Empirical Wavelet Transform

Jérôme Gilles

Department of Mathematics, UCLA jegilles@math.ucla.edu

Adaptive Data Analysis and Sparsity Workshop January 31th, 2013

Outline

- Introduction EMD
- 1D Empirical Wavelets
 - Definition
 - Experiments
- 2D Extensions
 - Tensor product case
 - Ridgelet case
 - Experiments

Time-Frequency representations are useful to analyze signals.

Time-Frequency representations are useful to analyze signals.

Short-time Fourier transform:

$$\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds.$$

Time-Frequency representations are useful to analyze signals.

• Short-time Fourier transform:

$$\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds.$$

Wavelet transform:

$$\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t) \psi(a_0^{-m}t - nb_0) dt.$$

Time-Frequency representations are useful to analyze signals.

- Short-time Fourier transform: $\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds$.
- Wavelet transform: $\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t) \psi(a_0^{-m}t nb_0) dt$.
- Wigner-Ville transform (quadratic → nonlinear + interference terms).

Time-Frequency representations are useful to analyze signals.

- Short-time Fourier transform: $\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds$.
- Wavelet transform: $\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t) \psi(a_0^{-m}t nb_0) dt$.
- $\bullet \ \ \mbox{Wigner-Ville transform (quadratic} \rightarrow \mbox{nonlinear + interference terms)}.$
- Hilbert-Huang transform (EMD + Hilbert transform)

Empirical Mode Decomposition (EMD): Principle

Goal: decompose a signal f(t) into a finite sum of Intrinsic Mode Functions (IMF) $f_k(t)$:

$$f(t) = \sum_{k=0}^{N} f_k(t)$$

where an IMF is an AM-FM signal:

$$f_k(t) = F_k(t)\cos(\varphi_k(t))$$
 where $F_k(t), \varphi'_k(t) > 0 \ \forall t$.

Main assumption: F_k and φ'_k vary much slower than φ_k .

Huang et al.¹ propose a pure algorithmic method to extract the different IMF.

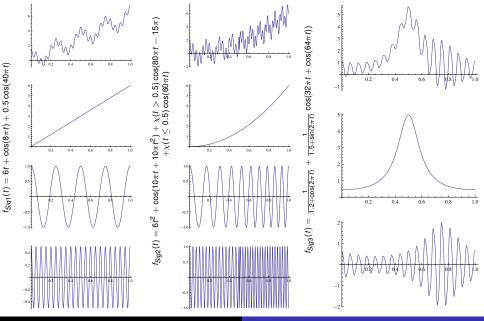
```
Initialization: f^0 = f
while all IMF are no extracted do
   r_0^k = f^k
   while r_n^k is not an IMF (Sifting process) do
       Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t)
       Lower envelope I(t) (minima + spline) of r_n^k(t)
       Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2
       IMF candidate r_{n+1}^{k}(t) = r_{n}^{k}(t) - m(t)
   end while
   f^{k+1} = f^k - r_{n+1}^k
end while
                                  6
                                                                              0.6
                                                                                            0.8
                                                                                                           1.0
```

```
Initialization: f^0 = f
while all IMF are no extracted do
   r_0^k = f^k
   while r_n^k is not an IMF (Sifting process) do
       Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t)
       Lower envelope \underline{I}(t) (minima + spline) of r_n^k(t)
       Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2
       IMF candidate r_{n+1}^k(t) = r_n^k(t) - m(t)
   end while
   f^{k+1} = f^k - r_{n+1}^k
end while
                                  6
                                                                               0.6
                                                                                              0.8
                                                                                                             1.0
```

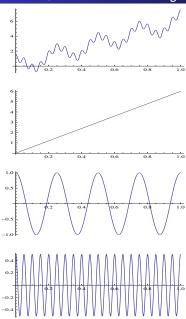
```
Initialization: f^0 = f
while all IMF are no extracted do
   r_0^k = f^k
   while r_n^k is not an IMF (Sifting process) do
       Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t)
       Lower envelope \underline{I}(t) (minima + spline) of r_n^k(t)
       Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2
       IMF candidate r_{n+1}^k(t) = r_n^k(t) - m(t)
   end while
   f^{k+1} = f^k - r_{n+1}^k
end while
                                   6
                                                                               0.6
                                                                                              0.8
                                                                                                             1.0
```

