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1 INTRODUCTION
The primary field of development of agent-based models in economics has been the
theory of price formation in financial markets. It is also in this area that we find the
vast majority of attempts in recent literature to develop methods for estimation of
such models. This is not an accidental development. It is rather motivated by the
particular set of ‘stylized facts’ observed in financial markets. These are overall sta-
tistical regularities characterizing asset returns and volatility, and they seem to be
best understood as emergent properties of a system composed of dispersed activity
with conflicting centrifugal and centripetal tendencies. Indeed, ‘mainstream’ finance
has never even attempted an explanation of these stylized facts, but often has labeled
them ‘anomalies’. In stark contrast, agent-based models seem to be generically able
to relatively easily replicate and explain these stylized facts as the outcome of market
interactions of heterogeneous agents.

The salient characteristics of the dynamics of asset prices are different from those
of dynamic processes observed outside economics and finance, but are surprisingly
uniform across markets. There are highly powerful tools available to quantify these
dynamics, such as GARCH models to describe time-varying volatility (see Engle and
Bollerslev, 1986) and Extreme Value Theory to quantify the heaviness of the tails of
the distribution of asset returns (see e.g. Embrechts et al., 1997). For a long time
very little has been known about the economic mechanisms causing these dynamics.
The traditional paradigm building on agent rationality and consequently also agent
homogeneity has not been able to provide a satisfying explanation for these complex
dynamics. This lack of empirical support coupled with the unrealistic assumptions of
the neoclassical approach has contributed to the introduction and rise of agent-based
models (ABMs) in economics and finance; see e.g. Arthur (2006) in the previous
edition of this handbook.

Whereas the strength of ABMs is certainly their ability to generate all sorts of
complex dynamics, their relatively (computationally) demanding nature is a draw-
back. This was, among others, a reason why Heterogeneous Agent Models (HAMs)
were developed as a specific type of agent based models. Most HAMs only con-
sider two very simple types of agents. Specifically, most models contain a group of
fundamentalists expecting mean reversion and chartists expecting trend continuation.
The main source of dynamics, however, is a switching function allowing agents to
switch between the two groups conditional on past performance. Interestingly, even
such simplified and stylized versions of ABMs are capable of replicating the complex
price dynamics of financial markets to a certain degree; see e.g. Hommes (2006) for



1 Introduction 439

an overview. Recent research has also collected catalogs of stylized facts of macroe-
conomic data, and agent-based approaches have been developed to explain those (e.g.
Dosi et al., 2013, 2015).

Due to the aforementioned background of ABMs, the early literature has typi-
cally been relying on simulations to study the properties of models with interacting
agents. By doing so, authors were able to illustrate the ability of ABMs to generate
complex dynamic processes resembling those observed in financial markets. There
are, however, several good reasons why especially ABMs should be confronted with
empirical data. First of all, ABMs are built on the notion of bounded rationality. This
generates a large number of degrees of freedom for the theorist as deviations from ra-
tionality can take many forms. Empirical verification of the choices made in building
the models can therefore enforce discipline in model design. Second, by confronting
ABMs with empirical data, one should get a better understanding of the actual law of
motion generating market prices. Whereas simulation exercises with various config-
urations might generate similar dynamics, a confrontation with empirical data might
allow inference on relative goodness-of-fit in comparison to alternative explanations.
This is especially appealing because the introduction of ABMs was empirically mo-
tivated in the first place. Finally, empirical studies might allow agent based models
to become more closely connected to the ‘mainstream’ economics and finance lit-
erature. Interestingly, certain elements underlying ABMs have been used in more
conventional settings; see for example Cutler et al. (1991) or Barberis and Shleifer
(2003), who also introduce models with boundedly rational and interacting agents.
Connections between these streams of literature, however, are virtually non-existent.
By moving on to empirical validation, which could also serve as a stepping stone to-
wards more concrete applications and (policy) recommendations, the ABM literature
should become of interest and relevance to a broader readership.

While ABMs are based on the behavior of and interaction between individual
agents, they typically aspire to explain macroscopic outcomes and therefore most
empirical studies are also focusing on the market level. The agent based approach,
however, by definition has at its root the behavior of individual agents and, by doing
so, any ABM necessarily makes a number of assumptions about individual behavior.
Stepping away from the rational representative agent approach implies that alter-
native behavioral assumptions have to be formulated. Whereas rational behavior is
uniquely defined, boundedly rational behavior can take many forms. Think, for exam-
ple, of the infinite number of subsets that can be extracted from the full information
set relevant for investing, let alone the sentiment that agents might incorporate in
their expectations. To address these two issues, Hong and Stein (1999) define three
criteria the new paradigm should adhere to, which serve as a devise to restrict the
modeler’s imagination. The candidate theory should (i) rest on assumptions about in-
vestor behavior that are either a-priori plausible or consistent with casual observation;
(ii) explain the existing evidence in a parsimonious and unified way; and (iii) make a
number of further predictions that can be subject to out-of-sample testing. Whereas
empirical evidence at the macro-level mainly focuses on criteria (ii) and (iii), micro-
level evidence is necessary to fulfill criterion (i) and thereby find support for the
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assumptions made in building the agent based models. This is especially pressing
for the reduced form models discussed in Section 3, as a number of assumptions are
made for example regarding the exact functional form of the heterogeneous groups.

Taking ABMs to the data is not straightforward due to an often large number of
unknown parameters, nonlinearity of the models leading to a possibly non-monotonic
likelihood surface, and sometimes limited data availability. As such, one needs to
make choices in order to be able to draw empirical inferences. In this review, we dis-
tinguish between two approaches. The first approach covers (further) simplifications
of ABMs and HAMs to reduced form models making them suitable for estimation
using relatively standard econometric techniques. These reduced form models are of-
ten sufficiently close to existing econometric models, with the additional benefit of a
behavioral economic underpinning. The second approach is less stringent in the ad-
ditional assumptions made on agent behavior, but requires more advanced estimation
methods. Typically, these methods belong to the class of simulation-based estima-
tors providing the additional benefit that the model is not fitted on the mean of the
data, as typically is the case when using standard estimation techniques, but on the
(higher) moments. This creates a tighter link between the original purpose of ABMs
of explaining market dynamics and the empirical approach.

All in all, the empirical literature on agent based models has been mounting over
the past decade. There have been interesting advances in terms of methods, models,
aggregation approaches, as well as markets, which we will review in this chapter. The
empirical results generally appear to be supportive of the agent-based approach, with
an emphasis on the importance of dynamics in the composition of market partici-
pants. The estimation methods and exact functional forms of groups of agents vary
considerably across studies, making it hard to draw general conclusions and to com-
pare results across studies. The common denominator, however, is that virtually all
studies find evidence in support of the relevance of the heterogeneity of agents. Al-
lowing agents to switch between groups generally has a positive effect on model fit.
These results typically hold both in-sample and out-of-sample. In view of the dom-
inance of financial market applications of agent-based models, most of this survey
will be dealing with attempts at estimating ABMs designed to explain asset price
dynamics. We note, however, that the boundaries between agent-based models and
more traditional approaches are becoming more and more fuzzy. For example, recent
dynamic game-theoretic and microeconomic models (Blevins, 2016; Gallant et al.,
2016) also entail a framework of a possibly heterogeneous pool of agents interact-
ing in a dynamic setting. Similarly, heterogeneity has been allowed for in standard
macroeconomic models in various ways (e.g., Achdou et al., 2015). However, all
these approaches are based on inductive solutions of the agents’ optimization prob-
lem while models that come along with the acronym ABM would typically assume
some form of bounded rationality. We stick to this convention and mainly confine
attention to ABMs with some kind of boundedly rational behavior. Notwithstand-
ing this confinement, models with a multiplicity of rational agents might give rise to
similar problems and solutions when it comes to their empirical validation.
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Being boundedly rational agents ourselves, this chapter no doubt suffers from the
heuristics we have applied in building a structure and selecting papers. As such, this
review should not be seen as an exhaustive overview of the existing literature, but
rather as our idiosyncratic view of it. The remainder of the chapter is organized as
follows. In Section 2 we discuss which insights economists can gain from other fields
when it comes to estimation of ABMs. Whereas Section 3 discusses reduced form
models, Section 4 reviews the empirical methods employed in estimation of more
general variants of agent-based models. It also proposes a new avenue for estimation
by means of state-space methods, which have not been applied in agent-based models
in economics and finance so far. Section 5 discusses the empirical evidence for ABMs
along different types of data at both the individual and the aggregate level that can
be used to validate agent-based models. Section 6, finally, concludes and offers our
view on the future of the field.

2 ESTIMATION OF AGENT-BASED MODELS IN OTHER FIELDS
The social sciences seem to be the field predestined for the analysis of individual ac-
tors and the collective behavior of groups of them. However, agent-based modeling
is not strictly confined to subjects dealing with humans, as one could, for example,
also conceive of the animals or plants of one species as agents, or of different species
within an ecological system. Indeed, biology is one field in which a number of po-
tentially relevant contributions for the subject of this review can be found. Before we
move on to such material, we first provide an overview over agent-based models and
attempts at their validation in social sciences other than economics.

2.1 SOCIOLOGY
Sociology by its very nature concerns itself with the effects of interactions of hu-
mans. In contrast to economics, there has never been a tradition like that of the
‘representative agent’ in this field. Hence, interaction among agents is key to most
theories of social processes. The adaptation of agent-based models on a relatively
large scale coincided with a more computational approach that has appeared over the
last decades. Many of the contributions published in the Journal of Mathematical
Sociology (founded in 1971) can be characterized as agent-based models of social in-
teractions, and the same applies to the contributions to Social Networks (founded
in 1979). The legacy of seminal contributions partly overlaps with those consid-
ered milestones of agent-based research in economic circles as well, e.g. Schelling’s
model of the involuntary dynamics of segregation processes among ethnic groups
(Schelling, 1971), and Axelrod’s analysis of the evolution of cooperation in repeated
plays of prisoners” dilemmas (Axelrod, 1984). Macy and Willer (2002) provide a
comprehensive overview over the use of agent-based models and their insights in so-
ciological research. More recently, Bruch and Atwell (2015) and Thiele et al. (2014)
discuss strategies for validation of agent-based models.
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These reviews not only cover contributions in sociology alone, but also provide
details on estimation algorithms applied in ecological models as well as systematic
designs for confrontation of complex simulation models with data (of which agent-
based models are a subset). A systematic approach to estimation of an interesting
class of agent-based models has been developed in network theory. The pertinent
class of models has been labeled ‘Stochastic Actor-Oriented Models’ (SAOM). It
formalizes individuals’ decisions to form and dissolve links to other agents within a
network setting. This framework bears close similarity to models of discrete choice
with social interactions in economics (Brock and Durlauf, 2001a, 2001b). The deci-
sion to form, keep or give up a link is necessarily of discrete nature. Similar to discrete
choice models, the probabilities for agents to change from one state to another are for-
malized by multinomial logit expressions. This also allows the interpretation that the
agents’ objective functions contain a random idiosyncratic term following an extreme
value distribution. The objective function naturally is a function evaluating the actor’s
satisfaction with her current position in the network. This ‘evaluation function’ is, in
principle, completely flexible and allows for a variety of factors of influence on indi-
viduals’ evaluation of network ties: actor-specific properties whose relevance can be
evaluated by including actor covariates in the empirical analysis (e.g., male/female),
dyadic characteristics of pairs of potentially connected agents (e.g., similarity with
respect to some covariate), overall network characteristics (e.g., local clustering), as
well as time-dependent effects like hysteresis or persistence of existing links or ‘habit
formation’ (e.g., it might be harder to cut a link, the longer it has existed).

Snijders (1996) provides an overview over the SAOM framework. For estimation,
various approaches have been developed: Most empirical applications use the method
of moments estimator (Snijders, 2001), but recently also a Generalized Method of
Moments (GMM) approach has been developed (Amati et al., 2015). Maximum
likelihood estimation (Snijders et al., 2010) and Bayesian estimation (Koskinen
and Snijders, 2007) are feasible as well. The set-up of the SAOM approach differs
from that of discrete choice models in economics in that agents operate in a non-
equilibrium setting, while the discrete choice literature usually estimates its models
under rational expectations, i.e. assuming agents are operating within an equilibrium
configuration correctly taking into account the influence of each agent on all other
agents’ utility functions. While the SAOM framework does not assume consistency
of expectations, one can estimate its parameters under the assumption that the data
are obtained from the stationary distribution of the underlying stochastic process. If
the model explicitly includes expectations (which is typically not the case in applica-
tions in sociology) these should then have become consistent. Recent generalizations
include an extension of the decision process by allowing for additional behavioral
variables besides the network formation activities of agents (Snijders et al., 2007)
and modeling of bipartite networks, i.e. structures consisting of two different types
of agents (Koskinen and Edling, 2012). The tailor-made R package SIENA (Snijders,
2017) covers all these possibilities, and has become the work tool for a good part of
sociological network research. Economic applications include the analysis of man-
agers’ job mobility on the creation of interfirm ties (Checkley and Steglich, 2007),
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and the analyses of link formation in the interbank money market (Zappa and Za-
gaglia, 2012; Finger and Lux, 2017). A very similar approach to the estimation of
network models of human interactions within the context of development policy can
be found in Banerjee et al. (2013).

