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Abstract

Bifactor models are commonly used to assess whether psychological and educational
constructs underlie a set of measures. We consider empirical underidentification
problems that are encountered when fitting particular types of bifactor models to
certain types of data sets. The objective of the article was fourfold: (a) to allow read-
ers to gain a better general understanding of issues surrounding empirical identifica-
tion, (b) to offer insights into empirical underidentification with bifactor models, (c)
to inform methodologists who explore bifactor models about empirical underidentifi-
cation with these models, and (d) to propose strategies for structural equation model
users to deal with underidentification problems that can emerge when applying bifac-
tor models.
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In planning studies, researchers should specify the structural equation models

(SEMs) of interest and establish mathematically that these models are identified. If a

model is identified, all parameters of a model can be estimated uniquely. On the

other hand, if the model is underidentified, one or more model parameters cannot be

uniquely estimated because there are more unknowns in terms of model parameters

than the information provided by the data (e.g., Kenny & Milan, 2012; MacCallum,

Wegener, Uchino, & Fabrigar, 1993; Raykov & Marcoulides, 2001; Rindskopf,
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1984). Researchers who fail to consider whether a model is identified in formulating

their studies may find out later that they have collected data that do not allow for an

empirical investigation of their research hypotheses because the parameters associ-

ated with these hypotheses are not uniquely determined. Unfortunately, the deriva-

tions required to establish model identification frequently are difficult and tedious,

and thus researchers are unlikely to establish identification mathematically.

Fortunately, there are heuristic rules to describe certain specifications of models that

are identified (e.g., Lee & Hershberger, 1990; MacCallum et al., 1993; Stelzl, 1986).

These heuristic rules are applicable for some SEMs, but not others.

Even if a model is identified mathematically, it is still possible that the model is

empirically underidentified, that is, not all parameters of a model can be estimated

uniquely due to particular characteristics of the data (Kenny & Milan, 2012). For

example, one could investigate a correlated two-factor model: X1 and X2 are associ-

ated with F1, X3 and X4 are associated with F2, and no cross loadings or covariances

among measurement errors are specified. Two simple heuristic rules are applicable if

models have no cross loadings or covariances among measurement errors: (a) a

model with correlated factors is identified if two or more indicators are associated

with each factor and (b) a model with uncorrelated factors is identified if three or

more indicators are associated with each factor (Bollen, 1989). For our example, the

model is identified mathematically in that it follows the first heuristic identification

rule; however, the data indicate that the correlation between the two factors is zero.

Therefore, in line with the second heuristic identification rule, empirically we need

at least three indicators per factor to have unique parameter estimates. In summary,

the data do not allow for unique parameter estimates for the model, and thus, the

model is empirically underidentified for these data.

The focus of this article is on empirical underidentification with bifactor models.

A bifactor model includes a general factor underlying all indicators and one or more

group factors underlying one or more proper subsets of indicators. In addition, the

covariances between factors are specified to be zero (Reise, 2012; Rindskopf & Rose,

1988). It is important to understand difficulties that can occur in the application of

bifactor models because they are commonly used in the assessment of psychological

and educational constructs (Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Reise,

2012). We consider empirical underidentification problems that are encountered

when fitting particular types of bifactor models to certain types of data sets. For sim-

plicity, we restrict our focus to analyses of covariance matrices with bifactor models.

Our approach to explore empirical underidentification with the bifactor model can be

used to investigate empirical underidentification with other SEMs and with other

types of data (e.g., a mean vector as well as a covariance matrix among indicators).

Type of Bifactor Models of Interest

Browne (2001) uses the term pure-clustered models to describe models with multiple

factors, with each indicator associated with one and only one factor. We coin the term

718 Educational and Psychological Measurement 78(5)



bifactor pure-clustered models to designate a model in which all indicators are associ-

ated with a general factor, each indicator also is associated with one and only one

group factor, and each group factor is associated with a proper subset of indicators.

