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Abstract 

 
We present the development of a probabilistic model of user affect designed to allow an 
intelligent agent to recognise multiple user emotions during the interaction with an educational 
computer game. Our model deals with the high level of uncertainty involved in recognizing a 
variety of user emotions by combining information on both the causes and effects of emotional 
reactions within a Dynamic Bayesian Network. In this paper we illustrate how we built our model 
in a series of stages of construction and direct evaluations. We started by designing the causal 
part of the model by relying on empirical data integrated with relevant psychological theories of 
emotion and personality. We then analyzed the model's limitations via empirical evaluations. 
Finally we used this analysis to guide the second part of the work, devoted to understanding if 
and how some of the student's emotional assessment could be more easily provided by the part of 
the model that diagnoses emotional states from their observable effects. Our results provide 
encouraging support for the combining of causal and diagnostic information to form a single 
assessment of the user's affective state. 
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1 Introduction  

Recent years have seen a flourishing of research directed towards adding an affective component 
to human–computer dialogue. One key element of this endeavour is the computer's capability to 
recognize the user's emotional states during the interaction, which requires a model of the user's 
affect. Humans use different sources of information to assess a person's emotions, including 
causal information on both context and the person's relevant traits, and symptomatic information 
on the person's visible bodily reactions. However, this information is often incomplete and even 
contradictory, making assessment of emotion a task riddled with uncertainty.  

To handle this uncertainty, Conati (2002) proposed a probabilistic framework for affective 
user modeling that integrates, in a Dynamic Decision Network (DDN) (Dean & Kanazawa, 
1989), information on both the possible causes of the user's affective reaction and its observable 
effects. Leveraging any information available on the user's emotional state is crucial, because the 
different sources of evidence are often ambiguous, and their reliability varies significantly 
according to both the user and each particular interaction.  

In this paper, we illustrate how we used the framework proposed by (Conati, 2002) to build a 
model of user affect during interaction with an educational computer game. The long–term goal is 
to employ this user model to guide adaptive system interventions aimed at improving the overall 
success of the student's educational experience with the game.  

Although there is still no hard evidence that taking user affect into account can substantially 
improve human–computer interaction in general, there are several studies indicating that 
maintaining positive student affect is beneficial in educational settings. Craig et al. (2004) 
reported that flow and confusion were positively correlated with learning, whereas boredom was 
negatively correlated. Linnenbrink and Pintrich (2002) found that while most students experience 
some confusion when confronted with information that does not fit their current knowledge, those 
in a generally positive affective state will adapt their known concepts to assimilate it, whereas 
students in a generally negative affective state will reject the new knowledge. Cordova and 
Lepper (1996) found that learners exposed to motivationally embellished educational software 
(Lepper et al., 1993) had higher levels of intrinsic motivation. As a result, they become more 
deeply engaged by the interaction, and learned more in a fixed period of time. 

 We believe that the benefits of taking user affect into account are even stronger for 
educational activities that rely heavily on the student's direct involvement in the learning process, 
such as those supplied by exploratory learning environments and educational games. An 
educational game tries to increase the learner's motivation by embedding pedagogical activities in 
highly engaging, game-like interactions. Several studies have shown that, while educational 
games are usually successful in increasing student engagement, they often fail to trigger learning , 
(e.g., Klawe, 1998). To overcome this limitation, we are designing emotionally intelligent 
pedagogical agents that, as part of game playing, generate tailored interventions aimed at 
stimulating the student to learn better from the game (Conati & Klawe, 2002). However, in order 
not to interfere with the high level of engagement that is a key asset of educational games, we 
argue that these agents need to take into account the players' affective states in addition to their 
cognitive states when deciding how to act. The affective model we describe in this paper is meant 
to be used by our pedagogical agents, together with a model of student learning, to generate 
interventions that improve learning without compromising engagement. 

In this paper, we illustrate how we built and evaluated our affective model in two stages. In the 
first stage we built the part of the model that reasons from causes to emotions (predictive model 
from now on) by relying on empirical data integrated with relevant psychological theories of 
emotion and personality. We then empirically evaluated the performance of this part of the 
model, and used this analysis to guide the second part of the work. The second stage was devoted 
to understanding whether and how some of the student's emotional assessment could be more 
easily provided by the part of the model that diagnoses emotional states from their observable  
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Figure 1. Two time-slices of the DDN for affective modeling 

effects (diagnostic model from now on). In particular, we ran user studies to explore whether this 
diagnostic information can be provided by physiological sensors. These sensors have been 
extensively investigated for emotion detection in laboratory settings and controlled environments 
(e.g., Lang et al., 1993; Vyzas & Picard, 1998) There has also been some research on using 
sensors for affect detection in more realistic settings, but this research has focused mostly on 
either detecting one specific emotion (Healey & Picard, 2005; Kapoor & Picard, 2005), lower–
level affective measures such as valence and arousal (e.g., Prendinger et al., 2005), or overall 
emotional predisposition over a complete interaction (Mandryk et al., 2006). Here we extend this 
research to the instantaneous detection of multiple, rapidly changing emotions that possibly 
overlap and conflict, as often experienced by students playing an educational game. 

The structure of this paper is as follows. In Section 2, we describe the general framework we 
used to build our probabilistic model of user affect. In Section 3, we introduce Prime Climb, the 
educational computer game we used as a test–bed application for model development. Section 4 
illustrates the predictive part of the affective model. In Section 5, we introduce our technique for 
model evaluation and apply it to test the predictive model. In Section 6, we present our 
investigation into using physiological sensors to provide information for the diagnostic part of the 
model. In Section 7, we discuss related work, and in Section 8 we conclude with a discussion of 
the research presented here as well as ideas for future work. 

2 A Dynamic Decision Network for Emotion Recognition  

A DDN is a graph where nodes represent either stochastic variables of interest or points where an 
agent needs to make deliberate decisions. Arcs in the graph capture the direct probabilistic 
relationships between the nodes, including temporal dependencies between the evolving values of 
dynamic variables. Each node has an associated probability distribution representing the 
conditional probability of each of its possible values, given the values of its parent nodes. As 
evidence on one or more network variables becomes available, ad hoc algorithms update the 
posterior probabilities of all the other variables, given the observed values. 

Figure 1 shows a high-level representation of two time-slices in the DDN-based framework for 
affective modeling proposed in (Conati, 2002). Each time slice represents the model’s variables at 
a particular point in time. For illustration purposes, the nodes in Figure 1 represent classes of 
variables instead of individual variables in the DDN. As the figure shows, the network can 
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combine evidence on both the causes and effects of emotional reactions, to compensate for the 
fact that often evidence on causes or effects alone is insufficient to accurately assess the user’s 
emotional state.  

The subnetwork above the nodes Emotional States is the predictive component of the 
framework. It represents the relations between possible causes and emotional states as described 
in the OCC cognitive theory of emotions (Ortony, Clore, & Collins, 1988). According to this 
theory, emotions derive from cognitive appraisal of the current situation, which consists of 
events, agents, and objects. The outcome of the appraisal depends on how the situation fits with 
one’s goals and preferences. For instance, depending on whether the current event (e.g., the 
outcome of an action in Figure 2) does or does not fit with one’s goals, that person will feel either 
joy or distress toward the event (see Figure 2, A and B). Correspondingly, if the current event is 
caused by a third-party agent, that person will feel admiration or reproach toward the agent (see 
Figure 2A); if that agent is oneself, the person will feel either pride or shame (see Figure 2B). 
Based on this structure, the OCC theory defines 22 different emotions, described in terms of their 
valence and the entity they relate to.  

We adopted this particular theory of emotion for our affective modeling framework because its 
clear and intuitive representation of the causal nature of emotional reactions lends itself well to a 
computational representation. Furthermore, the fact that the OCC model includes the target of an 
emotion in its definition provides more fine-grained information to direct the actions of an 
interactive intelligent agent, compared to alternative models that define emotions in terms of their 
level of valence and arousal. For instance, if an interface agent can recognize that the user feels a 
negative emotion toward herself (shame by OCC definition) it can decide to provide hints aimed 
at making the user feel better about her performance. If the agent recognises that the negative 
feelings are directed toward itself (reproach by OCC definition) it may decide to take actions that 
allow it to make amends with the user.  

 To apply the OCC theory to emotion recognition during human-computer interaction, our 
DDN includes variables for goals that a user may have during the interaction with a system that 
includes an intelligent agent, (nodes Goals1 in Figure 1). The events subject to the user’s 
appraisal are any visible interface outcomes generated by the user’s or the agent’s action (nodes 
User Action Outcome and Agent Action Outcome in Figure 1)2. Agent action outcomes are 

                                                 
1 We currently represent players preferences in terms of goals, as suggested in (Gratch, 2000). 
2 We explicitly model action outcomes rather than action themselves because one individual action may 
generate several effects at once, each of which may be appraised in relation to a different goal (we provide 
examples of this scenario later in the paper). We don’t need to include action nodes in addition to action 
outcome because we assume that the visible effects of an action are deterministic. Thus, the occurrence of 
an action is implicitly represented by the description of its outcomes. 
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represented as decision variables in the framework, indicating points where the agent decides how 
to intervene in the interaction. The desirability of an event in relation to the user’s goals is 
represented by the node class Goals Satisfied, which in turn influences the user’s Emotional 

States.  
The user’s goals are a key element of the OCC model, but assessing these goals is not trivial, 

especially when eliciting them with queries to the user during the interaction would be too 
intrusive, as is the case during game playing. Thus, our DDN also includes nodes to infer user 
goals from indirect evidence. User goals can depend on User Traits such as personality (Costa & 
McCrae, 1992). Also, user goals can influence user Interaction Patterns, which in turn can be 
inferred by observing the outcomes of individual user actions. Thus, observations of both the 
relevant user traits and action outcomes can provide the DDN with indirect evidence for assessing 
user goals.  

The sub-network below the nodes Emotional States is the diagnostic part of the affective 
modeling framework, representing the interaction between emotional states and their observable 
effects. Emotional States directly influence user Bodily Expressions, which in turn affect the 
output of Sensors that can detect them. Because in many situations a single sensor cannot reliably 
identify a specific emotional state, our framework is designed to modularly combine any 
available sensor information, and gracefully degrade in the presence of partial or noisy 
information.  

In Figure 1, the links between emotion nodes in different time-slices indicate how the 
corresponding variables evolve over time. These links model, for example, the fact that a user is 
more likely to feel a given emotion at time ti+1 if the user felt it at time ti. A new time-slice is 
added to the network whenever either the user or the agent performs an action (this happens, for 
instance, between every 3 and 10 seconds in the framework application we describe in the 
following sections); the new slice represents the state of the world just after the corresponding 
action occurred. In a DDN, only the time-slices that directly influence the current state need to be 
maintained. We currently assume that maintaining two time-slices is sufficient to capture the 
relevant temporal dependencies in our framework. Since at the moment the only temporal 
variables in the framework are the emotion variables, this assumption implies that the user’s 
emotions at any given time depend only on the last game action and his or her emotional state in 
the previous slice, while the effects of earlier actions on the current emotional state are channelled 
through the emotional state in the previous time-slice. This assumption would be invalid in 
situations where a sequence of actions directly causes a particular emotional reaction, rather than 
influencing it via a chain of subsequent emotional states. Our framework also assumes that a 
user’s high–level goals do not change over time, as indicated by the lack of a link between the 
Goals node at time ti and the Goals node at ti+1 in Figure 1. Both assumptions derive from our 
philosophy for tackling the complexity of modeling affect: start with reasonably simplified 
models and increment them as limitations are uncovered by empirical evaluations. 

Having described the general framework underlying our model of user affect, we will now 
present the educational game we used to apply and test the framework.  
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Figure 3. The Prime Climb Interface 

3 The Prime Climb Educational Game 

As a test-bed for the general affective modeling framework described in the previous section, we 
used Prime Climb, an educational game designed by the EGEMS group at the University of 
British Columbia to help 6th and 7th grade students practise number factorization. Figure 3 shows 
a screenshot of Prime Climb. Two players must cooperate to climb a series of mountains that are 
divided in numbered sectors. Each player should move to a number that does not share any 
common factors with her partner’s number, otherwise she falls. Prime Climb provides two tools 
to help students: (i) a magnifying glass that the student can use to see a number’s factorization 
(accessible by clicking on the magnifying glass icon at the bottom-left corner of the hand-held 
device in Figure 3); (ii) a help box (accessible by clicking on the help icon at the bottom-right 
corner of the hand-held device) that allows the student to ask for advice, which is provided by the 
pedagogical agent we are building for the game.  

The pedagogical agent is an autonomous agent that provides individualized support, both on 
demand and unsolicited, when the student does not seem to be learning from the game (Conati & 
Zhao, 2004). To decide when to intervene and what hints to provide, the agent relies on a 
probabilistic model of the player’s factorization knowledge which is continuously updated during 
the player’s interaction with the game. When the probabilities in the model of student learning 
indicate that the player is missing key pieces of knowledge to learn from her current move, the 
pedagogical agent provides hints designed to stimulate the student to reason about the relevant 
domain knowledge. This can happen even after a student’s correct move, if the underlying student 
model predicts that the successful move was based on luck rather than knowledge. When the 
player falls, the agent provides hints in three incremental levels of detail. At the most general 
level, the agent’s hints include reminders to think about number factorization or to think about 
common factors when climbing. At a second level, the agent suggests that the player uses the 
magnifying glass to see a number’s factorization. The hints in the last level include examples of 
how to factorize numbers or how to determine whether two numbers have a common factor. 
When the player makes a successful move, the agent attempts to stimulate reasoning about the 
domain knowledge by asking the player if she knows why the move she has just made was 
correct. The agent also occasionally attempts to encourage the student by congratulating her when 
she is successful. 
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To avoid interfering with the student’s level of engagement while playing the game, we used 
the framework described in the previous section to build an affective user model for Prime Climb 
that the agent can use to decide when and how to intervene. This user model produces a real-time 
assessment of the player’s emotions during interaction with Prime Climb, and will eventually be 
integrated with the model of student learning to inform the agent’s pedagogical decisions. 

