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[1] An empirical relation is developed to express the Total Ozone Mapping Spectrometer
(TOMS) aerosol index (AI) for the case of dust plumes, as an explicit function of four
physical quantities: the single scattering albedo, optical thickness, altitude of the plume and
surface pressure. This relation allows sensitivity analysis of the TOMS AI with physical
properties, quantitative comparison with dust model results and physical analysis of dust
sources, without the necessity of cumbersome radiative calculation. Two applications are
presented: (1) the case study of a dust storm over the North Atlantic in March 1988, and
(2) the characterization of 13 major dust sources. The first application shows that simulated
dust distribution can be quantitatively compared to TOMS AI on a daily basis and over
regions where dust is the dominant aerosol. The second application necessitates to further
parameterize the relation by replacing the optical thickness and the altitude of the plume by
meteorological variables. The advantage is that surface meteorological fields are easily
available globally and for decades but the formulation only applies to dust sources. The
daily, seasonal and interannual variability of the parameterized index over major dust
sources reproduces correctly the variability of the observed TOMS AI. The correlation
between these two indices is used to determine the surface characteristics and physical
properties of dust aerosol over the sources. INDEX TERMS: 0305 Atmospheric Composition and

Structure: Aerosols and particles (0345, 4801); 0322 Atmospheric Composition and Structure: Constituent

sources and sinks; 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 0368

Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; KEYWORDS: dust

sources, dust modeling, TOMS satellite
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1. Introduction

[2] Wind erosion in arid and semi-arid regions produces
massive airborne plumes of dust particles which affect the
Earth’s climate system. Due to their optical properties, dust
particles could play an important role in the radiation energy
balance and climate forcing [Tegen and Lacis, 1996; Sokolik
and Toon, 1996], and tropospheric chemistry by reducing
the photolysis rates [Dickerson et al., 1997; Liao et al.,
1999]. Dust particles provide reaction sites for ozone and
nitrogen molecules [Prospero et al., 1995; Dentener et al.,
1996; Martin et al., 2002]. Dust deposition at the ocean
surface is a source of nutrients, and could be the main
source of iron for phytoplankton blooming in the open

oceans [Martin and Gordon, 1988]. Finally, dust particles
affect air quality [Prospero, 1999] and are potential vectors
for long range transport of bacteria [Prospero et al., 2003].
However, the accurate evaluation of these effects remain
uncertain due to the lack of detailed information on the size
distribution, mineralogical composition, atmospheric trans-
port and removal processes, and more fundamentally the
sources location and strength of dust emissions. To study dust
sources, satellite instruments provide the most useful data
sets with their global coverage and long term daily observa-
tions. Among these instruments, the Total Ozone Mapping
Spectrometer (TOMS) has the particularity to measure back-
scattering radiances in the near ultra-violet (nUV). The
advantage of the nUV technique is that aerosol properties
can be derived on both land and ocean due to low surface
reflectance in the nUV [Herman and Celarier, 1997]. The
TOMS nUV radiances have been used to derive an aerosol
index (AI) which provides daily and global information on
the distribution of absorbing aerosols. Since, the TOMS AI
has been used for multiple applications: to analyze the global
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distribution of absorbing aerosol [Herman et al., 1997], to
study the aerosol properties [Torres et al., 1998, 2002], to
calculate the radiative forcing of Saharan dust [Hsu et al.,
2000], to study the variability of Saharan dust transport over
the Atlantic [Chiapello and Moulin, 2002], to initialize
forecasting model of dust aerosol [Alpert et al., 2002], to
identify the location and geo-morphological characteristics
of dust sources [Prospero et al., 2002], to establish a global
dust source function for transport model [Ginoux et al.,
2001], and validate dust distribution at the regional and
global scale [Ginoux et al., 2003].
[3] The quantitative use of the TOMS aerosol index to

characterize source strength is limited by its lack of direct
representation of aerosol macrophysical properties: optical
thickness and single scattering albedo. These properties can
been derived by using complex radiative calculations if the
vertical distribution and size distribution can be obtained
from an independent data set [Torres et al., 2002]. This
paper examines the possibility to use an empirical function
based on these radiative calculations which express explic-
itly the TOMS AI as a function of optical thickness, single
scattering albedo and altitude of the plume for the case of
dust aerosols. The advantages are that such relation provides
direct comparison between simulation of dust plumes and
satellite data, and may further improve our understanding of
dust emission. After analyzing the error associated with
each variables of this first empirical function of TOMS AI,
AI , we show how it can be applied (1) to validate simulated
dust distributions and (2) to characterize dust sources. For
this second application, a new relationship, AI , is introduced
and analyzed in details over two major sources, one in
Africa the other in Afghanistan. Then, the relation is applied
to 11 other major sources over different continents. The
results are discussed before concluding.

2. Data Description

2.1. Meteorological Data

[4] The meteorological data used in our analysis are
provided by the Goddard Earth Observatory System-Data
Assimilation System (GEOS-DAS) analysis on a 2.5�
longitude by 2� latitude horizontal resolution. This data
set provides observed meteorological fields on a regular grid
since February 1981 with surface fields archived every
3 hours [Schubert et al., 1993]. The meteorological fields
used in our analysis are the surface pressure ( ps), the
friction velocity (u*), the planetary boundary layer depth
(hPBL), the soil moisture (w), and the precipitation (Prec).
The surface stress velocity, or the friction velocity, is
defined in GEOS-DAS as the wind speed at the surface
layer top impeded by the surface drag:

u* ¼ CuWs ð1Þ

where Cu is the nondimensional surface drag coefficient,
and Ws is the surface wind speed, evaluated at 1 meter
above ground. The surface drag coefficient is obtained from
the similarity functions for the stability dependent flux
profile relationships. The surface wind speed, Ws, is
calculated for the last internal turbulence time step from
the analyzed wind speed at the first model level above the
Earth’s surface. The planetary boundary layer depth, hPBL, is

diagnosed as the level at which the turbulent kinetic energy
is reduced to a tenth of its surface value. It has been
converted from depth (mb) to an altitude (m) above the
Earth’s surface using the hydrostatic law. The surface soil
moisture, w, is calculated from a prognostic equation which
includes the precipitation, surface temperature, and solar
radiation [Schubert et al., 1993].
[5] For this study, the fields have been extracted from

1981 to 1990 to obtain a period long enough to study the
interannual variability, and to avoid different TOMS instru-
ments and GEOS-DAS versions. The meteorological fields
are linearly interpolated in space from the GEOS-DAS grid
to the dust sources coordinates estimated by Prospero et al.
[2002], and in time to local noon which corresponds
approximately to the TOMS passing time.