2.2 BIOLOGY
Agent-based simulation models have found pervasive use in biology, in particular for
modeling of population dynamics and ecological processes. The range of methods to
be found in these areas tends to be wider than in the social sciences. In particular,
various simulation-based methods of inference are widely used that have apparently
hardly ever been adopted for validation of ABMs in the social sciences or in eco-
nomics. Relatively recent reviews can be found in Hartig et al. (2011) and Thiele
et al. (2014), who both cover ecological applications along with sociological ones.
Methods used for estimation of the parameters of ecological models include Markov
Chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC), and particle filters,
which are all closely related to each other. In most applications, the underlying model
is viewed as a state-space model with one or more unobservable state(s) governed
by the agent-based model and a noisy observation that allows indirect inference on
the underlying states together with the estimation of the parameters of the pertinent
model. In a linear, Gaussian framework for both the dynamics of the hidden state
and the observation, such an inference problem can be solved most efficiently with
the Kalman filter. In the presence of nonlinearities and non-Gaussianity, alternative,
mostly simulation-based methods need to be used. An agent-based model governing
the hidden states by its very nature typically is a highly nonlinear and non-Gaussian
process, and often can only be implemented by simulating its defining microscopic
laws of motion. The simulation-based methods mentioned above would then allow
to numerically approximate the likelihood function (or if not available, any other ob-
jective function) via some population-based evolutionary process for the parameters
and states, in which the simulation of the ABM itself is embedded.

Markov Chain Monte Carlo samples the distribution of the model’s parameters
within an iterative algorithm in which the next step depends on the likelihood of
the previous one. In each iteration, a proposal for the parameters is computed via a
Markov Chain, and the proposal is accepted with a probability that depends on its
relative likelihood vis-à-vis the previous draws and their relative probabilities to be
drawn in the Markov chain. After a certain transient this chain should converge to the
stationary distribution of the parameters allowing to infer their expectations and stan-
dard errors. In Sequential Monte Carlo, it is not one realization of parameters, but a
set of sampled realizations that are propagated through a number of intermediate steps
to the final approximation of the stationary distribution of the parameters (cf. Hartig
et al., 2011). In an agent-based (or population-based) framework, the simulation of
the unobservable part (the agent-based part) is often embedded via a so-called par-
ticle filter in the MCMC or SMC framework. Proposed first by Gorden et al. (1993)
and Kitagawa (1996), the particle filter approximates the likelihood of a state-space
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model by a swarm of ‘particles’ (possible realizations of the state) that are propagated
through the state and observation parts of the system. Approximating the likelihood
by the discrete probability function summarizing the likelihood of the particles, one
can perform either classical inference or use the approximations of the likelihood as
input in a Bayesian MCMC or SMC approach.

Advanced particle methods use particles simultaneously for the state and the pa-
rameters (Kitagawa, 1998). With the augmented state vector, filtering and estimation
would be executed at the same time, and the surviving particles of the parameters at
the end of one run of this so-called ‘auxiliary’ particle filter would be interpreted as
parameter estimates. Instructive examples from a relatively large pertinent literature
in ecology include Golightly and Wilkinson (2011), who estimate the parameters of
partly observed predator-prey systems via Markov Chain Monte Carlo together with
a particle filter of the state dynamics, or Ionides et al. (2006), who apply frequen-
tist maximum likelihood based on a particle filter to epidemiological data. MCMC
methods have also been applied for rigorous estimation of the parameters of traffic
network models, cf. Molina et al. (2005). An interesting recent development is Ap-
proximate Bayesian Computation (ABC) that allows inference based on MCMC and
SMC algorithms using objective functions other than the likelihood (Sisson et al.,
2005; Toni et al., 2008). Since it is likely that for ABMs of a certain complexity, it
will not be straightforward to evaluate the likelihood function, these methods should
provide a welcome addition to the available toolbox.

2.3 OTHER FIELDS
Agent-based models can be viewed as a subset of ‘computer models’, i.e., models
with an ensemble of mathematical regularities that can only be implemented nu-
merically. Such models might not have units that can be represented as agents, but
might take the form of large systems of complex (partial) differential equations. Ex-
amples are various models of industrial processes (cf. Bayarri et al., 2007), or the
fluid dynamical systems used in climate change models (Stephenson et al., 2012). In
biology, one might, in fact, sometimes have the choice to use an agent-based represen-
tation of a certain model, or rather a macroscopic approximation using, for example,
a low-dimensional system of differential equations (cf. Golightly et al., 2015, for
such an approach in an ecological model). Similar approximation of agent-based
models in economics can be found in Lux (2009a, 2009b, 2012). The same choice
might be available for other agent-based models in economics or finance (see below
Section 4.3). In macroeconomics, dynamic stochastic general equilibrium (DSGE)
models are medium-sized systems of non-linear difference equations that have also
been estimated in recent literature via Markov Chain Monte Carlo and related meth-
ods (e.g., Amisano and Tristani, 2010).

In climate modeling, epidemics (Epstein, 2009), and industrial applications (Ba-
yarri et al., 2007), models have become so complex that an estimation of the complete
model often becomes unfeasible. The same applies to computational models in an-
thropology such as the well-known model of Anasazi settlement dynamics in north-
eastern Arizona (Axtell et al., 2002). The complexity of such models also implies that
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only a limited number of scenarios can be simulated and that different models can at
best be compared indirectly. The epistemological consequences of this scenario are
intensively discussed in climate change research as well as in the social sciences (cf.
Carley and Louie, 2008). In the context of very complex models and/or sparse data,
empirical validation is often interpreted in a broader sense than estimation proper.
Aiming to replicate key regularities of certain data is known in ecology as pattern-
oriented modeling (cf. Grimm et al., 2005). This is equivalent to what one would call
‘matching the stylized facts’ in economics. As far as patterns can be summarized as
functions of the data and a simulated agent-based model could be replicated without
too much computational effort, a more rigorous version of pattern-oriented modeling
would consist in a method-of-moments approach based upon the relevant patterns.
However, even if only a small number of simulations of a complex simulation model
can be run, estimation of parameters through rigorous exploitation of the (scarce)
available information is possible. Within the framework of industrial applications
and epidemiological dynamics, Bayarri et al. (2007), Higdon et al. (2008), and Wang
et al. (2009) provide a systematic framework for a Bayesian estimation approach that
corrects the biases and assesses the uncertainties inherent in large simulation models
that can neither be replicated often nor selectively modified. In the analysis of com-
plex models of which only a few replications are available often so-called emulation
methods are adopted to construct a complete response of model output on parameters.
Typically, emulator functions make use of Gaussian processes and principal compo-
nent analysis (e.g., Hooten and Wikle, 2010; Heard, 2014; Rasouli and Timmermans,
2013). One might envisage that such a framework could also be useful for macroe-
conomics once agent-based models of various economic spheres are combined into
larger models.

3 REDUCED FORM MODELS
The literature on agent-based models was initially purely theoretical in nature. As
such, the benchmark models did not take the restrictions into account that empirical
applications require. A number of issues in the theoretical models need to be ad-
dressed before the models can be confronted with empirical data, especially when
focusing on market level studies. One direction is to use advanced econometric tech-
niques, which we will discuss in Section 4. Another direction is to rewrite the model
in a reduced form. Bringing HAMs to the data introduces a trade-off between the
degree of micro-foundation of the (empirical) model and the appropriateness of the
model for estimation. A first choice is the form of the dependent (endogenous) vari-
able. Several models, such as, for example, Day and Huang (1990) and Brock and
Hommes (1997), are written in terms of price levels. This poses no problems in an
analytical or simulation setting, but could become problematic when turning to cal-
ibration or estimation. Most standard econometric techniques assume that the input
data is stationary. This assumption, however, is typically violated when using finan-
cial prices or macroeconomic time series.



446 CHAPTER 8 Empirical Validation of Agent-Based Models

The second issue is the identification of coefficients. The theoretical models con-
tain coefficients that might not all be identified econometrically, which means that
one could not obtain an estimate of all the behavioral parameters of a model but
that, for instance, only composite expressions of the primitive parameters can be es-
timated. A third issue relates to the switching mechanism that is typically applied
in HAMs. Allowing agents to switch between strategies is, perhaps, the identifying
characteristic of HAMs and an important source of dynamics in simulation settings.
At the same time it poses a challenge for empirical work, as the switching function is
by definition non-linear which could create a non-monotonic likelihood surface.

A final issue we want to discuss here, is the choice of the fundamental value in
asset-pricing applications. The notion of a fundamental value is intuitively appealing
and central to the behavior of ‘fundamentalists’ in HAMs. Empirically, though, the
‘true’ fundamental value is principally unobservable. As there is no objective choice
for the fundamental value, any estimation of a model including a fundamental value
will therefore inevitably suffer from the ‘joint hypothesis problem’, cf. Fama (1991).
We will discuss these four issues in more detail in the following subsections.

3.1 CHOICE OF DEPENDENT VARIABLE
Whereas several HAMs are principally written in terms of price levels, empirical
studies using market data are hardly ever based on price levels due to the non-
stationarity issue. Possible solutions to this issue include working with alternative
econometric methods, such as, e.g., cointegration techniques (Amilon, 2008; Frijns
and Zwinkels, 2016a, 2016b) or simulation techniques (Franke, 2009; Franke and
Westerhoff, 2011), but the more typical solution is to reformulate the original model
such that the left hand side variable is stationary.

Two main approaches consist of empirical models in terms of returns, �Pt =
Pt − Pt−1 with Pt the asset price at time t , and empirical models in terms of price
deviation from the fundamental, Pt − P ∗

t . The choice between the two is driven by
the underlying HAM, or more specifically its micro-foundation and market clearing
mechanism.1 Micro-founded equilibrium models based on a Walrasian auctioneer,
such as Brock and Hommes (1997, 1998), assume the existence of an all-knowing
auctioneer who collects all supply and demand schedules and calculates the market
clearing price. These models are typically written in terms of price levels. It is not
possible to convert these into price changes because prices are modeled as a non-
linear function of lagged prices. Disequilibrium models based on the notion of a
market maker, see Beja and Goldman (1980), Day and Huang (1990), or Chiarella
(1992) for early examples, assume that net demand (supply) causes prices to increase
(decrease) proportionally, without assuming market clearing. These models are typi-
cally written in terms of price changes or are easily reformulated as such.2

1See Hommes (2006) for a more in-depth discussion about different forms of market clearing in HAMs.
2Note that time series of price changes are not necessarily stationary because price levels can have different
orders of magnitude if the sample period is long enough. As such, an empirical model based on returns or
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The most widely applied configuration is the model with a market maker in terms
of price changes or returns (see e.g. Frankel and Froot, 1990; Reitz and Westerhoff,
2003; Reitz et al., 2006; Manzan and Westerhoff, 2007; De Jong et al., 2009, 2010;
Kouwenberg and Zwinkels, 2014, 2015). The empirical models are typically of the
form:

�Pt = c + w
f
t α(Pt−1 − P ∗

t−1) + wc
t β�Pt−1 + εt (1)

in which w
f
t and wc

t are the fundamentalist and chartist weights, respectively, εt is
the noise factor and c, α, and β are the coefficients to be estimated. Given that both
the left hand and right hand side variables are denoted in differences, the stationarity
issue is largely extenuated. At the same time, there is no (explicit) micro-foundation
in the sense of a utility or profit maximizing framework that motivates the behavior
of the two groups of agents in this model.

In a series of papers, Alfarano et al. (2005, 2006, 2007) set up a HAM with trad-
ing among speculators and a market maker that results in a dynamic process for log
returns. They derive a closed-form solution for the distribution of returns that is con-
ditional on the structural parameters of the model and estimate these parameters via
an approximate maximum likelihood approach. In a follow-up study, Alfarano et al.
(2008) derive closed form solutions to the higher moments of the distribution.

The second approach is to write the model in terms of price deviations from the
fundamental value, xt = Pt − P ∗

t , or a variant thereof. The implicit assumption that
is made, is that the price and fundamental price are cointegrated with cointegrating
vector (1,−1), such that the simple difference between the two is stationary.3 One
example of this approach is Boswijk et al. (2007), who initially base their study on
the Brock and Hommes (1998) model in terms of price levels:

Pt = 1

1 + r

H∑
h=1

nh,tEh,t (Pt+1 + yt+1), (2)

with Eh,t (·) denoting the expectation of agents of group h, nh,t their number at time t ,
yt the dividend and r the risk-free interest rate. Dividing the left and right-hand side
of Eq. (1) by dividend yt and assuming that yt+1 = (1 + g)yt , Eq. (2) can be written
in terms of price-to-cash flow

δt = 1

R∗ {1 +
H∑

h=1

nh,tEh,t (δt+1)} (3)

in which δ = Pt/yt and R∗ = (1 + g)/(1 + r). Assuming a fundamental value based
on the Gordon growth model, the fundamental is given by P ∗

t = 1+g
r−g

yt , such that

log price changes would technically speaking be the preferred solution. It remains challenging, however,
to have a micro-founded model that lends to a formalization in terms of log-prices.
3This is not a very restrictive assumption, as this is a characteristic one would expect from a properly
chosen fundamental value estimate.
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the fundamental price-to-cash-flow ratio is given by δ∗
t = 1+g

r−g
. Finally, Boswijk et al.

(2007) use xt = δt − δ∗
t as the input to their empirical model. This approach has been

applied, among others, by Chiarella et al. (2014).
Clearly, the choice of model has consequences on the results but also on the in-

terpretation of the results. The deviation type models assume that xt is the variable
that investors form expectations about, whereas the return type models assume that
�Pt is the variable that investors form expectations about. Theoretically these should
be equivalent, but we know from social psychology that people respond differently
to such different representations of the same information. For example, Glaser et al.
(2007) find in an experimental study that price forecasts tend to have a stronger mean
reversion pattern than return forecasts. Furthermore, in the deviation type models the
two groups of agents rely on the same type of information, namely xt−1 or last pe-
riod’s price deviation. Fundamentalism and chartism are subsequently distinguished
by the coefficients in the expectations function, in which a coefficient > 1 (< 1) im-
plies chartism (fundamentalism). This interpretation, however, is not exactly the same
as with the original models of fundamentalists and chartists because chartists do not
expect a price trend to continue but rather expect the price deviation from fundamen-
tal to increase. Furthermore, this setup is rather restrictive in that it does not allow
for the inclusion of additional trader types. In the return based models, on the other
hand, agents use different information sets as indicated in Eq. (1). This allows for
more flexibility as any trader type can be added to the system. De Jong et al. (2009),
for example, include a third group of agents to their model, internationalists, next to
fundamentalists and chartists.

