′ 160 10.5

22 Male 44 6′0′′ 205 10.5

23 Female 22 5′8′′ 150 8.5

24 Male 22 5′11′′ 145 10.5

25 Female 22 5′4′′ 165 8.5

26 Female 21 5′10′′ 135 8.5

27 Female 20 5′6′′ 130 8.5

28 Female 21 5′6′′ 138 8.5

29 Female 20 5′6′′ 145 8.5

30 Female 21 5′5′′ 140 8.5

31 Male 22 6′3′′ 190 10.5

32 Female 20 5′2′′ 112 8.5

33 Female 21 5′6′′ 140 8.5

34 Male 21 6′0′′ 145 10.5
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2.5. Machine Learning Technique

After the raw data were pre-processed, a MATLAB script was used to extract features
from each data segment and normalize the sample numbering so that it would start at time
zero. These features were as follows:

1. Average value of each sensor (Feature 1 to 6). The average value of relative pressure
was distinctive because each motion had a different period of pressure values. Each
motion had different pressure values over the duration of the movement.

2. Standard deviation of each sensor (Feature 7–12). The standard deviation feature
was utilized for similar reasons to the average value feature. It varied quite signifi-
cantly based on the motion being tested but stayed within a margin of error for each
given motion.

3. Pressure time integral (PTI) of each sensor. This is the summation of each pressure
value multiplied by its corresponding sample value (Feature 13 to 18). The PTI was

calculated using the following equation:
N
∑

t=1
Pi(t)× ∆t where N was the total number

of samples in a data segment, i was the index of the sensors (1–6), Pi was the sensor
value at sample number t, and ∆t is the number of samples from the beginning of the
data segment [21]. The pressure time integral was a feature that helped differentiate
between motions of different lengths. By summing the relative pressure values by
the sample time, a greater variation between motions of various length was provided.
This helped to increase the accuracy and allowed for more motions to be added into
the study and classified accurately.

The data were then processed to a Tensorflow 2 machine learning algorithm, and
several algorithms were tested to determine the highest accuracy algorithm. Of these
algorithms, k-NN was selected due to the higher accuracy compared to the other algo-
rithms. The k-NN algorithm is a supervised machine learning algorithm that operates
on the assumption that similar things exist near one another. It works by finding the
distance between points on a graph and chooses a value k and picks the first k entries
that are closest to a certain point and captures their classification labels. The algorithm is
trained by choosing different values for k and selecting the value which results in the most
homogenous classification possible, while attempting to maintain the prediction accuracy
as more unknown data were input. For our algorithm, a k value of one was chosen, as there
was a lot of overlapping data and which would allow the algorithm to select more than
one nearest neighbor, thereby resulting in significant misclassification. The algorithm also
used a Euclidean distance metric to choose this neighbor with equal weighting given to
distance. Dimensional reduction was applied to the data using PCA. The dimensions of the
features were reduced to 17 from the original 18 features. This increased the separation
between classes and decreased the training time. For the validation of the k-NN model,
four-fold cross-validation was used. Each subject’s data was limited to one-fold, ensuring
independence of the data. Four folds were chosen to split groups into seven subject groups,
based on the movements with lowest amount of data points. Furthermore, Figure 3 shows
the progression from raw data to classification for this study.
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3. Results

This section describes data collected using P2S2 for movement classification. Six
FSR sensor data are shown as a function of samples. These are representative of what a
typical movement would look like for each movement. Thirty-four participant’s data were
included for the study including 22 female and 12 male participants with an average age of
22.6 years. Data were collected using P2S2 for movement classification.

3.1. Walking

Walking was chosen, as it was the most common motion any person will perform
and the one that current technology tracks best. Figure 4 showed the progression of the
motion. The back inside and outside sensors peaked first, showing the heel strike and the
subsequent contact of the front of the foot with the floor as the other four sensors peaked
afterwards. Three steps were shown.
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3.2. Running

Running was considered as a movement similar to walking, but at a faster movement
rate. Steps are more rapid and a larger GFR is displayed. Figure 5 shows the motion as seen
by the sensors. Compared to walking, the strike of the heel was much more instantaneous
and leaned heavily towards the outside. This was then followed by an almost immediate
contact of the front half of the foot with the ground. It could also be seen that the number of
samples from beginning to the end of the motion was much less, showing the short amount
of time in which the foot was on the ground. Three steps of running were shown.