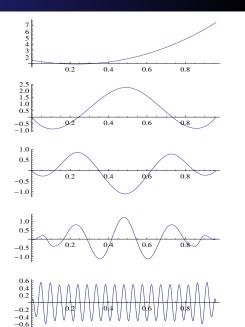
```
Initialization: f^0 = f
while all IMF are no extracted do
   r_0^k = f^k
   while r_n^k is not an IMF (Sifting process) do
       Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t)
       Lower envelope I(t) (minima + spline) of r_n^k(t)
       Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2
       IMF candidate r_{n+1}^k(t) = r_n^k(t) - m(t)
   end while
   f^{k+1} = f^k - r_{n+1}^k
end while
                                 6
                                                                             0.6
                                                                                           0.8
                                                                                                          1.0
```

Example of EMD: input signals

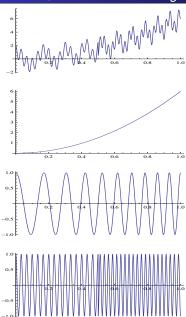


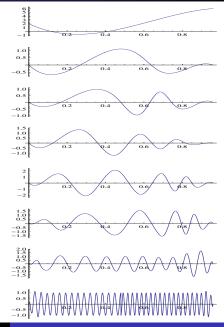
Example of EMD: f_{Sig1}



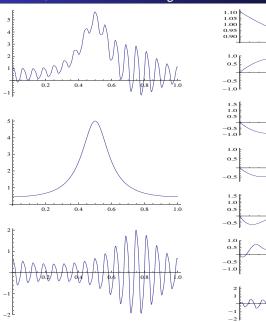


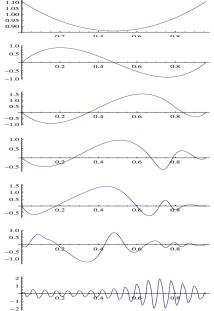
Example of EMD: f_{Sig2}



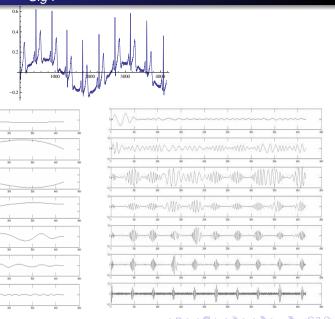


Example of EMD: f_{Sig3}





Example of EMD: f_{Sig4} - ECG



Hilbert-Huang Transform

Hilbert transform

$$\mathcal{H}_f(t) = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(\tau)}{t-\tau} d\tau$$

Property: if $f_k(t) = F_k(t) \cos(\varphi_k(t))$ then

$$f_k^*(t) = f_k(t) + i\mathcal{H}_{f_k}(t) = F_k(t)e^{i\varphi_k(t)}$$

 \Rightarrow we can extract $F_k(t)$ and the instantaneous frequency $\frac{d\varphi_k}{dt}(t)$.

Hilbert-Huang Transform

Hilbert transform

$$\mathcal{H}_f(t) = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(\tau)}{t-\tau} d\tau$$

Property: if $f_k(t) = F_k(t) \cos(\varphi_k(t))$ then

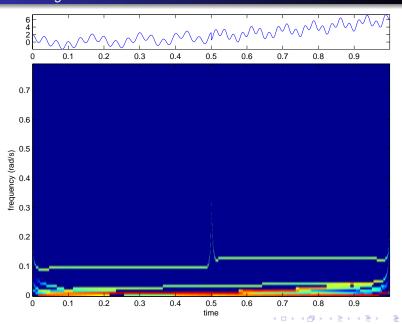
$$f_k^*(t) = f_k(t) + i\mathcal{H}_{f_k}(t) = F_k(t)e^{i\varphi_k(t)}$$

 \Rightarrow we can extract $F_k(t)$ and the instantaneous frequency $\frac{d\varphi_k}{dt}(t)$.