There is also an important econometric difference between the deviation and re-
turn type models. In the deviation type models, the two groups are not identified
under the null of no switching because both rely exclusively on xt−1 as information;
the switching parameter is a nuisance parameter; see Teräsvirta (1994). As a result,
the statistical added value of switching is to be determined using a bootstrap proce-
dure. In the return-based models, however, this issue does not hold as both groups
remain identified under the null of no switching, and the added value of switching is
therefore determined by means of standard goodness-of-fit comparisons.4

3.2 IDENTIFICATION
The original HAMs have a relatively large number of parameters, which might not
all be identified in an estimation setting. As a result, the econometrician will have
to make one or more simplifying assumptions such that all parameters are identified.
As in the previous subsection, here we can also make the distinction between models
based on a Walrasian auctioneer and models based on a market maker.

4The exact goodness-of-fit test is conditional on the estimation method.
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Brock and Hommes (1997) build their model using mean-variance utility func-
tions, resulting in a demand function of group h of the form

zht = Eht (Pt+1 + yt+1 − RPt)

ahσ 2
(4)

in which R = 1 + r , a is the coefficient of risk aversion, and σ market volatility. Now
assume a very simple structure of the expectation formation rule:

Eht (Pt+1 + yt+1 − RPt) = αh(Pt−1 + yt−1 − RPt−2) (5)

such that

zht = αh(Pt−1 + yt−1 − RPt−2)

ahσ 2
. (6)

The empirical issue with such a demand function, is that the coefficients ah and
αh cannot be distinguished from each other. One solution is to take α′

h = αh/ahσ
2,

assuming volatility is constant such that α′
h is also a constant that can be estimated.

This assumption, however, is at odds with the initial motivation of HAMs to provide
an economic explanation for time-varying volatility. Therefore, the following steps
are typically taken. Summing up the demand functions over groups and equating to
supply yields the market clearing condition:

�hnht

Eht (Pt+1 + yt+1 − RPt)

ahσ 2
= zst (7)

in which nht is the proportion of agents in group h in period t , and zst is the supply
of the asset. Brock and Hommes (1997) subsequently assume a zero outside supply
of stocks, zst = 0, such that

RPt = �hnhtEht (Pt+1 + yt+1). (8)

In other words, by assuming zero outside supply, the risk aversion coefficients an drop
out of the equation and agents effectively become risk neutral provided all groups h
are characterized by the same degree of risk aversion (so that groups only differ in
their prediction of future price movements). This step eliminates the identification
issue, but also reduces the impact of agent’s preferences on their behavior. As an
alternative avenue, Hommes et al. (2005a, 2005b) introduce a market maker who
adjusts the price in the presence of excess demand or excess supply.

In a setting with a market maker, authors typically start by specifying demand
functions of the form

D
f
t = αf (Pt − P ∗

t ),

Dc
t = αc(Pt − Pt−1)

(9)

with superscripts f and c denoting the pertinent reaction coefficients of fundamen-
talists and chartists, respectively. Note that these are already simplified in the sense
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that risk preference is not taken into account. This either implies that agents are risk
neutral, or that αf and αc can be interpreted broader as coefficients capturing both
the expectation part and a risk adjustment part, αf = αf ′

/aσ . This works again under
the assumption that volatility σ is constant.

Aggregating demand of the two groups yields market demand:

Dm
t = n

f
t D

f
t + nc

t D
c
t (10)

such that the price equation is given by

Pt = Pt−1 + λDm
t + εt (11)

in which λ is the market maker reaction coefficient, and εt is a stochastic disturbance.
In this setting, the market maker reaction coefficient λ is empirically not identi-

fiable independently of αf and αc . Two solutions to this issue have been proposed.
Either one assumes that λ = 1 such that the estimated coefficient equals αh, or one
interprets the estimated coefficient as a market impact factor, equal to αhλ. Both so-
lutions entail that both groups have the same price elasticity of demand.

Both solutions described here result in extremely simple models of price forma-
tion. They do, however, capture the main behavioral elements of HAMs: boundedly
rational expectation formation by heterogeneous agents, consistent with empirical ev-
idence, combined with the ability to switch between groups. In addition, simulation
exercises also illustrate that certain variants of these models are still able to generate
some of the main stylized facts of financial markets, such as their excess volatility
and the emergence and breakdown of speculative bubbles (Day and Huang, 1990;
Chiarella, 1992). The ABM character underlying these empirical models essentially
represents an economic underpinning of time-varying coefficients in an otherwise
quite standard econometric model capturing conditional trends and mean-reversion.

3.3 SWITCHING MECHANISM
One of the main issues in estimating ABMs follows from the non-linear nature of
the model that (mainly) arises from the existence of the mechanism that governs
the switching between beliefs. As a result, the likelihood surface tends to be rugged
making it challenging to find a global optimum. This issue has been explored either
directly or indirectly by a number of papers. Several approaches have been used.

As an early example, Shiller (1984) introduces a model with rational smart money
traders and ordinary investors and shows that the proportion of smart money traders
varies considerably during the 1900–1983 period by assuming the aggregate effect
of ordinary investors to be zero. Frankel and Froot (1986, 1990) have a very similar
approach. Specifically, Frankel and Froot (1986) assume that market-wide expected
returns are equal to the weighted average of fundamentalist and chartist expectations:

�sm
t+1 = ωt�s

f

t+1 + (1 − ωt)�sc
t+1 (12)
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with �sm
t+1, �s

f

t+1 and �sc
t+1 denoting the expected exchange rate changes of the

overall ‘market’, of the fundamentalist group and of the chartist group, respectively,
and wt being the weight assigned by ‘the market’ to the fundamentalist forecast.5

By assuming that chartists expect a zero return, we get

ωt = �sm
t+1

�s
f

t+1

. (13)

Frankel and Froot (1990) subsequently proxy �sm
t+1 by the forward discount, and

�s
f

t+1 by survey expectations. In this way, they implicitly back out the time-varying
fundamentalist weight ωt from the data. Apart from making some strong assumptions
about agent behavior, this method identifies the time-varying impact of agent groups,
but does not identify the drivers of this time-variation.

Reitz and Westerhoff (2003) and Reitz et al. (2006) estimate a model of chartists
and fundamentalists for exchange rates by assuming the weight of technical traders
to be constant, and the weight of fundamental traders to depend on the normal-
ized misalignment between the market and fundamental price. As such, there is
no formal switching between forecasting rules, but the impact of fundamentalists is
time-varying. Manzan and Westerhoff (2007) introduce time-variation in the chartist
extrapolation coefficient by making it conditional on the current mispricing. Hence,
the authors are capturing a driver of dynamic behavior, but do not estimate a full-
fledged switching mechanism with switching between groups.

Another approach uses stochastic switching functions to capture dynamic behav-
ior, such as regime-switching models (Vigfusson, 1997; Ahrens and Reitz, 2005;
Chiarella et al., 2012) and state-space models (Baak, 1999; Chavas, 2000). The ad-
vantage of this approach relative to the deterministic switching mechanism that is
typically applied in HAMs is that it puts less structure on the switching mechanism
and thereby on the data. Furthermore, there is ample econometric literature studying
the characteristics of such models. The drawback is that the estimated model weights
have no economic interpretation as is the case for the deterministic switching func-
tions. In other words, the stochastic switching models are able to infer from the data
that agents switch between groups, but do not allow to draw inference about the mo-
tivation behind switching.6

Boswijk et al. (2007) is the first study that estimates a HAM with a deterministic
switching mechanism that captures switching between groups as well as the moti-
vation behind switching (in this case, the profit difference between groups). While

5The superscript m for ‘the market’ here is different from the one in Eq. (11) denoting a market maker.
In Frankel and Froot’s approach this rather refers to the portfolio managers or foreign exchange dealers
responsible for international investments to whom the fundamentalist and chartist forecasts provide con-
sultancy services. Upon past experience of their performance, the investors decide about the weights they
attach to both types of forecasts.
6Other econometric techniques that have not yet been applied but which could be interesting include
generalized autoregressive score (GAS) models, see Creal et al. (2008).
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Boswijk et al. (2007) use U.S. stock market data, De Jong et al. (2009) apply a
similar methodology to the British Pound during the EMS crisis and the Asian cri-
sis, respectively. Alfarano et al. (2005) set up an empirical model based on Kirman
(1993). In this model, switching is based on social interaction and herding rather
than profitability considerations. Alfarano et al. (2005) show that in this model the
tail behavior of the distributions of returns is a function of the herding tendency of
agents.

Boswijk et al. (2007) rewrite the model of Brock and Hommes (1997) such that
it simplifies to a standard smooth transition auto-regressive (STAR) model, in which
the endogenous variable is the deviation of the price-earnings ratio from its long-run
average and the switching function is a logit function of the form

w
f
t = exp(βπ

f

t−1)

exp(βπ
f

t−1) + exp(βπc
t−1)

(14)

in which πf and πc are measures of fundamentalists’ and chartists’ performance,
respectively.

In this setup, the coefficient β captures the switching behavior of agents, or their
sensitivity to performance differences, and is typically denoted the intensity of choice
parameter. With β = 0, agents are not sensitive to differences in performance between
groups and remain within their group with probability 1. With β > 0, agents are
sensitive to performance differences. In the limit, as β tends to infinity, agents switch
to the most profitable group with probability 1 such that w

f
t ∈ {0,1}.

The significance of β in this configuration cannot be judged based on standard
t-tests as it enters the expression non-linearly. Specifically, for β sufficiently large or
sufficiently small, additional changes in β will not result in changes in w

f
t . As such,

the standard errors of the estimated β will be inflated. To judge the significance of
switching, one therefore needs to examine the model fit.

A second issue with this functional form is that the magnitude of β cannot be
compared across markets or time periods. This is caused by the fact that its order
of magnitude depends on the exact definition and the distributional characteristics
of π

f
t . One way to address this issue, is to introduce normalized (unit-free) perfor-

mance measures in a logit switching function, as first done in Ter Ellen and Zwinkels
(2010):

w
f
t = 1

1 + exp

(
β

(
πc

t−1−π
f
t−1

πc
t−1+π

f
t−1

)) . (15)

The additional benefit of this form is that the distribution of profit differences
is less heavy-tailed, causing the estimation to be more precise and less sensitive to
periods of high volatility.

Baur and Glover (2014) estimate a model for the gold market with chartists and
fundamentalist who switch strategies according to their past performance. They find
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a significant improvement of fit against a benchmark model without such switching
of strategies, but very different estimated parameters in different subsamples of the
data. They also compare this analysis with switching depending on selected market
statistics and find similar results for the parameters characterizing chartists’ and fun-
damentalists’ expectation formation under both scenarios.

3.4 FUNDAMENTAL VALUE ESTIMATE
Whereas the fundamentalist–chartist distinction in HAMs is intuitively appealing and
consistent with empirical observation,7 the exact functional form of the two groups is
less straightforward. Chartism is typically modeled using some form of expectation
of auto-correlation in returns, which is consistent with the empirical results of Cutler
et al. (1991), who find autocorrelation in the returns of a broad set of assets, and it is
also consistent with the tendency of people to erroneously identify trends in random
data.8 Fundamentalism is typically modeled as expected mean reversion towards the
fundamental value. The main question is, though, what this fundamental value should
be.

There are several theoretical properties any fundamental value should have.
Therefore, in analytical or simulation settings it is possible to formulate a reasonable
process for the fundamental value. Empirically though, one has to choose a specific
model. Note, however, that the fundamental value used in an empirical HAM is not
necessarily the actual fundamental value of the asset. HAMs are based on the notion
of bounded rationality, and it is therefore internally consistent to also assume this for
the ability of fundamentalists to calculate a fundamental value. As such, the choice
of fundamental value should be based on the question whether a boundedly ratio-
nal market participant could reasonably make the same choice. In other words, the
fundamental value should also be a heuristic.

A number of studies using equity data, starting with Boswijk et al. (2007), use a
simple fundamental value estimate based on the Gordon-growth model or dividend-
discount model; see Gordon and Shapiro (1956). The model is given by

P ∗
t = 1 + g

r − g
yt (16)

in which yt is dividend, g is the constant growth rate of dividends, and r is the re-
quired return or discount factor.

The advantage of this approach is certainly its simplicity. The drawback is that
it does not take time-variation of the discount factor into account, as is common in
mainstream asset pricing studies, cf. Cochrane (2001). This causes the fundamen-
tal value estimate P ∗

t to be rather smooth because the discount factor is assumed
constant. As such, models using this fundamental value estimate might attribute

7See for example Bloomfield and Hales (2002).
8See again Bloomfield and Hales (2002).
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an excessive amount of price volatility to non-fundamental factors. Hommes and
in ’t Veld (2017) are the first to address this issue and introduce a stochastic dis-
count factor in HAMs. Specifically, next to the typical Gordon growth model they
create a fundamental value estimate based on the Campbell and Cochrane (1999)
consumption-habit model. The latter constitutes a typical consumption-based asset
pricing model and therefore belongs to a different class of asset pricing models than
the endowment based HAMs. The authors find evidence of behavioral heterogene-
ity, regardless of the underlying fundamental value estimate. Whereas Hommes and
in ’t Veld (2017) do not fully integrate the two approaches, their paper constitutes an
interesting first step towards integrating the two lines of research, which might also
help in getting the heterogeneity approach more widely accepted in the mainstream
finance and economics literature.9

Studies focusing on foreign exchange markets typically use the Purchasing Power
Parity (PPP) model as fundamental value estimate; see e.g. Manzan and Westerhoff
(2007); Reitz et al. (2006); Goldbaum and Zwinkels (2014). Kouwenberg et al. (2017)
illustrate the added value of switching using different fundamental value estimates in
a forecasting exercise for foreign exchange rates.