3.3. Walking Up and Down the Stairs

Going up and down the stairs was considered to be a very common motion during a
person’s average day, so this was also included in the selected motions. Figure 6 illustrates
an example of walking down the stairs. shows the heel striking the ground first followed
by the front of the foot. Compared to walking, the motion was similar, but the front of
the foot was under more pressure than the rear of the foot. Three steps are presented in
the figure. Figure 7 presents two steps during stair descent. It shows a brief heel strike
followed by a significant strike of the front of the foot.
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3.4. Stooping

The stooping motion, or kneeling with one foot forward, was chosen as a repeatable
motion that could be predicted using our methods. Figures 8 and 9 show the sensor data
for the left foot for stooping with both the left and right foot forward. One full stooping
motion is shown. Figure 8 showed very low sensor readings for the first half of the motion,
as the subject put all their weight on the right foot as they kneeled with their right foot
forward. Then, as they began to rise again, all their weight was placed on the front inside
of their left foot which can be seen by the large peak of the sensor located under the big toe.
As the participant’s foot shifted to being level with the ground, a small peak was seen on
the sensors under the heel. Figure 9 demonstrates a large peak of the sensors under the
heel initially as the participant stooped with their left foot forward and put most of their
weight on the back of their left foot. Very little pressure was put on anything but the rear of
the left foot during this motion.
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3.5. Squatting

Another motion was squatting, as shown in Figure 10. The data show that a squat
entirely concerned with the heel of the foot. They show that the rear two sensors under near
constant load, with rising pressure observed as the user pushed back up to standing and
then as they balanced the load on the foot once standing. We also noticed when looking at
the data that some subjects performed squats with their weight on the front of their foot
and their heels entirely off the ground. This did not prove to be an issue for classification
though, as our data labelling and supervised machine learning scheme proved to allow for
two quite different motions to be accurately classified as the same motion.
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3.6. Pushing and Pulling a Cart

Pushing and pulling are two other motions that were chosen for this study. Looking at
the sensor data for pulling in Figure 11, there was first heel contact with the ground and
then contact with the front of the foot at nearly the same amplitude and duration. This was
a similar motion to walking, but from our results we can tell that they can be differentiated
between. Figure 12 showed two steps of pulling the cart. The sensor data show the front
of the foot contacting the ground first with pressure predominantly on the very front of
the foot. They then showed a light contact of the back foot, indicating that the subject was
nearly on their toes as they walked backwards.

3.7. Falling

One of the most critical motions to detect was falling. This had huge applications for
geriatrics and in anyone with disabilities. Falling backwardss and forwards were quite
simple to be detected, as falling backwards included only peaks on the back of the foot
in Figure 13, while falling forward included a significant shifting of weight from the back
to front of the foot in Figure 14. The best indicator for falling left or right was strong
maximums on the outside or inside middle of the foot. As a person falls, almost all their
weight transfers to the outside of one foot and the inside of the other. The left foot data in
Figure 15 was selected for detecting falling to the left and the right foot data in Figure 16
for falling to the right. This difference was easily detectable.
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3.8. Machine Learning Results

The machine learning algorithm was trained on a labelled dataset that consisted of all
of the movement results for each subject within the study. To achieve the highest classi-
fication accuracy possible, many different ML algorithms were trained. Table 4 presents
various machine learning schemes and their respective overall accuracies is presented
below. All methods were trained using four-fold cross-validation as specified earlier.
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Table 4. Machine Learning Algorithm Performance Comparison.

ML Algorithm Details Epochs Training Time Accuracy

SVM Quadratic kernel function, 1-vs.-1 multiclass method 1000 25.1 s 89.9%

Neural Network Medium NN, one fully connected layer, first layer size of 25 1000 27.1 s 89.2%

Neural Network Wide NN, one fully connected layer, first layer size of 100 1000 34 s 89.5%

KNN Weighted, 10 neighbors, Euclidean distance metric, squared
inverse distance weight 1000 25.1 s 90.4%

With the number of datapoints in the dataset, the algorithm took only a few seconds to
train using a Tensorflow 2-based classification algorithm utilizing CUDA acceleration via a
GTX 1060 graphics processing unit. This was a significant advantage of the k-NN algorithm
as compared to more complex machine learning techniques such as deep learning, which
can take anywhere from minutes to hours to train. This processing time did not include the
time it took to pre-process the data. This process included sorting all the data, segmenting
them into usable datapoints, and then extracting features from them. Below, displayed in
Figure 17, is a confusion matrix showing the results of the predicted and actual movements
trained on data from all subjects.
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The movement detection result showed high accuracy in predicting all movements,
with a greater than 83% accuracy acquired for twelve of the thirteen movements and
an overall classification accuracy of 90.4%. Algorithm confusion occurred with similar
movements. The algorithm confused different types of falling, with falling right being
misclassified with falling forward. Overall, the classified movements were accurate.

4. Discussion

Of the thirteen movements examined in the study, twelve had an accuracy of 83% or
higher. Some difficulties occurred with the prediction of falling in the right direction. The



Sensors 2022, 22, 2743 17 of 20

model still predicted that a fall occurred but was confused with forward and left directions.
One reason of this misclassification could potentially be due to the fitment of shoes on
participants. Not all human feet of the same size are the same, and slight differences in
shape could cause slight classification error. Increasing the sample size of participants
could mitigate this issue by training on more people from a group of participants.