4 Building the Predictive Component of the Prime Climb Affective Model  

In this section, we describe how we instantiated the predictive component of the affective 
modeling framework in Figure 1 to model the affective states of a Prime Climb player. We 
present two sub-network structures within the predictive component; the first assesses the 
student’s goals (goal assessment sub-network); the second models the student’s appraisal of game 
events in relation to those goals, to produce an assessment of the student’s current affective state 
(appraisal sub-network). 

4.1 Instantiation of the Goal Assessment Sub-network 

Figure 4 shows the structure of the sub-network that assesses student goals. Because all of the 
variables in this sub-network are observable either during or after the interaction with Prime 
Climb, we identified relevant individual variables and built the corresponding conditional 
probability tables (CPTs) using data collected through a series of Wizard of Oz studies where 
pairs of students interacted with the game while an experimenter controlled the pedagogical 
agent. Here we give a high-level description of this process. For more details see (Zhou & Conati, 
2003). 

Information to instantiate variables representing student goals was collected via a post-game 
questionnaire in which students could express the goals they had while playing the game. We 
identified five high-level goals in our user studies, represented in the model by the following 
binary variables (with Boolean values indicating the probability of having/not having a given 
goal): Have Fun, Avoid Falling, Beat Partner, Learn Math, and Succeed By Myself3. We also 

                                                 
3 The goal Beat Partner is inconsistent with the collaborative nature of the game, but it is not surprising 
given findings indicating that certain personality types tend to be competitive even during collaborative 
interactions. 
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found that students can have more than one of these goals at the same time. For this reason, the 
affective model represents each goal through a dedicated node rather than as one of the five 
mutually exclusive values on a single variable.  

Because personality is known to influence one’s goals and behaviours (Costa & McCrae, 
1992), our model contains nodes and links representing student personality types and their 
relation to student goals in playing Prime Climb. We used the personality types suggested by the 
Five-Factor Model (Costa & McCrae, 1992), in which personality traits are structured as five 
domains – neuroticism, extraversion, openness, agreeableness and conscientiousness. Data to 
instantiate the prior and conditional probabilities involving these variables was collected through 
a personality test specifically designed for children (Graziano et al., 1997). As Figure 4 shows, 
our affective model currently includes variables for only four of the five domains, because our 
study data showed that openness was not directly relevant to our task. All of the personality 
variables are binary, with Boolean values representing the probability of belonging or not 
belonging to a given personality domain. 

During the studies, we also collected log files of the interactions, to mine the possible 
relationships between student goals (assessed via the goal post-questionnaire) and interaction 
behaviours. Our data indicated several dependencies between student goals and playing 
behaviour. The interaction patterns we identified to be relevant for inferring student goals 
included: (1) a tendency to make moves quickly or slowly (represented by the node Move 

Quickly); (2) a tendency to use the magnifying glass often or not (node Use Mag. Glass Often); 
(3) a tendency to ask the agent for advice often or not (node Ask Advice Often); (4) a tendency to 
follow the agent’s advice often or not (node Follow Advice Often); (5) a tendency to fall often 
(node Fall Often). All the Interaction Pattern nodes are binary, with Boolean values indicating the 
presence/absence of a given pattern. 

The probabilistic dependencies among goals, personalities, interaction patterns and individual 
student actions were established through correlation analysis between the personality test results, 
the goal questionnaire results and student actions logged during the interactions (Zhou & Conati, 
2003). Figure 4 shows the resulting sub-network, incorporating both positive and negative 
correlations. The bottom level specifies how interaction patterns are recognized from the relative 
frequency of individual action outcomes (Zhou & Conati, 2003). 

We originally intended to represent different degrees of personality type and goal priority by 
using multiple values in the corresponding nodes. However, we did not have enough data to 
populate the larger CPTs that this would generate, thus all the nodes in the goal assessment sub-
network are binary. This simplification has not proven to be particularly detrimental to the 
performance of the goal assessment sub-network, as we will see in the model evaluation section 
to come. However, the resulting assumption that all goals have the same priority when present, 
together with the assumption that goals do not change over time, do affect the accuracy of the 
model’s assessment of student emotions, as we will also discuss in the evaluation section. 

4.2 Instantiating the Appraisal Subnetwork 

Figure 5 and Figure 6 show the details of the two types of time-slices used in the part of the 
network representing the appraisal mechanism (i.e., how the mapping between student goals and 
game states influences student emotions). Figure 5 shows the appraisal time-slice that is added to 
the affective model whenever the student performs an action. Figure 6 shows the time-slice added 
to the affective model whenever the pedagogical agent intervenes. Note that, for clarity purposes, 
Figure 5 and Figure 6 do not include the personality and interaction nodes used for goal 
assessment. The reader can refer to Figure 1 for an integrated picture of the goal assessment and 
appraisal sub-networks. For both types of appraisal time-slices, we specified an initial network 
structure based on the general OCC appraisal mechanism and our intuition, and then refined the 
structure by using empirical data collected from user studies designed for this task (described in 



9 

Section 5.2). In this section, we first describe the structure of the initial network (corresponding in 
both figures to the solid-line nodes and links). We then describe the parts of the sub-network that 
were refined using empirical data (dashed-line components in both figures).  

4.2.1 Initial Structure 

The appraisal sub-network currently represents only 6 of the 22 emotions defined in the OCC 
model. They are joy/distress for the current state of the game, pride/shame of the student toward 
herself, and admiration/reproach toward the agent. These six particular emotions were chosen 
because we observed them often during pilot studies with Prime Climb, thus they seemed highly 
relevant for directing the actions of the Prime Climb pedagogical agent. While other emotions in 
the OCC model may be relevant, for instance emotions toward one’s partner during game play, 
we decided to start with a relatively simple model and progress to more complex ones only after 
having ascertained the viability of our approach.  

 Each of the three emotion pairs included in the model is represented by a binary node —
emotion–for-game, emotion-for-self and emotion-for-agent, respectively (see nodes in the 
Emotional States level in Figure 5 and Figure 6) — where binary values represent the probability 
that the student is feeling one of the two emotions in the corresponding pair. This structure was 
chosen because, while the two emotions in each pair are mutually exclusive and are thus best 
represented by a binary node, students may simultaneously feel emotions in the different pairs, 
requiring a separate node for each pair.  

Following the OCC appraisal model, a student’s emotional state depends on whether her goals 
are satisfied or not during game playing. In the appraisal network, goal satisfaction is explicitly 
represented by a Goal Satisfied node for each goal in the goal assessment network (see nodes in 
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the Goal Satisfied level in Figure 5 and Figure 6). The links between Goal Satisfied nodes and the 
emotion nodes are defined as follows. We assume that the outcome of every relevant agent or 
student action is subject to student appraisal. Thus, each Goal Satisfied node influences emotion-

for-game in every slice. Whether a Goal Satisfied node influences emotion-for-self or emotion-

for-agent in a given slice depends upon whether the slice was generated, respectively, by a 
student action (Figure 5) or an agent’s action (Figure 6). Each Goal Satisfied node has three 
possible values: true, false, and neutral. The CPTs for emotion nodes are defined so that the 
probability of each positive emotion is proportional to the number of true Goal Satisfied nodes. 

The probability of each Goal Satisfied node depends on whether the outcome of the current 
student or agent action matches the corresponding student’s goal. In the initial appraisal sub-
network, the links and CPTs between Goal nodes, the outcome of student or agent actions, and 
Goal Satisfied nodes were based on our intuition, and defined connections that are quite obvious. 
Let’s start by looking at these links in the time slice for the appraisal of student action outcomes 
(Figure 5). Initially, this time slice included only student moves on the Prime Climb mountains as 
actions that trigger the appraisal mechanism, because the other two possible student game actions 
(using the magnifying glass and asking for help), were not seen very often during our studies and 
thus we did not have a clear sense of how they might influence student affect. The solid binary 
nodes in the Student Action Outcome level at the top of Figure 5 represent two different aspects of 
the outcome of a student move that we had observed to trigger student emotional reactions during 
game playing. The node Successful Move indicates whether the student’s move was successful or 
not. The node Ahead of Partner indicates whether or not the move brought the student to be 
ahead of her partner on the mountain.  We encoded some intuitive dependencies between these 
action outcomes and student goals in the initial appraisal network. For instance, if the student has 
the goal Avoid Falling, a successful move satisfies it, while a fall does not. If the student has the 
goal Beat Partner, only a move that brings the player ahead of the partner on the mountain 
contributes to satisfying this goal.  

In the initial version of the time slice that models the appraisal of agent actions, the decision 
node Agent Action Outcome4 was a four-valued node that represented the types of intervention 
that the agent could produce (see Section 3). These interventions were represented by the 
following decision values: (1) generate a hint at the first or second level of detail (e.g., a reminder 
to think about common factors when climbing or a suggestion to use the magnifying glass); (2) 
generate a hint with example following a fall; (3) generate a hint following a successful climb; (4) 
generate an encouragement. We used the same node value for the first two levels of hints 
following a fall because we observed in previous studies that the students tended to express 
similar reactions to these hints, thus we hypothesised that the students were appraising the hints 
the same manner. Reflecting this similarity in the decision node enabled us to reduce the 
complexity of that part of the network structure. 

We encoded the following intuitive dependencies between agent actions and the satisfaction of 
student goals in this time slice. If the student has the goal Have Fun, providing encouragement 
will satisfy this goal, whereas providing any of the other more pedagogically oriented hints will 
not. If the student has the goal Succeed By Myself, providing any of the pedagogically oriented 
hints will not satisfy this goal (when the agent provides encouragement, goal satisfaction is 
neutral). 

For the intuitive links described above, the conditional probabilities of the Goal Satisfied 
nodes were set by assigning: (1) a high probability that goal satisfaction is true when the student 
has the goal and an event that satisfies it occurs; (2) a high probability that goal satisfaction is 
false when the student has the goal and the opposite of a satisfying event occurs; and (3) a high 

                                                 
4 We keep the label “Agent Action Outcome” for consistency with the slice for Student Action Outcome. 
In practice however, agent actions and their outcomes coincide because, unlike student actions, every agent 
action has a single outcome. 
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probability of goal satisfaction being neutral when the student does not have the goal.  
However, we had no good intuition of how various student game actions would be appraised 

in relation to the goals Have Fun and Learn Math. We also had no good intuition of how agent 
actions would be appraised for the goal Learn Math, since the appraisal should reflect the 
student’s perception of whether he/she learned math rather than whether this was what actually 
happened. Thus, we decided to base these appraisals of student and agent game actions on 
empirical data. 

4.2.2 Data-based Refinement of the Appraisal Sub-network 

In both Figure 5 and Figure 6, we have used dashed lines to indicate the parts of the network 
structure that we defined using empirical data. This data was collected through a user study in 
which students could explicitly express what made them have fun and learn math during their 
interaction with Prime Climb. This was done via two post-game questionnaires, one for each of 
Learn Math and Have Fun, that contained a list of statements of the type ‘I learnt math/had fun 

when <game event>’. Students rated each statement using a 5-point Likert scale (1=strongly 
disagree, 5=strongly agree). The game events considered in the questionnaires included the 
following: 

For Have Fun  

– Student–generated events: a successful move; a fall (unsuccessful move); using the 
magnifying glass; using the help box; reaching the top of the mountain. 

For Learn Math   

− Student–generated events: same as above, plus following the agent’s advice, and 
encountering big numbers.  

− Agent–generated events: suggestion to use the magnifying glass; reminder to think about 
common factors when climbing. 

When considering which events to include in the questionnaires, we aimed to investigate as 
many game events as possible that we thought could influence the satisfaction of student goals, 
while keeping the questionnaire at a reasonable length (see more on this in Section 5.2). For 
instance, in Agent-generated events we included separate events for hints from the first and 
second levels of hint detail (as described in Section 3) rather than a single event (as specified in 
the Agent Action Outcome node described in Section 4.2.1), since data on these two levels of hint 
would enable us to test our initial hypothesis that these agent actions were appraised in a similar 
manner by the student. However, we did not include hints that provided examples of number 
factorization or computation of common factors, or hints generated after a successful move, 
because the agent version used in the study rarely generated these hints and thus most students 
would not be able to rate them. In addition, we restricted the number of hints included in the 
questionnaire to one hint per level of detail, and therefore did not include the reminder to think 
about number factorization. 

While some of the Student–generated events were included in the questionnaires because they 
pertained to the three basic Prime Climb actions (a successful/unsuccessful move, using the 
magnifying glass, using the help box), other events such as encountering big numbers and 
reaching the top of the mountain were included based on anecdotal evidence from experimenters 
who had run previous user studies; we had not included them in the initial networks because the 
anecdotal evidence was insufficient to insert them in a meaningful way. To limit the length of the 
questionnaire, we did not ask students about events that already satisfied other goals within the 
model (e.g., the student being ahead of her partner, encouragement by the agent). 