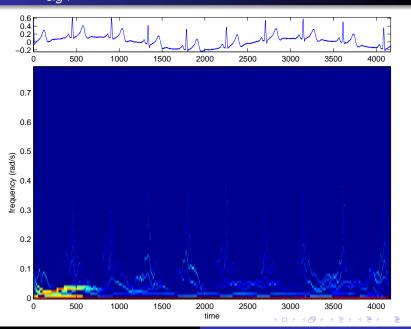
HHT

For each IMF k, we extract F_k and $\frac{d\varphi_k}{dt}(t)$ and accumulate the information in the time-frequency plane.

HHT of f_{sig2}



HHT of f_{sig4} - ECG



EMD: Issues and Properties

- Useful to analyze real signals.
- Implementation dependent.
- Experimental property: seems to behave as an adaptive filter bank (Flandrin et al.²)

- (ロ) (個) (注) (注) 注 り(0

² Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, vol.11, No.2, pp.112–114,

Key ideas about wavelets

Wavelets ⇔ filtering

$$\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t)\psi(a_0^{-m}t - nb_0)dt$$
$$= a_0^{-m/2} \int f(t)\psi\left(\frac{t - na_0^m b_0}{a_0^m}\right)dt$$
$$= (f \star \psi_m)(na_0^m b_0)$$

where
$$\psi_m(s) = \psi\left(\frac{-s}{a_0^{-m}}\right)$$
.

Key ideas about wavelets

Wavelets ⇔ filtering

$$\mathcal{WT}_{f}(m,n) = a_{0}^{-m/2} \int f(t)\psi(a_{0}^{-m}t - nb_{0})dt$$
$$= a_{0}^{-m/2} \int f(t)\psi\left(\frac{t - na_{0}^{m}b_{0}}{a_{0}^{m}}\right)dt$$
$$= (f \star \psi_{m})(na_{0}^{m}b_{0})$$

where
$$\psi_m(s) = \psi\left(\frac{-s}{a_0^{-m}}\right)$$
.

⇒ Wavelets can be built both in the temporal or Fourier domains.

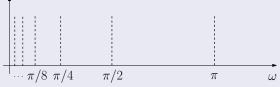
Idea:

Combining the strength of wavelet's formalism with the adaptability of EMD.

Idea:

Combining the strength of wavelet's formalism with the adaptability of EMD.

Wavelets are equivalent to filter banks \rightarrow (dyadic) decomposition of the Fourier line †



Idea:

Combining the strength of wavelet's formalism with the adaptability of EMD.

Wavelets are equivalent to filter banks → (dyadic) decomposition of the Fourier line

Does not necessarily correspond to "modes" positions.

Idea:

Combining the strength of wavelet's formalism with the adaptability of EMD.

Wavelets are equivalent to filter banks \rightarrow (dyadic) decomposition of the Fourier line †

Does not necessarily correspond to "modes" positions.

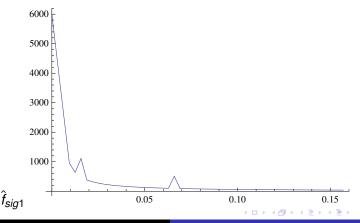
 $\mathsf{EWT} \to \mathsf{adaptive}$ decomposition of the Fourier line



EWT: finding the modes

Fourier spectrum segmentation:

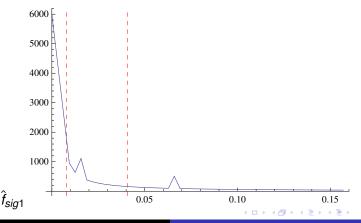
- Find the local maxima.
- Take support boundaries as the middle between successive maxima.



EWT: finding the modes

Fourier spectrum segmentation:

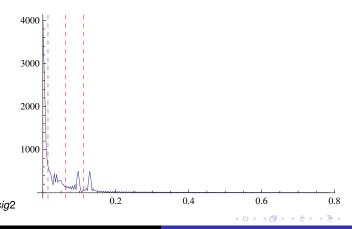
- Find the local maxima.
- Take support boundaries as the middle between successive maxima.