Alternatively, a number of studies circumvent the issue of choosing a particular
model to proxy for the fundamental value. In each case, this approach yields a par-
simonious proxy for a fundamental value, but also alters the exact interpretation of
fundamentalist behavior. Furthermore, the approach is typically quite specific to a
certain (institutional) framework and thereby less general. For example, De Jong et
al. (2010) make use of the institutional framework of the European Monetary Sys-
tem (EMS), and use the central parity in the target zone regime as the fundamental.
Whereas this provides a very clear and visible target, the group of fundamentalists
no longer expect mean reversion towards the economic fundamental but expect the
current institutional framework to be maintained without adjustments to the central
parity.

Ter Ellen and Zwinkels (2010) use a moving average of the price level as fun-
damental value estimate. Whereas this is again a very parsimonious approach, the
nature of fundamentalists in such a setup moves towards chartism as all expectations
are based on market information. More recently, Frijns and Zwinkels (2016a, 2016b)
have taken advantage of the fact that assets trade on multiple markets in formulating a
fundamental value. Specifically, they use cross-listed stocks and the spot and deriva-
tives markets, respectively. This changes the exact interpretation of fundamentalists
towards arbitrageurs, but retains the stabilizing character of this particular group of
market participants relative to the destabilizing chartists.

As we will see in the next section, the necessity of specifying the time devel-
opment of the underlying fundamental value only applies to reduced-form models.
When using a more general approach, it often suffices to assume a general law of

9In fact, the HAM literature in general has paid relatively little attention to the form of the utility function.
All dynamics are generated from the beliefs side. There is certainly scope for further research here.
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motion of the fundamental value (e.g., Brownian motion). Estimation would, then,
allow to identify, for instance, the variance of the innovations of the fundamental
value along with the parameters of the agent-based part of the overall model. If the
pertinent methodology allows filtering to retrieve unobserved variables, this would
also provide an estimated trajectory of the fundamental value as the residual obtained
by filtering the empirical data (raw prices or returns) by the behavioral component
implied by the ABM. Note that such an approach is very different from the a pri-
ori specification of a plausible fundamental dynamic process in the models reviewed
above.

4 ESTIMATION METHODS
4.1 MAXIMUM LIKELIHOOD
4.1.1 General Considerations
By the very nature of agent-based models, maximum likelihood (ML) estimation
without any numerical approximation will rarely be possible. Such a completely
standard approach will indeed only be possible if the ABM can be represented by
a reduced-form equation or a system of equations (e.g., a VAR structure) for which
a standard ML estimation approach is available. Examples of such models have been
covered in the previous section. Any such statistically convenient framework will
be based upon relatively strong assumptions on the behavior of the underlying pool
of agents. For instance, in order to end up with a reduced form that is equivalent
to a (linear) regime-switching model (e.g. Reitz and Westerhoff, 2003), one has
to assume that (i) two different groups of agents with two different linear demand
functions exist, (ii) all the agents of one group are characterized by the same elas-
ticities, (iii) markets are always dominated by one of the groups, and (iv) there is
a unique (Gaussian) noise factor in each of these regimes. Condition (i) might be
relaxed by having a less stringent microstructure based on a market-maker; condi-
tion (iii) might be relaxed by allowing for smooth transition models in the statistical
implementation of the switching of strategies of agents along some discrete choice
formalization.

Still, to be able to derive some simple macroscopic structural form of the agents’
aggregate behavior, the stochastic factors have to be conceived a-priori as an additive
noise superimposed on the agents’ interaction. If, in principle, the agents’ behavior is
conceived to be of a stochastic nature (reflecting the inability of any model to com-
pletely cover all their motivations and idiosyncratic determinants of their behavior),
this amounts to evoking the law of large numbers and resorting to the deterministic
limiting process for an infinite number of agents in the population.

Maintaining the randomness of individual decisions as via a discrete choice for-
malization with a finite population would render the noise component of the model
much more complicated: The noise would now consist of the set of all the stochas-
tic factors entering the decision of all the agents in the model, i.e. with N agents
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the model would contain N stochastic processes rather than a single one as in typ-
ical structural equations. It is worthwhile to note that for typical candidates of the
stochastic utility term in discrete choice models, like the Gumbel distribution, the-
oretical aggregation results are not available. Aggregation of individual decisions
might also be hampered by correlation of their choices if social interactions are an
important factor in the agents’ decision process.

4.1.2 Maximum Likelihood Based on Numerical Integration
Full maximum likelihood for models with dispersed activity of an ensemble of agents
would, in principle, require availability of closed-form solutions for the transient den-
sity of the process. Due to the complexity of most ABMs, such information will
hardly ever be available. However, certain systems allow at least numerical approx-
imations of the transient density that can be used for evaluation of the likelihood
function. Lux (2009a) applies such a numerical approach to estimate a simple model
of opinion formation for survey data of a business climate index. The underlying
model assumes that agents switch between a pessimistic and optimistic expectation
for the prospects of their economy under the influence of the opinion of their peers
as well as exogenous factors (information about macroeconomic variables). For this
model of social interaction, the transient density of the average opinion can be ap-
proximated via the so-called Fokker–Planck or forward Kolmogorov equation. The
latter cannot be solved in closed form. However, as it is a partial differential equation,
many well-known methods exist to integrate it numerically. It thus becomes possible
to use a numerical ML estimator. Application to a business climate index for the
German economy shows strong evidence of social interaction (herding), a significant
momentum effect besides the baseline interaction and very limited explanatory power
of exogenous economic variables.

This framework can, in principle, be generalized to more complex models with
more than one dynamic process. Lux (2012) applies this approach to bivariate and
trivariate processes. Here the underlying data consists of two sentiment surveys for
the German stock market, short-run and medium-run sentiment, and the price of the
DAX. The model allows for two interlinked opinion formation processes plus the
dynamics of the stock index that might be driven by sentiment along with fundamen-
tal factors. Combining pairs of these three processes or all three simultaneously, the
transient dynamics can again be approximately described by a (bivariate or trivari-
ate) Fokker–Planck equation. These partial differential equations can again be solved
numerically, albeit with much higher computational demands than in the univariate
case. As it turns out, social interaction is much more pronounced in short-run than
medium-run sentiment. It also turns out that both sentiment measures have little in-
teraction (although they are obtained from the same ensemble of participants). The
price dynamics show a significant influence of short-run sentiment which, however,
could not be exploited profitably for prediction of stock prices in an out-of-sample
forecasting exercise.
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4.1.3 Approximate Maximum Likelihood10

When full maximum likelihood is not possible, various approximate likelihood ap-
proaches might still be feasible. For example, Alfarano et al. (2005) apply maximum
likelihood based upon the stationary distribution of a financial market model with
social interaction. Results would be close to the exact likelihood case only if the pro-
cess converges quickly to its stationary distribution. In a similar framework, Kukacka
and Barunik (2017) use the non-parametric simulated maximum likelihood estima-
tor of Kristensen and Shin (2012) which uses simulated conditional densities rather
than the analytical expressions and is, in principle, universally applicable. They show
via Monte Carlo simulations that this approach can reliably estimate the parameters
of a strategy-switching model à la Brock and Hommes (1997). They find significant
parameters of the expected sign for the fundamentalist and chartist trading strate-
gies for various stock markets, but the ‘intensity of choice’ parameter turns out to be
insignificant which is also found by a number of related studies on similar models.

4.2 MOMENT-BASED ESTIMATORS
4.2.1 General Considerations
A most straightforward way to estimate complex models is the Generalized Method
of Moments (GMM) and the Simulated Method of Moments (SMM) approach. The
former estimates parameters by matching a weighted average of analytical moments,
the later uses simulated moments in cases in which analytical moments are not avail-
able. Both GMM and SMM have a long legacy of applications in economics and
finance (cf. Mátyás, 1999) and should be flexible enough to also be applicable to
agent-based models. However, even this very general approach might have to cope
with specific problems when applied to typical agent-based models. One of these is
the lack of continuity of many moments when varying certain parameters. To see this,
consider an ensemble of agents subject to a discrete choice problem of deciding about
the most promising trading strategy at any time, where, for the sake of concreteness,
we denote the alternatives again as ‘chartism’ and ‘fundamentalism’. There will be
two probabilities pcf (·) and pf c(·) for switching from one alternative to the other,
both depending on statistics of the current and past market development. A simple
way to simulate such a framework consists of drawing uniform numbers εi for each
agent i and making this agent switch if εi < pcf (·) or pf c(·) depending on which is
applicable.

The important point here is that this type of stochasticity at the level of the indi-
vidual agent is distinctly different from a standard additive noise at the system level.
Even when fixing the sequence of random numbers, any statistics derived from this
process will not be smooth under variation of the parameters of the model. Namely,

10The contributions reviewed in this section use approximations to the likelihood of a model if the latter
cannot be expressed in closed form. This is somewhat different from what is usually denoted ‘quasi-
maximum likelihood’. The latter estimates the parameters of a model by a different, misspecified model
to avoid estimating some cumbersome nuisance parameter(s).
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if we vary any parameter that enters as a determinant of pcf (·) or pf c(·) and keep the
set of random draws constant, there will be a discontinuous move at some point mak-
ing the agent switch her behavior. The same, of course, applies to all other agents, so
that in contrast to a deterministic process with linear noise, a stochastic process with
noise at the level of the agent will exhibit in general non-smooth statistics even with
“frozen” random draws.

Luckily, this does not necessarily make all standard estimation methods unfea-
sible. While standard regularity conditions will typically require smoothness of the
objective functions, more general sets of conditions can be established that allow
for non-smooth and non-differentiable objective functions, cf. Andrews (1993). The
more practical problem is that the rugged surface resulting from such a microfounded
process would render standard derivative-based optimization routines useless.

Many recent papers on estimation of ABMs in economics have used various meth-
ods to match a selection of empirical moments. This should not be too surprising as,
particularly in financial economics, the most prominent aim of the development of
ABMs has been the explanation of the so-called stylized facts of asset returns. A list
of such stylized facts includes (i) absence of autocorrelations in the raw returns at
high frequencies or martingale-like behavior, (ii) leptokurtosis of the unconditional
distribution of returns, or fat tails, (iii) volatility clustering or long-term temporal
dependence in squared or absolute returns (or other measures of volatility), (iv) pos-
itive correlation between trading volume and volatility, and (v) long-term temporal
dependence in volume and related measures of trading activity.

All of these features can be readily characterized by statistical moments of the
underlying data, and quantitative measures of ‘stylized facts’ (i) to (iii) are typically
used as the moments one attempts to match in order to estimate the models’ param-
eter. Both in GMM and SMM, parameter estimates are obtained as the arguments
of an objective function that consists of weighted deviations between the empirical
and model-generated moments. According to our knowledge, stylized facts (iv) and
(v) have been used to compare the output of agent-based models to empirical data
(e.g., LeBaron, 2001) but have not been exploited so far in full-fetched estimation
as all available studies concentrate on univariate series of returns and neglect other
market statistics such as volume. Indeed, it even appears unclear whether well-known
models that are able to match (i) to (iii) are also capable to explain the long-lasting
autocorrelation of volume and its cross-correlation with volatility.

Almost all of the available literature also uses a simulated method of moments
approach as the underlying models appear too complex to derive analytical moment
conditions. An exception is Ghonghadze and Lux (2016).

4.2.2 Moment-Based Estimation of Structural Models
Within structural equation models Franke (2009) and Franke and Westerhoff (2011,
2012, 2016) have applied SMM estimation to a variety of models and have also con-
ducted goodness-of-fit comparisons across different specifications. All the models
considered are formulated in discrete time.
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Franke (2009) estimates a model proposed by Manzan and Westerhoff (2007),
which combines a market maker dynamics for price adjustments with a standard de-
mand function of fundamentalists and a second group of traders, denoted speculators,
who react to stochastic news. The author uses a sample of moments of raw and ab-
solute returns, i.e. their means, autocovariances over various lags, and log absolute
returns exceeding a certain threshold as a measure related to the tail index. Since it
was found that the correlations between the moment conditions were too noisy, only
the diagonal entries of the inverse of the variance–covariance matrix of the moment
conditions has been used as weight matrix. Although the usual goodness-of-fit test,
the so-called J-test for equality of empirical and model-generated moments, could
always reject the model as the true data generating process for a sample of stock in-
dices and exchange rates, the fit of the selected moments was nevertheless considered
satisfactory.

Shi and Zheng (2016) consider an interesting variation of the discrete choice
framework for switching between a chartist and fundamentalist strategy in which
fundamentalists receive heterogeneous news about the change of the fundamental
value. A certain fraction of agents then chooses one or the other strategy comparing
their pertinent expected profits. In the infinite population limit, analytical expressions
can be obtained for the two fractions. The resulting price process is estimated via an-
alytical moments (GMM) from which the usual parameters of the demand functions
of both groups and the dispersion of fundamental news relative to the agents’ prior
can be obtained.

Franke and Westerhoff (2011) estimate what they call a ‘structural stochastic
volatility model’. This is a model of chartist/fundamentalist dynamics in which both
demand functions consist of a systematic deterministic part and a noise factor with
different variances for both groups. With an additional switching mechanism between
groups this leads to volatility clustering in returns because of the different levels of
demand fluctuations brought about by dominance of one or the other group. In their
SMM estimation the authors use a weighting matrix obtained from bootstrapping the
variability of the empirical moments. Results were again somewhat mixed: While the
model could well reproduce the selected moments, the authors found that for two out
of six parameters it could not be rejected that they were equal to zero in the applica-
tion of the model to the US dollar–Deutsche Mark exchange rate series. Note that this
implies that certain parts of the model seem to be superfluous (in this case the entire
chartist component) and that a more parsimonious specification would probably have
to be preferred. In the application to the S&P 500 returns, all parameters were signif-
icant. The same applies under a slightly different estimation procedure (Franke and
Westerhoff, 2016). In the later paper, the authors also assess the goodness-of-fit of the
model via a Monte Carlo analysis (rather than the standard J-test based on asymptotic
theory) and found that under this approach, the model could not be rejected.