We will now describe how we generated all of the refinements to the appraisal time-slices 
beginning with the time-slice used to appraise the outcome of the student’s action. 
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4.2.2.1 Appraisal of Student Action Outcomes 

The students’ answers to the questionnaires indicated that all of the tested student-generated 
events were relevant to some degree. In order to determine which events made a difference to the 
model’s assessment, we scored all possible network structures derived from including these 
events, using their log marginal likelihood (Heckerman, 1999). The mutually exclusive events 
successful move/fall were represented via the binary values of the node Successful Move in Figure 
5, while the events using the magnifying glass, using the help box, reaching the top of the 

mountain and moving to a big number were each represented by a new binary node in the time-
slice for appraising student actions.  

We found that the structure with the best score was the one encoding the following appraisal 
relations, in addition to those represented in the original network: (1) whether the student’s move 
was successful or not influenced satisfaction of the goal Have Fun; and (2) whether the student 
encountered a big number influenced satisfaction of the goal Learn Math. The dashed 
components in Figure 5 show how these relations are encoded in the appraisal time-slice. The 
new binary node Big Number is linked to satisfaction of the goal Learn Math while the existing 
node Successful Move is linked to satisfaction of the goal Have Fun. We used frequencies from 
the questionnaire answers to set the CPTs for these new links. We based our definition of a big 
number on the large numbers frequently incorrectly factorized in students’ pre-tests in our 
studies. 

4.2.2.2 Appraisal of Agent Actions Outcomes 

The data-based refinement of the time-slice added after an agent action consisted of two stages: 

Stage 1. First, we used the students’ questionnaire items related to the influence of the agent’s 
actions on the goal Learn Math to test our hypothesis that hints from the first two levels of hint 
detail following a fall should be represented by a single value within the node Agent Action 

Outcome. To do this we created two candidate network structures, both of which represented the 
student’s appraisal of the agent’s action with regards to the goal Learn Math. These structures 
were identical except for the number of possible values in the node Agent Action Outcome. The 
first structure contained an Agent Action Outcome node with the four values we had initially 
specified using subjective heuristics. The second structure contained an Agent Action Outcome 

node where the unique value representing two levels of hint had been replaced by two separate 
values: generate a hint at the first level and generate a hint at the second level. We used the 
students’ questionnaire answers to produce a log marginal likelihood score for each network 
structure. We found that the structure containing the Agent Action Outcome node with our 
original set of four values received the highest score and thus we retained it in the refined model.  

We then refined the model by creating a link between Agent Action Outcome and satisfaction 
of the goal Learn Math. For the pedagogical agent actions that had been included in the 
questionnaire, we used the frequencies from the questionnaire answers to generate the 
corresponding CPT values. For the pedagogical agent actions that had not been included in the 
questionnaire due to their rarity (e.g.  hints with examples following a fall, a hint following a 
successful climb) we set the CPT values for goal satisfaction to equal probability for true and 
false. For encouragement by the agent, a non-pedagogical action, we set satisfaction to neutral.  

However, a preliminary evaluation of these changes showed that the model was 
underestimating students’ admiration toward the agent, suggesting that the model still contained 
sources of inaccuracy related to appraisal of agent actions. We therefore moved to a second stage 
of data analysis to determine these problems. 

Stage 2. During the user study, we also collected on-line self-reports on the students’ feelings 
towards the game and towards the agent via a dialog box that would periodically pop-up during 
game playing (we will describe this mechanism in detail in Section 5.1), and students were asked 
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to indicate the goals that they had during game-playing by filling in a post-game questionnaire. 
To better understand the relations between agent behaviours and student emotions, we analyzed 
the study log files to identify particular situations in the game in which students tended to report 
experiencing Admiration or Reproach toward the agent. Our data confirmed that encouragement 
by the agent generates students’ admiration (45% Admiration reports against 7% reports of 
Reproach and 48% neutral reports), although we cannot tell whether this happens through the 
satisfaction of the goal Have Fun as we have encoded in initial time-slice for appraisal of agent 
actions. It also showed that students who are generally successful usually report either Admiration 
or Neutral feelings towards the agent, regardless of their goals (53% Admiration reports against 
8% reports of Reproach and 39% neutral reports). This finding suggests that the students’ 
positive feelings toward the game will positively influence their attitude towards the agent. We 
translated this finding into the model by adding a link from the student’s emotion towards the 
game in the previous time-slice to the student’s emotion towards the agent (as shown by the 
dashed line at the bottom of Figure 6).  

Finally, we looked at situations in which students fell repeatedly and either received help or 
did not. Analysis of these situations revealed that approximately one–half of the students who 
reported Admiration when the agent intervened after they fell had declared the goal Succeed By 

Myself. Also, about one-half of the students who reported Reproach when the agent did not 
intervene had declared that goal. This result seems to indicate that, although some of the students 
may want to succeed by themselves in general, they may also want help in especially critical 
situations (e.g., when they fall repeatedly). That is, in these situations some students may reduce 
the priority of wanting to succeed by themselves in favour of wanting help. The data also 
revealed students who had not declared the goal Succeed By Myself, but when they began to fall 
they demonstrated annoyance when the agent intervened. That is, in these situations, the students 
demonstrated that they preferred to succeed by themselves rather than wanting help. These 
observations invalidate two of the choices previously made in the model implementation: (1) to 
ignore goal priority; and (2) to assume that goals are static during the interaction. Because we 
currently don’t have enough data to model goal evolution in a principled way, we only addressed 
the implementation of multiple priority levels to model the relation between Succeed By Myself 
and wanting help. We changed the model as follows.  

 First, we added an additional goal, Want Help. Note that we did not represent this goal as one 
of the two values of the node Succeed by Myself because, as we discussed above, these goals are 
not necessarily mutually exclusive. For some students, they seem to represent a general vs. local 
attitude toward receiving help during game playing, and thus they may co-exist, although with 
different, possibly shifting priorities. The satisfaction of Want Help is dependent on two factors: 
the outcome of the student’s move (i.e., a successful climb or a fall) and the agent’s action. When 
the student falls, Want Help can only be satisfied if the agent provides help. If the student does 
not fall, then satisfaction is neutral. 

Second, we tried to determine which traits influenced the students’ attitudes towards receiving 
help during repeated falls. The only factor that seemed to play a role was students’ math 
knowledge, a factor that we measured using pre-tests on factorization as part of our standard 
study designError! Reference source not found.. Table 1 shows a confusion matrix comparing 
the students’ math knowledge and whether they demonstrated that they wanted help when falling 

Table 1. Confusion matrix comparing students’ math knowledge with whether they wanted help. 

Math Knowledge 
  

High Low 
Yes 13 4 

Want Help 
No 4 9 
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repeatedly. We classified the students’ math knowledge as ‘high’ if they correctly answered 50% 
or more of the questions on the factorization pre-test, otherwise the math knowledge was 
classified as ‘low’. As the matrix shows, high math knowledge is associated with wanting help, 
whereas low math knowledge is associated with not wanting help. A Fisher test (Fisher, 1935) 
between the students’ pre-test scores and whether they demonstrated that they wanted help after 
repeated falls showed a significant relationship (Fisher score = 0.025). Although this relationship 
seems backward, the results agree with the findings of Baker et al. (2004) that students with lower 
pre-test scores are more likely to want to succeed via trial and error than think about domain 
knowledge, whereas students with higher pre-test scores are more likely to want to learn from the 
resources available in the system, including provision of help. Given the above findings, a new 
node, representing prior math knowledge, was used to influence the priorities a student gives to 
the goals Succeed By Myself and Want Help.  

We added a link from the new node, Math Knowledge, to emotion-for-agent (as shown in 
Figure 6). As we mentioned earlier in Section 4.2, the CPT for emotion-for-agent was defined so 
that the probability of the student feeling Admiration was proportional to the number of true Goal 

Satisfied nodes. We refined the CPT in emotion-for-agent so that, if the student had high math 
knowledge, then the influence of the node Succeed by Myself Satisfied on the probability of 
Admiration was lower than the influence of the other Goal Satisfied nodes. If the student had low 
math knowledge, then the influence of the node Want Help Satisfied on the probability of 
Admiration was lower instead.  

Our third and final change to the model was to refine the decision node representing the 
available agent’s actions so that it included the agent choosing not to intervene. All Goal Satisfied 
nodes other than Succeed By Myself and Want Help were given a neutral satisfaction for this new 
action. Want Help was discussed earlier; Succeed By Myself was given a small probability of 
satisfaction to reflect possible mild positive feelings towards the agent for not interrupting in 
general, rather than at specific events. 

5 Evaluation of the Affective Model 

Having completed the construction of the casual part of our affective model, our next step is to 
assess its predictive accuracy. As for other user models, affective models can be evaluated either 
directly by specifically measuring the accuracy of the model’s predictions, or indirectly by testing 
the performance of an application that uses the model to adapt its behaviour.  

One of the main shortcomings of indirect evaluations is that they require the user model to be 
embedded within a complete system, and thus usually occur at later stages of a research project. 
Because affective human-computer interaction is a very young field, there is little research that is 
mature for this type of comprehensive testing. In fact, we are aware of only two indirect empirical 
evaluations of affective user models, one by (Guinn & Hubal, 2003) and one by (Prendinger et 
al., 2005). Both of these works suffer from the second potential limitation of indirect evaluations: 
insights into the performance of the affective user model to be evaluated are confounded by other 
aspects of the system, unless one sets up carefully designed ablation studies.  

The direct approach to model validation overcomes both limitations of indirect evaluations. 
First, this approach does not require having a complete system built on top of the user model, 
since data for the evaluation can be collected either via a Wizard of Oz set up (as we did in our 
earlier studies (Zhou & Conati, 2003)) or by using a version of the system that does not use the 
model to tailor the interaction (as we did in the study we describe in Section 5.2). Second, a direct 
evaluation can provide a deeper understanding of the model’s behaviour that is not confounded 
by other aspects of the application. For this reason, we used direct evaluations to test and refine 
different versions of our affective model. However, the main challenge of this approach is that it 
requires having a reliable measure of the user’s affective states during the interaction for 
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comparison with the model’s assessment. Depending on the type of interaction and emotions that 
the model deals with, this measure can be quite hard to obtain. Thus, in this section we first 
describe the method for labelling student affective states during the interaction with Prime Climb 
that we have used in all the empirical studies on our affective model. Next, we describe the 
general study design of our direct evaluations (Section 5.2) and in Section 5.3 we report the 
results on the accuracy of the predictive model described in Section 4. 

5.1 Collecting Affective Self-Reports While Playing Prime Climb 

Collecting data on users’ emotions with which to directly evaluate an affective user model is 
difficult. This is particularly true in an environment where the students’ actual emotions are 
ephemeral and can change many times during the interaction, as we observed to often be the case 
with Prime Climb.  

When emotions are varied and rapidly changing, it is hard for the users to describe them by 
using post-treatment self-reports, as was done in (Bradley & Lang, 1994; Lisetti & Nasoz, 2004; 
Peter & Herbon, 2006). Another commonly used method to label user emotions is to record 
participants using a video-camera and then ask observers to review the video to produce 
annotations of emotions visibly expressed during the interaction. This method has been shown to 
work well to measure different levels of a single emotion (e.g., level of interest (Kapoor & Picard, 
2005)), or to recognize clearly separated emotions (D'Mello & Graesser, 2006). However, when 
we tried to use it in our research, we found that observers often had a hard time discriminating 
among equally-valenced feelings in our three different emotions (e.g., to discriminate between 
reproach toward the agent and distress toward the game). Thus, we decided to collect emotions 
self-reports directly from students during the interaction. 

As far as we know, there is only one previous study that tried to use this method. In this study, 
a slider–based interface was used to get university students to volunteer information on their 
motivational state while interacting with an intelligent tutoring system (deVincente & Pain, 
1999). One of the study’s outcomes was that students did not volunteer information frequently 
(an average of 3.5 times for an interaction of about 15 minutes). Since we are dealing with much 
younger subjects, we were concerned that this phenomenon would be even more pronounced if 
we used the same approach based on volunteered student reports. Thus, we modified the method 
so that it can elicit self–reports from the students more frequently and provide sufficient data for 
model construction and evaluation. Following (deVincente & Pain, 1999), we provide an 
emotion–report dialog box permanently present on the side of the Prime Climb game window, for 
students to volunteer self–reports on their emotional states (see Figure 7 and Figure 8). However, 
the dialog box also pops up whenever either one of the following conditions is satisfied: (1) the 
student has not entered any emotion in the permanent dialog box for a period of time longer than 
a set threshold or (2) the underlying affective model detects a relevant change (also based on a set 
threshold) in what it believes to be the student’s emotional state. The pop-up dialog box is 
necessary because a preliminary study confirmed our fears that students do not volunteer enough 
emotion self–reports via the permanent dialog box (Conati, 2004). The thresholds that influence 
the appearance of the pop-up box were adjusted through pilot studies to balance the amount of 
data that it allows us to collect and the level of interference that it generates during game playing 
(Conati, 2004). As Figure 8 shows, the emotion dialog box only elicits information on two of the 
three pairs of emotions targeted by our model (emotions towards the game and emotions towards 
the agent). We chose this design because we felt that dealing with three pairs of emotions would 
be too confusing for our young subjects, and because sixth and seventh grade teachers suggested 
that students would have more problems in reporting emotions toward themselves than toward the 
game or the agent.  
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Data from a post-questionnaire on interface acceptance, which 20 students filled in as part of a 
study to test the final version of the self-report mechanism, showed good user acceptance (Conati, 
2004). For instance, the students’ average ratings (on a Likert scale where 1 = strongly disagree, 
and 5 = strongly agree) for the statement “The popup dialog box interfered with my game 
playing” was 2.8 (st. dev. 1.4), while the average ratings for “It bothered me having to tell the 
system how I feel” was 2.1 (st. dev. 1.1). We also found that the negative emotions self-reports 
were only a small fraction of the self-reports generated by the students who reported annoyance 
with the dialog box. These results suggest that, even when subjects expressed annoyance with the 
dialog box, this annoyance did not necessarily translate into annoyance with the game or the 
agent. These findings are a quite encouraging for researchers interested in evaluating affective 
models, because they indicate that subjects can tolerate to some extent the interference caused by 
the artefacts designed to elicit their emotions. 