EWT: finding the modes

Fourier spectrum segmentation:

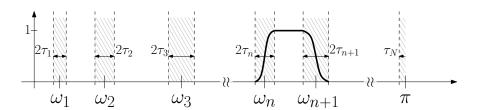
- Find the local maxima.
- Take support boundaries as the middle between successive maxima.



EWT: filter bank construction (1/3)

Notations

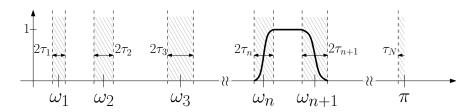
- ω_n : support boundaries
- τ_n : half the length of the "transition phase"



EWT: filter bank construction (1/3)

Notations

- ω_n : support boundaries
- τ_n : half the length of the "transition phase"



In practice we choose $\tau_n = \gamma \omega_n$

EWT: filter bank construction (2/3)

Scaling function spectrum

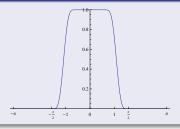
$$\hat{\phi}_n(\omega) = \begin{cases} 1 & \text{if } |\omega| \leq (1-\gamma)\omega_n \\ \cos\left[\frac{\pi}{2}\beta\left(\frac{1}{2\gamma\omega_n}(|\omega|-(1-\gamma)\omega_n)\right)\right] & \text{if } (1-\gamma)\omega_n \leq |\omega| \leq (1+\gamma)\omega_n \\ 0 & \text{otherwise} \end{cases}$$

Wavelet spectrum

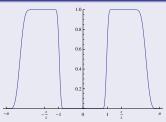
$$\hat{\psi}_{n}(\omega) = \begin{cases} 1 & \text{if } (1+\gamma)\omega_{n} \leq |\omega| \leq (1-\gamma)\omega_{n+1} \\ e^{-\imath \frac{\omega}{2}} \cos \left[\frac{\pi}{2}\beta \left(\frac{1}{2\gamma\omega_{n+1}} (|\omega| - (1-\gamma)\omega_{n+1}) \right) \right] & \text{if } (1-\gamma)\omega_{n+1} \leq |\omega| \leq (1+\gamma)\omega_{n+1} \\ e^{-\imath \frac{\omega}{2}} \sin \left[\frac{\pi}{2}\beta \left(\frac{1}{2\gamma\omega_{n}} (|\omega| - (1-\gamma)\omega_{n}) \right) \right] & \text{if } (1-\gamma)\omega_{n} \leq |\omega| \leq (1+\gamma)\omega_{n} \\ 0 & \text{otherwise} \end{cases}$$

EWT: filter bank construction (3/3)

Scaling function spectrum for $\omega_n = 1$ and $\gamma = 0.5$



Wavelet spectrum for $\omega_n=$ 1, $\omega_{n+1}=$ 2.5 and $\gamma=$ 0.2



EWT: property and example (1/2)

Proposition

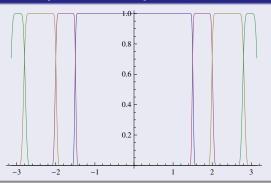
If $\gamma < \min_n \left(\frac{\omega_{n+1} - \omega_n}{\omega_{n+1} + \omega_n} \right)$, then the set $\{ \phi_1(t), \{ \psi_n(t) \}_{n=1}^N \}$ is an orthonormal basis of $L^2(\mathbb{R})$.

EWT: property and example (1/2)

Proposition

If $\gamma < \min_n \left(\frac{\omega_{n+1} - \omega_n}{\omega_{n+1} + \omega_n} \right)$, then the set $\{\phi_1(t), \{\psi_n(t)\}_{n=1}^N\}$ is an orthonormal basis of $L^2(\mathbb{R})$.