Franke and Westerhoff (2012), finally, use the SMM approach to conduct a model
contest between two alternative formalizations of the chartist/fundamentalist ap-
proach: one with switching between strategies based on transition probabilities (the
approach of their related papers of 2011 and 2016), and one using a discrete choice
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framework for the choice of strategy in any period. Further variations are obtained by
considering different determinants in these switching or choice probabilities: the de-
velopment of agents’ wealth, herding and the effect of misalignment of asset prices.
As it turns out, the discrete choice model with herding component in the fitness func-
tion performs best in matching the selected moments of S&P 500 returns.

Somewhat similar in spirit are the recent papers by Grazzini and Richiardi (2015),
Lamperti (2015), and Barde (2016). Grazzini and Richiardi use a simulated minimum
distance estimator for an agent-based model of price discovery in double auctions.
Lamberti (2015) proposes an information-theoretical distance measure. Barde (2016)
adopts a similar measure to compare different types of agent-based models. He ab-
stains, however, from direct estimation, but compares the models for a large set of
parameter values using the concept of model confidence set (Hansen et al., 2011)
to select those models (with pre-specified parameters) that cannot be outperformed
by other alternatives at a certain confidence level. As it turns out, the above men-
tioned model of Franke and Westerhoff (2016) is the one most often represented in
the confidence set followed by the model of Alfarano et al. (2008).

4.2.3 Moment-Based Estimation of Models with Explicit Agents
The later is a model that in its original format is not in reduced form but has an en-
semble of agents that update their behavior in continuous time. While the agents’
aggregate behavior is represented by a Langevin equation in Barde (2016) – and
hence the model is transformed into a structural one – Jang (2015) studies simu-
lated method of moments estimation for the same framework on the base of proper
micro-simulations. He shows that the objective function is non-smooth (cf. the con-
siderations laid out in Section 4.2.1) and also exhibits very flat areas along various
dimensions which makes identification of a global minimum difficult. Jang explores
the behavior of the SMM estimator in various ways fixing some parameters, and es-
timating the remaining ones. He finds certain intervals for some of the parameters in
which Hansen’s J-test does not reject the model as the ‘true’ data generating process.

When using a model based upon a proper micro-ensemble of agents, a particular
conundrum is the decision about the number of agents. Replicating the market dy-
namics using the ‘true’ number of market participants appears out of the question.
Since this number is probably in the millions for typical stock and foreign exchange
markets of advanced economies, this would impose too high a computational burden
on most models. In addition, exact numbers are often not known and might show
some variation over time. What is more, practically all models available in the lit-
erature would become “uninteresting” with this large number of agents. The reason
is that despite being subject to all types of social interaction agents are mostly au-
tonomous in their decisions and with a given intensity of interaction the system will
eventually tend to a limiting behavior under a law of large numbers when one in-
creases the number of market participants. Typically the limiting behavior would
lead to Gaussian market statistics lacking all the stylized facts of financial returns.

Since the stylized facts appear largely independent of the varying size of different
markets, it appears appropriate to design behavioral agent-based models that show
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robust stylized facts independent of system size. Various avenues to arrive at mod-
els that maintain strong coherence of behavior also in large populations are laid out
in Aoki (2002), Alfarano et al. (2008), Alfarano and Milakovic (2009), and Irle et
al. (2011). Lux (2009a) estimates the system size (number of agents) for macroeco-
nomic survey data of which the number of participants is known, and finds a much
smaller (as he calls it) ‘effective’ system size that he attributes to agents moving
in tandem with each other in certain groups. This resonates with the important ob-
servation emphasized by Chen (2002) that, in principle, the noise-over-signal ratio
of some observable should provide an indication on how many independent con-
tributing factors one should expect in a model explaining its behavior. Indeed, Jang
(2015) considers different numbers of agents and finds a monotonic improvement
of the goodness-of-fit when increasing the number of agents from 10 to 1000 in his
estimation of the Alfarano et al. (2008) model for five foreign exchange rates. In
his application, he also finds relatively uniform parameter estimates across markets
(assuming N = 100), and a contribution of about fifty percent of the agent-based
speculative dynamics to the overall volatility of exchange rates.

Ghonghadze and Lux (2016) and Chen and Lux (2016) both continue the line of
research initiated by Jang (2015). Ghonghadze and Lux (2016) expand analytical re-
sults of Alfarano et al. (2008) to derive a generalized methods of moments estimator,
while Chen and Lux use a similar set of moments in an SMM approach. Chen and
Lux (2016) come to the conclusion that due to the lack of smoothness of the objective
function, a one-time optimization from a given set of initial conditions could lead to
almost arbitrary results. Hence, a more systematic exploration of the parameter space
is needed. They recommend an extensive grid search followed by an application of a
derivative-free optimization method for a range of the best grid values found in the
first step. With GMM, more standard optimization routines can be applied, but never-
theless the parameters of the Alfarano et al. (2008) model appear difficult to estimate
as there are strong correlations between certain parameters. The system appears near
to collinearity and with not too large sample size (say some thousand observations as
is typical in financial data) certain sets of parameter values could generate apparently
very similar dynamics. Again, a grid search prior to the application of an optimization
routine appears useful.

It is also found that very large samples are needed (about 105 observations) for
SMM to approach the efficiency of GMM. While with sufficiently larger sample
sizes, both GMM and SMM estimate the parameters more precisely and show a ten-
dency towards T 1/2 consistency, in both cases the J-test of goodness-of-fit based on
the overidentification restrictions shows severe size distortion. In particular, while the
asymptotic χ2 distribution fits the experimental distribution of the J-test well for a
minimal set of moments, it tends to over-accept its null when additional moments are
added in the estimation. This behavior stems very likely from the limited added infor-
mational content of further moment conditions. This might signal a general problem
for GMM/SMM estimation of ABMs in the context of univariate financial data: there
are not too many moments one can use in such exercises. Basically, all available
studies use some measure of fat-tailedness and clustering of volatility. Adding more
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moments, one can just add alternative measures (like, e.g., autocovariances over dif-
ferent lags) that are highly correlated with each other.

In the empirical part of their papers, both Chen and Lux (2016) and Ghonghadze
and Lux (2016) apply their estimation algorithm to a selection of stock and foreign
exchange data as well as the price of gold. Although the estimated parameters are not
always very close, overall the results confirm received wisdom: Speculative forces
appear stronger in stock markets and the market for gold than in foreign exchange
markets. Ghonghadze and Lux (2016) also conduct a forecasting competition be-
tween their ABM and a standard GARCH model. While the GARCH has throughout
somewhat smaller errors of its volatility forecasts, it turns out that the ABM can add
value when combined forecasts from both models are constructed. It is also shown
that for medium and long-run horizons (10 to 50 days forecasts) the GARCH model
does not ‘encompass’ the ABM, i.e. the forecasts of the later uses information that
is not already covered by the GARCH model (which motivates combining their fore-
casts).

4.3 AGENT-BASED MODELS AS LATENT VARIABLE MODELS AND
RELATED ESTIMATORS

4.3.1 Basic Framework
It has been mentioned in Section 2 that agent-based models of ecological processes
have often been framed as state-space or hidden Markov models, and have been esti-
mated by a variety of methods developed for this class of models. Indeed, it appears
to us that most models that have been reviewed above can be easily categorized as
examples of state-space models or slightly more general latent variable models, so
that estimation of ABMs could profit substantially from the rich toolbox developed
for such models. As far as we can see, economic ABMs have never been related to the
framework of state-space models, with the exception of a recent paper by Grazzini
et al. (2017) who, however focus only on Bayesian estimation within such a context
and do not emphasize the general proximity of ABMs to state-space models.

In other areas of economics, state-space modeling is more common: For instance,
dynamic stochastic general equilibrium (DSGE) models have been estimated with
both frequentist and Bayesian methods based upon a state-space representation, cf.
Fernández-Villaverde and Rubio-Ramírez (2007), and Amisano and Tristani (2010)
for both frequentist and Bayesian methods, as well as the monograph by Herbst and
Schorfheide (2016) that focuses completely on Bayesian estimation which has be-
come particularly popular in this area. In financial econometrics, similarly popular
areas of applications are stochastic volatility models (e.g. Kim et al., 1998; Carvalho
and Lopes, 2007) and Markov-switching models (e.g. Billio and Casarin, 2010).
A survey of a range of popular approaches can be found in Lopes and Tsay (2011).

Since state-space modeling seems an important concept in which agent-based
models could be nested as a particular subset of cases, we provide here a short
introduction together with an illustrative application of important methods for pa-
rameter estimation to a prominent ABM. A general state-space model is defined by
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the stochastic evolution in time of a vector of states, say xt , and a vector of measure-
ments, say yt . If xt follows a general Markov process, the unobserved process for the
state vector can be written as

xt = f (xt−1, εt ) (17)

where εt is a summary notation for all stochastic factors that enter into the dynamics
of xt . The vector of observations can be written in a similar general form as

yt = g(xt , ηt ) (18)

where ηt summarizes all stochastic factors that make the vector of measurements a
noisy signal of the states xt . If Eqs. (17) and (18) are linear systems of equations with
Gaussian noises, the optimal approach to parameter estimation and filtering for re-
covery of the unobserved state vector is the well-known Kalman filter. For nonlinear
systems with Gaussian noises, various extensions and approximations to the linear
Kalman filter have been developed (see e.g. Grewal and Andrews, 2008). For nonlin-
ear, non-Gaussian state-space models, Markov chain Monte Carlo and particle filter
methods have become the state of the art (cf. Doucet et al., 2001).

Many agent-based models can be cast into the framework of Eqs. (17) and (18).
Others can be embedded into slightly more general classes of models with latent vari-
ables. This basically applies to practically all the ABMs for interaction of heteroge-
neous investors that we have reviewed in the preceding sections. What distinguishes
agent-based models from other state-space models is that Eq. (17) captures some sort
of summary statistics of relevant features of the agents averaged over the entire en-
semble of actors that is of relevance for the dynamics of the observables yt , most
often asset prices or returns. If the behavior of individual agents is formalized in a
stochastic way (taking into account idiosyncratic factors unknown to the modeler),
Eq. (17) would not only contain one noise factor for each element of the state vector,
but would also be driven by the joint dynamics of agents’ changes of behavior and
their respective stochastic elements. While we could imagine a state-space formal-
ism in which not a summary measure, but the exact features of each agent define the
vector of states, such a model would presumably be hard or impossible to estimate
just because a small number of observed variables would almost surely not contain
enough information to track a much larger number of states.

4.3.2 Illustration: A Nonlinear Model of Speculative Dynamics with Two
Groups of Agents

We take as an example a simple heterogeneous agent model with two types of traders
that has been proposed by Gaunersdorfer and Hommes (2007). In this model, the two
types are chartists and fundamentalists, and their demand functions, zc,t and zf ,t are
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particular cases of Eq. (4) of the following form:

zc,t = Pt−1 + g(Pt−1 − Pt−2) + y − RPt

aσ 2

zf,t = Pf + ν(Pt−1 − Pf ) + y − RPt

aσ 2

(19)

where y is the expected dividend (here assumed to be constant). Risk aversion a

and expected variance of price changes, σ 2, are assumed to be the same for both
groups, and R = 1 + r . Agents’ choice of strategy is determined by a discrete-choice
approach based upon accumulated profits:

Uh,t = (Pt + y − RPt−1)zh,t−1 + ηUh,t−1 (20)

for h = c, t , with η ∈ [0,1] a memory parameter for the influence of past profits.
Gaunersdorfer and Hommes (2007) assume an infinite population so that the fractions
nc,t and nf,t of the two groups within the overall population would be identical to
their expectations:

nh,t = exp(βUh,t−1)∑
m=c,f exp(βUm,t−1)

(21)

with β the parameter for the intensity of choice.
In addition, the authors assume that the fraction of chartists also decreases when

the price deviates strongly from its fundamental value so that effectively, the two
fractions are given by ñc,t and ñf,t defined as follows:

ñc,t = nc,t exp

(
− (Pt−1 − Pf )2

α

)
,

ñf,t = 1 − ñc,t ,

(22)

with α > 0, a constant parameter for the strength of the stabilizing force of the fun-
damental value. In the stochastic version of the model, a random Gaussian term
ut ∼ N(0, σ 2

u ) is added to the system so that the asset price in a market equilibrium
with zero exogenous supply is given by

RPt = ñc,tEc,t

[
Pt+1 + y

] + ñf,tEf,t

[
Pt+1 + y

] + ut (23)

with the expectations given by the first two terms in the numerators of the right-hand
sides of Eqs. (19), i.e.

Ec,t [Pt+1 + y] = Pt−1 + g(Pt−1 − Pt−2) + y,

Ef,t [Pt+1 + y] = Pf + ν(Pt−1 − Pf ) + y.
(24)

Obviously, Eq. (23) is a well-defined equation for the observed variable – the asset
price – of this dynamic system. Eqs. (19) through (22) constitute the state dynamics
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with ñc,t , and ñf,t being unobserved state variables, while Pt is the observable part
of the system. In the original model with its assumption of an infinite population this
would be a completely deterministic system and, thus, would be a somewhat degen-
erate case of a state-space system. A case that is more representative of the ABM
literature is easily obtained by rather assuming that the population of investors is fi-
nite and applying Eqs. (21) and (22) not as deterministic expressions, but to draw
binomial random numbers with the pertinent probabilities to independently deter-
mine for each agent her choice of strategy at time t . This can simply be achieved by
binomial draws with probabilities:

Pr(c) = exp(βUc,t−1)

exp(βUc,t−1) + exp(βUf,t−1)
exp

(
− (Pt−1 − Pf )2

α

)

and Pr(f ) = 1 − Pr(c) (25)

with the obvious notation indicating the probability to select the chartist or fundamen-
talist strategy by Pr(c) and Pr(f ), respectively. The stochastic fractions of chartists
and fundamentalists generated in this way replace the laws of Eqs. (22) and (23).
Eqs. (20) and (25) would then constitute our implementation of the state dynamics
which apparently is both highly nonlinear and non-Gaussian. Indeed, in this exam-
ple the stochastic factors that are symbolized in Eq. (17) by the summary notation
εt consist of as many stochastic draws as there are agents in the system. However,
the state of the system can still be conveniently summarized by the (now stochastic)
fractions of chartists and fundamentalists which enter again in the price dynamics as
formalized in Eq. (23).