 
 
 

 
Figure 7. Interface with both the permanent and pop-up emotion-reporting dialog box 

 

 

Figure 8. The dialog box presented to the students 
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5.2 Study Design  

The primary goal of this study was to collect data from students to refine the model’s event 
appraisal mechanism as we described in Sections 4.2.2.1 and 4.2.2.2. However, we also reused 
data from this study to evaluate the refined predictive model, as we will describe in Section 5.3. 

Sixty-six 6th and 7th grade students from three local schools participated in our study. The 
study took place in the schools, and each study session had to be held during a class period (40 
minutes) to avoid creating too much disruption to regular class schedules. Because of limited 
computer availability, we could only run two students at time. The two students were excused 
from the class for that period and joined the experimenters in a room provided by the school for 
the experiment. Each session was designed to last at most 30 minutes so that there would be 
sufficient time for students to get to the study room and return to their class for the next period. 
Students first took a pre-test on factorization knowledge. Next, they were told that they would be 
playing a computer game, and received a demo of Prime Climb with the emotion self-report 
mechanism. They were told that the game contained a computer-based agent that was trying to 
understand their needs and help them play the game better. Therefore, the students were 
encouraged to provide their feelings whenever their emotions changed so that the agent could 
take them into account when providing help. We did not deem it necessary to provide any further 
way to engage the students in the task because, from the several studies we had already run on 
Prime Climb, it was apparent that the mere fact of playing a computer game during school time 
was sufficient to greatly engage the students, at least for the short period of playing time 
necessary for the study. This first phase of the experiment lasted at most 10 minutes. 

Next, participants played Prime Climb for about 10 minutes. Each student played with an 
experimenter as a climbing companion. Due to time and space constraints, we had to run two 
experimenter/student pairs in parallel in the same room, sitting side by side, as shown in Figure 9.  
We did not make students play together because we wanted to avoid the extreme emotions toward 
the playing partner that we often observed with that set–up, given that our affective model 
currently does not model these emotions. To further limit the impact of students’ feelings toward 
their climbing companion, experimenters were instructed to play as neutrally as possible, trying 
to avoid making mistakes (although mistakes did happen on some of the mountains with larger 
numbers) and to avoid leading the climb too much. Furthermore, students did not know which of 
the two experimenters they were playing with. They were told that the game randomly assigned 
their partner, so that the partner was not necessarily the experimenter sitting across from them. 
This measure reduced the student’s tendency to make eye contact or attempt to verbally 
communicate with the experimenter. 

 To reduce as much as possible the distraction generated by having students sitting side by 
side, students were reminded before the beginning of each game that they would not be playing 
with each other. Experimenters noted that some students did glance across to check the progress 
of the other student’s game, but on most occasions this occurred at the end of a game level while  

 

 
Figure 9. The study setup 
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they were waiting for the next level to load. However, if one student was observed to be 
particularly disruptive and disturbed the other student in the room, then the data from both 
students was discarded. In practice, this happened once or twice in each school. The discarded 
students were not included in the count of student participants mentioned above. 

During game playing, the Prime Climb agent generated pedagogical interventions to help the 
student learn from the game, by relying on the model of student learning mentioned in Section 3 
(Conati & Zhao, 2004). All of the agent’s and student’s actions were captured by the version of 
the affective model with the appraisal network based on a subjectively defined structure. The 
model was updated in real time to direct the appearance of the pop-up dialog box, as described in 
Section 5.1, but the pedagogical agent did not use it to direct its interventions. It should be noted 
that this is the reason we can re-use log files from this study to evaluate successive versions of the 
affective model5.  

Log files of the interaction recorded all of the events that occurred within the game, the 
student’s reported emotions, and the corresponding model assessments. After game playing, 
students completed a post-test on number factorization6, and four post-questionnaires: one to 
indicate the goals they had during game playing, one on interface acceptance, and the two post-
questionnaires on the events that affect Have Fun and Learn Math, described in Section 4.2.2. 
Although this may seem quite a lot of material for young children to have to deal with, each 
test/questionnaire was designed and pilot-tested so that this final phase of the experiment lasted at 
most 10 minutes. As with the emotion self-report collection mechanism, we did our best to strike 
a balance between the amount of data we needed for model construction/evaluation and avoiding 
student fatigue that could make the data unreliable. 

5.3 Evaluating the Predictive Part of the Affective Model 

We evaluated the predictive part of the affective model in two stages. First, we evaluated the 
model’s event–appraisal mechanism, independently from the performance of the sub–network for 
goal assessment. To do so, we assumed that the students’ answers to the goals post–questionnaire 
were an accurate representation of the goals that they had during game playing. We used these 
answers to set the values of goal nodes in the appraisal network, rather than relying on the 
model’s own assessment of student goals. Second, we tested the complete predictive network by 
repeating the evaluation with the model’s own assessments of student goals during the 
interaction.  

Before describing the results of each of the two evaluations, we illustrate the common 
evaluation method we used. We measured the performance of each model to be tested via a 
simulator that replays the event logs from the study described in Section 5.2 with that model. The 
simulator includes the execution of an additional ‘no agent action’ event after each student action 
that was not followed by an agent intervention. This “no agent action” event had not been 
recorded in the original log files because its relevance was discovered through the data analysis 
for model refinement described in Section 4.2.2.2. 

We performed cross-validation on model accuracy by using the following well-known random 
resampling method (Mitchell, 1997). We divided the set of students into a training set and a test 
set of equal size using random selection. We then used the data from the students in the training 
set to train the necessary CPTs in the model, and ran the event logs of the students in the test set 
through the simulator to produce a measure of model accuracy (computed as we describe below). 
We then randomly divided the original set of students into a new training set and test set, and 

                                                 
5 It should also be noted that the study is not a Wizard of Oz, since the agent acts autonomously, even if it 
does not use the affective model, and the experimenter plays the role of a human player. 
6 Post–test data was collected for purposes not related to this research. 
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performed the same evaluation steps again. In total, we performed this procedure 100 times7. 
For each test set, we measured model accuracy by computing how often the model’s 

assessment agreed with the student’s reported emotions at corresponding times. To enable the 
comparison, we translated both the students’ reports for each emotion pair (e.g., Joy/Distress) and 
the model’s probability over the emotion node corresponding to that pair (e.g., the node emotion-

for-game in Figure 5) into 2 values: positive (indicating the element with positive valence in the 
pair, e.g., Joy) and negative (indicating the element with negative valence, e.g., Distress). A 
student report was classified as positive if it was higher than ‘neutral’ in the dialog box, and as 
negative if it was lower. The model’s assessment was classified as positive if the probability of 
the corresponding emotion node was higher than a set threshold, and negative otherwise. The 
threshold value of 0.65 was determined using the data from an earlier empirical evaluation 
(Conati & Maclaren, 2004). For each emotion pair, we report individual model accuracies in 
detecting the positive and the negative emotions. These correspond to standard measures of true 
positive rate (sensitivity) and true negative rate (specificity). We also report a combined accuracy 
that is the average of the two. 

 It should be noted that making a binary prediction from the model’s assessment is guaranteed 
to disagree with any ‘neutral’ reports given by the students. The only way to fix this problem in 
the predictive network would be to add a third value to each emotion node that represents 
neutrality with respect to that emotion type. However, altering the emotion nodes’ CPTs to 
include this additional value would not be trivial. An alternative is to catch at least some instances 
of neutrality in the diagnostic part of the model. We found that 65 student reports were neutral for 
both emotion-for-game and emotion-for-agent (63% and 58% of the neutral emotion-for-game 
and emotion-for-agent, respectively). Because neutrality on both emotions corresponds to a low 
level of emotional arousal, this state should be easily picked up by adequate physiological sensors 
in the diagnostic part of the model (see Figure 1). This is a clear example of a situation where the 
observed evidence of a student’s emotional state can be combined with predictive assessment, 
and we will discuss our investigations in this direction in Section 6. 

5.3.1 Evaluation of the Event Appraisal Sub-network  

Table 2 shows the results of using the mechanism discussed in the previous section to evaluate 
the refined appraisal network from Section 4.2.2. As we mentioned earlier, in order eliminate 
possible confounding factors deriving from inaccuracies in the goal assessment network, the 
values of goal nodes were directly derived from the students’ answers in the goal post-
questionnaire. Although the goal Want Help was added to the model after the study and thus did 
not have a pre-dedicated item in the post-questionnaire, we were able to derive its value from the 
questionnaire item ‘I wanted help when I became stuck’, originally used together with another 
item to assess the goal Succeed By Myself.  

In order to assess how well our model performed compared to a simpler approach, we 
calculated the baseline accuracy of predicting the emotion with the highest probability based on 
the frequency of emotions occurring in the students’ reports. Because our data set has a much 
higher number of positive data-points for each emotion pair (see Table 2), the baseline model 
                                                 
7 We used this method for cross-validation because we did not have enough data (especially negative data-
points, as we will see in a later section) to perform a traditional N-fold cross-validation, where the N 
test/training pairs are non-overlapping partitions of the data and N is large enough to allow for measures of 
statistical significance. The drawback of random re-sampling, however, is that the test/training sets it 
generates are not independent and thus violate one of the assumptions required by standard tests for 
statistical significance. Thus, although random resampling is commonly used in machine learning to deal 
with limited data (Mitchell, 1997), any statistically significant results that it generates should be interpreted 
as significant trends. 
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always predicts Joy and Admiration and would thus have an accuracy of 100% in predicting these 
emotions, but 0% in predicting Distress and Reproach. Therefore, the model’s combined 
accuracy would be 50% for emotions towards the game (Joy/Distress) and 50% for emotions 
towards the agent (Admiration/Reproach). The model’s accuracy in predicting students’ emotions 
towards the game is a 30% improvement over the baseline, and is significant8. However, the 
model’s poor performance in predicting Reproach has reduced its overall accuracy in predicting 
feelings towards the agent and there is no significant difference from baseline accuracy (p=.62). 

To understand the reasons for the model’s poor performance on Reproach we engaged in a 
detailed analysis of the model’s assessment in relation to the interactions simulated from the log 
files. This analysis showed that approximately 50% of the misclassified Reproach data-points, 
and approximately 28% of the misclassified Admiration data-points, were due to the fact that the 
students’ declarations for the goal Want Help at the end of a game session did not seem to 
consistently match with whether they were trying to achieve this goal during the game. Five 
students did not declare the goal Want Help, but they reported Reproach towards the agent when 
they began to fall and the agent did not intervene, suggesting that they did want help in these 
situations. Three students declared the goal Want Help but then reported Admiration instead of 
Reproach when they fell repeatedly and the agent did not intervene, suggesting that they actually 
did not mind the lack of help. These findings confirm what we had already seen from the data 
analysis in Section 4.2.2.2, i.e., that goal priority can change during the interaction. As we 
discussed in that section, we currently don’t have enough data to model goal evolution in a 
principled way, and thus our model still includes the incorrect assumption of static goals and 
cannot model correctly those students who have shifting goals. The influence of this assumption 
on the Reproach inaccuracy reported here is amplified by the fact that goal nodes were set to 
deterministic values based on evidence from student questionnaires. Deterministic values have a 
higher negative influence than probability distributions on model assessment when they do not 
actually reflect the current student’s goals.  

A second factor that explains an additional 25% of the misclassified Reproach data-points is 
that using only previous math knowledge to help assess the relative priority some students gave to 
succeeding by themselves vs. receiving help incorrectly modeled four students. In each case the 
students reacted as expected for the goals they had declared, for example, one student had 
declared the goal Succeed By Myself, and had subsequently reported Reproach when the agent 
intervened after a repeated fall. However, in each case, the math knowledge of the student 
indicated that the model should give a low priority to the goal that was not satisfied by the agent’s 
action. Thus the negative impact of giving help (or not giving help, in some cases) was 
underestimated. This result indicates that there are other traits that should be taken into account to 
correctly model priority shifts for some individuals. 

                                                 
8 All measures of statistical significance when comparing model performance to the baseline refer to a two-tailed one-
sample t-test with p < 0.05 

Table 2. Emotional belief accuracy of the affective model 

Accuracy (%) Emotion 
Mean Std. Dev. 

Data-points 

Joy 64.38  4.77 170 
Distress 65.63  16.20 14 
Combined Joy/Distress 65.01*   
Admiration 64.76 6.44 127 
Reproach 34.67 10.38 28 
Combined Admiration/Reproach 49.72   

 * Significantly above the baseline accuracy  
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5.3.2 Evaluation of the Predictive Model Using Model’s Assessments of Student Goals  

Our assessments of the accuracy of the predictive affective model have thus far been limited to 
the appraisal sub-network. That is, we have used student answers to the goal post-questionnaire as 
evidence for setting goal nodes in the appraisal network, so as to separate it from the model’s goal 
assessment mechanism and isolate inaccuracies in the event–appraisal mechanism. However, 
information on students’ goals will not be available when using the model in real-time during 
game playing. Instead, the model’s own probabilistic assessments of the students’ goals will be 
used.  