2.2. TOMS Measurements

[6] The TOMS instrument on board the satellite Nimbus
7 measured aerosol backscattering radiances at 340 and
380 nm from November 1978 until May 1993. In this study,
we use the data from the period 1981–1990. These mea-
surements cover the Earth daily with a 50 km resolution at
satellite footprint. The local passing time is about 11:30 am.
By taking the difference between the measured and calcu-
lated radiances for a purely molecular atmosphere, Herman
et al. [1997] defined the TOMS Aerosol Index (TOMS AI)
as follow

AI ¼ �100 log10
Im340
Im380

� �

� log10
I c340
I c380

� �� �

; ð2Þ

where Im is the backscattering radiance measured by TOMS
at the given wavelength and I c is the radiance calculated
using a radiative transfer model for a pure Rayleigh
atmosphere. In this study, we use the version 7 uniformly
grid level 3 data product (1.25� longitude and 1� latitude).
The TOMS AI is a qualitative indicator of the presence of
UV absorbing aerosols. An inversion procedure that
retrieves aerosol properties from the TOMS radiances has
been developed by Torres et al. [1998]. They have shown
that for absorbing aerosols, like dust particles, the optical
thickness can be derived from the TOMS AI knowing the
values of single scattering albedo, the altitude of the aerosol
layer, and the surface pressure, and assuming a refractive
index. In this study, the real and imaginary parts of the
refractive index correspond to the values derived by Sinyuk
et al. [2003]. The major drawback of the method is the
possibility of subpixel clouds contamination. Torres et al.
[1998] proposed to use a threshold of 15% observed
reflectance to eliminate most clouds contamination. All data
have been screened using a maximum reflectance of 13%.

3. Empirical Relation, AI

[7] The idea here is to express explicitly TOMS AI as a
function of the optical thickness, single scattering albedo,
altitude of the dust layer, and surface pressure. There is no
analytical solution of equation 2 expressing these variables.
Our method consists of finding empirically the best fit to the
TOMS AI calculated with a radiative transfer code for a set
of values of the 4 variables. The radiative transfer calculation
is described in detail by Torres et al. [2002]. Unfortunately,
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our method does not provide a unique solution. Many
different functions could be found which fits the TOMS
aerosol index. So, we based our empirical function on
previous analyses. Sensitivity analyses by Torres et al.
[1998] and Hsu et al. [1999] have shown that the TOMS
aerosol index is proportional to the dust plume altitude. They
have also shown that the dependency on the altitude
increases as the single scattering albedo decreases, with no
dependency for nonabsorbing aerosol. This means that the
linear dependency on the altitude is scaled by the single
scattering coalbedo. Hsu et al. [1999] have shown that the
TOMS AI and the optical thickness measured by ground-
based sun-photometers are linearly correlated. By fitting
Torres et al. [1998] results, we found that the TOMS aerosol
index is proportional to the optical thickness at the power of
the single scattering albedo. For weakly absorbing aerosol,
the dependency is almost linear but as the absorption
increases (or the single scattering albedo decreases) the
departure from linearity is more significant, especially at
high optical thickness (�2). But this departure from linearity
is relatively weak because dust single scattering albedo
is around 0.85 in the nUV [Colarco et al., 2002]. Based
on these dependencies, we have established an empirical
aerosol index, AI , as a function of the surface pressure ( ps),
the single scattering albedo at 380 nm (w380), the optical

thickness at 380 nm(t380), and the altitude of the aerosol
layer (h):

AI ¼ 1� 0:2 log psð Þð Þ 1:25þ 5 1� w380ð Þh½ � t380ð Þw380 ð3Þ

where 0.6 	 ps 	 1 atm, and 0.75 	 w380 	 0.95. Beyond
w380 = 0.95, AI = �t380.
[8] This formula gives a first order approximation of the

TOMS AI and should be replaced by the exact radiative
calculations if one wants to determine the exact optical
properties.
[9] Figure 1 shows the comparison between the values

of AI and AI , and their relative differences. The compar-
ison is shown for the set of values of the surface pressure
( ps = 1 atm), single scattering albedo at 380 nm (w380 =
0.794, 0.821, 0.863, 0.896, 0.945, and 0.966), altitude of
aerosol layer (h = 1.5, 3, and 6 km) and optical thickness
at 380 nm (t380 = 0.1, 0.5, 1, and 2.5). The maximum
relative error is around 30%, but in general the error is
between 1 and 10%.

3.1. Sensitivity and Error Analyses

[10] In this section, the sensitivity of AI to the four
variables ( ps, h, w380, and t380) are analyzed, as well as
the errors associated with the relation (3).

Figure 1. Comparison between AI (black lines) and AI calculated from radiative calculation (gray dots)
for 6 values of w380 (one for each panel), 3 altitudes (1.5, 2.9 and 6 km), and 3 optical depth at 380 nm
(0.1, 0.5, and 1).
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[11] A variation � of AI can be calculated by taking the
partial derivatives @ of AI relative to ps, h, w380, and t380,
and its is given by

�AI ¼
@AI

@ps

� �

�ps þ
@AI

@h

� �

�h

þ
@AI

@w380

� �

�w380 þ
@AI

@t380

� �

�t380 ð4Þ

where the partial derivatives correspond to the terms of the
Jacobian and represent the sensitivity of AI to one variable,
the others being fixed. Considering �ps, �h, �w380, and
�t380, the errors associated with ps, h, w380, and t380,
respectively, it is possible with the relation (4) to estimate
the errors on AI . Such estimations are important for model
validation using the TOMS aerosol index. The relative error
of AI due to each four variables are given by

�AI

AI
¼

1

log10 ps � 5

�ps

ps
þ

1

1þ
1:25

5 1� w380ð Þh

�h

h

þ
�5hw380

1:25þ 5 1� w380ð Þh
w380 log10 w380

� �

�w380

w380

þ w380

�t380

t380
ð5Þ

The 4 terms of the right hand side represent the elements of
the Jacobian matrix: Jps, Jh, Jw, and Jt. From this equation,
it appears that the relative errors are all independent on t380
and with a good approximation on ps. Except for Jps, all
terms depend on w380. The dependency is different between
terms: Jh decreases with increasing w380, while Jt increases
with increasing w380. Both the �w380 and �h terms are
proportional to h. Figure 2 shows the variability of the
jacobian terms, the relative error of AI associated with
�ps = 0.1 atm, �h = 1 km, �w380 = 0.05 and �t380 =
0.2, and the departure of the four variables associated with
an error �AI = 0.5. The variability is shown as a function of
two variables with fixed values for the two others. We have
chosen typical values for ps = 1 atm, h = 3 km, t380 = 0.5,
and w380 = 0.85. The jacobian terms Jps and Jw , associated
with ps and w380 are negative, while Jh and Jt are positive. In
other words, AI will increase with increasing h and t380 and
decrease with increasing ps and w380. The sensitivity of AI
to h increases as t380 increases and weakly decreases with
increasing w380. For optical thickness lower than 0.2, the
sensitivity of AI to w380 is independent of height, but is
highly sensitive for t380 > 0.5. The sensitivity of AI to t is
mostly dependent on h. The panels in the second column in
Figure 2 provide the estimated error when calculating AI
with ps, h, w380, and t380 knowing their errors, 0.1 atm, 1
km, 0.05, and 0.2. These 4 estimated errors are quite large
and should be considered as an upper limit. The
corresponding error of AI due to �ps is only 2% and is
negligible. The errors associated with h and t are of the
same order, around 25% and 35%, respectively. The error
associated with �w is negligible near the surface but is
around 25% at 5 km altitude. This means that an estimated
value of �w = 0.85 could be used for most cases, and it is
preferable to obtain higher precision for t380 than for h,
although the sensitivity of AI on h is higher than on t
particularly for strongly absorbing dust particles. As can be
seen from the right panels in Figure 2, the worst choice,

when retrieving physical quantities from AI , would be to
determine the surface pressure, which is obvious, followed
by the single scattering albedo for low optical thickness or
near the ground. Deriving the plume altitude will have
acceptable error for optical thickness larger than 0.5. The
best choice is to derive t380, although it can have large error
for aerosol layer lower than 1 km altitude.