Note that our overall system is of a more general format than the state space
formalism introduced in Eqs. (17) and (18). Namely, the unobserved state (here ñc,t )
does not follow an autonomous Markov process but also depends on lagged values
of the observation, Pt . In the absence of stochastic factors in the state dynamics,
such a process is often characterized as an ‘observation-driven process’ (cf. Douc
et al., 2013). The more general case encountered here would fall under the label
of a ‘dynamic system with latent variables’. An interesting example from empirical
finance with a similar format is a stochastic volatility model with a leverage effect
(leading to dependency of the latent volatility process on past realizations of returns,
cf. Yu, 2005; Pitt et al., 2014).

The dynamics of the present system is well understood: In particular, for certain
parameter values its deterministic ‘skeleton’ (with ut = 0) is characterized by a lo-
cally stable fixed point (with the price equal to the fundamental value) and a limit
cycle that also possesses its own domain of attraction. Adding noise of sufficient am-
plitude, the stochastic system switches repeatedly between these two attractors and
the noisy cyclical episodes lead to returns that to some extent show leptokurtosis and
volatility clustering (cf. also Lux and Alfarano, 2016). The lower left-hand panel of
Fig. 1 exhibits a typical example of the state dynamics (fraction of chartists nc,t ):
Mostly the market is dominated by fundamentalists (namely, when the process is
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FIGURE 1

Example of on-line estimation via self-organizing state space model. The figure shows the
development of the mean of the particle swarm during on-line selection of both the state
and the auxiliary particles for a synthetic time series of 1000 observations of asset prices
simulated by the model of Gaunersdorfer and Hommes (2007).

close to the fixed point equilibrium), but rapid eruptions of periods with adaption of
a chartist strategy by many market participants occur repeatedly (when the stochastic
factor drives the dynamics into the domain of the limit cycle).

When bringing such a model to data, one typically would pursue two objectives:
(i) estimating the parameters, and (ii) tracking the unobserved state on the base of
the observable variables. Moment-based methods (cf. Section 4.2) could be applied
for parameter estimation, but they would not provide an avenue for filtering informa-
tion on unobserved states. Indeed, despite the prominent role of summary variables
for agents’ states (strategies, expectations, opinions), hardly any attempts have been
made in the ABM literature to retrieve information on such unobserved variables.

4.3.3 Estimation of the Model of Gaunersdorfer and Hommes Based on
Particle Filter Algorithms

We will now shortly explain how to estimate the parameters and how to track the
states of such a highly nonlinear system with dispersed activity via state-space meth-
ods. Like many agent-based models, the present framework also has probably too
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many free parameters, that could not all be estimated at the same time with the lim-
ited information available from the price dynamics. We will, therefore, concentrate
on four crucial parameters: the reaction parameters of chartists and fundamentalists,
g and ν, the intensity of choice, β , and the variance σ 2

u of the noise component of
the ‘measurement equation’ (23). Overall, we adopt the parameters of the simula-
tions conducted by Gaunersdorfer and Hommes (2007): ν = 1.0, g = 1.9, β = 2.0,
σu = 10, r = 0.001, α = 1800, aσ 2 = 1, η = 0.99, Pf = 1000, and y = 1.

We illustrate the design and performance of Monte Carlo methods developed for
state-space models with three basic approaches: (i) frequentist maximum likelihood
based on a particle filter, (ii) an evolutionary algorithm known as self-organizing
state-space modeling, and (iii) Bayesian sequential Markov chain Monte Carlo. We
dispense with many technical details which can be found in the vast statistical litera-
ture on this subject and its applications to DSGE models, ecological models as well
as in financial econometrics.

Frequentist ML Estimation via a Particle Filter
Denote by θ = {ν, g,β,σu} the vector of parameters. The likelihood function with a
sample of observations of asset prices Pt , t = 1, . . . , T is

L(P1, . . . ,PT |t) = p(P1|θ)

T∏
t=2

p(Pt |Pt−1, θ) (26)

in which in the absence of a closed-form solution for the unconditional density, the
first term, p(P1|θ) can be obtained from the simulated stationary distribution on the
base of a sufficiently long Monte Carlo simulation of the model. The conditional
densities p(Pt |Pt−1, θ) summarize the temporal evolution of the state-space model
and can be decomposed as follows:

p(Pt |Pt−1, θ) =
∫

p(Pt |nc,t )P (nc,t |nc,t−1) dnc,t−1 (27)

where we have summarized the state of the latent variables by nc,t .
While the first conditional density in the integral can be evaluated analytically in

our case (but this need not be so), the second one can only be approximated via sim-
ulations.11 This motivates what has become known as the particle filter, i.e. discrete
approximation of the terms p(Pt |Pt−1, θ) via a set of ‘particles’. The most common
approach to particle filtering works as follows12:

11Note that the conditional density of the state process depends not only on nc,t−1 but also on
Pt−1,Pt−2,Pt−3 via Eqs. (19) and (20) which we have skipped for notational convenience. The Markov
structure can be easily established by defining: P̂t = Pt−2, P̃t = Pt−1.
12The application of particle filters goes beyond the realm of state-space and latent variable models. They
have, for example, also been successfully applied to large chaotic systems, cf. Lingala et al. (2012).
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(i) Initiate a ‘swarm’ of B particles n
(j)

c,1, j = 1, . . . ,B using random draws from
the unconditional distribution p(nc, θ). If this is not known, one might simulate
the complete state-space system to obtain an approximation of its unconditional
density,13

(ii) the densities p(P1|n(j)

c,1, θ) are computed and the particles are resampled using

weights
p(P1|n(j)

c,1)∑
m p(P1|n(m)

c,1 )
,

(iii) the resampled swarm is propagated through the state dynamics and the updated
states n

(j)

c,2 are obtained,
(iv) steps (ii) and (iii) are repeated for t = 2, . . . , T .

In this way, we obtain an approximation of the likelihood function

L(P1, . . . ,PT |θ) ≈
T∏

t=1

1

N

B∑
j=1

p(Pt |n(j)
c,t , θ). (28)

Under mild regularity conditions, the particle filter is a consistent estimator of the
‘true’ likelihood (e.g. Künsch, 2005) for baseline state space models. Ionides et al.
(2011) show that for general systems with latent variables, an iterated filtering pro-
cedure on the base of a particle filter converges to the maximum likelihood estimate
when the number of particles goes to infinity. Indeed, our example falls into this gen-
eral class of models since there is a feedback from the observable variable Pt to the
unobservable state nc,t which is absent in the elementary state-space formalism of
Eqs. (17) and (18). One important problem is that the resulting approximation of the
likelihood function is not a smooth function of the parameters. This is so because
the multinomial draws in the resampling step would lead to discrete changes under
continuous variation of the parameters of the model. This happens even if the ran-
dom numbers are kept constant for subsequent iterations in the optimization routine
(which one should nevertheless do in order not to introduce additional sources of
discontinuities in the likelihood function).14

Malik and Pitt (2011) have developed a method to make the approximation
smooth via a simple transformation but very likely their approach will not provide
a full remedy for this problem in an agent-based framework like ours since multino-
mial draws do not occur only in the resampling step of the particle filter (which Malik
and Pitt’s method smoothes out) but in the state dynamics as well. We will, therefore,
generically have to use optimization algorithms that do not need derivatives as an
input. Fernández-Villaverde and Rubio-Ramirez (2007) use simulated annealing to

13Given the typical size of financial time series, results would also typically not be much different with an
ad-hoc initialization that just uses uniform random draws.
14We have mentioned already in Section 4.2 that switches of strategy in agent-based models could lead to
a lack of smoothness of simulated moments. This also pertains to simulations of the likelihood function via
the particle filter algorithm. However, in the later case, the binomial draws implemented with the particle
filter constitute an additional second source of discontinuity of the objective function.
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find the maximum of the likelihood function. Here, we resort to the versatile Nelder–
Mead or simplex algorithm. Table 1 shows the results of a small Monte Carlo study
using this particle filter approximation to the likelihood with simulated time series of
length T = 1000 and T = 2000 (used as pseudo-empirical series) and also B = 1000
and B = 2000 particles.

As we can observe, in this example we get extremely accurate estimates of the
parameter ν, reasonable estimates of σu, and not very precise estimates of the re-
maining parameters g and β . We also see an improvement of the precision of our
estimates when increasing the length of the underlying time series from T = 1000
to T = 2000. The improvement is, however, smaller than expected under

√
T con-

sistency. The reason is that we have used the same number of particles B . Since the
overall approximation error increases with the length of a series, the approximation
of the likelihood function requires an increase of the number of particles to off-set
this tendency. Theoretical results on how B shall vary with T for convenient asymp-
totic behavior can be found in the statistical literature.15 As we can also observe in
Table 1, increasing the number of particles for a constant length of the time series
leaves the results basically unchanged. While this result can certainly not be gener-
alized, it indicates that for the present sample sizes, more particles do not lead to a
further gain in accuracy of the approximation. Estimated parameters could be used
to filter out information on the unobservable state, and the outcome typically appears
quite accurate in our application along the lines of the example displayed in the lower
left-hand panel of Fig. 1.

Estimation via Self-Organizing State Space Algorithm
A relatively simple alternative avenue to parameter estimation has been proposed
by Kitagawa (1998) under this heading. The idea of this approach is to aug-
ment the state space by auxiliary particles. These auxiliary particles cover the
unknown parameters. Hence, each particle in our setting would become a vector
{n(j)

c,t , ν
(j)
t , g

(j)
t , β

(j)
t , σ

(j)
u,t }. The state dynamics would be augmented by trivial com-

ponents:

v
(j)

t+1 = v
(j)
t , g

(j)

t+1 = g
(j)
t , β

(j)

t+1 = β
(j)
t , σ

(j)

u,t+1 = σ
(j)
u,t

for j = 1, . . . ,B the augmented particles.

15For instance, Olsson and Rydén (2008) consider parameter estimation using an evenly spaced grid over
the parameters for evaluation of the likelihood function and interpolation between the grid points. In the
case of piecewise constant functions between the grid points, they show that for asymptotic normality, the
grid size M has to decrease faster than 1/T and the number of particles has to increase faster than M2/rT 2

with r some integer r ≥ 1. For spline interpolation, the first condition becomes that M has to decrease
faster than 1/

√
T while the second condition remains the same. Note that here we adopt the Nelder–Mead

algorithm to find the best set of parameters over the rugged surface of the simulated likelihood function
so that the results by Olsson and Rydén are not directly applicable. More results on the asymptotics of the
maximum likelihood estimator can be found in Kantas et al. (2015).
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Table 1 Monte Carlo experiment for estimation of Gaunersdorfer/Hommes model
via Maximum Likelihood based on the particle filter

Parameter ν g β σu

True 1.0 1.9 2.0 10.0
T = 1000, B = 1000
Mean 0.999 1.585 2.235 10.048
FSSE 0.002 0.642 0.877 0.265
RMSE 0.003 0.712 0.904 0.268
B = 2000
Mean 0.999 1.617 2.186 10.058
FSSE 0.002 0.525 0.846 0.278
RMSE 0.003 0.594 0.862 0.282
T = 2000, B = 1000

Mean 0.999 1.629 2.271 10.085
FSSE 0.001 0.452 0.666 0.202
RMSE 0.001 0.525 0.715 0.218
B = 2000
Mean 0.999 1.619 2.240 10.085
FSSE 0.001 0.493 0.714 0.214
RMSE 0.001 0.565 0.749 0.229

Notes: The table shows the means, finite sample standard errors (FSSE) and root-mean squared errors
(RMSE) of 100 replications of each scenario.

The evaluation of the conditional densities in the likelihood function would, then,
also exert evolutionary pressure on the auxiliary particles and lead to a selection
of those that provide the highest conditional probabilities. By its construction, this
approach is executed in one single sweep through the data. An example is shown in
Fig. 1. The temporal evolution of the parameters is shown in terms of the mean over
all particles for three of the parameters. While the overall length of the time series is
T = 1000 only the first 350 periods are displayed because the auxiliary parameters
have completely converged at this stage, i.e. the shown mean is, in fact, the only value
that has survived to this point and can, thus, count as the final estimate.

In this example, the estimation works satisfactorily: the final parameter estimates
are close to their ‘true’ values. Particularly parameter ν is almost exactly identified
after just a dozen of observations. Table 2 exhibits the statistics of a set of 100 Monte
Carlo replications of the online estimation approach of which Fig. 1 has illustrated
one single run. As the table shows overall results with T = 1000 and B = 1000 are
somewhat worse in terms of root-mean squared errors (RMSEs) than with the ML
approach. The advantage of this approach is an enormous saving in computation time:
We only do one sweep through the data (i.e., estimate on-line) while the Nelder–Mead
approach usually needed several hundreds of evaluations of the likelihood function
over the whole length of the time series. We can, thus, easily increase the number of
the particles. Table 2 also shows that the improvement when moving from B = 1000
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Table 2 Monte Carlo experiment for estimation of Gaunersdorfer/Hommes model
via the Self-Organizing State Space Approach

Parameter ν g β σu

True 1.0 1.9 2.0 10.0
T = 1000, B = 1000
Mean 0.988 1.884 1.987 11.866
FSSE 0.044 0.820 1.094 2.470
RMSE 0.045 0.816 1.089 3.086
T = 1000, B = 10,000
Mean 0.994 1.716 2.071 10.944
FSSE 0.018 0.709 1.108 1.592
RMSE 0.018 0.729 1.105 1.844

Notes: The table shows the means, finite sample standard errors (FSSE) and root-mean squared errors
(RMSE) of 100 replications of each scenario.

to B = 10,000 is, however, not too high and still inferior to the ML results. But one
could certainly still increase B at reasonable costs.