Compared to our proposed P2S2, there are limitations within the design of the sensor
system. First, the number of pressure sensors can have both advantages and disadvantages
in design. Utilizing more sensors produces a higher resolution of pressure distribution and
machine learning accuracy at the cost of increased design complexity and monetary cost.
For example, the F-Scan 64 developed by Tekscan located in South Boston, MA, USA [50] is
composed of 64 pressure sensors. With a sensor density of 3.9 (sensels/cm2), this system
costs approximately USD 7000. Secondly, a larger scanning area could be achieved with a
bigger FSR sensor [51]. However, the sensor area is limited to the size of the shoe. Lastly,
the sensitivity of a sensor can be improved using an advanced material and technology
such as a piezoelectric sensor [52], carbon nanotube [53], and capacitive materials [54].

The machine learning algorithm selected for this study was a kNN based algorithm.
There are many other algorithms suited for this application such as convolutional neural
network (CNN), SVM, decision tree, and linear regression. kNN is a relatively small model
with a quick training time. SVM and decision tree are simple models that can differentiate
various human movement. Linear regression can find correlation based on pressure data to
identify human movement. CNN can be accurate with optimized hyper parameters with a
number of neurons, number of layers, and epochs for movement classification

The applications of this technology could dramatically improve quality of life by
understanding daily movements. For example, employees can be properly trained by
knowing their movements and correction if a movement abnormality is detected. This
opens the ability to prevent injury, thereby saving both personal and corporate expenses.
Additionally, by knowing the types and number of human movements, a calorie usage
can be reported to humans. This provides the individual encouragement to exercise. By
tracking previous to current movements, trends can be developed to indicate progression
towards weight loss.The potential for every person to wear a shoe that can help train them
to perform tasks with less strain to their bodies, as well as to inform them of what they
can do to become the healthiest version of themselves could be revolutionary in a world
where personal health is becoming more and more important. Future work could focus on
the areas of microcontroller integration, automatic data processing, the ability to export
data wirelessly, as well as wireless charging of the system. These future goals all serve the
idea of creating a fully integrated system that has mass marketability and is as easy to use
as possible.

5. Conclusions

In summary, a low-cost non-invasive footwear P2S2, using six force sensitive resis-
tors with machine learning techniques, was presented to demonstrate the prediction of
human movements. A total of 34 participants, with an average age of 22.9, were tested
with P2S2 at the Capstone College of Nursing in the University of Alabama. Thirteen
commonly used human movements including walking, stooping left and right, pulling a
cart backward, squatting, descending, ascending stairs, running, and falling (front, back,
right, left) were predicted using kNN machine learning algorithm. Validation of model was
performed using a 4 k-fold process, which isolated training and test data. The results of this
study showed that the proposed P2S2 can predict almost all the thirteen different human
movements with an average accuracy of above 86%, while falling right was classified at a
78% accuracy.

Author Contributions: Conceptualization, W.A., Z.C., N.J. and M.C.; methodology, W.A., Z.C.
and N.J.; software, W.A.; validation, W.A., Z.C., N.J. and S.J.; formal analysis, W.A., N.J. and S.J.;
investigation, N.J., M.C. and S.J.; resources, N.J. and M.C.; writing—original draft preparation, W.A.,
N.J. and M.C.; writing—review and editing, W.A., Z.C., N.J., M.C., S.J. and E.S.; visualization, W.A.,



Sensors 2022, 22, 2743 18 of 20

Z.C., N.J. and M.C.; supervision, N.J. and M.C.; project administration, N.J. and M.C.; funding
acquisition, N.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Department of Electrical and Computer Engineering at
The University of Alabama.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of the University of Alabama
protocol ID 20-02-3356, approved on 5 June 2020.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Del Rosario, M.B.; Redmond, S.J.; Lovell, N.H. Tracking the evolution of smartphone sensing for monitoring human movement.

Sensors 2015, 15, 18901–18933. [CrossRef]
2. Bulbul, E.; Cetin, A.; Dogru, I.A. Human activity recognition using smartphones. In Proceedings of the 2018 2nd International

Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–6.
3. Shoaib, M.; Bosch, S.; Scholten, H.; Havinga, P.J.; Incel, O.D. Towards detection of bad habits by fusing smartphone and

smartwatch sensors. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; pp. 591–596.