3.2. Case of Other Absorbing Aerosols

[12] The relation (2) has been established for dust aerosol
assuming values of absorption in the nUV derived by
Sinyuk et al. [2003]. For dust particles, the absorption
increases with decreasing wavelength, but for carbonaceous
aerosols the absorption is spectrally flat [Dubovik et al.,
2002]. Consequently the parameters in relation (3) should
be modified in case of carbonaceous aerosols.

4. First Application: Validation of Simulated Dust
Distributions

[13] Dust distribution has been simulated for several
years using the Global Ozone Chemistry Aerosol Radiation
and Transport (GOCART) model. The GOCART model
simulates the distribution of dust, sulfate, carbonaceous
(organic and black carbon), and sea-salt aerosols. Each
model component has been described in detail elsewhere
[Chin et al., 2000; Ginoux et al., 2001, 2003].
[14] Briefly, the GOCART model is a global scale model

driven by the Goddard Earth Observing System Data
Assimilation System (GEOS DAS). It has a horizontal
resolution of 2� latitude by 2.5� longitude and 20 to
40 vertical layers (vertical resolution depends on the
version of GEOS DAS). The model contains the following
modules in dust simulation: sources based on topographic
depressions with bare soil; advection, which is computed
by a flux-form semi-Lagrangian method; boundary layer
turbulent mixing, which uses a second order closure scheme;
moist convection, which is calculated using archived
cloud mass flux fields; dry deposition at the surface by
eddies; wet deposition, which accounts for the scavenging
in convective updrafts and rainout/washout in large-scale
precipitation.
[15] An interesting case study is the evolution of a

Sahara dust plume which evolves in complex patterns
for several days over the North Atlantic in March 1988.
The TOMS AI index is particularly useful to assess the
possibility for models to simulate its formation and capture
its complex patterns for several days. The methodology
consists to first calculate the optical thickness at 380 nm
from the relation:

t380 ¼
X7

k¼1
tk ¼

X

7

k¼1

3

4

QkakMi

rkrpi

i ¼ 1 for k 	 4 and i ¼ k � 3 for k > 4 ð6Þ

where tk is the optical thickness at 380 nm for 7 bins k, Qk

is the extinction efficiency at 380 nm, Mi is the column
mass loading of bin i of the 4 transported size bins, ak is the
fraction of each 7 subbins, rk is the effective radius, and
rpi is the mass density of the size class i. The values of
Qk(380 nm) are calculated using Mie theory and using the
real and imaginary parts of the refractive index derived by
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Figure 2. Sensitivity (left panels), relative errors (middle panels) and error associated with a departure
�AI = 0.5 (right panels) of the empirical function AI as a function of the surface pressure ps (upper panels),
the altitude of the plume h (second row), the single scattering albedo w380 (third row), and the optical
thickness t380 when varying or fixing to typical values ( ps = 1 atm, h = 3 km, w380 = 0.85, t380 = 0.5) the
other 3 variables.
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Colarco et al. [2002]. Second, the single scattering albedo
at 380 nm (w380) is calculated by the relation

w380 ¼

X7

k¼1
wktk

t380
ð7Þ

where wk is the single scattering albedo which is calculated
using Mie theory for which the particle effective radius rk
and the refractive index Qk are provided. The values of rk,
ak, Qk, rpi, and wk are given in Table 1. Third, the centroid
of mass Z is calculated by the formula

Z ¼

Pnlev
j¼1

P4
i¼1 mi; j

� �

zj
P4

i¼1 Mi

ð8Þ

where zj is the altitude above ground at level j among the
nlev model levels, mi,j is the mass concentration of size class
i at level j, and Mi is the mass column.
[16] Figure 3 shows the values of the optical thickness,

single scattering albedo (w380), and the centroid of mass (Z)
for a dust plume emitted from Sahara and evolving over the
North Atlantic in March 1988. Around the 27 March 1988, a
dust plume was produced from Sahara and transported by the
Azores high towards Europe. Two days later, the plume is
separating in two branches whenWest and the other East. The
West branch formed two days later half a circle over most of
the North Atlantic.
[17] With t380, w380, Z, the empirical function AI can be

calculated from 3 assuming a constant surface pressure.
Figure 4 shows the comparison between the observed and
calculated aerosol index for the March 1988 dust plume. For
comparison the exact calculation of TOMS AI using
GOCART output, as described by Ginoux et al. [2003], is
also shown. From Figure 2, it appears that AI is more
sensitive to t380 than with the radiative calculation: higher
AI over sources with high t380 and lower AI in the remote
regions. But overall, the AI and the radiative calculation give
comparable results.

5. Second Application: Dust Sources
Characterization

5.1. Second Empirical Relation, AI

[18] In this section, we analyze the possibility to retrieve
some characteristics of dust sources from the TOMS AI. The
sensitivity and error analyses of AI have shown that large
errors occur when deriving quantities near the ground, in
particular the single scattering albedo. It would then seem
ambiguous to still attempt to use AI to characterize dust
sources. The motivations are practical and intellectual. In the
absence of in situ measurements the only possibility to
improve our understanding of source characteristics is with
satellite data. Also, the presented methodology could possi-
bly be applied to satellite radiances which are less sensitive to
the altitude, as in the visible.
[19] The methodology presented in this section consists to

substitute the optical thickness and altitude of the plume
with meteorological variables such that the variables in
relation (3) are related to surface characteristics.
5.1.1. Elevation of the Aerosol Layer
[20] Karyampudi and Carlson [1988] and Karyampudi et

al. [1999] developed a dust plume conceptual model
for North Africa, and showed that the formation of major

dust outbreaks corresponds generally to wind acceleration
induced by strong surface pressure gradient usually associ-
ated with the approach of surface cyclone. The winds
converging towards the intense heat low over arid regions
pick up large amount of dust particles from loose topsoil
and generate dust clouds. In a theoretical study focusing on
dust vertical transport, Bounoua and Krishnamurti [1991]
have shown that, during dust outbreaks, upward motion
prevails in the mixed layer while there is a downward
motion aloft. This two-cell circulation creates an anticy-
clonic outflow at the top of the mixed layer. Assuming here
that such mechanism is at the origin of most dust plumes,
the dust elevation h in equation (3) can be replaced by the
planetary boundary layer height hPBL

h ¼ hPBL ð9Þ

[21] Assuming a well mixed atmosphere, the optical
thickness can be expressed by t380 = B380m, where B380

is the specific extinction cross section at 380 nm and m is
the mass column per surface area. Kinne et al. [2003] have
estimated that B550 values range from 0.5 to 2 m2 g�1 based
on the results from several global models, including
GOCART. The extinction efficiency is a function of the
particle size and wavelength. The dust mass column is
the integral of dust mass concentration over the source.
The dust concentration can be calculated by the continuity
equation which expresses that mass variation in space and
time is due to transport by wind advection, cloud convection
and turbulent diffusion, and removal. The mass concentra-
tion over the surface of a dust source will be mostly
controlled by the rates of emission (�up) and loss rate (L):