We present an example of a bifactor pure-clustered model in Figure 1. FG, Fg1
, and

Fg2
are the general factor, the first group factor, and the second group factor, respec-

tively; Xi are the measured variables associated with Fg1
, with i varying between 1

and 4; Xj are the measured variables associated with Fg2
, with j varying between 5

and 8; E1 through E8 are the errors for the eight measures; and the ls are the loadings

between the factors and the measures. The factor variances are fixed to 1 to have an

identified model. We will consider empirical identification issues for this analysis

model, but the conclusions reached with this model generalize to other bifactor pure-

clustered models.

We became interested in bifactor pure-clustered models when we encountered

estimation problems with generated data for a Monte Carlo study as well as with data

collected to address applied psychological questions. The models we explored for

these data were similar to the analysis model shown in Figure 1.

When we were empirically investigating bifactor models, the covariance matrix

had a pattern similar to the one shown in Table 1: the covariances between indicators

associated with the first group factor were equal to each other (denoted as sii0 ), the

covariances between indicators associated with the second group factor were equal

to each other (denoted as sjj0 ), and the covariances between the indicators for the first

group factor and the indicators for the second group factor were equal to each other

(denoted as sij). We refer to this type of matrix as a matrix with homogeneous-

covariances of measures within group factors and homogeneous-covariances of mea-

sures between group factors or, more simply, as a homogeneous-within and

homogeneous-between (HWHB) covariance matrix.

The HWHB covariance matrix can be reproduced perfectly based on the factor

loadings matrix presented in Table 1. As shown, the factor loadings for the first four

indicators on the general factor ðliGÞ are the same; the factor loadings for the second

four indicators on the general factor ðljGÞ are the same; the factor loadings for the

first four indicators on first group factor ðlig1
Þ are the same; and the factor loadings

for the second four indicators on the second group factor ðljg2
Þ are the same. All other

factor loadings are constrained to zero.

It is important to distinguish between the factor loading matrix for the bifactor anal-

ysis model shown in Figure 1 and the one shown in Table 1. We view the model in

Figure 1 as the model that would be specified in our analysis (i.e., analysis model) if

we postulated a bifactor model with a general factor, a group factor underlying the first

four indicators, and a group factor underlying the second four indicators; accordingly,

we specify this model to have 16 freely estimated factor loadings. On the other hand,

the bifactor factor loading matrix presented in Table 1 reproduces the HWHB covar-

iance matrix, and thus it is one solution that could be obtained in analyzing these data

with the model shown in Figure 1. The purpose of this article is to demonstrate that

other factor loading matrices can also reproduce the HWHB matrix, that is, the model
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parameters are not unique when analyzing a HWHB covariance matrix with the bifac-

tor analysis model shown in Figure 1 (i.e., empirical underidentification).

Empirical Underidentification at the Population Level

We initially investigated empirical underidentification at the population level by

equating the model-implied covariance matrix for the bifactor model in Figure 1 (as

the analysis model) with the HWHB covariance matrix in Table 1. With some alge-

braic manipulations, we can show that the relationships between the covariances

among the measures (i.e., the data) and the model parameters are

sii0 = l2
iG + l2

ig1

sjj0 = l2
jG + l2

jg2

sij = liGljG

ð1Þ

Note that we do not show the relationship between the variances for measures and the

model parameters because the error variances are adjusted in estimating the model such

that these variances plus the model-implied variances of measures have to be equal to

the variances of the measures using maximum likelihood methods. Now examining

Equation (1), we see that there are three distinct values for the covariances, but four

unknown model parameters. Accordingly, parameter estimates based on fitting the

bifactor analysis model in Figure 1 to the HWHB covariance matrix are not unique.

Two Nonunique Solutions for Each of the HWHB Covariance Matrices

To further illustrate the underidentification problem at the population level, we pres-

ent two HWHB covariance matrices and one covariance matrix that is not HWHB in

Table 1. Lower-Left Triangle of the Homogeneous-Within and Homogeneous-Between
(HWHB) Covariance Matrix and the Factor Loading Matrix Associated With the HWHB
Covariance Matrix.