In order to determine how well the complete predictive model will perform during real-time 
interactions, we evaluated it by using the simulator described in Section 5.3 and allowing the 
model to use its own probabilistic assessments of the students’ goals instead of the evidence from 
the students’ post-questionnaires. However, we used the frequencies of goals declared by students 
from a previous study (Zhou & Conati, 2003) to help inform the model’s goal assessments by 
creating population priors for each goal being assessed9.  

Table 3 compares the accuracy of the model using goal evidence and using goal assessment 
with population priors. As the table shows, the model’s performance using goal assessments 
increased significantly for Reproach and Distress, although the value for Reproach is still below 
50%10. The increase in accuracy for Distress produced a significant improvement in the model’s 
combined accuracy for emotions toward the game, which is now 38.06% over the baseline. 
Although there is also a statistically significant decrease in Admiration, the decrease is small 
compared to the increase for Reproach. As a result, the combined accuracy of the model with 
goal assessment is significantly higher than the accuracy of the model with goal evidence for 
emotions towards the agent, and becomes also significantly higher than the baseline (9.02%).  

Thus, from a practical standpoint, trends for all of the emotions except Admiration are in 
favour of the probabilistic goal assessment, and the decrease for Admiration is small. The good 
performance of the goal assessment mechanism should not come as a surprise given our previous 
discussion on the dynamic nature of student goals. When goal nodes are set as evidence, their 
values are fixed throughout the interaction, no matter what students do during game playing. 
When they are associated with a probability distribution, the distribution changes as evidence on 
student actions comes into the goal–assessment network. Although these changes cannot fully 

                                                 
9 Since goal nodes are not root nodes, population priors are included by (i) adding a fictitious root node as 
an additional parent for each goal node in the goal–assessment network; (ii) setting the CPT of the root 
node to the population prior for the goal.  
10 All measures of statistical significance comparing different versions of the affective model are based on a 
two-tailed t-test with p < 0.05 

Table 3. Comparing the emotional belief accuracy of the affective model using goal evidence and goal 
population priors 

Accuracy using goal 
evidence (%) 

Accuracy using 
population priors (%)  Emotion 

Mean Std. Dev. Mean Std. Dev. 
Data-points 

Joy 64.38 4.77 64.97 4.39 170 
Distress 65.63 16.20 73.09† 18.31 14 
Combined J/D 65.01*  69.03†*   
Admiration 64.76 6.44 61.00† 6.00 127 
Reproach 34.67 10.38 48.01† 12.10 28 
Combined A/R 49.72  54.51†*   
* Significantly above the baseline accuracy            † Significant increase/decrease from model with goal evidence  
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reflect changes in the students’ actual goals because the network models goal nodes as static, the 
changes in the probability distributions still approximate the students’ changing goals better than 
the immutable evidence values. Thus, for instance, the assessment of Reproach improves because 
using probabilities for the goals Succeed By Myself and Want Help allows the model to correctly 
assess some of the students who declared that they did not have the goal Want Help, but during 
the interaction displayed behaviours showing the contrary. These were cases where the model’s 
assessment was already very close to the threshold value used to classify Admiration vs. 
Reproach, thus the fluctuations in the goal probabilities caused by the student’s interface actions 
were sufficient to steer the model toward the right assessment, despite the lack of a mechanism to 
model changing goals. The rest of the cases were still misclassified, indicating that the model still 
requires an ability to assess changes in student goal priorities to achieve higher accuracy. 

5.4 Summary and Discussion 

In Sections 4 and 5, we have described how we built and evaluated the predictive part of our 
probabilistic model of student affect. First, we constructed the part of the model that assesses 
student goals, using correlations between personality, goals, and interaction patterns found in data 
collected during user studies. Next, we specified an initial structure for that part of the network 
that represents the appraisal mechanism (i.e., how the mapping between student goals and game 
states influences student emotions). We completed the construction of the sub-network using 
empirical data collected from real users. 

Finally, we described the method and results of a direct evaluation of the predictive affective 
model. We first assessed the accuracy of the appraisal mechanism using evidence on student 
goals generated from questionnaires to set the network’s goal nodes, and showed that the model 
could achieve an encouraging level of accuracy. We then assessed the accuracy of the complete 
predictive model, including the sub–network for goal assessment, and showed that it has better 
accuracy than the model with goals set from evidence, because it is better able to capture the 
dynamic nature of some student goals. This result indicates that the model can achieve reasonable 
real-time accuracy during interaction with Prime Climb, when it can rely only on evidence 
coming from student interface actions. However, we showed that our two simplifying 
assumptions about student goals, i.e., that they remain the same throughout the game session and 
all have same priority, limit model accuracy, especially in detecting negative feelings towards the 
Prime Climb agent. Thus, a possible direction for future work is to investigate effective ways to 
remove these two assumptions, with special attention to constructing a clearer picture of how the 
user’s goal priorities fluctuate during game sessions. However, we expect that this task will be 
very difficult, given that we are essentially trying to do is plan recognition (one of AI’s 
notoriously difficult problems) in a highly dynamic environment.  

All in all, however, we should not be surprised that the predictive part of the model by itself 
does not achieve top levels of accuracy. Even humans often need to integrate information on both 
potential causes and visible effects of the interlocutor’s emotional reactions to compensate for the 
limited reliability of each in recognizing emotion.  

Therefore, before attempting to further refine the predictive part of the model, the next stage in 
our research was to investigate if and how information on the Prime Climb players’ emotional 
reactions can improve the model’s assessment, i.e. how to add a diagnostic component to the 
model (see Figure 1). We describe this investigation in the next section. 

 
 
 
 



23 

6 Investigating Physiological Sensors as a Source of Diagnostic Affective Evidence  

The predictive part of our affective model will assess whether the student is feeling a negative or 
a positive emotion towards the game, the agent, or the student herself (i.e., the valence of a 
student’s emotions towards these entities). This component currently has two main limitations. 
First, as we saw in the previous section, the model’s accuracy for predicting feelings of Reproach 
towards the agent is quite low. Second, by design the predictive model cannot predict the level of 
arousal of the emotions arising during game playing, which can play an important role in 
deciding if and how an agent should act upon the student’s emotions. For instance, if the model 
predicts Distress or Reproach but the student is feeling calm overall because these feelings are 
quite mild, then it may not be as important for the agent to intervene as it would be if the 
student’s negative feelings were strong. Similarly, an interaction aimed at calming down a happy 
student to improve concentration may cause confusion if the student’s level of arousal is not high 
enough for the positive emotion to be disruptive. 

Existing literature on emotion recognition suggests that integrating physiological evidence 
on the student’s current affective state into our affective model may help overcome these two 
problems. We have started investigating two ways of using physiological data in our model: 

1. Tension in specific facial muscles can be measured using Electromyogram (EMG) 
sensors, and has been shown to be correlated with affective valence (Lang et al., 1993). 
Heart rate (HR), which can be calculated from the measurements of the Blood Volume 
Pulse (BVP) sensor, has also been used as an indicator of affective valence (e.g., Papillo 
& Shapiro, 1990). 

Adding evidence from these physiological sensors to our model may enable it to 
produce an assessment of the student’s overall affective valence. This would help it to 
discriminate which of the student’s current emotions is dominant, improving overall 
emotion assessment, and detection of Reproach in particular.  

2. Skin Conductance (SC) has been shown to be positively correlated with levels of 
affective arousal (Dawson et al, 2000; Lang et al., 1993). Evidence from this 
physiological signal may enable the model to assess whether the student is in a state of 
high or low arousal, and thus how important it is for the pedagogical agent to take into 
account the student’s affect in its interventions. 

However, most of what is known on the links between physiological signals and emotions 
experienced was achieved either in controlled laboratory conditions, or for modeling affective 
states less complex than those we are targeting. For instance, (Lang et al., 1993) used images to 
induce specific affective states in subjects. Similarly, in other experiments that have built on this 
work subjects were deliberately frustrated (Scheirer et al., 2002), or asked to express a set of 
specific emotions (Picard et al., 2001). Experiments in less controlled conditions focused on 
simpler tasks, such as detecting a single strong emotion (e.g., the level of anxiety in drivers 
(Healey & Picard, 2005), interest during interaction with a computer-based tutor (Kapoor & 
Picard, 2005)),  lower-level affective measures such as valence and arousal (Prendinger et al., 
2005), or overall emotional predisposition over the course of a complete interaction (Mandryk et 
al., 2006). 

In contrast, we want to explore the performance of these sensors for the instantaneous 
detection of affect, in a setting where students are allowed to spontaneously experience multiple 
emotions, possibly conflicting, varying rapidly and that may be expressed more subtly than those 
induced in laboratory settings.  

This section describes the results of this investigation, as well as the effect of adding data from 
physiological sensors to our affective user model. Our current efforts focus on understanding the 
value of each of the sensors as individual sources of affective information, as opposed to directly 
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combining them as has been done by other researchers (e.g., Kim & André, 2006; Vyzas & 
Picard, 1998). This approach allows us to determine whether the methods needed to collect 
information from that signal can be used within the constraints imposed by the environment and 
by the requirements of our model. It also allows us to develop individual nodes for our DDN-
based framework, which can then be used to modularly combine evidence depending upon which 
signals are available/suitable to use,  

The rest of this section is organized as follows. First, we describe the user study that we used 
to collect the physiological evidence from students interacting with Prime Climb (Section 6.1). 
Next, we describe our analysis of the EMG signal, including the effect of incorporating evidence 
from the signal into the affective model (Section 6.2). We focus on EMG analysis because it is 
the signal that showed the greatest potential for our purposes. In Section 6.3, we summarize the 
largely negative results we obtained with the other two sensors, and discuss potential reasons for 
these outcomes.  

6.1 Study Design  

In order to investigate the mapping between the affective states of Prime Climb players and 
evidence collected using physiological sensors, and how it can be used to improve the accuracy of 
our affective model, we ran a study designed to simultaneously collect both physiological 
evidence and accompanying affective labels.  

The overall study design and materials were the same as those described in Section 5.2, with 
the following differences. The first is that the study participants wore four physiological sensors 
throughout the interaction (as shown in Figure 10 (i) & (ii)). Students wore an SC sensor and a 
BVP sensor on their fingers and two EMG sensors on their forehead (one on the corrugator 
muscle and the other on the frontalis muscle)11.  

 A second difference was the content and presentation of the hints generated by the Prime 
Climb agent. While for general hints (e.g., reminders to use the magnifying glass, reminders to 
think about common factors when climbing, reminders to think about factorization when 
climbing) the content differences were mostly confined to wording, more specific hints 
underwent substantial changes. First, we added hints to define relevant factorization concepts 
(e.g., ‘Factors are numbers that divide evenly into the number’). Second, we added more 
extensive examples to illustrate these concepts than what we used in the previous hints version. 
Because these new examples often included several lines of text, they were presented using a 
pop-up dialog box instead of the agent’s speech bubble as was done previously.  

                                                 
11 We used the sensors in the Procomp Infiniti package and Biograph software from Thought 
Technologies (TM) 

  

Figure 10(i). A close-up view of a student 
wearing the SC, BVP, and EMG sensors 

Figure 10(ii). A student interacting with Prime 
Climb while wearing the sensors. 
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A third difference was with the parameters of the model of student learning used to direct the 
agent interventions (Manske & Conati, 2005). We introduced the differences in the agent’s 
hinting behavior and learning model in this study because we needed to validate them and could 
not afford to run a separate study for this purpose. We were aware that, because the current agent 
behaviors were not those we used to define the appraisal part of the casual affective model, the 
model accuracy on this study’s data may be limited. However, a decrease in the accuracy of the 
predictive model would not interfere with the goal of this study, i.e., investigating the potential of 
physiological data in modeling student affect during interaction with Prime Climb.  

The fourth and last difference is that students did not fill out the post–questionnaires on goal 
satisfaction; instead the time was used to administer a more extensive pre-post test on 
factorization knowledge, necessary to evaluate of the pedagogical effectiveness of the changes we 
introduced in the agent behavior.12 

Forty-one students from two local schools participated in the study. Log files of the interaction 
included the student’s and the experimenter’s actions, the agent’s interventions, the student’s 
reported emotions and the physiological signals. In the next section, we describe our data analysis 
of these log files with respect to the EMG signals. 

6.2 Analysis of Electromyogram (EMG) Signals for Valence Indicators 

Based on numerous other works (e.g., Healey & Picard, 2005; Lang et al., 1993; Mandryk et al., 
2006), our analysis of the EMG signals looked for possible indicators of affective valence. 

Following (Scheirer et al., 1999), we originally tried to use two EMG sensors, one on the 
corrugator muscle to detect frowns and one on the frontalis muscle to help detect eye-brow raises. 
We felt it was important to distinguish between these two expressions because frowning tends to 
be an indicator of negative valence (Lang et al., 1993), whereas raised eyebrows do not. While 
activity on the frontalis muscle is not viewed as a strong indicator of positive valence (Cacioppo 
et al., 1993), we were hoping to gain a consensus of positive valence by combining evidence from 
this signal with additional indicators of positive valence from signals such as the students’ heart 
rates (Papillo & Shapiro, 1990). 

 Unfortunately, however, we discovered that several of our subjects did not have sufficient 
forehead space to reliably accommodate the two fairly large EMG triodes available to us. With 
these students, we could not attach the EMG on the frontalis muscle firmly enough to obtain a 
reliable signal. Thus, we decided to limit our analysis to the EMG signal measured on the 
corrugator muscle, hoping to at least partially reproduce results from previous laboratory studies 
showing that it can be a reliable indicator of negative affect (Lang et al., 1993). In the remainder 
of this section, we first describe how we created the mapping between this EMG signal and 
student self-reports. Next, we discuss the mapping results in terms of signal reliability to predict 
the valence of students’ affective states while playing Prime Climb. Finally, we describe how we 
added signal evidence to our affective model and the effect of this refinement on the model’s 
accuracy. 