@m

@t
� �up � Lm ð10Þ

In this equation we have neglected the wind advection, cloud
convection and horizontal diffusion. At steady state,
m ¼

�up

L
. We consider only dry conditions such that the loss

rate is only due to dry deposition by settling and turbulence.
The loss rate L is formulated by a deposition velocity vd at a
fixed level hdep.
[22] Dust is uplifted into the atmosphere by saltation bom-

bardment of coarse particles. A typical saltation model has
been formulated, suggesting that for soils with uniform
particle size, thehorizontal fluxof largeparticlesQ, is givenby

Q ¼

Cr

g
u3* 1�

ut

u*

� �2
 !

u* > ut

0 otherwise

8

>

<

>

:

; ð11Þ

Table 1. Properties of Dust Particles Used to Calculate an Aerosol

Indexa

k rk, mm i ak rp, kg m�3 Qk, 380 nm wk, 380 nm

1 0.14 1 0.01 2650 0.732 0.962
2 0.24 1 0.08 2650 0.276 0.976
3 0.45 1 0.25 2650 3.975 0.968
4 0.8 1 0.65 2650 2.427 0.905
5 1.5 2 1 2650 2.354 0.861
6 2.5 3 1 2650 2.228 0.798
7 4.5 4 1 2650 2.182 0.725

aEffective radius (rk) of the subbin k of the 4 transported bins (i), size
fraction of the subbin (ak), mass density (rp), extinction efficiency at
380 nm (Qk), and single scattering albedo at 380 nm (wk).
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where C is a constant of order unity, r is the air density, g is
the acceleration of gravity, u* is the friction velocity, and ut
is the threshold velocity of wind erosion. The threshold
velocity, ut, is a function of the interparticle forces which
depends on the particle size and the soil moisture. The
threshold velocity increases rapidly for moist conditions
[Fécan et al., 1999]. We consider, in this study, only dry
conditions and the meteorological fields are extracted when
the soil moisture is less than 20%. The vertical dust flux,
�up, is estimated from the horizontal flux Q, using an

efficiency factor a: �up = aQ. The factor a is a function of
the parent soil texture [Marticorena and Bergametti, 1995].
[23] The dry deposition at the surface includes the grav-

itational settling and the turbulent transfer to the surface.
These two terms depend on the particle size and the friction
velocity. Gillies et al. [1996] have monitored intense dust
plumes over Mali. Their data showed that the grain-size
distribution of a fallout sample covered a wide range of
particles sizes (up to >70 mm) with a mean particle size of
16.8 mm. To eliminate the dependency on size distribution,

Figure 3. Calculated values of the optical thickness at 380 nm (left panels), single scattering albedo at
380 nm (middle panels), and centroid of mass (right panels) in units of km, for a Saharan dust plume
evolving on the 27 (first row), 29 (second row), and 31 (third row) March 1988.
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we assume a mean particle size of 17 mm for every dust
sources. The detail method of linearization of vd is provided
in Appendix A, and the deposition velocity for 17 mm
particles can be approximated by

vd17 � 3u2*; ð12Þ

in units of m s�1.
[24] After substituting in 3, h by hPBL, t380 by a�up

vdhdep
with

�up given by expression 11 and vd by the approximation 12,

the TOMS aerosol index can be replaced by an empirical
index, AI , given by

AI ¼ A 1� 0:2 log psð Þð Þ


 1:25þ 5 1� w380ð ÞhPBLð Þ 
 u* 1�
ut

u*

� �2
 ! !w380

;ð13Þ

where A is the dimensional constant of proportionality and
is a function of a, hdep, B380, and

Cr

g
.

Figure 4. TOMS Aerosol Index (left panels), calculated index with exact radiative calculation (middle
panels), and AI (right panels) for a Saharan dust plume evolving on the 27 (first row), 29 (second row),
and 31 (third row) March 1988.
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[25] The different assumptions made to establish the
empirical expression 13 limit considerably its validity to
unstable dry atmospheric conditions with no significant
import from other sources and export by horizontal trans-
port, no accumulation of airborne particles, and dry con-
ditions. The errors associated with horizontal mixing are
expected to be quite large especially as the resolution of the
satellite and meteorological fields gridded data is coarse and
the TOMS passing time does not necessarily correspond to
the diurnal maximum of dust emission.
5.1.2. Selected Dust Sources
[26] Among the numerous sources identified by Prospero

et al. [2002], we limit our study to 13 sources located in
different continents. Table 2 gives the approximate location
and altitude of the 13 sources. The sensitivity study and
error analysis are performed over the sources in Afghanistan
and the Bodele depression.
5.1.3. Error Associated With the Resolution of the
Data Sets
[27] We have seen in section 3.1 that the errors associated

with the relation AI increase as the dust layer comes close to
the ground. Another important source of error is due to the
coarse resolution of the data sets. Figure 5 upper-left panel
shows a large dust storm viewed by the Sea-viewing Wide
Field-of-view Sensor (SeaWIFS) at the border between Iran,
Pakistan and Afghanistan. The various shades of color
reflect a varied landscape containing expanses of flat open
desert, dry lake beds, dune fields, and mountain ranges. The
large orange-brown stingray shaped on the upper right is the
sandy desert Rigestan. The dark brown splotches South of
the Ragestan is the Pakistan’s Chagai Hills, and West is
the Iranian Seistan mountains. The light brown spots in the
upper part between 61 and 62 degrees longitude East is the
Daryacheh-ye-Hamum dry lake which has been identified
as a major dust source by Prospero et al. [2002]. The dust
plume is clearly originating from this dry lake. This exem-
plifies the importance of dry lakes in topographic depres-
sion relative to sand deserts to produce large dust plumes.
The fact that the dust plume is deflected to the East down
the Helmand valley by the Chagai Hills indicates that the
plume is for that day about 2 km altitude. Figure 3 lower-
left panel shows the TOMS aerosol index as it was derived
over the same region, on the same day and time (March 18,