HWHB covariance matrix (lower left triangle) Factor loading matrix

s2
X1

sii0 s2
X2

sii0 sii0 s2
X3

sii0 sii0 sii0 s2
X4

sij sij sij sij s2
X5

sij sij sij sij sjj0 s2
X6

sij sij sij sij sjj0 sjj0 s2
X7

sij sij sij sij sjj0 sjj0 sjj0 s2
X8

2
6666666666664

3
7777777777775

liG lig1
�

liG lig1
�

liG lig1
�

liG lig1
�

ljG � ljg2

ljG � ljg2

ljG � ljg2

ljG � ljg2

2
66666666664

3
77777777775
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Table 2. For simplicity, we created covariance matrices with 1s down the diagonal

(i.e., correlation matrices). We also present factor loading matrices that could repro-

duce the covariance matrices, although we know that the factor loading matrices for

the two HWHB covariance matrices are not unique. Note that for the factor loading

matrices for the two HWHB covariance matrices, we computed the numerical rank

based on the singular value decomposition. Both had a column rank of 2, and thus

were not of full rank. See the note for Table 2 for more detailed information.

Based on the formulas previously presented, we focused on two of an infinite

number of possible nonunique solutions for Covariance Matrices 1 and 2 in Table 2.

For the first nonunique solution (A), we made the assumption that all eight loadings

on the general factors were equal. For the second nonunique solution (B), we

assumed that the loadings for the second group factor were equal to 0. Making these

assumptions, we can solve for the remaining model parameters.

Nonunique Solution A:

If liG = ljG, then

liG = ljG =
ffiffiffiffiffiffi
sij

p
,

lig1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii0 � sij

p
, and

ljg2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjj0 � sij

p
ð2Þ

Nonunique Solution B:

If ljg2
= 0, then

ljG =
ffiffiffiffiffiffi
sjj0
p

,

liG =
sijffiffiffiffiffiffi
sjj0
p , and

lig1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii0 �

s2
ij

sjj0

s
:

ð3Þ

In that there are two solutions based on different assumptions (liG = ljG vs. ljg2
= 0),

parameter estimates are not unique.

For the first example covariance matrix in Table 2, the values of the parameters

for the two solutions are as follows:

Nonunique Solution A:

liG = ljG =
ffiffiffiffiffiffi
sij
p

=
ffiffiffiffiffiffiffi
:64
p

= :8

lig1
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii0 � sij
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:73� :64
p

= :3

ljg2
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjj0 � sij
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:73� :64
p

= :3

ð4Þ
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Nonunique Solution B:

ljg2
= 0,

ljG =
ffiffiffiffiffiffi
sjj0
p

=
ffiffiffiffiffiffiffi
:73
p

= :8544

liG =
sijffiffiffiffiffiffi
sjj0
p =

:64ffiffiffiffiffiffiffi
:73
p = :74906

lig1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii0 �

s2
ij

sjj0

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:73� :642

:73

s
= :411:

ð5Þ

Table 2. Example Covariance Matrices and Factor Loading Matrices That Are Consistent
With These Covariance Matrices.

Covariance Matrix 1 (HWHB) One set of factor loadings for a bifactor
model consistent with Covariance Matrix 1

1
:73 1
:73 :73 1
:73 :73 :73 1
:64 :64 :64 :64 1
:64 :64 :64 :64 :73 1
:64 :64 :64 :64 :73 :73 1
:64 :64 :64 :64 :73 :73 :73 1

2
66666666664

3
77777777775

:8 :3 0
:8 :3 0
:8 :3 0
:8 :3 0
:8 0 :3
:8 0 :3
:8 0 :3
:8 0 :3

2
66666666664

3
77777777775

Covariance Matrix 2 (HWHB) One set of factor loadings for a bifactor
model consistent with Covariance Matrix 2

1
:65 1
:65 :65 1
:65 :65 :65 1
:56 :56 :56 :56 1
:56 :56 :56 :56 :73 1
:56 :56 :56 :56 :73 :73 1
:56 :56 :56 :56 :73 :73 :73 1

2
66666666664

3
77777777775

:7 :4 0
:7 :4 0
:7 :4 0
:7 :4 0
:8 0 :3
:8 0 :3
:8 0 :3
:8 0 :3

2
66666666664

3
77777777775

Covariance Matrix 3 (not HWHB) Bifactor model consistent with
Covariance Matrix 3