Filter Bank for $\omega_n \in \{0, 1.5, 2, 2.8, \pi\}$ with $\gamma = 0.05 < 0.057$



EWT: property and example (2/2)

Detail coefficients:

$$\mathcal{W}_{f}^{\mathcal{E}}(n,t) = \langle f, \psi_{n} \rangle = \int f(\tau) \overline{\psi_{n}(\tau - t)} d\tau$$
$$= \left(\hat{f}(\omega) \overline{\hat{\psi}_{n}(\omega)} \right)^{\vee},$$

Approximation coefficients (convention $\mathcal{W}_f^{\mathcal{E}}(0,t)$:

$$\mathcal{W}_{f}^{\mathcal{E}}(0,t) = \langle f, \phi_{1} \rangle = \int f(\tau) \overline{\phi_{1}(\tau - t)} d\tau$$

$$= \left(\hat{f}(\omega) \overline{\hat{\phi}_{1}(\omega)} \right)^{\vee},$$

The reconstruction:

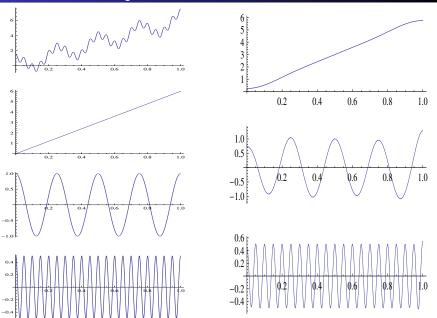
$$f(t) = \mathcal{W}_{f}^{\mathcal{E}}(0, t) \star \phi_{1}(t) + \sum_{n=1}^{N} \mathcal{W}_{f}^{\mathcal{E}}(n, t) \star \psi_{n}(t)$$
$$= \left(\widehat{\mathcal{W}_{f}^{\mathcal{E}}}(0, \omega)\widehat{\phi}_{1}(\omega) + \sum_{n=1}^{N} \widehat{\mathcal{W}_{f}^{\mathcal{E}}}(n, \omega)\widehat{\psi}_{n}(\omega)\right)^{\vee}.$$

EWT: algorithm

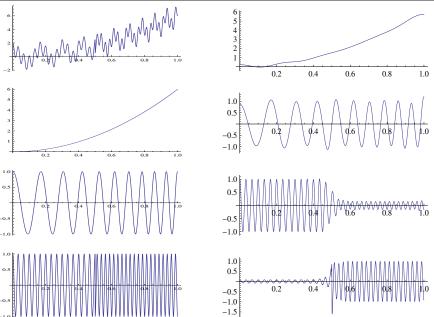
Input: f, N (number of scales)

- Fourier transform of $f \rightarrow \hat{f}$.
- ② Compute the local maxima of \hat{f} on $[0, \pi]$ and find the set $\{\omega_n\}$.
- Build the filter bank.
- Filter the signal to get each component.