2001, local noon). The isovalues of TOMS AI have been
plotted over the topography. Figure 3 upper-right panel
shows a MODIS photo of dust plumes emitted in March
2002 from the Bodele depression. The depression is located
South of the Tibesti mountains visible in the upper right
corner, and North-East of the Lake Chad (dark blue in the
lower left corner). A black line indicates the border between
Chad and Niger. A difference with Figure 3a is the multi-
plicity of plumes emitted from different locations of the
Bodele depression. Figure 3d shows the corresponding
Aerosol Index with the highest value just over the lowest
point of the depression (dark green). The selected grid
points and grid cells of TOMS data (in red) and the GEOS
DAS meteorological fields (in blue) are shown on Figure 3
lower-right panel. Both points are slightly off the maximum
of the TOMS aerosol index which peaks at 4 over the
depression.
[28] The SeaWIFS and MODIS pictures indicate that the

coverage of dust sources varies considerably between
regions. In Afghanistan the source area is limited to a few
tenth of a degree while TOMS data are provided on a 1 by
1.25 resolution grid and the GEOS DAS meteorological
fields are given on a 2 by 2.5 grid. To give an idea of the
different resolutions, we have over plotted on Figure 3
lower panels the center (dot) and contour of the cell (square)
of TOMS data (in red) and GEOS DAS fields (in blue) used
to characterize these two sources. Over Afghanistan, TOMS
grid cell envelopes a much larger area than the actual
sources, while over the Bodele depression several sources
are just outside the grid cell. Therefore, the constant of
proportionality A in relation (13) will depend on the fraction
of the TOMS grid cell covered by the source. In the case of
the Bodele depression, the contamination from the sur-
rounding sources will bias comparison between TOMS AI
and AI . The Afghanistan source is surrounded by mountains
and the contribution from other sources should be limited.
This is apparent on the right of Figure 3 lower-left panel,
where a dust plume from India is blocked on the East by the
mountain ridge. Other sources of error are the quality of
analyzed wind fields over deserts, as discussed by Shay-El
et al. [1999], and the coarse resolution of the meteorological
fields. With a 2� by 2.5� grid, the effects of subscale
variability of terrain can be significant, as for example the

Table 2. Dust Source Characteristicsa

Source Longitude Latitude
Altitude,

m
Diurnal,

LT Nd Rd w380 Nm Rm A
�u*,
%

�hPBL,
%

1 Tunisia 7.5E 33N 120 0–3pm 1876 0.5 0.85 89 0.86 2.5 6 19
2 Libya 20E 26N 210 0–3pm 810 0.46 0.85 45 0.85 2.3 7 11
3 Mauritania 6.5W 25.5N 180 0–3pm 2088 0.3 0.8 115 0.71 3.5 5 35
4 Mali 0 22N 240 9–12am 1747 0.42 0.95 112 0.77 3.8 5 55
5 Bodele 17E 17N 240 9–12am 2582 0.31 0.85 110 0.6 1.5 9 18
6 Sudan 29E 17N 460 9–12am 2465 0.55 0.75 107 0.88 1 5 13
7 Oman 55.5E 19N 150 9–12am 2777 0.59 0.75 117 0.88 1 6 7
8 Kuwait 46.5E 29.5N 240 0–3pm 2361 0.65 0.75 111 0.88 0.5 7 12
9 Aral Sea 61.5E 43.5N 90 0–3pm 1479 0.4 0.75 86 0.81 0.35 10 13
10 Afghanistan 61.5E 30N 400 3–6pm 2023 0.67 0.75 110 0.9 0.7 8 10
11 Taklamakan 83E 39N 910 3–6am 1357 0.34 0.75 97 0.72 0.7 7 12
12 Gobi 105E 40.5N 1220 9–12am 354 0.23 0.9 89 0.42 1.3 9 50
13 Lake Eyre 138E 25S 150 0–3pm 1098 0.18 0.95 110 0.5 1.6 7 32

aNumber, location (region, longitude, latitude and altitude), local time period of most frequent surface winds >0.4 m s�1 (diurnal), total number of screened
daily values (Nd), correlation coefficient between dailyAI and TOMSAI (Rd), single scattering albedo at 380 nm (w380), total number of months with valid data
(Nm), correlation coefficient between monthly AI and TOMS AI (Rm), slope of the regression line between AI and TOMS AI (A), mean relative difference of
monthly friction velocity (�u*) and planetary boundary layer height (�hPBL) over 10 years.
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acceleration of winds over ridges. Such phenomenon could
be at the origin of the source line long by almost 100 km in
the middle of the picture on Figure 3 upper-right panel.
5.1.4. TOMS Satellite Local Passing Time
[29] The TOMS satellite NIMBUS-7 is orbiting with a

local passing time around 11:30 am. The variability is less
than half an hour for the entire Nimbus-7 lifespan. To
establish the empirical relation (13), it is assumed that the
observed dust plume is instantaneously emitted from the
ground. If most dust plumes are generated before TOMS

passing time, the observed plume will be aged and partially
depleted from its original mass. On the other hand, if most
dust plumes are generated after TOMS observation, the
source will seem less active than it is. In this section, we will
examine the diurnal variation of the surface wind speed as a
proxy for source activity.
[30] Figure 6 shows the diurnal frequency of the three

hours average friction velocity u* greater than 0.4, 0.6 and
0.8 m s�1. The most frequent wind speed is between 3 and
6 pm, for all three threshold speeds. Before noon, high

Figure 5. Dust plumes from Afghanistan observed by SeaWiFS (upper left panel) and TOMS (lower
left panel) on the 18th May 2001 and Bodele depression observed by MODIS (upper right panel) on the
12th March and TOMS (lower right panel) on the 13th March 2002. The upper panels are composite of
red, green, and blue channels. The lower panels show land elevation in the background, the TOMS
Aerosol Index isovalues, the grid points and cells of TOMS and GEOS DAS data.
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surface wind speed is infrequent. This means that, statisti-
cally, TOMS satellite is slightly ahead of the maximum dust
activity. It is interesting to see if this affects a seasonal
analysis. By plotting the seasonal variation of the frequency
of wind speed greater than 0.4 m s�1 during 9 am to noon,
noon to 3 pm, and 3 to 6 pm, in Figure 7, we see that similar
seasonal variation is obtained for the three periods. In other
words, the seasonal variation of the Afghanistan source
activity studied from TOMS data is representative, even
though this source should appear more active. This is not
always true for other sources. Table 2 summarizes in column
6 (Diurnal) the time of the most frequent surface wind speed
greater than 0.4 m s�1 over 13major dust sources.We can see
that over the Sahara (region of Africa North of 20�N) the peak
is early in the afternoon while over the Sahel (arid regions
South of the Sahara) it is late in the morning, around TOMS
passing time. It is thus possible that TOMS measurements
underestimate Saharan dust at the sources.