1
:72 1
:70 :72 1
:68 :72 :76 1
:25 :30 :35 :40 1
:30 :36 :42 :48 :72 1
:35 :42 :49 :56 :70 :72 1
:40 :48 :56 :64 :68 :72 :76 1

2
66666666664

3
77777777775

:5 :7 0
:6 :6 0
:7 :5 0
:8 :4 0
:5 0 :7
:6 0 :6
:7 0 :5
:8 0 :4

2
66666666664

3
77777777775

Note. HWHB = homogeneous-within and homogeneous-between. The numerical rank of each of the

three factor loading matrices was computed based on the singular value decomposition. The first two

factor loading matrices were not of full column rank; both had a column rank of 2. The third factor

loading matrix was of full column rank. The specific singular values (to two decimal places) were 2.34,

.60, and .00 for the first covariance matrix, 2.24, .72, and .00 for the second covariance matrix, and 2.15,

1.12, and .35 for the third covariance matrix, respectively.
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For the second example covariance matrix in Table 2, the values of the parameters

for the two solutions are as follows:

Nonunique Solution A:

liG = ljG =
ffiffiffiffiffiffi
sij
p

=
ffiffiffiffiffiffiffi
:56
p

= :74833

lig1
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii0 � sij
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:65� :56
p

= :3

ljg2
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjj0 � sij
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:73� :56
p

= :4123

ð6Þ

Nonunique Solution B:

ljg2
= 0

ljG =
ffiffiffiffiffiffi
sjj0
p

=
ffiffiffiffiffiffiffi
:73
p

= :8544

liG =
sijffiffiffiffiffiffi
sjj0
p =

:56ffiffiffiffiffiffiffi
:73
p = :6554

lig1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii0 �

s2
ij

sjj0

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:65� :562

:73

s
= :4695

ð7Þ

For each covariance matrix, the two solutions yield the same model-implied covar-

iance matrix. Other assumptions would yield additional solutions for each covariance

matrix when analyzing the data with the analysis model in Figure 1.

Empirically Covariance-Equivalent Models

For each of the two HWHB covariance matrices, the freely estimated loadings

between the second group factor and last four indicators are zeros for nonunique

Solution B. Because the model yields a fit function value of zero for each of these

covariance matrices, we can surmise that a bifactor model with only a single group

factor (associated with the first four indictors or, alternatively, with the second four

indicators) fits the covariance matrix perfectly too. Provocatively, a correlated two-

factor pure-clustered model also evidences perfect fit to the covariance matrix,

although it has fewer degrees of freedom (16 vs. 19). These two two-factor models

produce equivalent and perfect fit for the two HWHB matrices and, thus, the same

model-implied covariance matrices. It is important to note that fitting a bifactor

model with a single-group factor or a correlated two-factor pure-clustered model to

the third covariance matrix (a non-HWHB covariance) produces a nonzero fit func-

tion value.

As described by Hershberger and Marcoulides (2013), two models are

covariance-equivalent models if they yield the same model-implied covariance

matrix regardless of the data. Alternatively, the term equivalent models frequently

has additional requirements, including that the two models have the same number of
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degrees of freedom (Bentler & Satorra, 2010; Hershberger & Marcoulides, 2013). In

our examples, the bifactor and correlated factor models produce the same model-

implied covariance matrix for the two HWHB covariance matrices, but not for the

non-HWHB covariance matrix. Consequently, we refer to these models as empiri-

cally covariance-equivalent models with respect to the two HWHB covariance

matrices. The bifactor with two-group factors (i.e., model presented in Figure 1) also

yields the same implied covariance matrix, but is not a practical alternative in that it

is empirically underidentified and, thus, the estimated parameters for any solution is

not interpretable.

We wanted to show the generality of these results across different HWHB covar-

iance matrices. To do so, we varied the values of the four types of factor loadings in

the factor loading matrix (liG, ljG, lig1
, and ljg2

) from .3 to .8 for each type, exclud-

ing combinations that yielded communalities for one or more indicators that were

equal to or greater than 1. We then generated HWHB covariance matrices for the

961 valid combinations. For all combinations, the fit function values were zero when

fitting a bifactor model with a single group factor or a correlated two-factor pure-

clustered model to these HWHB covariance matrices. Thus, it appears that these two

models are empirically covariance equivalent for HWHB covariance matrices.

