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∫
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0
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0 t − nb0)dt .

Wigner-Ville transform (quadratic → nonlinear + interference

terms).

Hilbert-Huang transform (EMD + Hilbert transform)



Empirical Mode Decomposition (EMD): Principle

1
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series

analysis, Proc. Royal Society London A., vol.454, pp.903–995,1998

Empirical Wavelet Transform

Goal: decompose a signal f (t) into a finite sum of Intrinsic Mode

Functions (IMF) fk (t):

f (t) =
N∑

k=0

fk (t)

where an IMF is an AM-FM signal:

fk (t) = Fk (t) cos (ϕk (t)) where Fk (t), ϕ
′

k (t) > 0 ∀t .

Main assumption: Fk and ϕ′

k vary much slower than ϕk .

Huang et al.1 propose a pure algorithmic method to extract the

different IMF.



Empirical Mode Decomposition (EMD): Algorithm

Empirical Wavelet Transform

Initialization: f 0 = f
while all IMF are no extracted do

r k
0
= f k

while r k
n is not an IMF (Sifting process) do

Upper envelope ū(t) (maxima + spline) of r k
n (t)

Lower envelope l(t) (minima + spline) of r k
n (t)

Mean envelope m(t) = (ū(t) + l(t))/2
IMF candidate r k

n+1
(t) = r k

n (t)− m(t)
end while

f k+1 = f k
− r k

n+1
end while
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Example of EMD: input signals

Empirical Wavelet Transform
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Example of EMD: fSig1

Empirical Wavelet Transform
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Example of EMD: fSig2

Empirical Wavelet Transform
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Example of EMD: fSig3

Empirical Wavelet Transform
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Example of EMD: fSig4 - ECG
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Hilbert-Huang Transform

Empirical Wavelet Transform

Hilbert transform

Hf (t) =
1

π
p.v .

∫ +∞

−∞

f (τ)

t − τ
dτ

Property: if fk (t) = Fk (t) cos (ϕk (t)) then

f ∗k (t) = fk (t) + ıHfk (t) = Fk (t)e
ıϕk (t)

⇒ we can extract Fk (t) and the instantaneous frequency dϕk

dt (t).
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Hilbert transform

Hf (t) =
1

π
p.v .

∫ +∞

−∞

f (τ)

t − τ
dτ

Property: if fk (t) = Fk (t) cos (ϕk (t)) then

f ∗k (t) = fk (t) + ıHfk (t) = Fk (t)e
ıϕk (t)

⇒ we can extract Fk (t) and the instantaneous frequency dϕk

dt (t).

HHT

For each IMF k , we extract Fk and dϕk

dt (t) and accumulate the

information in the time-frequency plane.



HHT of fsig2
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HHT of fsig4 - ECG

Empirical Wavelet Transform
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EMD: Issues and Properties

Useful to analyze real signals.

Implementation dependent.

Problem: it’s a nonlinear algorithm which has no

mathematical theory ⇒ difficult to predict and understand

its output and behavior in the general case.

Experimental property: seems to behave as an adaptive

filter bank (Flandrin et al.2)

2
Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, vol.11, No.2, pp.112–114,

2004

Empirical Wavelet Transform



Key ideas about wavelets
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Wavelets ⇔ filtering

WT f (m, n) = a
−m/2
0

∫
f (t)ψ(a−m

0 t − nb0)dt

= a
−m/2
0

∫
f (t)ψ

(
t − nam

0 b0

am
0

)
dt

= (f ⋆ ψm)(nam
0 b0)

where ψm(s) = ψ

(
−s

a−m
0

)
.
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Wavelets ⇔ filtering

WT f (m, n) = a
−m/2
0

∫
f (t)ψ(a−m

0 t − nb0)dt

= a
−m/2
0

∫
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)
dt

= (f ⋆ ψm)(nam
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where ψm(s) = ψ

(
−s
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0

)
.

⇒ Wavelets can be built both in the temporal or Fourier domains.
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Empirical wavelet transform (EWT): Concept

Empirical Wavelet Transform

Idea:

Combining the strength of wavelet’s formalism with the adaptability of EMD.

Wavelets are equivalent to filter banks → (dyadic) decomposition of the Fourier line

ωππ/2π/4π/8. . .

Does not necessarily correspond to “modes” positions.