6.2.1 Analysis Method 

The goal of our analysis was to create a set of data-points of the form <affective valence, signal 
prediction> for each game event currently included in our affective model. These data-points 
could then be used to assess the reliability of the EMG signal in predicting the valence of 
students’ affective reactions to the relevant game events. The events we used were: a student’s 
successful climb, fall, use of the magnifying glass, and agent interventions. We did not use the 

                                                 
12 The lack of post-questionnaires on goal satisfaction is the reason why we could not re-train the appraisal 
component of the causal model with the new agent behaviors. 
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events encountering big numbers or being ahead of a partner because they are side-effects that 
co-occur with the aforementioned events.  

The first step in our analysis was to obtain the data on affective valence from the students’ 
self-reports of emotions towards the game and towards the agent. To do so, we used the scheme 
shown in Table 4. In this step, we focused on the self-reports that could clearly be translated to 
positive or to negative valence (67 self-reports out of the 180 collected during the study, see 
Table 4 for the definition), in order to obtain a more reliable mapping between the EMG signal 
and the overall valence of the student’s affective state. Of the remaining 113 self-reports (labelled 
as “unknown” in Table 4), 99 will be used later to determine how our EMG signal analysis 
translates to more difficult assessments involving feelings that have ambiguous valence. That is, 
feelings with weak or conflicting valence. The final 14 reports received neutral answers for both 
of the emotion questions, and are therefore guaranteed to be misclassified in terms of valence. 
Thus, we did not include them in this analysis. 

Next, in order to assign appropriate values for affective valence and signal prediction for each 
data-point corresponding to a game event, we needed to address the following issues: 

1. To assign the affective valence value, we needed to find which game events contributed to 
generating a particular self-report. This issue exists because students are not required to 
generate self-reports after each game action. The reader should recall that the pop-up 
affective dialog box appears either when the existing affective model detects a change in the 
student’s affective state, or when a predefined amount of time has gone by. Because several 
events could happen between two consecutive appearances of the pop-up dialog box, it is not 
trivial to discern which events have influenced a specific student self-report and can thus be 
labelled with the valence label from that self-report. 

2. For each of the relevant game events, how to isolate the EMG signal that it generated, 
avoiding as much as possible the overlap with influence from other game events or external 
factors. 

To address (1), we chose to consider only the final game event before each given self-report. That 
is, the last game event before a self-report generated a data-point with valence derived from that 
self-report as described earlier, and signal-prediction computed as we describe shortly. Although 
all the events that occurred before a given self-report could have influenced it, we chose this 
narrow focus because only the last event in the sequence has a clear connection with the reported 
feelings, not obscured by reactions to subsequent events. 
To address issue (2) above, for each relevant game event we considered only the EMG signal in 
the four-second interval immediately after the event occurred. The period of four seconds was 
chosen based on the work by (Lang et al., 1993), because it balances the amount of time required 
to detect a response in each signal against avoiding recording the student’s reaction to the next 
game event or to any other event outside the game13. 

                                                 
13 It should be noted that, although we focused on the events that are currently included within the causal model (i.e., 
climbs, falls, using a tool, and agent interventions) we did not include the occasions on which the agent did not 

Table 4. Valence labels for students’ affective self-reports 

Affective Valence  Type of self-report 

Positive 
Both answers to the emotion questions were positive, or one was 
strongly positive (‘very good’) and the other was neutral. 

Negative 
Both answers to the emotion questions were negative, or one was 
strongly negative (‘very bad’) and the other was neutral. 

Unknown The report was neither strongly positive nor strongly negative. 
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 Frown  

Figure 11. Example of EMG signal recorded for rest followed by frowning 

To summarize, in our analysis the last game event that happens before a student self-report 
generates one data-point of the form <affective valence, signal prediction>, where the value of 
affective valence is derived from that self-report and signal prediction is computed by analyzing 
the EMG signal in the four seconds following the event. We now proceed to describe how we 
performed the actual signal analysis. 

6.2.2 Creating Predictions from the EMG Signal 

Electromyography (EMG) measures muscle activity by detecting surface voltages that occur 
when a muscle is contracted. The corrugator muscle, located on the forehead between the 
eyebrows, is used to generate facial expressions such as frowning. Both (Lang et al., 1993) and 
(Cacioppo et al., 1993) report that greater EMG activity in this area tends to be associated with 
expressions that have negative affective valence. Figure 11 shows an example of an EMG signal 
recorded over the corrugator muscle during a period of rest followed by the subject frowning. 

When selecting which features of the EMG signal to analyze, our aim was to build on existing 
results by exploring whether these results could be transferred to our environment. Therefore our 
selection of features was driven by whether the feature had a previously established mapping to 
labels of affective valence.  

Recent work on exploring the link between EMG and affective expressions in environments 
where subjects are interacting with computers has used features such as the mean and standard 
deviation of the raw signal (Bosma & André, 2004; Mandryk et al., 2006; Partala & Surakka, 
2004; Picard et al., 2001), but only the mean has been shown to hold a reliable mapping with 
affective valence. Some investigations explored more complex measures, such as the gradient and 
the change in gradient of both the raw and normalized signals (Vyzas & Picard, 1998), but failed 
to establish a link between these features and valence. Thus, we focused on the mean of the of 
raw EMG signal for our analysis.  

 
 
 

                                                                                                                                                 
intervene immediately after a student action. This is because the four-second period following this event overlaps with 
the previous event, and making it impossible to isolate the EMG signal that it generates. 
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For each data-point, <affective valence, signal prediction>, signal prediction was set by 
comparing the value of mean EMG to a simple threshold that was calculated using the mean of 
the raw signal for the student’s entire interaction (as shown in Eqn 1). 

 
signal prediction(e,s) =  positive if mean(EMG_e) < mean(EMG_s)  (1) 

 negative, otherwise. 

where  s is the current student  
 e is the last game event before the self-report used to create the value for affective 

valence 
 EMG_s is the set of values recorded for the EMG signal during the entire interaction  
 for student s (overall signal mean) 

 EMG_e is the set of values recorded for the EMG signal during the 4-second period 
  following event e 

 If the mean EMG value was below the threshold, then signal prediction was positive valence, 
if not then signal prediction was negative valence. Our choice of using the overall signal mean as 
a threshold is based on the experimenters’ observations that most students experienced both 
positive and negative affect at some point during the interaction, thus the overall EMG mean 
would be higher than the signal mean in those intervals where the student did not experience 
negative affect. 

An alternative method for generating valence predictions from EMG is to compare the EMG 
signal over the interval of interest against a baseline signal recorded during a resting period 
before the experiment (Cacioppo et al., 1993). Unfortunately, due to limitations on time with the 
students, in our study we could not set up an idle “resting time” that we could use as a baseline. 
Nor could we use their signals just before starting the interaction with the game as a baseline 
because of their initial feelings of excitement at participating in an activity other than class work.  

Having completed the construction of our data-points of the form <affective valence, signal 

prediction>, we proceeded to assess the reliability of using the signal to predict the affective 
valence of our Prime Climb players. Table 5 shows a confusion matrix comparing the values for 
affective valence and signal prediction for each data-point. The high number of true negative 
predictions by the signal compared to false positives (where affective valence is negative but 
signal prediction is positive) indicates that the mean of the EMG signal is a reliable feature for 
assessing feelings with negative valence (89% accuracy in detecting negative valence). This 
result is encouraging because it indicates that evidence from the mean of the EMG signal may 
help us to achieve our goal of improving the model’s assessment of Reproach. However, the 
number of true positive predictions by the signal compared to the number of false negatives 
(where affective valence is positive but signal prediction is negative), indicates that this feature is 
not reliable when assessing feelings with positive valence. Both of these findings agree with the 
results of other work (e.g., Cacioppo et al., 1993; Lang et al., 1993).  

The high number of false negatives may be due to phenomena associated with other cognitive 
processes involved in the task the student is concentrating on, e.g., squinting, or frowning in 
concentration. In addition, 12 of the 41 students who took part in the study only generated self-

Table 5. Confusion matrix comparing the valence predictions made by the mean EMG signal with 
the valence labels produced from the students’ self-reports. 

Valence Label 
  

Positive Negative 
Positive 33 1 Signal 

Prediction Negative 41 8 
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reports that were translated to positive valence. If these students really experienced only positive 
affect during the interaction, our baseline threshold would be too low for them. That is, their 
overall signal mean would not be necessarily higher than the mean over segments when they 
experienced positive affect. Of the 41 data-points that received false negative predictions, 20 
came from these students, suggesting that acquiring a more reliable baseline can indeed improve 
the performance of our EMG signal as predictor of positive valence.  

Despite the high number of false negative predictions, a Fisher’s exact test using the results in 
Table 5 showed that there is a marginally significant relation between the affective valence of the 
students’ reports and the signal’s valence predictions (p=.075, 2-tailed). Therefore, we decided 
that it would be worth exploring the addition of the mean EMG to our affective model as 
evidence of affective valence. We describe our approach to this task in the next section. 

6.2.3 Adding the Mean of the EMG Signal to the Affective Model as Evidence of Valence 

We begin by describing how we incorporated evidence from the EMG signal into the model. We 
then evaluate the resulting model to determine whether assessing affective valence via EMG 
evidence can improve the model’s overall accuracy in predicting specific emotions.  

In the predictive part of the affective model, a new time-slice is added in response to events 
that occur during game play. Therefore, the most logical approach to including EMG evidence of 
students’ reactions to game events in the affective model is to add two binary nodes to each time-
slice (shown in bold in Figure 12): (i) a Valence node that represents the model’s overall 
prediction on the valence of the student’s affective state; (ii) a Signal prediction node encoding 
the valence predicted by the EMG signal recorded in the four-second following the most recent 
event. Both nodes have values positive and negative. The Valence node has the Emotional States 
nodes as parents, and its CPT represents the dependency between the overall valence of the 
student’s current affective state and her feelings towards herself or the agent, and the game. The 
CPT values are defined so that the probability that valence is positive/negative is proportional to 
the number of positive/negative emotion nodes.  

The node Signal prediction has the Valence node as parent, and the link between the two 
nodes represents the probability of observing an expression of positive or negative valence in the 
mean of the EMG signal, given the overall valence of the student’s affective state. The CPT for 
the Signal prediction node is computed using the frequencies from our dataset of <affective 

valence, signal prediction>. 
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Figure 12. Two time-slices of the affective model, with proposed nodes highlighted. 
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Whenever a new time-slice is added to the model, the node Signal prediction is set to a value 
of either positive or negative, depending on the outcome of the EMG signal analysis described in 
the previous section14. Bayesian propagation then integrates this evidence with evidence on the 
current state of the game set in the diagnostic part of the model, and generates the model’s 
combined assessment over the student’s individual emotions.  

 

Evaluating the Combined Model 

Our aim when evaluating the affective model was to answer the following questions: 

1. How does the new combined model perform on clear-valence data-points, i.e., those 67 
data-points that have a clear indication of positive or negative valence (see Table 4), and 
that we used in our analysis of the EMG signal? 

2. How does the new combined model perform on ambiguous-valence data-points, i.e., on 
those 99 data-points corresponding to students’ self-reports containing emotions with 
mixed valence or only mild positive/negative valence (see Table 4). Recall that we 
excluded these self-reports from the analysis of the EMG signal in Section 6.2.1.  

 For both questions, we ran the simulator described in Section 5.3 with the new combined 
model and the log files from the study described in Section 6.1. However, when answering the 
first question we used only clear-valence data-points to train the CPT for the Signal prediction 
node and to test the overall model.  

To compute model accuracy, we used the same measures and 100-fold cross validation with 
random resampling described in Section 5.3. In each fold, we used the data from the students in 
the training set to train the Signal prediction node CPT. A sample CPT created from one of the 
training sets is shown in Table 6. For each data-point in the test set, we compared the student’s 
self-reports of her emotions towards the game and towards the agent with the model’s prediction 
for these emotions. Table 7 shows the overall mean and standard deviation of the collected 
results. For comparison, the table also reports the accuracy of the predictive part of the model on 
this reduced data-set. 

As the table shows, the combined model performs significantly better than the predictive 
model on Joy and Reproach, while the two models perform roughly the same for Admiration and 
Distress (p>.40). While the substantial increase in Reproach results in a significant increase of 
the combined accuracy of the Emotion for agent pair, the smaller increase for Joy results in an 
increase of the combine accuracy of the Emotion for game that only approaches significance (p = 
0.067). 

The fact that the increase in the accuracy for Joy is not as substantial as that for Reproach is 
consistent with the fact that EMG measured on the corrugator muscle was shown to be a 
mediocre predictor of positive valence, both in our analysis (see Section 6.2.2) and in previous 
research. Still, the fact that adding evidence from the EMG signal to our affective model 
improved its combined accuracy over both our emotion pairs provides encouraging evidence that 

                                                 
14 Because we cannot define precisely when the student will react to the agent not intervening, we do not add evidence 
to the node Signal prediction in time-slices generated to represent a lack of agent intervention. 

 Table 6. The CPT for the node Signal prediction 

 Valence 
 

Signal 
Prediction Positive Negative 

 Positive 0.48 0.17 
 Negative 0.52 0.83 
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the EMG signal can help assess clearly valenced emotions during the students’ interaction with 
Prime Climb.  