Influence of Start Values on Bifactor Model Results

We were interested in what occurs at the population level when fitting the bifactor

model in Figure 1 to the three example covariance matrices using different start val-

ues. We first consider fitting the model to the HWHB covariance matrices and then

to the non-HWHB covariance matrix.

Results for HWHB Covariance Matrices. Given the model is empirically underidenti-

fied for the example HWHB covariance matrices (Covariance Matrices 1 and 2), we

expected the model parameter estimates to differ as a function of the start values.

We initially conducted these analyses with SAS CALIS and used start values based

on the parameter values for nonunique Solutions A and B as well as the default start

values provided by CALIS. As reported by the SAS manual (SAS Institute, 2013),

CALIS generates start values using a procedure by McDonald and Hartmann (1992)

or, if not possible, with ‘‘approximate factor analysis.’’ It should be noted that the

example covariance matrices are perfectly consistent with the model (i.e., perfect

fit), and, given the model is empirically underidentified for these HWHB covariance

matrices, the results produced perfect fit for all other possible nonunique solutions.

The results for these analyses are in rows labeled first matrix and second matrix of

Table 3.

The choice of start values had a strong effect on parameter estimates of our bifac-

tor models. When inputting the values of the parameters for solutions A and B, we

obtained parameter estimates for the analysis model that were very close to the

inputted start values. The SAS default start values were quite different from the other
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inputted start values for these two covariance matrices. Nevertheless, for the first

covariance matrix, the parameter estimates were essentially the same as those for

Solution B. In contrast, for the second covariance matrix, the parameter estimates

differed substantially from the others that were obtained with this matrix.

As expected, the model fit perfectly for all results. No error messages occurred

for the first covariance matrix with default start values. For all other five analyses,

CALIS gave error messages indicating that either the covariance matrix for estimates

was not of full rank, or the Moore–Penrose inverse was used in computing the covar-

iance matrix for estimates. The exception was for the Covariance Matrix 1 using the

CALIS start values. For this analysis, no error messages were shown. Provocatively

the results were essentially comparable with those using Solution B start values.

Based on these results, CALIS will indicate that there is a problem with empirically

underidentifed models in the population ‘‘most of the time.’’ It should be noted that

when error messages were given, they indicate a problem, but not that the model is

empirically underidentified.

To offer a generalization of our findings, we conducted these nine analyses in

Mplus and EQS. We summarized the similarity and difference in error messages

across these three SEM programs in Table A1 in Appendix A as well as presentation

of the error messages for the three programs. In summary, for the analyses based on

Solutions A and B for the Covariance Matrix 1 and Covariance Matrix 2, the error

messages are very similar. Example code is provided in Appendix B for the three

programs used to conduct these analyses.

Results for Non-HWHB Covariance Matrices. We also fit the bifactor model in Figure 1

to Covariance Matrix 3, which is not HWHB. These analyses were conducted with

CALIS. The parameter estimates are unique for this covariance matrix and conse-

quently there are no nonunique Solutions A and B. Accordingly, we created start val-

ues for ‘‘Solutions A and B’’ by creating patterns of start values that were similar to

these solutions for the other two covariance matrices. Thus, we inputted two sets of

start values plus the default start values to assess the impact of start values on esti-

mated factor loadings.

The results for these analyses are in the row labeled third matrix of Table 3. As

expected, because the model is identified mathematically and empirically, the para-

meter estimates of the analysis model were the same regardless of start values. In

addition, CALIS produced no error messages.

Empirical Underidentification at the Sample Level

In this section, we investigate at the sample level, empirical underidentification of

the bifactor model for the three covariance matrices. We manipulated start values

and sample size in this investigation. The three sets of start values were those investi-

gated at the population level: start values based on Solution A, start values based on

Solution B, and the CALIS default start values. The sample sizes were 100, 1,000, or
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5,000. The number of replications for each of the nine conditions (3 sets of start val-

ues 3 3 sample sizes) was 1,000. Sample data were generated using SAS IML based

on the model in Figure 1 with the three loading parameters specified in Table 2. The

residual variance for an item was fixed at one minus the sum of square of loadings on

that item. The mean and variance of factor was fixed at zero and one, respectively.