5.2. Sensitivity Analysis

[31] The empirical Aerosol Index, AI , is a function of three
meteorological fields ( ps, hPBL, and u*) and has three degrees
of freedom (A, w380 and ut). The three meteorological fields
are extracted at local noon when the TOMS observed
reflectivity is less than 13% and the soil moisture, calculated
by NASA GEOS DAS, is less than 20%. Table 2, column Nd,
gives for 13 major dust sources the total number of screened
values over ten years, from January 1981 to December 1990.
By varying hPBL and u*, the correlation coefficient between
the TOMS AI and the empirical AI given by equation (13) is
calculated. The maximum value of R correspond to the best
estimation of w380 and ut. The slope of the regression line

between AI and AI provides the value of A. We let w380 vary
from 0.75 to 0.95 with an increment of 0.05, and ut from 0 to
0.4 m s�1 with an increment of 0.1.
[32] Figure 8 shows the comparison between the daily

TOMS AI and empirical AI for Afghanistan and Bodele
depression. The regression lines are draw in black. For the
Bodele depression comparison (Figure 8b), most points are
clustered around the line AI = 0.5 AI � 1 (gray line), but a
significant number of points are underpredicted by the
relation (13). We suspect that all the points below the unity
line are due to import of dust from the upstream dust
sources. This exemplifies the difficulty to use AI when
there is significant contamination from other sources. For
the Afghanistan source, the highest R value is 0.67 and
corresponds to ut = 0 m s�1 and w380 = 0.75. The correlation
coefficient is very high considering that it is calculated with
more than 2000 points (column Nd in Table 2). The
maximum value of R and the corresponding values of
w380 for the 13 sources are given in columns Rd and w380

of Table 2, respectively.
5.2.1. Threshold Velocity
[33] For all sources, the highest correlation is obtained for

near zero threshold velocity ut. But the correlation coeffi-
cient does not vary significantly until 0.2 ms�1 after which
it drops rapidly. Observations show a wide range of ut
values which are generally equal or higher than 0.25 m s�1

[e.g., Gillete et al., 1980]. It is clear that all the errors
associated with our method does not allow, unfortunately, to
retrieve such parameter. But the problem can be addressed
differently by defining a minimum threshold of AI which
can be detected by TOMS. A value of 0.7 is generally used
as a safe minimum threshold for detection of dust aerosol.

Figure 6. Diurnal variation of the number of days per year (average over 10 years) the friction velocity
u* is greater than 0.4 (dark gray), 0.6 (medium gray), and 0.8 (light gray) ms�1 for Afghanistan (left
panel) and Bodele depression (right panel).

Figure 7. Seasonal variation of the number of days per month (average over 10 years) the friction
velocity between 9 and 12 am (bold line), noon and 3 pm (dash line), and 3 and 6 pm (dash line) local
time in Afghanistan (left panel) and Bodele depression (right panel) is greater than 0.4 ms�1.
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Figure 9 shows, for the sources in Afghanistan, Bodele
depression and on the shore of the Lake Eyre, the seasonal
variation of the frequencies of u* greater than 0.2, 0.4, 0.6
and 0.8 ms�1, and the frequency that the TOMS AI is
greater than 0.7 (a low limit). For the Bodele depression, the
frequency of detectable TOMS AI is greater than the
frequency of low wind speed. This would mean that dust
is generated by subscale process, like ridge acceleration or
contamination from other sources. In the Lake Eyre region,

the aerosols are detected by TOMS when the wind speed
is greater than 0.6 m s�1 for all seasons. Such value is
consistent with values derived in the Lake Eyre region
by Shao and Leslie [1997]. In Afghanistan (Figure 9a)
and for most dust sources (not shown), there is no seasonal
correlation because of the strong altitude variation between
seasons. The minimum seasonal frequency of TOMS AI >
0.7 is winter when the altitude is the lowest, and corre-
sponds to winds greater or equal to a little less than

Figure 8. Comparison of the daily TOMS AI and AI for 10 years over Afghanistan (left panel) and
Bodele depression (right panel).

Figure 9. Seasonal variation of the number of days per month the TOMS AI is greater than 0.7 (bold
line), and the friction velocity is greater than 0.2 (continuous line), 0.4 (dot line), 0.6 (dash line) and 0.8
(dash dot line) at local noon in Afghanistan (upper panel), Bodele depression (middle panel) and Lake
Eyre basin (lower panel).
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0.6 ms�1. Such value is in the range of measured values
elsewhere.
5.2.2. Single Scattering Albedo
[34] Sokolik and Toon [1999] have shown that the absorp-

tion properties of dust particles are a strong function of their
mineralogy. The most and least absorbent minerals are
respectively hematite and montmorillonite. Because the soil
mineralogy varies between regions, we should expect spatial
variation of the single scattering albedo. Our derived values
of single scattering albedo for the 13 sources are given in
Table 2. In Africa, the values range from 0.8 to 0.95 with the
lowest value in east Sahel (Sudan) and the highest in Sahara
over Mali. These values are significantly higher than the
values reported by Patterson et al. [1977] which have been
estimated to be too low, in the visible, by Dubovik et al.
[2002]. Colarco et al. [2002] have determined the single
scattering albedo of Saharan dust at 360 nm during summer
1997 frommodel simulations and TOMS radiances along the
West coast of Africa. Their values range from 0.68 to 0.93
(their best value is close to 0.85) which are similar to the
range of values we obtain for North Africa. Using TOMS
radiances and sun-photometers data, Sinyuk et al. [2003]
have retrieved the imaginary part of the refractive index of
Sahara and Sahel dust which are comparable to Colarco et al.
[2002]. They also found that Sahel dust is slightly more
absorbing than Sahara dust which is consistent with our
results. In Asia and Saudi Arabia Peninsula, all sources have
a similarly low single scattering albedo, 0.75, except for the
Gobi desert where it reaches 0.9. Sokolik and Golitsyn [1993]
have derived a single scattering albedo at 400 nm around 0.77
from data collected during a 1989 field experiment in
Tadzhikistan. In Australia, the dust is practically nonabsorb-
ingwith a single scattering albedo around 0.95. It is important
to remind that even though these values correspond to
published values, the errors on retrieved w380 from relation
(3) can be quite large below 1 km altitude and as the optical
thickness decreases to �0.2 (compare Figure 2).
5.2.3. Size Distribution
[35] In formula (13) we have assumed a mean diameter of

17 mm of falling particles, based on in situ measurement
near the Mali dust source. The size distribution modifies
strongly the deposition rate. As the particles get larger
(>50 mm), gravitational settling dominates over the other
dry deposition processes and the deposition rate is practi-
cally independent on u*. In that case, AI would depend at
the cubic power of u*. On the other hand, for submicron
particles, the gravitational settling can be neglected and it is
possible to show that the settling speed is proportional to u*,
and AI depends on u*

2. But we found that there is only a
significant correlation between TOMS AI and AI , with a
linear dependency on u*. There is still a large range of
possible values between 1 and 50 mm. By fitting the
deposition velocity for 1 mm, 17 mm and 50 mm, and varying
the diameter from 1 to 50 mm, the highest correlation
coefficient are for diameter between 10 and 14 mm. This is
slightly less than 17 mm but will not change our analysis.
5.2.4. Source Characteristics
[36] In relation (13) the constant of proportionality A is a

function of the source characteristics, in particular a, and the
relative dimension of the source compare to the TOMS grid
cell. The values of A in Table 2 vary by a factor 10 between
the lowest value near the Aral Sea (0.33) to the highest value

over North Mali (3.8). Marticorena and Bergametti [1995]
have shown that a is related to the soil clay content, but the
variability of a for a given clay content is of the order of a
factor 10. Such variability is comparable to the variability of
A. It is unfortunately not possible to know the influence of the
source size on A. The analysis of high resolution satellite data
like MODIS or SeaWiFS could be very useful to determine
accurately the boundaries of each source. With such infor-
mation, it should then be possible to characterize the relative
values of the efficiency parameter a for each source.