To answer our second evaluation question, we re-ran the simulator on the combined model, 
still using the clear-valence data-points to train the CPT for the Signal prediction node, but 
testing the resulting model on the ambiguous-valence data-points, i.e. the 99 data-points set aside 
earlier. 

The results of this evaluation (see Table 8), show a statistically significant increase in 
accuracy for Admiration, but also a significant decrease for Joy and Distress and no relevant 
change for Reproach. Thus, our data indicates that evidence from the EMG signal is not as 
valuable in helping to recognize multiple emotions with mixed or mild valence. However, we 
should remain aware that these results have been produced by using a single source of evidence 
that is known to be unreliable for positive affect and subject to inaccuracies in detecting negative 
affect due to the its inability to distinguish between frowns and eye-brow raises. It is not 
surprising that these inaccuracies are more prominent in the presence of affective states that are 
not strongly valenced, since these states likely generate more subtle facial expressions, difficult to 
discriminate by only monitoring the movements of the corrugator muscle. Adding information 
from other EMG sensors (e.g., measuring activity of the frontalis muscle, or the zygomatic major 
muscle), and other sensors linked with affective valence, may help produce more reliable 
information on the student’s affective valence. 

6.3 Discussion of Skin Conductance (SC) and Heart Rate (HR) as Affective Indicators 

Following our analysis of the EMG signal, we focused on the two other signals that we had 
recorded during the study. Unfortunately, for a number of reasons that we will describe in this 

Table 7. Accuracy comparison between the predictive model and the combined model with EMG data 
on clear-valence data-points 

Accuracy (%) 
Predictive Model  Combined Model (EMG) Emotion  

Mean Stdev Mean Stdev 

Total number 
of Data-points 

Joy 74.80 7.75 79.10† 7.57 74 
Distress 53.48 29.83 56.70 26.18 5 
J/D Combined 64.14*  67.90*   
Admiration 83.49 4.45 81.18 5.29 67 
Reproach 39.11 16.75 63.02† 16.55 9 
A/R Combined 61.30*  73.10†*   

* Significantly above the baseline accuracy               † Significant increase/decrease compared to the diagnostic model 

Table 8. Accuracy comparison between the predictive model and the combined model with EMG data 
on ambiguous-valence data-points. 

Accuracy (%) 
Diagnostic Model Combined Model (EMG)  

Mean Stdev Mean Stdev 

Total 
number of 

Data-points 
Joy 83.66 6.11 74.15† 7.79 51 
Distress 43.82 15.21 38.72† 14.08 15 
J/D Combined 63.74*  56.44†*   
Admiration 58.58 8.84 71.70† 11.15 28 
Reproach 25.36 7.62 25.11 12.85 33 
A/R Combined 42.11  48.41†   

* Significantly above the baseline accuracy             † Significant increase/decrease compared to the diagnostic model 
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section, we did not succeed in confirming the results of other work with regards to using features 
of these signals as indicators of the student’s affective state. 

For each signal, we will briefly describe the steps we took to analyze the signal, discuss the 
possible reasons why we did not achieve our expected results, and then describe how we intend to 
address these reasons as part of our future work. 

6.3.1 Analysis Method for Heart Rate as an Indicator of Affective Valence 

Heart rate can be calculated from the measurements of several different sensors, including the 
Blood Volume Pulse (BVP) sensor. We chose to use heart rate based on the results of other works 
that demonstrated links between heart rate and affective valence (e.g., Bosma & André, 2004; 
Papillo & Shapiro, 1990). 

However, a preliminary inspection of the heart-rate measurements for each student showed 
that 33 of the 41 students had over 50% noise in their data. In previous work (Conati et al., 2003) 
we had already observed high levels of noise in the BVP signal due to the apparent sensitivity of 
the sensor to movement, but decided to use it for a second time to confirm our observations. It is 
possible that other researchers had better results with this physiological signal because their 
subjects and experimental set-up did not create the same amount of movement generated by kids 
freely playing a computer game. We still intend to look for ways to include information on heart 
rate as evidence within the model because, combined with EMG evidence, it may generate more 
reliable evidence on players’ affective valence. In particular, we plan to investigate the usage of 
Beats per Minute (BMP) sensors that are advertised to be especially suitable for usage with 
children15.  

6.3.2 Analysis Method for SC as an Indicator of Affective Arousal 

Skin conductance has been found to be linearly correlated to the level of arousal of emotional 
response (Lang et al., 1993) and it has been frequently used to measure subjects’ arousal in 
situations that elicit some form of anxiety, e.g., stress (Healey & Picard, 2005) or frustration 
(Scheirer et al., 2002). The aim of our analysis was to try and reproduce these previous results 
and then attempt to add evidence from the SC signal to our model, which currently has no way to 
assess a player’s level of arousal. However, our initial results did not produce the expected 
relation between SC and arousal levels. In this section, we will briefly describe our analysis, 
discuss the reasons for this result and how we intend to address them. 

For SC analysis, we created a set of data-points <signal prediction, affective arousal> using 
the same methods we used for EMG analysis. That is, for each student self-report, we selected the 
last game event that occurred before the self-report. We then generated a data-point with an 
arousal label derived from that self-report, and a signal prediction computed using a threshold 
similar to what we used in EMG analysis. For each game event, we considered only the SC signal 
in the four-second interval immediately after the event occurred. 

Since we did not have explicit self-reports for arousal, we attempted to derive the arousal label 
from the emotion self-reports, using the scheme shown in Table 9. We were aware that the Likert 
scale in the emotion self-report measures emotion intensity and that intensity does not directly 
translate into measures of arousal. However, we decided to try and see if we could still extract 
some information on the mapping between arousal and SC from our data by considering only 
self-reports clearly indicating the presence of emotions (labelled as High Arousal in Table 9), and 
fully neutral self-reports (labelled as Low Arousal in Table 9).   

We chose to investigate two features as potential indicators: the amplitude of peaks detected 
within the signal over the 4 seconds following a target game event and the mean of the SC signal 

                                                 
15 See for instance, http://www.dataharvest.com/Products/easysense/sensors/heart.htm 
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over the same interval. We chose these features because previous work (e.g., (Healey & Picard, 
2005; Lang et al., 1993)) had already linked them to labels of affective arousal. We created a 
separate data set for each feature, but none generated a clear mapping with our arousal labels. We 
see two potential reasons for this result.  

The first reason is that our interpretation of the students’ self-reports may indeed be 
inadequate to generate labels of arousal. When we designed our study, we did not ask the students 
to report their level of arousal because we did not want to increase the level of disruption 
generated by the emotion dialog boxes. However, the results of this analysis suggest that in order 
to collect reliable data on students’ affective arousal, we will need to run a separate study that 
uses a formal method for arousal detection. One possibility is the Self-Assessment Manikin 
(SAM) (Bradley & Lang, 1994), a commonly used tool that uses pictorial representations to help 
subjects understand the nature of the affective self-report they are being asked to give. Another 
possibility is to resort to external judges. While in our research this method proved to be 
inadequate to label specific emotions, the Prime Climb players may provide sufficient 
behavioural evidence for the judges to recognize different levels of arousal. 

The second reason may be the inadequacy of our chosen baseline. As for EMG, we could not 
set up a resting period before the start of the interaction to obtain a true baseline measure for SC. 
Nor could we use as a baseline the students’ signals just before starting the interaction with the 
game, because of their initial feelings of excitement at participating in an activity other than class 
work. (Mandryk et al., 2006) also mention this difficulty, commenting that in their first 
experiment often the baseline values measured were higher than some of the values during the 
rest of the study. Thus, as with our EMG analysis, we chose as a baseline the mean of the SC 
signal over the entire game session, with the assumption that the student would experience some 
periods of low arousal and some periods of high arousal. However, given the situation in which 
the students were interacting (taken out of class to play a computer game while wearing 
physiological sensors) it is possible that they did not have low levels of arousal at all during the 
interaction. The only way to tell is to collect a true baseline signal, by finding ways to extend the 
length of our study sessions so that we can set up adequate resting states.  

7 Related Work 

Probabilistic approaches based on Bayesian Networks have become quite popular in modeling 
user affect. Ball & Breese (1999) were the first to advocate this approach, proposing a Bayesian 
network that used diagnostic information from the user’s linguistic behaviour, vocal expression, 
posture and facial expressions, to assess valence and arousal of user affect during interaction with 
an embodied conversational agent. 

Since the initial proposal of a probabilistic model that combines predictive and diagnostic 
inference to form a single affective assessment (Conati, 2002), several models have followed this 
approach. Like our model, the Bayesian network produced by Bosma & André (2004) is intended 
for use by a pedagogical agent within an educational game. Following our framework, the 

Table 9. Arousal classifications for students’ online affective reports 

Classification Description 

High Arousal 
Both answers to the emotion questions were non-neutral, or one answer 
was neutral and the other was strongly positive or strongly negative. 

Low Arousal Both answers to the emotion questions were neutral. 

Unknown Neither high arousal nor low arousal classification was appropriate. 
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network combines contextual information on the current state of the game with diagnostic 
information including user’s eyebrows position, heart rate and evidence collected from skin 
conductance. The goal is to produce an assessment of general arousal and valence, and then use it 
to disambiguate the utterances students generate when playing the game. The authors report 
significant correlations between the physiological signals used and valence/arousal, but do not 
evaluate the accuracy of their complete model. Li & Ji (2003) produced a Dynamic Bayesian 
Network (DBN) for use in intelligent user assistance systems (e.g. monitoring car drivers to 
detect potentially dangerous conditions such as fatigue). The model combines contextual 
information with evidence in the form of head gestures, hand gestures, and eye-movements to 
produce an assessment of affective states that include 'fatigue', 'confused', and 'frustration'. The 
authors do not test the accuracy of their model with real users. Instead, they evaluate its efficiency 
by measuring the number of time-slices required by the DBN to identify an affective state that 
was continuously expressed using simulated sensor data. The probabilistic decision network 
developed by Prendinger et al., (2005) combines contextual information with information from 
SC and EMG sensors to assess the user’s current levels of valence and arousal. The model is used 
by an agent designed to help a user cope with the negative affective states that arise during a 
simulated job interview scenario (i.e., states with high arousal and negative valence). The model 
was evaluated indirectly with users interacting with the agent while responding to questions from 
a specific interview script. The experimenters were unable to show that the presence of their 
empathic agent resulted in an overall positive effect on the users’ interactions. However, they 
showed that the empathic agent’s interventions had an effect on the way users perceive questions 
in terms of lower levels of arousal (or stress).  

Hudlicka & McNeese (2002) also propose a framework that integrates diagnostic and causal 
information to model user affect, but their framework relies on fuzzy heuristic rules rather than a 
probabilistic approach. The fuzzy rules specify how to combine various diagnostic and predictive 
factors to assess the anxiety experienced by combat pilots during a mission. The predictive 
factors include general properties of the mission at hand, events that happen during the mission, 
and pilot’s traits (such as personality, experience and expertise). The only diagnostic factor used 
is the pilot’s heart rate. A very preliminary evaluation of the framework was conducted on a 
sample set of simulated users, i.e. made-up users with scripted behaviours desirable for testing.  

In addition to the work of Prendinger et al., (2005), we are aware of only one other attempt to 
evaluate an affective user model indirectly, via the evaluation of a user-computer interaction 
directed by the model. In this work, Guinn & Hubal  (2003) devised a technique to detect affect 
from speech, and embedded it in Avatalk, a system that trains people who must be able to convey 
specific affective states through speech as part of their job. Guinn & Hubal  (2003) ran two field 
studies with Avatalk, designed to test system acceptance rather than training effectiveness. While 
the studies generated fairly positive results, the authors acknowledge that they cannot tell how 
much of the obtained results is due to the affective model, because of the presence of so many 
confounding variables introduced by the other components of the system.  

While there are still very few indirect evaluations of affective models embedded in complete 
systems, increasingly more and more researchers are using direct evaluations to test proposed 
models or potential modeling techniques. Most of this work focuses on the assessment of 
valence/arousal or of a single affective states, rather then targeting multiple specific emotions. 
Kapoor & Picard (2005) propose a unified Bayesian approach based on a mixture of Gaussian 
Process classifiers to detect levels of interest in children interacting with an educational game. 
Their approach is designed to generate an assessment of high interest, low interest, or 'taking a 

break' from facial recognition, posture recognition and information on the state of the game. 
When evaluated on the simpler task of classifying states of interested vs uninterested from data 
labelled by experts, this approach reached an excellent accuracy of 86.55%. Qu & Johnson (2005) 
propose a model that assesses learner motivation during interaction with a computer-based 
learning environment, given information on the user’s attention patterns and possible plans. The 
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model uses data from the keyboard, the mouse, and a camera focused on the student’s face, to 
infer three motivation-related measures: confidence, confusion, and effort. In a preliminary 
evaluation the model achieved accuracies of 70.7%, 75.6%, and 73.2% for the three measures 
when evaluated using data that had been classified by a human tutor. Litman & Forbes-Riley 
(2006) evaluate acoustic–prosodic features from student speech, and lexical items from the 
transcribed or recognized speech as data sources to assess the affective valence (positive, negative 
and neutral), of students engaged in tutorial dialogues. They compare results of machine learning 
experiments using these features alone, in combination, and with student and task dependent 
features, showing significant improvements in prediction accuracy over relevant baselines. 