The intercept of each item was zero. All the data were generated to be multivariately

normal distributions in the population. Each data set was analyzed with CALIS using

the maximum likelihood estimation method. In terms of results, we were interested in

the effect of start values and sample size on the percent of replications that converged

and percent of replications with converged solutions that produced error messages.

In Table 4, we present the results of convergence rates and error messages rates

across the 1,000 replications. Except when the sample size was 100, the convergence

rates were close to 100% or 100% for the third covariance matrix (i.e., the matrix that

yields a unique solution for the bifactor analysis model at the population level). Even

when sample size was small (i.e., 100) for this covariance matrix, the convergence

rates were approximately 80% or higher.

In comparison and as expected, the convergence rates were lower for the first two

covariance matrices, which yield nonunique solutions for the bifactor analysis model

at the population level. The convergence rates for these matrices increased with sam-

ple size, but never exceed 77%, even with a sample size of 5,000. The convergence

rates were highest for start values based on Solution A (which assumes that all load-

ings on the general factor are equal) for both covariance matrices. The relative order-

ing of convergence rates for the other sets of start values differed depending on the

covariance matrix that was analyzed. The conclusion appears to be that empirical

underidentification at the population level can result in nonconvergence at the sam-

ple level, and the choice of start values affects convergence rates.

Overall the percentages of error messages across replications with converged solu-

tions were quite small for all conditions, never exceeding 7.4%. These percentages

increased with sample size, which covaried with convergence rates. We interpreted

these results to indicate that empirical underidentification at the population level

shows through at the sample level with convergence problems and, to the extent that

convergence occurs, with error messages.

Conclusions and Implications

Kenny and Milan (2012, p. 145) made the following statement about model

identification:

Identification is perhaps the most difficult concept for SEM researchers to understand.

We have seen SEM experts baffled and bewildered by issues of identification. We too have

often encountered very difficult SEM problems that ended up being problems of identifica-

tion. Identification is not just a technical issue that can be left to experts to ponder; if the

model is not identified the research is impossible.
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Empirical identification is a particular type of model identification, but could be

interpreted as even more difficult to understand in that it takes into account the data

to be analyzed. An objective of this article was to offer an in-depth analysis of empiri-

cal identification/underidentification in the context of a particular example: specifica-

tion of bifactor pure-clustered models with a HWHB covariance matrix. Through this

example, we hope that we have demystified some of the issues surrounding empirical

underidentification.

Conclusions for Methodologists

Our research findings are of particular importance to methodologists. In didactic

presentations of the bifactor model, we wanted to present simple examples of

bifactor models. A natural choice for these examples would be a bifactor pure-

clustered model with uniform general factor loadings and uniform factor loadings

for each group factor. Although we may present these examples in such a way that

empirical underidentification is not an issue, we should consider whether to warn

audiences that these models produce data that are empirically underidentified

when analyzed with bifactor pure-clustered models. See Reise, Scheines, Widman,

and Haviland (2013) for such an example. Also in conducting Monte Carlo stud-

ies, methodologists focusing on bifactor models are likely to generate and analyze

data using pure-clustered bifactor models that lead to empirical underidentifica-

tion (as we have done) because of the simplicity of the model structure. Clearly,

conditions using these generation and analysis models in combination should be

avoided.

Conclusions for Users of SEM

From an applied perspective, we have shown that error messages about the covar-

iance matrix of parameter estimates and lack of model convergence may be diagnos-

tic of empirical underidentification with a bifactor pure-clustered model. But we also

have shown that neither of these diagnostics may occur in the presence of empirical

underidentification. In addition, we have demonstrated that different start values can

lead to different solutions, but not necessarily for any two sets of start values. To be

confident that problems in SEM analyses are due to empirical underidentification, we

need to conduct a thorough examination of the analysis model in conjunction with

the data, as illustrated in this article.