One feature of this approach is that a larger time series of observations would
not necessarily be of any benefit. With B = 1000 particles, the distribution of the
auxiliary particles has in almost all cases long become degenerate at the end of a time
series of 1000 observations. Hence, no different estimates would be obtained with
any longer series. With higher B , the swarm would likely remain heterogeneous for
longer time, so that more efficient estimates would require an increase of both T and
B at the same time. Despite these limitations, it is also worthwhile to emphasize the
good performance of the filter for the state nc,t . Note that the tracking of the state
in this case is obtained on-line, i.e. with moving parameters as shown in the three
remaining panels (plus the moving σu that is not displayed here). Online estimation
or particle learning is an active area of research, cf. Carvalho et al. (2010) and Ionides
et al. (2011) for examples of more advanced approaches.

Bayesian Estimation
We finally turn to Bayesian estimation, which is strongly connected with state-space
approaches in the DSGE community. Andrieu et al. (2010) propose an approach
that combines a particle filter with a Metropolis–Hastings sample of the poste-
rior density of the parameters. This and closely related methods have been used
by Fernández-Villaverde and Rubio-Ramirez (2007) for DSGE models and Go-
lightly and Wilkinson (2011) for ecological agent-based models. The time-honored
Metropolis–Hastings algorithm provides an approach to construct a Markov chain
that converges to a stationary distribution equal to the posterior distribution of the
parameter one wants to estimate. In order to generate this Markov chain, one needs
a proposal density for new draws, say g(θζ |θζ−1) where ζ is the sequential order of
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Table 3 Bayesian estimation of Gaunersdorfer/Hommes model via Particle Filter
Markov Chain Monte Carlo

T = 1000 B = 100 B = 1000
Parameter True Mean S.E. Mean S.E.
ν 1.0 0.999 0.008 0.999 0.006
g 1.9 1.938 0.124 1.968 0.116
β 2.0 3.139 1.340 2.610 1.362
σu 10.0 10.396 0.715 10.184 0.349
LogL −3754.714 126.023 −3735.381 110.455
Accept. rate 0.352 0.375

Notes: The table shows the Monte Carlo means and standard errors of the posterior distribution of
the parameters from simulations with B = 100 and B = 1000 particles. The underlying time series has
a length of T = 1000 while the PMCMC algorithm used 20,000 iterations after discarding a transient
of 2000 draws. Fig. 2 contains the transient indicating that convergence to the stationary posterior
distribution is very fast.

the chain. Draws from g(θζ |θζ−1), say θ∗, are accepted with probability

α(θ∗|θζ−1) = pθ∗(y)p(θ∗)g(θζ−1|θ∗)
pθζ−1(y)p(θζ−1)g(θ∗|θζ−1)

where pθ(y) is the marginal likelihood of the observed data under θ , p(θ) is the prior
of the parameters, and the acceptance rate is restricted to the interval [0,1] by appro-
priate constraints. In case the new draw θ∗ is not accepted, the chain will continue
with the previous values, i.e. θζ = θζ−1. Under mild conditions on the likelihood of
the process and the proposal density, the chain generated in this way will converge
to the posterior distribution of the parameters. Andrieu et al. (2010) show that this
convergence property holds also if the marginal likelihood is estimated via the par-
ticle filter introduced above. The pertinent method is called Particle Filter Markov
Chain Monte Carlo (PMCMC). An important difference to the frequentist estimation
presented earlier in this section is, however, that one would not initiate the particle
filter with the same random seed in each iteration in order to generate random draws
of the relative likelihoods.

We illustrate the Bayesian approach in Fig. 2 and Table 3. Since we might not have
any clue to what the values of the parameters be prior to estimation, we used uniform
priors with support in the interval [0,5] for ν, g and β and a uniform distribution on
[0,50] for σu. For the proposal densities, we used random walks with standard devi-
ations equal to 0.25 for the first three variables and 2.5 for the fourth. The underlying
time series had a length of T = 1000 and we ran the algorithm with B = 100 and
B = 1000 particles. The posterior distribution was sampled for a Markov chain of a
length of 20,000 iterations after discarding the first 2000 iterations as transients.

Fig. 2 shows the complete record or 22,000 iterations including the transients for
B = 100. As we can see, we can hardly recognize any transient part at all: the Markov
chain seems to converge to its stationary distribution very quickly. While this repre-
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FIGURE 2

Example of an application of PMCMC for the model of Gaunersdorfer and Hommes (2007).
The figure shows the development of the posterior distributions of the four parameters ν, g,
β and σu during 22,000 iterations of the PMCMC algorithm with B = 100 particles. The
statistics of this realization of the algorithm are given in the left panel of Table 3.

sents an estimation for only one replication of our ABM and the standard errors of the
posterior distribution are not directly comparable to the finite sample standard errors
across 100 simulations with the frequentist approach, results are pretty much in line
with our previous findings. We see that the parameter ν seems to be almost perfectly
identified even with as few as 100 particles followed by σu and g with somewhat
smaller signal-to-noise ratios. At least in our present example, the mean of the pos-
terior distribution of g is remarkably close to the ‘true’ value and the signal-to-noise
ratio of this parameter is relatively high so as to allow also meaningful inference on
this parameter.

This is, however, not the case with β , which eventually wanders across its en-
tire admissible range (that we have fixed to the interval [0,5] via the choice of its
prior). The mean and standard errors of β are so close to those of random draws from
such a uniform distribution (2.5 and 1.445) that they appear meaningless, i.e. the data
does not provide any information on β beyond that imposed by the distribution of the
prior. Still, β > 0 would be required for the scenario of long periods of fundamen-
talist dominance with recurrent bursts of chartist activity to be possible at all. The
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apparent inability to obtain sensible estimates of β resonates with empirical studies
(using other methods) that always found it hard to obtain significant estimates of this
parameter (see Boswijk et al., 2007; Kukacka and Barunik, 2017).

We note that for the Metropolis–Hastings algorithm the details of implementation
are of secondary importance, as the theoretical convergence result holds under very
general conditions. One major practical concern is the mixing of the Markov chain.
A standard recommendation is an acceptance rate of 0.4, which both of our settings
with B = 100 and B = 1000 get close to. With less mixing, a longer transient would
be expected and the chain would have to be simulated over more iterations to obtain
a satisfactory representation of the posterior density. The effect of a higher number
of particles is a better approximation of the marginal likelihood which should also
increase the precision of the estimation of the posterior distribution. This is indeed
found to different degrees for the parameter ν, g and σu, but not for β underlining
the principal problem in estimating this parameter.

Summarizing our findings in this subsection, we believe that the preceding exper-
iments have demonstrated the great potential of sequential Monte Carlo methods for
estimation of agent-based models. Adopting the rich toolbox available in this area
would bring agent-based models to the same level of statistical rigor and precision as
modern macroeconomics. What is more, in contrast to the hitherto popular moment-
based estimators, SMC methods do not only allow inference on model parameters,
but also filtering of information on unobserved state variables that characterize the
agents’ beliefs, opinions or attitudes. In the above example, we have also found that
different parameters are estimated with very different degrees of precision. In par-
ticular, we found that the intensity of choice is almost impossible to estimate which
also is in conformity with results obtained by other authors with other methods of
inference. How general this phenomenon is and how much it impedes successful val-
idation of agent-based models remains to be seen.

We also note that the Monte Carlo exercises above have been conducted on the
base of a model formulated for prices as state variables, not returns. The lack of
realism of some of the underlying assumptions such as the assumed dividend pro-
cess would make an empirical implementation cumbersome. In Lux (2017), the same
set of methods is applied to alternative asset pricing models with interacting agents
that do not require any assumption on the dividend process. Monte Carlo exercises
show very similar tendencies as in the present case, and the models under study are
estimated for a selection of financial time series including a comparison of goodness-
of-fit.

5 APPLICATIONS OF AGENT-BASED MODELS
Whereas the chapter has so far mainly focused on methods, we will now briefly turn
to a description of the applications and results. As indicated before, the comparabil-
ity of results across studies is rather limited due to the wide variation in both models
and methods. It is therefore hard to make general statements about the behavior of
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agents across markets, or about which model is ‘best’. We will, however, provide an
overview of what has been found so far using which type of data. We will divide
the evidence in three levels: micro (individuals), market, and macro. The micro-level
evidence focuses on the questions whether individuals form expectations as typically
modeled in ABMs. It therefore serves as a check on the assumptions behind the mod-
els. The market level studies focus on one asset each, whereas the macro-level part
focuses on general equilibrium models.

5.1 MICRO-LEVEL APPLICATIONS
Because ABM and HAMs step away from the notion of rationality, they introduce
a large number of degrees of freedom as there are many ways in which agents can
behave boundedly rationally. As such, empirical research into the assumptions on
expectation formation in ABMs is crucial. One challenge with micro-level studies
is data availability. Whereas market outcomes (i.e., prices, volumes, etc.) are readily
observable, market inputs at the individual level are mostly not observable. There-
fore, one needs to turn to other sources of data than the standard macroeconomic and
finance data bases. Several types of data for individual agents have been used, such as
experimental data, survey data, and investment fund data, each with their own advan-
tages and disadvantages. Whereas one can deduct revealed beliefs from experimental
data, it is not clear to what extent experimental environments as well as their partic-
ipants are representative for the real-life setting. Arifovic and Duffy (2018) give an
overview of experimental work on ABMs. Survey data, on the other hand, is typically
gathered among actual market participants based on actual markets. Unfortunately, it
is unknown to the researcher, however, whether or not survey participants state their
actual beliefs. This issue is partly mitigated when using publicly available survey data
because the survey participant’s reputation is at stake. Fund data, finally, consists of
actual positions and capital flows, as certain types of funds are by law obliged to pro-
vide this information. The question that arises, though, is whether or not the observed
actions are driven by beliefs, preferences, or institutional reasons. In what follows,
we will give a sample of the empirical evidence from each of these data sources.

Both quantitative and qualitative surveys have been used for research in this area.
Taylor and Allen (1992) show, based on a questionnaire survey, that 90% of the
foreign exchange dealers based in London use some form of technical analysis in
forming expectations about future exchange rates, particularly for short-term hori-
zons. Menkhoff (2010) gathered similar data from fund managers in five different
countries, and finds that 87% of the fund managers they survey are using technical
analysis. Frankel and Froot (1986, 1990) were among the first to show, based on
quantitative survey data, that expectations of market participants are non-rational and
heterogeneous. They also find evidence for the chartist–fundamentalist approach em-
ployed in many of the heterogeneous agent models. Dick and Menkhoff (2013) use
forecasters’ self-assessment to classify themselves as chartists, fundamentalists, or
a mix. They find that forecasters who characterize their forecasting tools as chartist
use trend-following strategies and those that are categorized as fundamentalist have
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a stronger tendency toward purchasing power parity. For a more extensive overview,
see Jongen et al. (2008).

Ter Ellen et al. (2013) are among the first to estimate a dynamic heterogeneous
agent model on foreign exchange survey data. They find evidence for three forecast-
ing rules (PPP, momentum, and interest parity) and that investors switch between
forecasting rules depending on the past performance of these rules. Goldbaum and
Zwinkels (2014) find that a model with fundamentalists and chartists can explain the
survey data well. As in Ter Ellen et al. (2013), they find that fundamentalists are mean
reverting and that this model is increasingly used for longer horizons. Chartists have
contrarian expectations at the 1-month horizon. A model with time-varying weights
obtained through an endogenous classification algorithm provides a substantially bet-
ter fit than a static version of this model. Jongen et al. (2012) also allow the weights
on different strategies to vary depending on market circumstances. However, instead
of directly explaining the survey expectations, they analyze the dispersion between
forecasts. They find that the dispersion is caused by investors using heterogeneous
forecasting rules and having private information. This is in line with the earlier find-
ings of Menkhoff et al. (2009) for a dataset on German financial market professionals.

The final data source we discuss here, is fund data. Given that both fund holdings
and returns on the one hand and fund flows on the other hand are available, fund
data allows us to study the behavior of both mutual fund investors as well as mutual
fund managers. Goldbaum and Mizrach (2008) study the behavior of mutual fund
investors and are able to estimate an intensity of choice parameter that governs to
what extent investors switch between different types of mutual funds. They find that
investors switch their allocation of capital between funds of similar styles but with
different performance. A few more papers looks into the switching behavior of fund
managers. Specifically, the question is to what extent fund managers switch between
different styles presumably to maximize the performance of the fund. Using fund
return data, the studies test whether the exposure to different styles is time-varying,
and whether this time-variation is driven by relative past returns of the styles; see
Verschoor and Zwinkels (2013) for foreign exchange funds, Schauten et al. (2015)
for hedge funds, and Frijns et al. (2013) and Frijns and Zwinkels (2016a, 2016b)
for mutual funds. Interestingly, the latter study finds that although fund managers
massively switch capital towards styles that performed well in the recent past, this
does not improve the overall performance of the fund nor does it attract more capital
inflow. This is an indication that heterogeneity is indeed a behavioral characteristic.