5.3. Variability of AI Over Dust Sources

5.3.1. Daily Variation
[37] Figures 10 and 11 show the 1989 time series of

TOMS AI and AI , and the corresponding local noon values
of hPBL, u* and ps over Afghanistan and the Bodele depres-
sion, respectively. The missing data are due to the low
threshold of observed reflectivity (13%) and soil moisture
(20%). The values of AI reproduce most of the daily and
seasonal variability. Similar comparisons exist for the other
years and the other sources. These comparisons can also be
seen as a validation of GEOS DAS surface meteorological
fields over arid regions.
5.3.2. Seasonal Variation
[38] Table 2 gives, for 13 dust sources, the number of

months when the observed reflectivity and soil moisture are
lower than 20%, followed by the correlation coefficient R
between the monthly mean TOMS AI and empirical AI ,
calculated with daily values from equation (13). There is a
99.999% probability of correlation for all sources. Figure 12
shows the comparison for Afghanistan and Bodele depres-
sion of the monthly TOMSAI and empirical AI from 1981 to
1990, considering four cases: (1) AI � 1.25 + 5 (1 � w380)

hPBL, (2) AI � ðu*ð1� ð ut
u*
Þ2ÞÞw380 , (3) AI � (1.25 + 5 (1 �

w380)hPBL) 
 ðu*ð1� ð ut
u*
Þ2ÞÞw380 , and (4) AI � A(1 � 0.2

log( ps)) 
 (1.25 + 5(1 � w380)hPBL ) 
 ðu*ð1� ð utu
*
Þ2ÞÞw380 ,

with w380 = 0.75 and 0.85 for Afghanistan and Bodele
depression, respectively. The four seasons have been sepa-
rated using different symbols. The highest correlation is
obtained with relation (13) depending on hPBL, u*, and ps.
The lowest correlation is with case 2 (dependency on u*)
which indicates the high sensitivity of TOMS AI to the
altitude. The weakest dependency is on ps which is mostly
important for elevated sources (e.g., Taklamakan). In Afgha-

nistan, the maximum values of AI are in summer and
correspond to the maximum of the elevation and surface
wind speed. The slope of the regression line in the far right
panel is close to 1 which means that the constant A = 1 in
relation (13). The slope is around 0.3 for the Bodele depres-
sion but as discussed in section 4.3, the influence of active
upstream sources bias the correlation. Such influence is
apparent in the minimum value of TOMS AI which never

get below 2. Then if AI can reproduce correctly the seasonal
variation it is because the emission of the upstream sources
are in phase with our selected TOMS grid cell. This makes
sense because the upstream sources are situated in the same
depression and are subjected to similar meteorology. A
question to ask is to what extent the improvement of
correlation from case 1 to case 4 is related to the dust sources.
In other words, is it possible to identify the dust sources
by looking where are the highest increase of correlation.
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Figure 13 shows the percentage of increase of correlation
from case 1 to case 3 (no dependency on surface pressure)
assuming A = 1, ut = 0, and w = 0.85, everywhere. It is
remarkable that most sources (including the 13 selected here)
identified by Prospero et al. [2002] appear on this figure.
[39] Figure 14 (left panels) shows, for Afghanistan and

the Bodele depression, the seasonal variation of the monthly
TOMS AI (dashed line) and AI (continuous line) and
their standard deviation. As can be seen from the plots on
Figure 14, the amplitude variation of the TOMS AI and its
standard deviation are well reproduced with the empirical
AI . Figure 14 (right panels) shows the seasonal variation of
the terms depending on u* and hPBL. Over Afghanistan, it
appears that most of the seasonal variation of the TOMS AI
is due to variation in boundary layer height. The peak of
TOMS AI in July corresponds to the peak of hPBL, while the
term in u* has its maximum in May. Over the Bodele
depression, the influence of hPBL is less pronounced and u*
is producing most of TOMS AI variability.
5.3.3. Interannual Variation
[40] Figure 15 shows the interannual variation of the

monthly values of TOMS AI and AI , and of the percentage
variation of the monthly anomalies of u/ast and hPBL. The
interannual variation of TOMS AI is relatively well repro-
duced with AI for both Afghanistan and the Bodele depres-
sion. The interannual variation is relatively weak and can be

explained by the the percentage variation of u* and hPBL
which are within 20%, except for a few cases. In August
1986, there is a maximum of u* over Afghanistan which
creates a maximum in AI but is not observed by TOMS AI.
Over the Bodele depression the maximum u* is in April 1987
and corresponds to a maximum of both AI and TOMS AI.
For the other sources the anomalies are also within 20%,
and the mean values for each source are given in Table 2.
An exception is in Mauritania where the percentage
variation of hPBL is as high as 400% but these exceptional
cases are in winter when hPBL is too low to have an impact
on AI . An interesting application of our method would be
to relate the interannual variability of AI and its terms with
large scale oscillation, as it has been done for the TOMS
AI and the North Atlantic Oscillation over the Atlantic by
Chiapello and Moulin [2002].

5.4. Discussion

[41] It has been shown that AI can reproduce most of the
daily, seasonal and interannual variability of TOMS AI over
major dust sources, and they are related to hPBL and u*. We
have shown that in the case of the Bodele depression the
upstream sources have a significant influence on the dust
loading over the selected grid box. However, such influence
modifies the absolute value of TOMS AI but not its
variability. The reason is that the activity of these upstream

Figure 10. Daily variation of the TOMS AI and AI (upper panel), the friction velocity (upper middle
panel), the planetary boundary layer height (lower middle panel), and the surface pressure (lower panel)
at local noon over Afghanistan in 1989.
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sources is in phase with the one in the selected grid box. A
better way, to solve this would be to include a divergence
term which takes into account the lateral fluxes. The relation
m = Q

vd
should be replaced by

@m

@t
¼ Q� vdmþr umð Þ ð14Þ

The divergence term r(um) will be significant compared to
the fluxQ and deposition vd if there is a strong gradient in the
winds u or mass m. Generally, the sources are located in
topographic depressions [cf. Prospero et al., 2002], and it is
possible that the gradients of both u and m are significant. If
there is complete blocking in one side of the cell, the
divergence will be proportional to u, or similarly u*. We
have seen that Q depends on u*

3 and vd on u*
2. The sensitivity

analysis in section 6.1 indicates that TOMS AI is linearly
related to u*. Therefore, the relation (13) is generally valid for
all sources or the divergence term is dominant in equation 14.
The only possibility to evaluate the relative weight of each
term in equation 14 is to use a three-dimensional transport
model. But the task will necessitate to define accurately the
boundaries of each source and to take into account the effects
of topography. The resolution of such model will be prohib-
itive and the dynamic poorly constrained by observations. An
intermediate solution would be to consider plume models
which are widely used to calculate pollutants dispersion. The
advantage of such models is that it is possible to take into
account transport with an analytical solution. It would then be

possible to consider contamination between sources and to
obtain more accurate results.
[42] Concerning the use of the empirical TOMS index to

characterize the sources of other absorbing aerosols, a key
aspect is the dependency of the imaginary part of the
refractive index (absorption) with wavelength. A spectral
dependency can compensate the reduced sensitivity with
altitude of TOMS AI, as for the case of dust. For carbona-
ceous aerosols, the absorption is spectrally flat [Dubovik et
al., 2002] and the TOMS Index is reduced to near zero or
negative values for near surface smoke plumes, as discussed
by Torres et al. [1998].