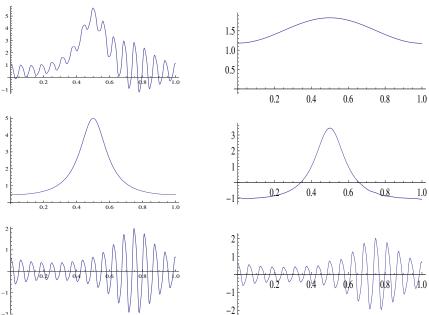
Experiment: f_{Sig1}



Experiment of EMD: f_{Sig2}

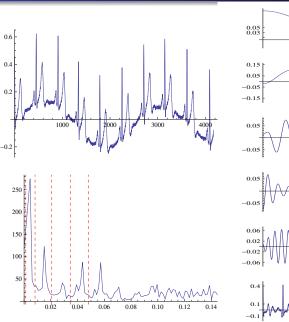


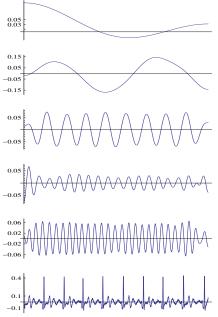
Experiment of EMD: f_{Sig3}



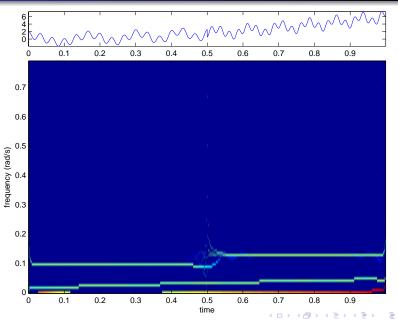
Empirical Wavelet Transform

Experiment of EMD: ECG

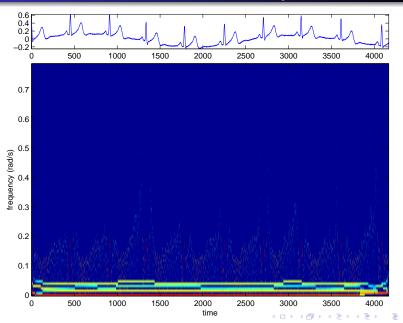




Time-Frequency representation of f_{sig2}



Time-Frequency representation of f_{sig4}



2D - Extension

joint work with Giang Tran and Stan Osher

Like the "classic" wavelet transform \rightarrow process rows then columns but. . .

Like the "classic" wavelet transform \rightarrow process rows then columns but. . .

The number of detected scales can be different for each row

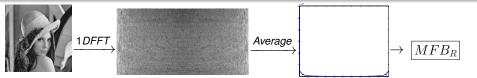
Like the "classic" wavelet transform \rightarrow process rows then columns but...

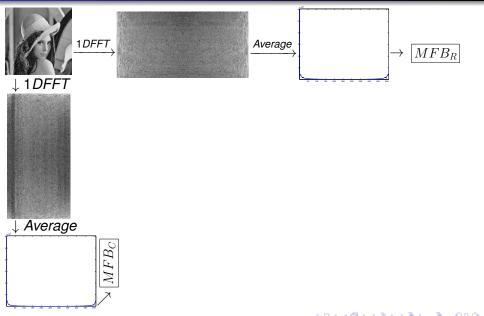
- The number of detected scales can be different for each row
- The position of the Fourier boundaries can vary a lot from one row to the next (⇔ "information discontinuity")

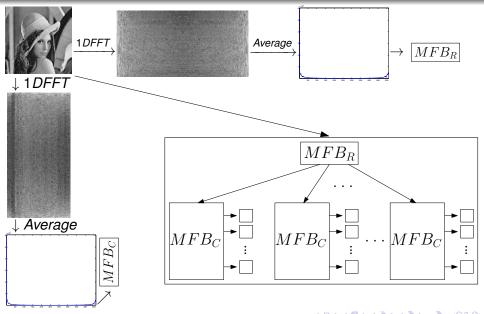
Like the "classic" wavelet transform \rightarrow process rows then columns but. . .

- The number of detected scales can be different for each row
- The position of the Fourier boundaries can vary a lot from one row to the next (⇔ "information discontinuity")

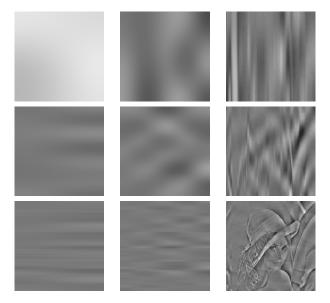
⇒ Idea: "Mean Filter Banks"