Researchers who apply SEM are not likely to have the time or energy to examine

empirical underidentification in the manner that we have. These researchers are more

likely to apply heuristic rules, like the ones used to deal with mathematical identifi-

cation. One applicable heuristic rule that we discussed earlier in the article is that

empirical underidentification is more likely to occur for pure-clustered models with

two indicators per factor if the correlations between indicators associated with
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different factors approach zero. A heuristic rule based on this article is that empirical

underidentification is more likely to occur for a bifactor pure-clustered model if the

covariance matrix to be analyzed approaches a HWHB covariance matrix. Because

bifactor models are frequently applied in practice in recent years (Reise, 2012), it is

a helpful heuristic rule for researchers to know to explain problems that may occur

in conducting their analyses.

Prior to data collection, researchers may design a study to support the importance

of a particular bifactor pure-clustered model; however, to avoid empirical underiden-

tification, they have the unenviable job of predicting the type of data they are likely

to encounter. If they believe that the data might be a HWHB covariance matrix, then

they could take steps to avoid empirical underidentification. One remedy is to include

one or more indicators that assess the general factor, but not the group factors. A sec-

ond remedy is to include indicators that demonstrate different strengths of relation-

ships with the underlying factors. These two remedies may merge into one if the

indicators that were chosen to assess only the general factor turn out also to be

weakly related to the group factors. Researchers who are unable to anticipate the

nature of their covariance matrix prior to data collection may be forced to seek these

remedies after finding out that their sample data approximate a HWHB covariance

matrix; however, because they had not anticipated this problem when designing their

study, they may not have the required indicators.

Our results suggest an alternative approach if one specifies a bifactor pure-

clustered model and encounters a HWHB covariance matrix. One view of this out-

come is that the bifactor pure-clustered model is too complex for the data, and thus,

researchers should seek simpler models to assess. Based on our findings involving

empirically equivalent models, researchers should consider two alternative models to

investigate: a bifactor model with one fewer group factors and/or a pure-clustered

model with correlated factors. These two models should produce approximately the

same fit with sample data as the bifactor pure-clustered model, but avoid empirical

underidentification. In taking this route, researchers are essentially acknowledging

that the design of their study (and specifically the chosen measures) does not permit

a test of the hypothesized bifactor pure-clustered model, and thus, they must evaluate

less complex models. The choice between simpler models should be dictated by the-

ory and previous research.

Appendix A

Detail Information About Error Messages

In Appendix A, we provide detailed information about the error messages provided

by SAS, EQS, and Mplus. In Table A1, we show when various software programs

gave error messages for the different population covariance matrices analyzed.

We next include example error messages provided by the three SEM software programs:
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CALIS.
NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for

parameter estimates.

WARNING: Standard errors and t values might not be accurate with the use of the

Moore-Penrose inverse.

NOTE: Covariance matrix for the estimates is not full rank.

NOTE: The variance of some parameter estimates is zero or some parameter esti-

mates are linearly related to other parameter estimates as shown in the fol-

lowing equations.

EQS.
PARAMETER CONDITION CODE

V8,F3 LINEARLY DEPENDENT ON OTHER PARAMETERS

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

V8,F3 VARIANCE OF PARAMETER ESTIMATE IS SET TO ZERO.

Mplus.
THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES COULD

NOT BE COMPUTED. THE MODEL MAY NOT BE IDENTIFIED. CHECK

YOUR MODEL.

PROBLEM INVOLVING THE FOLLOWING PARAMETER:

Parameter 10, GROUP2 BY X5

Table A1. Error Messages From SAS Proc CALISb, EQS, and Mplus for the Three Covariance
Matrices.

Analyses based on three sets of start values

Covariance matrix Software Solution A Solution B Default start valuesa

Matrix 1 SAS x X No
EQS xb X No
Mplus x X X

Matrix 2 SAS x X X
EQS x X No

Mplus x X X
Matrix 3 SAS No No No

EQS No X No
Mplus No X No

Note. x denotes that error messages are provided by the software program; ‘‘No’’ indicates that the

model converged with no error/warning message provided by the software program.
aFor analyses based on default starts, we did not expect the three programs to provide identical error

messages for Covariance Matrices 1 and 2 because CALIS uses different default start values (as described

in the body of the article) from EQS and Mplus for loadings. The default start value for factor loadings is

one in both EQS and Mplus.
bWe conducted analyses using both EQS 6.1 and 6.3. The two versions of EQS performed similarly

except for the analysis with the superscript b. EQS 6.1 provided an error message indicating that the

standard errors are not estimable and are fixed as zero. In EQS 6.3, there is no error message, but we

noticed that the standard errors for loadings were extremely large and so results were not interpretable.
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Appendix B

Example Code for Different SEM Software

In Appendix B, we present example code for analyses based on Solution A and

Covariance Matrix 1.