5.2 MARKET-LEVEL APPLICATIONS
Due to the self-referential character of asset markets in ABMs, the behavioral hetero-
geneity of agents at the micro-level should be reflected in realized prices and returns.
If a market is dominated by a particular type of agent, market dynamics should be
more similar to the specific expectation formation model of that particular agent. As
such, empirical evidence supporting the ABM approach can be identified from mar-
ket data. A broad range of asset classes has by now been studied. Most papers so far
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have focused on equity markets. Boswijk et al. (2007) are among the first to estimate
a HAM on market data. Specifically, they use historical data of the S&P 500 index
and find significant evidence for behavioral heterogeneity at the annual frequency.
Lof (2015) is based on the same dataset. Chiarella et al. (2012, 2014) and Amilon
(2008) follow suit, on the monthly, weekly, and daily frequency, respectively. De Jong
et al. (2009) study the Thai and Hong Kong stock markets simultaneously and find
evidence for three types of agents, fundamentalists, chartists, and internationalists.
Alfarano et al. (2007) use Japanese stock market data and find evidence for domina-
tion of noise traders. All these papers find evidence supportive of the heterogeneity
approach in their respective models. Another common finding is that the intensity
of choice or switching parameter is not significant based on common measures (i.e.,
a t-statistic). This finding could imply two things: Either there is no significant switch-
ing, or the intensity of choice is rather large such that the standard errors are inflated.
Goodness of fit tests tend to suggest that adding switching increases the fit of the
models, especially when the heterogeneous groups are well identified (i.e., when the
fundamentalist and chartist coefficients are highly significant).

Rather than focusing on the return process of equity markets, a number of authors
has employed an ABM to explain the volatility process of equity markets. Franke and
Westerhoff (2012, 2016) develop and estimate a stochastic volatility model based on
the premise that the stochastic noise terms of fundamentalist and chartist demand
are different. By having time-varying weights on the different groups, this creates
volatility clustering. Frijns et al. (2013) develop a model in which agents have dif-
ferent beliefs about the volatility process, which converges to a GARCH model with
time-varying coefficients in which the ARCH-term and GARCH-term have condi-
tional impacts. Ghonghadze and Lux (2016) apply GMM to the model of Alfarano et
al. (2008) and show that the volatility forecasts of the HAM adds value to GARCH
forecasts as it is not encompassed by the latter for certain assets and forecasting hori-
zons. A typical finding in the volatility literature is that it is relatively straightforward
to outperform a standard GARCH model in-sample, but much harder to do so out-of-
sample. The volatility forecasting results based on ABMs are therefore encouraging.

Explaining foreign exchange market dynamics has long been an important moti-
vation for the early HAM literature, which is also reflected in the amount of empirical
work on this asset class; see Vigfusson (1997), Gilli and Winker (2003), Reitz and
Westerhoff (2003), Ahrens and Reitz (2005), Reitz et al. (2006), Manzan and West-
erhoff (2007), De Jong et al. (2010), Kouwenberg et al. (2017). The issue with such
extremely liquid financial markets, though, is to find expectation formation rules that
hold empirically as it is hard to find empirical patterns in such near-efficient mar-
kets. Finding behavioral heterogeneity in returns on free-floating exchange rates is
therefore challenging. Other financial assets that have been studied using HAMs in-
clude credit default swaps (Chiarella et al., 2014; Frijns and Zwinkels, 2016b), and
equity index options (Frijns et al., 2013). The largest financial markets in terms of
outstanding capital, bond markets, have to our best knowledge not been studied yet.
Given that prices of non-financial assets are also a function of the expectation of
market participants, ABMs have been estimated on a broad range of markets. Baak
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(1999) uses data on cattle prices, Chavas (2000) studies the beef market, Ter Ellen
and Zwinkels (2010) the oil market, Baur and Glover (2014) look at gold prices. Lux
(2012) can also be mentioned in this respect, as the paper looks into heterogeneity
and propagation of sentiment among investors.

Since the unraveling of the global financial crisis, studying the dynamics in the
real estate market has become a central theme. Kouwenberg and Zwinkels (2014,
2015) fit a HAM on the Case–Shiller index, representing the US residential housing
market. They find very strong evidence in favor of the heterogeneity approach, both
in-sample and out-of-sample. Interestingly, their model with the estimated set of co-
efficients converges to a limit cycle.16 In other words, endogenous dynamics play an
important role in the US housing market. Eichholtz et al. (2015) follow suit and es-
timate a HAM on over 400 years of real estate data from Amsterdam. They find that
chartist domination is related to periods of upswing in the business cycle. Bolt et al.
(2014) estimate a HAM on real estate data from a set of eight countries and also find
strong evidence for heterogeneity driven bubbles and crashes.

One of the next steps we expect for this line of research, is a more granular ap-
proach. This can go along two lines. First, rather than focusing on stock indices,
as most papers currently do, one could estimate ABMs on stock level data. Sub-
sequently, it would be interesting to study the cross-sectional differences in agent
behavior between stocks. Results could be linked to the more general asset pricing
literature, which has identified numerous cross-sectional anomalies which might be
driven by the (time-varying) behavior of boundedly rational agents. Second, with
the increasing availability of individual level data, it becomes feasible to estimate
(reduced-form) ABMs on groups of traders or individuals. This would allow to
draw inference on the personal characteristics of trader types. For example, one can
imagine that retail investors display a different type of behavior than professional in-
vestors, although both can be boundedly rational in nature. In addition, an interesting
extension of the literature would be to compare behavioral heterogeneity across mar-
kets, as well as the interaction between markets. Current papers tend to focus on a
single asset market. Due to the differences in models and empirical approaches, the
results cannot be compared across studies. As such, a direct comparison of behavior
across markets is warranted. Furthermore, in the theoretical HAM literature there is
an increase in studies looking at multiple asset markets. The empirical follow-up is
yet to come.

5.3 APPLICATIONS IN MACROECONOMICS
While agent-based modeling in economics goes beyond financial market applica-
tions, estimation of such models has by and large been confined to financial appli-
cations. This is not too surprising, as many such models with heterogeneous agents

16Other papers studying the stability properties of the model using the empirically obtained coefficients
find fixed points equilibria; see e.g. Chiarella et al. (2014).
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could be cast into traditional structural formats like those of regime-switching mod-
els. Even when considering a true ensemble of interacting agents with some stochas-
tic behavioral variation, the overall dynamics still appears convenient enough at least
for the rigorous application of moment-based estimation.

Little explicit estimation and goodness-of-fit is found in the macro-sphere. Exist-
ing examples are restricted to selected phenomena like the estimation of a model of
opinion formation to business survey data in Lux (2009a) or the estimation of a net-
work formation model for banks’ activity in the interbank money market by Finger
and Lux (2017). Bargigli et al. (2016) go one step further. They combine a network
model for the formation of credit links between banks and non-financial firms with
the balance sheet dynamics of firms and estimate their model with a rich data set of
bank loans to Japanese firms. An interesting methodological aspect is that they use
a ‘meta-model’ to both derive qualitative predictions from their complex model and
to use it as an intermediate step for parameter estimation. Hence, in the spirit of ‘in-
direct inference’, parameter estimation involves a simple auxiliary stochastic model
whose parameters are then matched with the agent-based model. This approach has
been inspired by a similar framework adopted from an ABM of an ecological prob-
lem (Dancik et al., 2010), and Salle and Yildizoğlu (2014) apply the same concept of
meta-modeling to the Nelson and Winter model (Nelson and Winter, 1982) of indus-
trial dynamics as well as to an oligopoly model with heterogeneous firms.

More complex macroeconomic models have mostly been calibrated rather than
estimated. Axtell et al. (1996) have already discussed how to ‘align’ complex simu-
lation models that might have been designed to describe similar phenomena in very
different languages. Such an alignment aims at finding out in how far there are sim-
ilarities of observable characteristics between models. In complex macroeconomic
data, the pertinent observables have typically been distributions such as those of firm
sizes, growth rates, and the relation between size itself and the variance of its growth
rate (cf. Bianchi et al., 2007, 2008). A particularly rich set of empirical stylized facts
is met by the ‘Schumpeter meets Keynes’ framework of Dosi et al. (2010, 2013, 2015)
that covers both time series properties of output fluctuations and growth as well as
cross-sectional distributional characteristics of firms. A recent paper by Guerini and
Moneta (2016) proposes to use the fraction of qualitative agreements in causal re-
lationship between a model and data as a criterion for validation of a model that is
too complex for rigorous estimation. To this end, they estimate a structural vector au-
toregressive model for the variables used by Dosi et al. Comparison with simulated
model output provides an agreement of 65 to 90 percent of all causal relationships
which is viewed as encouraging by the authors.

If heterogeneity is more limited, expanding a standard neo-Keynesian model by
a modest degree of interaction of agents could still lead to a framework that can be
estimated explicitly. Anufriev et al. (2015) consider heterogeneous inflation expec-
tations with switching between belief formation heuristics according to their past
performance. They show that the stabilizing potential of monetary policy depends on
the interplay between the central bank’s reaction function and the agents’ expecta-
tion formation. De Grauwe (2011) allows for both boundedly rational, heterogeneous
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expectations on output and inflation. Jang and Sacht (2016) also follow this ap-
proach and replace rational expectations on output and inflation by the outcome of a
process of opinion formation of heterogeneous agents. They find that this model pro-
vides a satisfactory match to Euro area data when estimated via simulated method
of moments. Cornea et al. (2017) estimate a New Keynesian Phillips curve with
time-varying heterogeneous expectations. They find significant switching between
forward-looking expectations based on fundamentals and naive backward looking
expectations. In contrast to other studies, their nonlinear least squares estimation also
indicates that the intensity of choice parameter is significantly different from zero.

The so far only attempt at validation of a large-scale macroeconomic model has
been made by Barde and van der Hoog (2017). They apply the so-called EURACE
model (Dawid et al., 2017) to thirty OECD countries and the Eurozone. Since this
is definitely a model that is too complex to subject it to repeated simulation within
some parameter estimation loop, they adopt concepts of emulation or meta-modeling
(called surrogate modeling in their paper) that have been mentioned in Section 2.
Barde and van der Hoog conduct a total of 513 simulations and build model confi-
dence sets of those versions that are not inferior to others following the methodology
of Hansen et al. (2011). Adding to the trials those of local minima of the emulation
function they attempt to find out whether the search through the later provides sig-
nificantly better fitting parameters (in terms of an information criterion as objective
function). This is mostly not the case. The overall size of the model confidence sets
appears reasonably small in most cases which is mainly driven by the matching of the
unemployment series while the other macroeconomic series of output and inflation
rates add little discriminatory power. One particularly encouraging result appears to
be that at least one out of the two particularly successful models (parameter sets)
appears in all 31 model confidence sets.

6 CONCLUSION
Estimation of agent-based models has become a burgeoning research area over the
last ten years or so. While there has been an older tradition of framing simple mod-
els with two groups of agents as regime-switching models, the more recent literature
has moved on to develop estimation methods for more general designs of models
with heterogeneous, interacting agents. Such models could both summarize the con-
sequences of heterogeneity by some summary measures (like an opinion index) or
they could truly consider a finite set of agents with their microeconomic interactions.
Research in this vein has been emerging in economics more or less simultaneously
with related efforts in other fields (particularly in ecology), unfortunately without too
much interaction between these related streams of literature so far.

Estimating agent based models poses certain challenges to the econometrician.
For example, the simulated objective functions that one may use to identify the
parameters, will often not be a continuous function of the parameters. Because of
the simulation of moments or likelihood functions, these functions will be a wiggly
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image of their unknown theoretical counterparts. At least in those types of mod-
els that have been explored so far, this problem seems to be generic. For practical
applications, this means that we cannot use the set of convenient gradient-based op-
timizers that econometricians use for other problems. Otherwise one would almost
with certainty end up in some local optimum rather than identifying sensible param-
eter values. Finding an appropriate optimization routine for non-standard problems
(such as Nelder–Mead, simulated annealing, genetic algorithms, and others) can be-
come a research topic in itself, and the best choice might be problem-specific.

While the research on econometric estimation of agent-based models has been
growing impressively recently, most of it has so far remained on the level of proof
of concept, demonstrating how a particular approach to estimation works with a se-
lected model. Even in finance, the field in which almost all this research resides, it is
hard to draw general material conclusions as to which particular model structures per-
form better than others. However, research on model comparison has recently begun
(Franke and Westerhoff, 2012; Barde, 2016) and more along these lines is expected
to come. The trend towards estimation might also have a beneficial effect in that it
will impose empirical discipline on ABM modeling. It appears to us that there is
often a danger of over-parametrization of such models, and even a Monte Carlo ex-
ercise could easily reveal that a model has redundant parameters that could never be
identified with the data one targets.

As for the reduced-form models, we have seen applications in effectively all pos-
sible asset classes. The road ahead therefore no longer lies in analyzing more asset
classes, but rather in comparisons between asset classes and more granular studies of
individual assets. The former is directly related to the model comparison issues de-
scribed above. A first step in this direction can be found in Ter Ellen et al. (2017), who
provide a comparison of behavioral heterogeneity across asset classes. The granular
approach includes, for example, analysis of individual stocks. Individual stock level
analysis is especially challenging when it comes to finding the global optimum of the
optimization procedure due to the high (idiosyncratic) volatility. A thorough test on
the robustness of results to starting values is therefore warranted. A successful asset-
level estimation exercise, however, would also help bring the HAM literature closer
to the more mainstream asset pricing literature as it becomes possible to connect com-
pany characteristics to behavioral heterogeneity. Another step in this direction would
be to introduce more sophisticated proxies for the fundamental value. The current
proxies are probably too sensitive to the critique that both volatility and risk attitudes
are static.

As has been pointed out in Section 2, in epidemiology, climate research, and
industrial process dynamics, smaller simulation models have been integrated over
time into more comprehensive large models. The smaller models had been validated
rigorously in the respective fields and their known dynamic behavior and estimated
parameters count as established knowledge. The large models are usually too com-
plex and need too much computation time to be subjected to the same degree of
scrutiny. However, methods have been developed to assess biases and to correct the
uncertainties of large simulation models. We could imagine that economics could
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pursue a similar avenue in the medium run: Once a body of knowledge has been
collected on ABMs for particular markets (the stock market, labor market, etc.) these
could be integrated into a larger macroeconomic simulation framework with validated
agent-based microfoundations.
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