One notable exception of research that, like ours, directly evaluates with user data a model 
designed to recognize multiple emotions is the work by D’Mello et al., (2006). The authors first 
coded mixed-initiative dialogues from students’ interaction with an intelligent tutoring system, 
based on relevant conversation patterns. Next, they showed that dialogue features can be reliable 
predictors of three affective states relevant for learning: eureka, frustration and confusion. 
Finally, they tested the performance of six well-known machine learning methods for the 
automatic detection of the three affective states from conversational features. The overall 
conclusion was that the selected machine learning methods produced reasonable accuracy (the 
best classifier reached an accuracy of 59% for confusion, 72% for eureka, and 58% for 
frustration). This paves the way for using more sophisticated machine learning methods in future. 

There have been various preliminary attempts to use the OCC theory in predictive models of 
user affect. One example is the work by Streit et al., (2004). They propose using the OCC theory 
for an affective user model embedded within the multi-modal dialog system SmartKom, which 
recommends products and services based on the user’s goals, likes, dislikes, and standards. The 
system is implemented using logical rules, and uses abduction to infer user goals from the user’s 
reactions to the system’s generated dialog. Since the proposed affective model was still quite 
preliminary, the authors do not report any evidence of the effectiveness of their proposed 
approach. Chalfoun et al., (2006) propose using the OCC theory to model student affective 
reactions upon receiving the results of completing a web-based quiz. They assume that students 
have either one of two goals: (1) to achieve an expected mark in a post-treatment quiz; or (2) to 
achieve a mark above the passing mark in that quiz. However, they bypass the problem of goal 
assessment, and instead learn a decision tree to predict affective reactions from data on student 
sex, personality and test score. The authors report a prediction accuracy of 84% for their 
approach, although they do not provide details on how this accuracy was computed. 

Investigating potential sources of affective data for diagnostic assessment has been the focus 
of several research groups, including assessing the effectiveness of using combined features from 
multiple physiological sensors. Vyzas & Picard (1998) used a combination of feature selection, 
Fisher projection, and a day-matrix designed to account for individual and day-to-day 
fluctuations, to produce an online recognition system that can distinguish between 8 deliberately 
expressed emotional states with an accuracy of 81.25%. By combining physiological and vocal 
information to detect affective valence and arousal, Kim & André (2006) produced results 
ranging from 69% to 92% (depending on the subject) if their classifier was trained on data from 
individual subjects. This accuracy reduced to a mean of 55% over all subjects if the classifier was 
trained on population data. The data for this analysis was collected in an environment where 
emotions were elicited by the experimenters following a worked script designed to evoke 
situations that led to a certain emotional response. Healey & Picard (2005) collected 
measurements from five physiological sensors (including electromyogram and skin conductance), 
three video-cameras and a microphone to predict levels of anxiety for subjects who experienced a 
sequence of different driving conditions. Using Sequential Forward Floating Selection (Jain & 
Zongker, 1997) to select the most appropriate combination of physiological features, they were 
able to distinguished four different levels of stress with 89% accuracy. Sensors have also been 
used to assess an emotional disposition to over an entire interaction rather than reactions to 
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specific events. Mandryk et al., (2006) used skin conductance, heart rate variability, 
electromyogram (to measure jaw-clenching), and respiration sensors to measure the overall 
emotional dispositions of players interacting with a video-game. The authors identified 
correlations between signal features calculated using the entire recorded signal for each episode 
of game-play (lasting 5 minutes) and the players’ post-episode subjective ratings of default 
experience labels such as ‘fun’, ‘challenge’, ‘boredom’, and ‘frustration’. 

Although, as we mentioned above, there have been various attempts to use the OCC theory in 
affective user modeling, psychological theories have more often been used in models that direct 
the affective behaviour of agents such as virtual humans (e.g., ALMA (Gebhard, 2005), Émile 
(Gratch, 2000), and the model produced by Dias & Paiva (2005)). Some of these computational 
models of affect have the potential to transfer to modeling the affect of users. The authors of 
FLAME (Seif El-Nasr et al., 2000) say that their affective framework could support a user model 
once it incorporates additional factors such as individual differences. In addition, (Gratch & 
Marsella, 2004) consider extending their computational framework of appraisal & coping, EMA, 
by modeling the link from appraisal to bodily expression as future work. Finally, (Elliot et al., 
1999) discuss how the Affective Reasoner, a rule-based framework to build agents that respond 
emotionally, could also be used to model users’ affect.  

8 Discussion and Conclusions 

In this paper, we presented and evaluated an affective user model designed to detect multiple 
individual emotions of players interacting with Prime Climb, an educational game for number 
factorization. The model is to be used by an intelligent pedagogical agent that attempts to 
improve how students learn from the game while still maintaining the high level of positive 
emotional engagement that is one of the key assets of game-based education. The model relies on 
a general framework for affective modeling that tackles the high level of uncertainty in emotion 
recognition by probabilistically combining information on both causes and effects of users’ 
emotional reactions (Conati, 2002). While approaches to combining diagnostic and predictive 
inference have received substantial attention from researchers interested in affective user 
modeling (e.g., Bosma & André, 2004; Hudlicka & McNeese, 2002; Li & Ji, 2003; Prendinger et 
al., 2005), to our knowledge ours is the first attempt to provide a detailed evaluation of this 
technique. Furthermore, ours is one of the few affective models targeting the recognition of 
multiple emotions. Most existing models focus on assessing measures of affective valence and 
arousal, or individual emotions such as anxiety, frustration, interest or stress. While these 
restricted modeling tasks are appropriate in certain circumstances and applications, environments 
like educational games tend to trigger multiple, possibly overlapping and rapidly changing 
emotions. We argue that recognizing these emotions can improve the effectiveness of a 
pedagogical agent for game-based learning, because it can improve the precision of the agent’s 
interventions.  

In the paper, we illustrated how we incrementally built the model via repeated cycles of design 
and evaluation. The model’s foundations lie in a well known emotion theory, the OCC model of 
cognitive appraisal (Ortony et al., 1988). The details of the implementation have been based as 
much as possible on data from real users. Because of the model’s complexity, collecting reliable 
data for model construction was an extremely laborious process requiring several user studies. In 
the paper, we have summarized some of these studies, along with their outcomes and limitations, 
to give the reader a sense of the scope of the work and the challenges it entailed. We have not 
always been able to overcome these challenges at best, and thus our resulting model has 
shortcomings that affects its accuracy. Still, we believe that our results are both very promising 
and informative for the future development of this and other research in affective user modeling. 
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We evaluated our model on four of the six emotions that it can assess: joy or distress toward 
the game; admiration or reproach towards the agent. We showed that the predictive part of the 
affective model alone can already achieve good accuracy on the mutually exclusive emotions 
towards the game. Accuracy for Joy was 65%, for Distress was 73%, and the combined accuracy 
of 69% was statistically significantly better than the baseline accuracy of 50% achieved by 
always predicting the most likely emotion (Joy). Combined accuracy for emotions toward the 
agent is still significantly better than the baseline, but practically very close to it (54%). This is 
mostly due to the model’s problems in detecting Reproach (48% accuracy), while Admiration 
reaches an accuracy of 61%. It should be noted that our accuracies for Joy, Distress, and 
Admiration are comparable to those achieved by (D'Mello et al., 2006) in recognizing the 
multiple emotions confusion, eureka and frustration. 

An important aspect of our results is that they have been achieved via our complete model that 
includes an assessment of user goals, crucial for performing predictive inference based on the 
OCC theory. We have shown that model performance with goal assessment is comparable, if not 
better, to model performance when data on user goals is given to the model as evidence. Goal 
recognition is one of the hard problems in AI and thus one of the bottlenecks for a more 
widespread use of the OCC theory for affective user modeling. Ours is the only work that has 
shown with hard data the feasibility of this approach. Still, and not surprisingly, goal recognition 
is one of the limiting factors of our model’s accuracy. In the paper, we discussed how the poor 
performance on Reproach is largely due to two goal-related model shortcomings: its inability to 
assess goals that dynamically change during the interaction, and the fact that we don’t properly 
model goal priority in the presence of multiple goals.  

In order to refine the model so as to remove these assumptions, we would first need to collect 
empirical data to understand why and how student goal priorities may change during game 
playing. Data on goal priorities could be recorded either via a self-report mechanism similar to 
the one we use to collect emotion self-reports, or by post-session annotations by experts. 
However both of these options have inherent difficulties. Asking students to identify their own 
goal priorities, even if asking about a reduced set of at most two goals, is likely to cause 
confusion as to what is being asked. For experts, it is likely that attempting to annotate student 
goals during the interaction would be rather difficult and laborious, given the novelty of the 
interaction and the fact that goals are often related to a non-trivial combination of factors 
including student personality, goals and interaction patterns. Thus, although this direction of 
investigation is possible, it also contains some very difficult challenges.  

Instead, we explored adding diagnostic evidence for physiological sensors to our model, to 
overcome the limitations of its predictive component. We were able to confirm the link reported 
by others (e.g., Lang et al., 1993; Scheirer et al., 1999) between the mean of the EMG signal 
measured on the corrugator muscle and Prime Climb player emotions that could be clearly 
labelled with a negative valence. We were also able to show that this information could be used to 
significantly improve the model’s predictive accuracy in cases where the students’ affective state 
had a clear valence. Thus, our results provide initial support for the hypothesis that a model that 
combines information on both causes and effects of emotional reaction can compensate for the 
fact that often evidence on causes or effects alone is insufficient to accurately assess the student’s 
emotional state. Although we found that our results did not immediately transfer to the 
assessment of ambiguously valenced feelings, this finding is not in contradiction with previous 
work showing the effectiveness of EMG for predicting valence. This work always investigated 
the mapping between EMG and clearly valenced emotions, while we deal with an environment in 
which students often experience multiple, possibly conflicting feelings, possibly expressed more 
subtly than the emotions induced in controlled laboratory settings. To accurately model these 
more difficult cases, it will be necessary to combine multiple sources of valence information, 
such as sensors for measuring heart rate, alternate EMG sensors or software to capture facial 



38 

expressions. Our framework is already set up to support flexible combinations of sensors given 
the modularity of its diagnostic component (Conati, 2002). 

In addition to EMG, we also explored the use of BVP to help assess affective valence, and SC 
to assess affective arousal. Unfortunately we obtained inconclusive results. The failure with the 
BVP signal was mostly due to lacking a sensor suitable for use with highly active children. Thus, 
we plan to repeat investigations on BVP by using a sensor less sensitive to movement. The failure 
with SC is most likely due to the restrictions imposed on our experimental protocol by the fact 
that we had limited time with our subjects. Time limitations prevented us from collecting a proper 
baseline measure for signal processing, and from eliciting proper self-reports of arousal from the 
students. Thus, our next step towards being able to use information from this sensor will be to 
design a study exclusively aimed at collecting data on affective arousal during interaction with 
Prime Climb. 

Other future work relates to better addressing two other major challenges we encountered 
during model construction.  

The first challenge relates to reliably recording students’ affective states during game playing. 
As we mentioned in a previous section, in our research using judges to produce affective labels 
from video-recordings of the interaction is very difficult because of the requirement to distinguish 
separate feelings towards the game and towards the agent. We could not try to ask students to 
recall their feelings by viewing a replay of the interaction after game playing because of time 
constraints. Thus, we introduced the mechanism for obtaining emotions self-reports during game 
playing. While we have evidence that this mechanism is not overly intrusive on average, it does 
introduce an extraneous element in the interaction that may have unwarranted side effects for 
some students. Furthermore, it does not allow us to obtain data simultaneously on all of the 
emotion pairs we aim to assess and also on affective arousal. In the future, we plan to pilot test 
asking students to generate the self-reports after game playing, and, if they prove able to deal with 
the task, we will explore ways to extend our study sessions to include this alternative method for 
collecting affective labels.  

The second challenge relates to collecting data-points for negative emotions. Throughout our 
studies, students have generated far fewer reports of negative emotions (Distress or Reproach) 
than positive emotions. One suggested reason for the small number of negative reports is the 
nature of our test-bed application, i.e. Prime Climb does not generate negative emotions very 
often, at least in the short playing time involved in our studies. We could induce these emotions 
on purpose during game-playing, but we argue that the students’ negative feelings in this case 
would not be indicative of the real emotions that they would experience during real interactions. 
Possible solutions that we are planning to explore to overcome this challenge include: (i) find 
ways to have students interact longer with the game; (ii) have students play with each other. This 
second solution has the double advantage of giving us twice as much data for each playing 
session, and being likely to generate more and stronger emotional episodes, given what we have 
seen when students play together. However, it requires that we add to the model the capability of 
assessing emotions toward a partner, which is one of the next steps of this research 

But the most important challenge that we need to address in the development of this research 
is to prove that having a sophisticated model for the assessment for players’ individual emotions 
is worth the effort. That is, we need to show that the Prime Climb pedagogical agent can indeed 
benefit from having detailed information on user affect. Although our model currently 
underestimates the student’s feelings of Reproach, its accuracy in assessing Joy, Distress and 
Admiration is high enough for us to consider an indirect evaluation to determine whether the 
model as it is would contribute to the pedagogical effectiveness of Prime Climb. We have begun 
to investigate ways to combine the assessment of the affective model and the model of student 
knowledge (Manske & Conati, 2005) into a decision theoretic framework that will allow the 
Prime Climb pedagogical agent to decide how to intervene so as to maximize the trade-off 
between student learning and engagement. Once we have completed this task, we can compare 
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the overall effectiveness of the pedagogical agent with and without affective assessments. Once 
we have improved the accuracy for identifying feelings of Reproach, we can also run ablation 
studies to test our assertion that the more detailed information the agent has on the student affect, 
the better it can help the student interacting effectively with Prime Climb.  
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