4. Guo, L.J.; Xiong, S.P. Accuracy of Base of Support Using an Inertial Sensor Based Motion Capture System. Sensors 2017, 17, 2091.
(In English) [CrossRef]

5. Crema, C.; Depari, A.; Flammini, A.; Sisinni, E.; Haslwanter, T.; Salzmann, S. IMU-based solution for automatic detection
and classification of exercises in the fitness scenario. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS),
Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6. [CrossRef]

6. Lu, Y.; Velipasalar, S. Human activity classification incorporating egocentric video and inertial measurement unit data. In
Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA,
26–29 November 2018; pp. 429–433. [CrossRef]

7. Losing, V.; Yoshikawa, T.; Hasenjaeger, M.; Hammer, B.; Wersing, H. Personalized Online Learning of Whole-Body Motion Classes
using Multiple Inertial Measurement Units. In Proceedings of the 2019 International Conference on Robotics and Automation
(ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9530–9536. [CrossRef]

8. Ramli, M.S.A.; Zamzuri, H.; Abidin, M.S.Z. Tracking human movement in office environment using video processing. In Proceed-
ings of the 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia,
19–21 April 2011; pp. 1–6. [CrossRef]

9. Lao, W.; Han, J.; De With, P.H. Automatic video-based human motion analyzer for consumer surveillance system. IEEE Trans.
Consum. Electron. 2009, 55, 591–598. [CrossRef]

10. Corazza, S.; Mündermann, L.; Chaudhari, A.M.; Demattio, T.; Cobelli, C.; Andriacchi, T.P. A markerless motion capture system to
study musculoskeletal biomechanics: Visual hull and simulated annealing approach. Ann. Biomed. Eng. 2006, 34, 1019–1029.
(In English) [CrossRef]

11. Zago, M.; Luzzago, M.; Marangoni, T.; De Cecco, M.; Tarabini, M.; Galli, M. 3D Tracking of Human Motion Using Visual
Skeletonization and Stereoscopic Vision. Front. Bioeng. Biotechnol. Orig. Res. 2020, 8, 181. (In English) [CrossRef]

12. Geng, Y.; Chen, J.; Fu, R.; Bao, G.; Pahlavan, K. Enlighten Wearable Physiological Monitoring Systems: On-Body RF Characteristics
Based Human Motion Classification Using a Support Vector Machine. IEEE Trans. Mob. Comput. 2016, 15, 656–671. [CrossRef]

13. Wang, T.; Zhang, D.; Zheng, Y.; Gu, T.; Zhou, X.; Dorizzi, B. C-FMCW based contactless respiration detection using acoustic
signal. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–20. [CrossRef]

14. Yun, J.; Lee, S.-S. Human movement detection and identification using pyroelectric infrared sensors. Sensors 2014, 14, 8057–8081.
[CrossRef]

15. Zhang, L.; Li, H.; Lai, X.; Gao, T.; Yang, J.; Zeng, X. Thiolated Graphene@Polyester Fabric-Based Multilayer Piezoresistive Pressure
Sensors for Detecting Human Motion. ACS Appl. Mater. Interfaces 2018, 10, 41784–41792. [CrossRef]

16. Nie, B.; Huang, R.; Yao, T.; Zhang, Y.; Miao, Y.; Liu, C.; Liu, J.; Chen, X. Textile-Based Wireless Pressure Sensor Array for
Human-Interactive Sensing. Adv. Funct. Mater. 2019, 29, 1808786. [CrossRef]

17. Ding, Y.; Yang, J.; Tolle, C.R.; Zhu, Z. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via
One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection. ACS Appl. Mater. Interfaces 2018, 10,
16077–16086. [CrossRef]

18. Motha, L.; Kim, J.; Kim, W.S. Instrumented rubber insole for plantar pressure sensing. Org. Electron. 2015, 23, 82–86. [CrossRef]

http://doi.org/10.3390/s150818901
http://doi.org/10.3390/s17092091
http://doi.org/10.1109/SAS.2017.7894068
http://doi.org/10.1109/GlobalSIP.2018.8646367
http://doi.org/10.1109/ICRA.2019.8794251
http://doi.org/10.1109/ICMSAO.2011.5775519
http://doi.org/10.1109/TCE.2009.5174427
http://doi.org/10.1007/s10439-006-9122-8
http://doi.org/10.3389/fbioe.2020.00181
http://doi.org/10.1109/TMC.2015.2416186
http://doi.org/10.1145/3161188
http://doi.org/10.3390/s140508057
http://doi.org/10.1021/acsami.8b16027
http://doi.org/10.1002/adfm.201808786
http://doi.org/10.1021/acsami.8b00457
http://doi.org/10.1016/j.orgel.2015.04.020


Sensors 2022, 22, 2743 19 of 20

19. Truong, P.H.; Lee, J.; Kwon, A.-R.; Jeong, G.-M. Stride Counting in Human Walking and Walking Distance Estimation Using Insole
Sensors. Sensors 2016, 16, 823. Available online: https://www.mdpi.com/1424-8220/16/6/823 (accessed on 28 March 2022).
[CrossRef]
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