EWT → adaptive decomposition of the Fourier line

πω1 ω2 ω3 ωn ω
n+1

≀≀ ≀≀



EWT: finding the modes
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Fourier spectrum segmentation:

Find the local maxima.

Take support boundaries as the middle between successive

maxima.
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EWT: finding the modes

Empirical Wavelet Transform

Fourier spectrum segmentation:

Find the local maxima.

Take support boundaries as the middle between successive

maxima.
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EWT: filter bank construction (1/3)

Empirical Wavelet Transform

Notations

ωn: support boundaries

τn: half the length of the “transition phase”

πω1 ω2 ω3 ωn ωn+1
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2τ1 2τ2 2τ3 2τn 2τn+1 τN
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EWT: filter bank construction (1/3)

Empirical Wavelet Transform

Notations

ωn: support boundaries

τn: half the length of the “transition phase”

πω1 ω2 ω3 ωn ωn+1

≀≀

2τ1 2τ2 2τ3 2τn 2τn+1 τN

1

≀≀

In practice we choose τn = γωn



EWT: filter bank construction (2/3)

Empirical Wavelet Transform

Scaling function spectrum

φ̂n(ω) =
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EWT: filter bank construction (3/3)

Empirical Wavelet Transform

Scaling function spectrum for ωn = 1 and γ = 0.5
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EWT: property and example (1/2)

Empirical Wavelet Transform

Proposition

If γ < minn

(
ωn+1−ωn

ωn+1+ωn

)
, then the set {φ1(t), {ψn(t)}

N
n=1} is an

orthonormal basis of L2(R).



EWT: property and example (1/2)

Empirical Wavelet Transform

Proposition

If γ < minn

(
ωn+1−ωn

ωn+1+ωn

)
, then the set {φ1(t), {ψn(t)}

N
n=1} is an

orthonormal basis of L2(R).

Filter Bank for ωn ∈ {0, 1.5, 2, 2.8, π} with γ = 0.05 < 0.057
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EWT: property and example (2/2)

Detail coefficients:

WE

f (n, t) = 〈f , ψn〉 =

∫
f (τ)ψn(τ − t)dτ

=
(

f̂ (ω)ψ̂n(ω)
)∨

,

Approximation coefficients (convention WE

f (0, t):

WE

f (0, t) = 〈f , φ1〉 =

∫
f (τ)φ1(τ − t)dτ

=
(

f̂ (ω)φ̂1(ω)
)∨

,

The reconstruction:

f (t) = WE

f (0, t) ⋆ φ1(t) +
N∑

n=1

WE

f (n, t) ⋆ ψn(t)

=

(
ŴE

f (0, ω)φ̂1(ω) +

N∑

n=1

ŴE

f (n, ω)ψ̂n(ω)

)∨

.

Empirical Wavelet Transform



EWT: algorithm

Input: f , N (number of scales)

1 Fourier transform of f → f̂ .

2 Compute the local maxima of f̂ on [0, π] and find the set

{ωn}.

3 Choose γ < minn

(
ωn+1−ωn

ωn+1+ωn

)
.

4 Build the filter bank.

5 Filter the signal to get each component.

Empirical Wavelet Transform



Experiment: fSig1

Empirical Wavelet Transform
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Experiment of EMD: fSig2

Empirical Wavelet Transform
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Experiment of EMD: fSig3

Empirical Wavelet Transform
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Experiment of EMD: ECG

Empirical Wavelet Transform
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Time-Frequency representation of fsig2

Empirical Wavelet Transform
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Time-Frequency representation of fsig4

Empirical Wavelet Transform
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2D - Extension

joint work with Giang Tran and Stan Osher

Empirical Wavelet Transform
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Like the “classic” wavelet transform → process rows then columns

but. . .

The number of detected scales can be different for each row

The position of the Fourier boundaries can vary a lot from one

row to the next (⇔ “information discontinuity”)

⇒ Idea: “Mean Filter Banks”
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Generalization to any kind of Fourier based wavelets (e.g. Splines).

2D (nD) extension: finish ridgelet idea, curvelet, “true” spectrum segmentation.
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Solve PDEs (cf. Stan’s talk).
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THANK YOU!

Empirical Wavelet Transform

PS: Jack, I’m from UCLA and on the job market ;-)