CALIS.

data Dat(TYPE=COV);

_type_= 0COV0;
INPUT _NAME_ $ x1-x8;

Datalines;

X1 1.00 .73 .73 .73 .64 .64 .64 .64

X2 .73 1.00 .73 .73 .64 .64 .64 .64

X3 .73 .73 1.00 .73 .64 .64 .64 .64

X4 .73 .73 .73 1.00 .64 .64 .64 .64

X5 .64 .64 .64 .64 1.00 .73 .73 .73

X6 .64 .64 .64 .64 .73 1.00 .73 .73

X7 .64 .64 .64 .64 .73 .73 1.00 .73

X8 .64 .64 .64 .64 .73 .73 .73 1.00

;

run;

proc calis cov data=Dat method=max nobs=10000 maxiter=500;

lineqs

x1=a1 (.8) *F1 + b1(.3) *F2 + e1,

x2=a2 (.8) *F1 + b2(.3) *F2 + e2,

x3=a3 (.8) *F1 + b3(.3) *F2 + e3,

x4=a4 (.8) *F1 + b4(.3) *F2 + e4,

x5=a5 (.8) *F1 + c1(.3) *F3 + e5,

x6=a6 (.8) *F1 + c2(.3) *F3 + e6,

x7=a7 (.8) *F1 + c3(.3) *F3 + e7,

x8=a8 (.8) *F1 + c4(.3) *F3 + e8;

std

e1=ve1,e2=ve2,e3=ve3,e4=ve4,e5=ve5,e6=ve6,e7=ve7,e8=ve8,

F1=1,F2=1,F3=1;

cov

F1 F2=0, F1 F3=0, F2 F3=0;

run;
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EQS.

/TITLE

Matrix 1_Solution A

/SPECIFICATIONS

CASES = 10000; VARIABLES = 8; MATRIX=COVARIANCE;

/LABELS

V1=X1; V2=X2; V3=X3; V4=X4; V5=X5;

V6=X6; V7=X7; V8=X8;

/EQUATIONS

V1=.8*f1 + .3*f2 + e1;

V2=.8*f1 + .3*f2 + e2;

V3=.8*f1 + .3*f2 + e3;

V4=.8*f1 + .3*f2 + e4;

V5=.8*f1 + .3*f3 + e5;

V6=.8*f1 + .3*f3 + e6;

V7=.8*f1 + .3*f3 + e7;

V8=.8*f1 + .3*f3 + e8;

/VARIANCES

f1=1.00; f2=1.00; f3=1.00;

e1=*; e2=*; e3=*; e4=*; e5=*; e6=*; e7=*; e8=*;

/COVARIANCES

f1, f2=0; f1, f3=0; f2, f3=0;

/tech

iter=500;

/MATRIX

1.00

0.73 1.00

0.73 0.73 1.00

0.73 0.73 0.73 1.00

0.64 0.64 0.64 0.64 1.00

0.64 0.64 0.64 0.64 0.73 1.00

0.64 0.64 0.64 0.64 0.73 0.73 1.00

0.64 0.64 0.64 0.64 0.73 0.73 0.73 1.00

/END

Mplus.

Data:

file is matrix1.txt;
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! The file ‘‘matrix1.txt’’ contains the lower triangle of the covariance matrix 1

with 1s in diagonal.

type is covariance;

nobservations=10000;

Variable:

Names are x1-x8;

Usevariables are x1-x8;

Model:

general by x1*.80 x2*.80 x3*.80 x4*.80 x5*.80 x6*.80 x7*.80 x8*.80;

group1 by x1*.30 x2*.30 x3*.30 x4*.30;

group2 by x5*.30 x6*.30 x7*.30 x8*.30;

general@1;group1@1;group2@1;

general with group1@0 group2@0;

group1 with group2@0;
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