6. Conclusions

[43] An empirical relation has been developed to express
the TOMS Aerosol Index, for dust aerosol, as a function of
four physical quantities: the single scattering albedo, optical
thickness, altitude of the aerosol plume and surface pres-
sure. This relation provides for the first time a quantitative
relation between the TOMS AI and physical quantities
which is applied (1) to validate simulated dust distribution,
and (2) to characterize the dust sources. An example of
application is shown for Saharan dust plume forming
complex patterns over the North Atlantic in March 1988.
The second application relates TOMS AI with the surface
meteorological fields for the case of dust sources. It is
assumed that dust concentration is at equilibrium between

Figure 11. Daily variation of the TOMS AI and AI (upper panel), the friction velocity (upper middle
panel), the planetary boundary layer height (lower middle panel), and the surface pressure (lower panel)
at local noon over the Bodele depression in 1989.
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Figure 12. Comparison of the monthly TOMS AI and AI considering four dependencies (see text) for
Afghanistan (upper panels) and Bodele depression (lower panels), with the season indicated by different
markers: Dec–Jan–Feb (stars), Mar–Apr–May (diamonds), Jun–Jul–Aug (squares), and Sep–Oct–Nov
(triangles).

Figure 13. Global distribution of the relative difference of correlation between a unique dependency on
hPBL and on both hPBL and u* as in relation (13).
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the emission and deposition. With such assumption the dust
concentration is proportional to the friction velocity. The
altitude of the dust plume is assumed to correspond to the
planetary boundary layer height. There are three degrees of
freedom in the second relation: the single scattering albedo,
the threshold velocity for wind erosion and the size distri-
bution. Using daily local noon values over 10 years of the
analyzed meteorological fields from GEOS DAS and the
observed TOMS AI, the best estimated values of the three
degrees of freedom are evaluated. However the errors
inherent to our method does not allow to retrieve the
threshold velocity. A different method is proposed for that
purpose. The mean particle radius is estimated between
10 and 14 mm, which is in agreement with in situ data of
falling particles during dust storms in Mali. The second
relation is sensitive to the single scattering albedo and the
estimated values are similar to published data, although our
method is subject to large errors. These errors have been
analyzed in details for two sources (Afghanistan and Bodele
depression). They are associated with the weak sensitivity

of the TOMS instrument to absorbing aerosols near the
surface, the coarse resolution of the TOMS and meteoro-
logical fields, and the contamination from upstream sources.
Despite these errors, the correlation between the daily,
seasonal and interannual TOMS AI and AI is surprisingly
high. When considering separately the dependency on the
plume altitude, the friction velocity, and the surface pres-
sure, the highest correlation is obtained when they are all
three combined. The spatial distribution of such correlation
coefficient shows that its maxima are located where major
dust sources have been identified by Prospero et al. [2002].
[44] Our methodology has the advantage to use a simple

model but contains large errors. It is not obvious that more
elaborate models could provide more accurate results mainly
because of the poor characterization of the meteorological
fields in arid or semi-arid regions. Also, to simulate accu-
rately the generation and transport of dust plumes would
necessitate a numerical resolution which would be prohib-
itive. The advances in satellite resolution could provide more
robust parameterization once it would be possible to retrieve

Figure 14. Comparison of the monthly TOMS AI (black line) and AI (dash line), in the left panels, and
the corresponding variation of the terms in u* (black line) and in hPBL (dash line), in the right panels, for
Afghanistan (upper panels) and Bodele depression (lower panels).
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aerosol properties over deserts from MODIS or SeaWiFS
data.

Appendix A: Approximation of Dry Deposition

[45] Following Slinn [1982], the dry deposition velocity
can be expressed as

vd ¼ vg þ
1

Ra þ Rs

; ðA1Þ

where vg is the gravitational settling velocity, Ra is the
aerodynamic resistance and Rs is the quasi-laminar
resistance.
[46] The gravitational settling is calculated as

vg ¼
1

18

d2prpgCC

m
ðA2Þ

where dp is the particle diameter, rp is the particle density, g
is the acceleration of gravity, m is the absolute viscosity of

Figure 15. Comparison of the interannual variation of TOMS AI (gray line) and AI (black line) for
Afghanistan (upper panel) and Bodele depression (fourth panel), and the corresponding percentage
difference of monthly friction velocity and 10-year monthly mean of u* (second and fifth panels) and
hPBL (third and sixth panels).
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the air (1.72 10�5 kg m�1 s�1), and CC is the Cunningham
correction. For coarse particles CC = 1 is a good
approximation. Assuming a volume size distribution,
typical for African desert, with a 17 mm mean diameter
and a density rp = 2500 kg m�3 then the gravitational
settling speed vg � 2 10�2 m s�1.
[47] The aerodynamic resistance, Ra, is a function of the

atmospheric surface layer stability. Under neutral or unstable
conditions, Ra is relatively low compare to Rs [Seinfeld and
Pandis, 1998]. Over desert area around noon, the surface
layer is strongly unstable, Ra � 10�4 s m�1, and Ra can be
neglected.
[48] The quasi-laminar resistance for aerosols is given by

Rs ¼
1

�0u* Sc�g þ 10�3=Stð Þ
; ðA3Þ

where �0 = 3 is an empirical constant, Sc is the Schmidt
number, g = 0.5 for deserts [Slinn and Slinn, 1980], and St
is the Stanton number. The Schmidt number is given by the
ratio of the kinematics viscosity, n, and the Brownian
diffusivity, D. The kinematic viscosity n is related to the
dynamic viscosity by the relation n = m/ra with ra =
1.225 kg m�3 the air density. The diffusivity D is given by

D ¼
kT

3pmdp
ðA4Þ

where k = 1.38 10�23 J K�1 is the Boltzmann constant and T
is the temperature. At ambient temperature, 300 K, the
diffusivity D � 5 10�12 m2 s�1 and the Schmidt number Sc
� 8.5 107.
[49] The Stanton number St for a smooth surface is given

by [Giorgi, 1986],

St ¼
vgu

2

*
ng

ðA5Þ

Using vg = 2 10�2 m s�1, n = 1.4 10�5 m2 s�1, and g =
9.81 m s�2, then St � 150 u*

2. After substituting the value of
the different parameters in equation (A3), the quasi laminar
resistance Rs is approximated by

Rs �
1

3u* 3:410�4 þ 10

�
0:02

u2
*

0

B

B

@

1

C

C

A

ðA6Þ

The second term of the denominator varies almost linearly
with u* for u* > 0.1 m s�1, and the first term is negligible.
Finally, the deposition velocity for a 17 mm effective
diameter, vd17 is approximated by vd17 � 210�2 + 3 u*

2 which
is further simplified into

vd17 � 3u2*: ðA7Þ
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