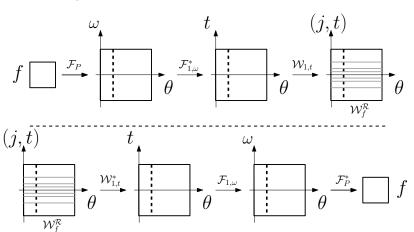


2D Extension - Example



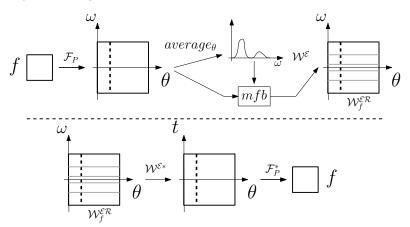
2D Extension - Ridgelet approach

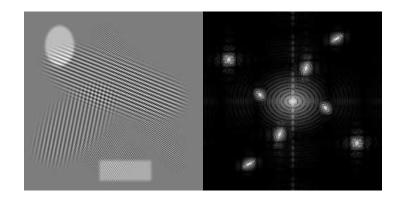
Classic Ridgelets

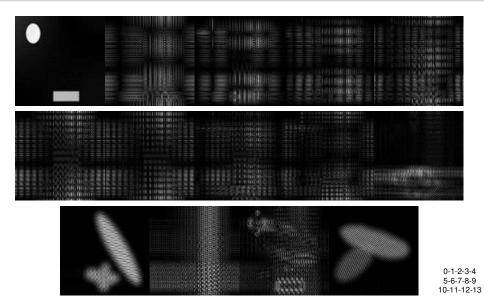


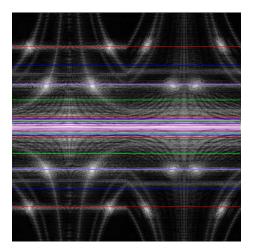
2D Extension - Ridgelet approach

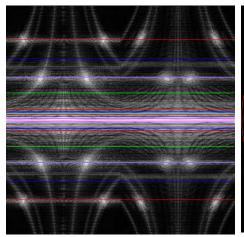
Empirical Ridgelets

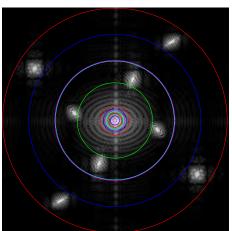


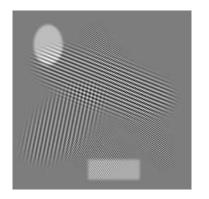


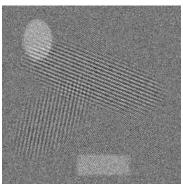


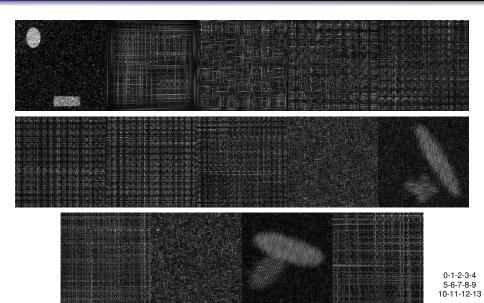


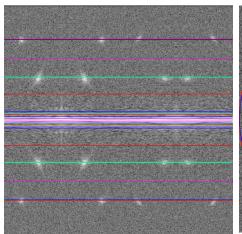


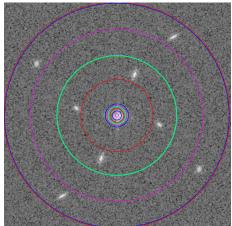












Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

Future work

Investigate different strategies to "segment" the spectrum.

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.
- Generalization to any kind of Fourier based wavelets (e.g. Splines).

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.
- Generalization to any kind of Fourier based wavelets (e.g. Splines).
- 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation.

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.
- Generalization to any kind of Fourier based wavelets (e.g. Splines).
- 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation.
- Explore the applications (denoising, deconvolution, ...).

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.
- Generalization to any kind of Fourier based wavelets (e.g. Splines).
- 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation.
- Explore the applications (denoising, deconvolution, ...).
- Solve PDEs (cf. Stan's talk).

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.
- Generalization to any kind of Fourier based wavelets (e.g. Splines).
- 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation.
- Explore the applications (denoising, deconvolution, ...).
- Solve PDEs (cf. Stan's talk).
- Impact on existing functional spaces (Sobolev, Besov, Triebel-Lizorkin, ...); adaptive harmonic analysis.

Conclusion

- Get the ability of EMD under the Wavelet theory.
- Fast algorithm.
- Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.

- Investigate different strategies to "segment" the spectrum.
- Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands.
- Generalization to any kind of Fourier based wavelets (e.g. Splines).
- 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation.
- Explore the applications (denoising, deconvolution, ...).
- Solve PDEs (cf. Stan's talk).
- Impact on existing functional spaces (Sobolev, Besov, Triebel-Lizorkin, ...); adaptive harmonic analysis.
- ...

THANK YOU!

PS: Jack, I'm from UCLA and on the job market ;-)

