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@ Introduction - EMD
@ 1D Empirical Wavelets

@ Definition
e Experiments

@ 2D Extensions

e Tensor product case
o Ridgelet case
e Experiments
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Time-frequency signal analysis

Time-Frequency representations are useful to analyze signals.

° Short time Fourier transform:
FY( = [f(s)g(s — nty)e"™03ds,

° Wavelet transform
WTe(m, n) = ag™? [ f(t)p(ag™t — nby)dt.

@ Wigner-Ville transform (quadratic — nonlinear + interference
terms).

@ Hilbert-Huang transform (EMD + Hilbert transform)
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Empirical Mode Decomposition (EMD): Principle

Goal: decompose a signal f(t) into a finite sum of Intrinsic Mode
Functions (IMF) fi(t):

N
(1) =) k(D)
k=0
where an IMF is an AM-FM signal:
fi(t) = Fk(t) cos (pk(t)) where Fi(t), 90;((1') > 0 Vt.

Main assumption: Fyx and ¢} vary much slower than ¢y.

Huang et al.! propose a pure algorithmic method to extract the
different IMF.

1 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis, Proc. Royal Society London A., vol.454, pp.903-995,1998
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Empirical Mode Decomposition (EMD): Algorithm

Initialization: f0 = f
while all IMF are no extracted do
fé( = fk
while rX is not an IMF (Sifting process) do
Upper envelope T(t) (maxima + spline) of rf(t)
Lower envelope /(t) (minima + spline) of rk(t)
Mean envelope m(t) = (T(t) + I(t))/2
IMF candidate r¥, , (t) = rk(t) — m(t)

end while
k+1 _ fk _ ok H
fer _7f — I b
end while L
6 |
4 |
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Example of EMD: input signals
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Example of EMD: fs;g;
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Example of EMD: fsjgo
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Example of EMD: fsjg3
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Example of EMD: fsjgs - ECG
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Hilbert-Huang Transform

Hilbert transform

Hi(t) = %p.v. /ﬂo ") gy

o =T

Property: if fx(t) = Fx(t) cos (¢k(t)) then

fr (1) = fic(t) + 1Hy, (1) = Fi(t)exD

= we can extract Fx(t) and the instantaneous frequency %(t).
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Hilbert-Huang Transform
Hilbert transform

Hi(t) = %p.v. /ﬁo ") gy

o =T

Property: if fx(t) = Fx(t) cos (¢k(t)) then

fr (1) = fic(t) + 1Hy, (1) = Fi(t)exD

= we can extract Fx(t) and the instantaneous frequency %(t).

For each IMF k, we extract Fx and %(t) and accumulate the
information in the time-frequency plane.
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EMD: Issues and Properties

@ Useful to analyze real signals.
@ Implementation dependent.

@ Problem: it’s a nonlinear algorithm which has no
mathematical theory = difficult to predict and understand
its output and behavior in the general case.

@ Experimental property: seems to behave as an adaptive
filter bank (Flandrin et al.?)

2Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, vol.11, No.2, pp.112-114,
2004

Empirical Wavelet Transform



Key ideas about wavelets

Wavelets < filtering

WT(m,n) = a;™? / F(t)b(ag™t — nbo)dt

o™’ / () (Z:O b°> dt

= (f x¢m)(nag'bo)

where m(8s) = ¢ (‘_?n>

Empirical Wavelet Transform



Key ideas about wavelets

Wavelets < filtering

WT(m,n) = a;™? / F(t)b(ag™t — nbo)dt

o™’ / () (Z:O b°> dt

= (f x¢m)(nag'bo)

where m(8s) = ¢ (‘_?n>

a

= Wavelets can be built both in the temporal or Fourier domains.
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Empirical wavelet transform (EWT): Concept

Combining the strength of wavelet’s formalism with the adaptability of EMD. \
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Empirical wavelet transform (EWT): Concept

Combining the strength of wavelet’s formalism with the adaptability of EMD.

Wavelets are equivalent to filter banks — (dyadic) decomposition of the Fourier line

‘f‘-.7r:/8 7T:/4 7r:/2 71' w

Does not necessarily correspond to “modes” positions.

EWT — adaptive decomposition of the Fourier line

i i 5 -
wp w2 w3 Wn  Wnptl ™
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EWT: finding the modes

Fourier spectrum segmentation:
@ Find the local maxima.

@ Take support boundaries as the middle between successive
maxima.
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EWT: finding the modes

Fourier spectrum segmentation:
@ Find the local maxima.

@ Take support boundaries as the middle between successive
maxima.
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EWT: filter bank construction (1/3)

@ wp: support boundaries
@ 7,: half the length of the “transition phase”
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EWT: filter bank construction (1/3)

@ wp: support boundaries
@ 7,: half the length of the “transition phase”

LN A\ A\ 1
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In practice we choose 7, = ywnp
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EWT: filter bank construction (2/3)

Scaling function spectrum

1 if jw| < (1 —7)wn
Polw) = § 008 [38 (i (1wl = (1 =7)wn)) | I (1 = wn < o] < (1 + 7)o
0 otherwise

Wavelet spectrum

1 if (1 +7)wn < |w| < (1 —7)wnit
6% 05 [38 (g7 (lol — (1 = 7wnnr) )]
if (1 = Ywni1 < Jw| < (1 +7)wnis
w"(w)_ w .,
e sin [38 (55 (Il — (1 = 7)wn) )]
if (1 —79)wn < |w| < (14 7)wn
otherwise

0
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EWT: filter bank construction (3/3)

Scaling function spectrum for w, =1 and v = 0.5
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EWT: property and example (1/2)

Proposition

If v < min, (ZZiEZ:) then the set {¢1(t), {¥n(t)}N_,} is an
orthonormal basis of L?(R).
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EWT: property and example (1/2)

Proposition

If v < ming (ZZXEZZ) then the set {¢1(t), {¥n(t)}N_,} is an
orthonormal basis of L?(R).
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EWT: property and example (2/2)

Detail coefficients:
Wf n t "l,/)n /f T/Jn T *t
= (Hw)da(@))

Approximation coefficients (convention W (0, t):

WfOt (;51 /f ¢)1T—t

= (b))

The reconstruction:
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EWT: algorithm

Input: f, N (number of scales)

@ Fourier transform of f — 7.

@ Compute the local maxima of 7 on [0, 7] and find the set
{wn}-

H Wni1—Wn
© Choose v < min,, (wm +w”).

© Build the filter bank.
© Filter the signal to get each component.
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Experiment: fsjg
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Experiment of EMD: fsjy3
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Experiment of EMD: ECG
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Time-Frequency representation of fsjg2
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Time-Frequency representation of fsjg4
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2D - Extension

joint work with Giang Tran and Stan Osher
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2D Extension - “Tensor product” approach

Like the “classic” wavelet transform — process rows then columns

but...
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2D Extension - “Tensor product” approach

Like the “classic” wavelet transform — process rows then columns |

but...

@ The number of detected scales can be different for each row

@ The position of the Fourier boundaries can vary a lot from one
row to the next (< “information discontinuity”)

= |dea: “Mean Filter Banks” )
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2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm
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2D Extension - Example

Empirical Wavelet Transform



2D Extension - Ridgelet approach

Classic Ridgelets
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2D Extension - Ridgelet approach

Empirical Ridgelets
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2D Extension - Ridgelet: a first example
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2D Extension - Ridgelet: a noisy example
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- 2D Extension - Ridgelet: a noisy example
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THANK YOU!

PS: Jack, I'm from UCLA and on the job market ;-)
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