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Abstract

This article proposes a method to quantitatively measure the resilience of

transportation systems using GPS data from probe vehicles such as taxis.

The granularity of the GPS data necessary for the method is relatively coarse;

it only requires coordinates for the beginning and end of trips, the metered

distance, and the total travel time. The method works by computing the his-

torical distribution of pace (normalized travel times) between various regions

of a city and measuring the pace deviations during an unusual event. Periods

of time containing extreme deviations are identified as events. The method is

applied to a dataset of nearly 700 million taxi trips in New York City, which is

used to analyze the city transportation infrastructure resilience to Hurricane

Sandy. The analysis indicates that Hurricane Sandy impacted traffic condi-

tions for more than five days, and caused a peak delay of two minutes per

mile. Practically, it identifies that the evacuation announcements coincided

with only only minor disruptions, but significant delays were encountered
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during the post-disaster response period. Since the implementation of this

method is very efficient, it could potentially be used as an online monitoring

tool, representing a first step toward quantifying city scale resilience with

coarse GPS data.
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1. Introduction

1.1. Motivation

In recent years, many quantitative and qualitative methods have been

proposed to determine resilience of transportation infrastructure (Matherly

and Langdon (2014); Faturechi and Miller-Hooks (2014); Konstantinidou

et al. (2014a,b)). When disasters and other extreme events occur, critical

infrastructure may fail, incurring large human, economic, and environmen-

tal costs. This is especially relevant for urban transportation infrastructure,

since it is crucial for city evacuations and emergency services in post–disaster

environments. Empirical methods are needed to quantitatively monitor the

transportation infrastructure in terms of its ability to withstand and recover

from such events.

The goal of this article is to develop and implement a method for mea-

suring resilience of city-scale transportation networks using only publicly

available GPS data (e.g., available from taxis). The technique is designed

with the following characteristics. First, the method can be applied at the

city-scale, or larger. Because extreme events such as hurricanes have the

ability to affect an entire city, it is important to examine impacts at a high-

level city view, rather than the level of individual vehicles or streets. Second,

the method measures network performance quantitatively, in terms of recov-

ery time and peak pace deviations. Recovery time and peak performance

degradation are standard quantities of interest in the resilience literature

(Aven (2011); Haimes (2009b)). While travel times are a natural perfor-

mance measure for transportation networks, we instead use pace, or travel

time per mile. This normalization accommodates the varied length of taxi
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trips within a city. Third, the method accommodates inherent variability in

traffic conditions and data. The estimate of the state of traffic in a city con-

tains noise and errors due to data availability and many unmodeled human

factors. As a result, the method evaluates events that cause statistically

significant disruptions, in order to separate the signal from the noise. Fi-

nally, the method is computationally tractable. Since taxi trips occur very

frequently in large cities, the amount of data available for analysis is large.

In order to be tractable, the computation should be O(N), where N is the

number of taxi trips, and ideally require only one pass through the raw data.

Of practical significance, these single-pass algorithms could also be used to

process the data in a realtime stream.

1.2. Related Work

In recent years, the study of resilience has gained popularity in the sys-

tems engineering community. Haimes (2009a,b, 2011) gives a framework for

assessing resilience, which focuses on modeling a system and the possible

outcomes of various events. He asserts that a resilient system should suffer

only slight degradation during an event, then rapidly recover. Reed et al.

(2009) note that the quality of service abruptly drops during an event, then

exponentially decays back to typical values. They suggest that an appro-

priate resilience measure is the integral of this exponential curve. Authors

in the related field of risk analysis emphasize the importance of unknown

factors while assessing resilience (Aven (2011); Kaplan and Garrick (1981)).

Though there is no precise consensus on the definition of resilience, peak

disruption and recovery time are consistently discussed quantities. In other

words, peak disruption measures how far the quantity of interest deviates
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from typical values, and recovery time measures how long it takes to return

to typical values. Most of these works also emphasize that resilience must be

measured with respect to a given event and quantity of interest. For example,

one case study used the number of functioning nodes in a power grid as the

quantity of interest, assessing resilience against hurricanes and minor events

(Ouyang et al. (2012)).

Several authors have proposed quantities of interest for transportation

systems. Omer et al. (2013) proposed a method which measures the resilience

of a road-based transportation network in terms of travel times between

cities. Chang and Nojima (2001) evaluated a post-earthquake transportation

network in terms of accessibility and coverage. This is partly based on an

accessibility metric devised by Allen et al. (1993), which considers travel

times between various regions of a city. Thus, travel time is a standard

quantity on which to measure resilience. This article will use the related

quantity of pace, or travel time per mile. A comprehensive set of measures

for transportation system resilience can be found in the review by Faturechi

and Miller-Hooks (2014). The interested reader is directed to the related

reviews on evacuation modeling (Murray-Tuite and Wolshon (2013)) and

post disaster planning and management (Konstantinidou et al. (2014a,b))

for a more complete picture of transportation system resilience, evacuation,

and post-disaster response.

A distinct set of studies use large amounts of data to extract useful in-

formation about urban systems. The works most closely related to resilience

are the studies by He and Liu (2012) and Zhu et al. (2010), which measure

the effect of the I-35W bridge collapse in Minneapolis in 2007. Geroliminis
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and Daganzo (2008) use loop detector data, combined with 500 GPS vehicles

to extract macroscopic traffic properties from an urban-scale transportation

network. Other works use GPS traces of mobile devices to analyze movement

patterns of crowds during typical days and atypical events (Calabrese et al.

(2010, 2011)). Castro et al. (2012) present a method for inferring current

and future traffic states from taxi GPS data. Zheng et al. (2011) propose a

method that tracks taxi trips between various regions of a city and identifies

flawed urban planning, while Zhan et al. (2016a) empirically measure the

(in)efficiency current taxi systems. Another study measures temporal pat-

terns in the density of taxi pickups and dropoffs to identify the social function

of various city regions (Qi et al. (2011)). They point out that unusual output

can be used to detect events like holidays. Chen et al. (2012) specifically fo-

cuses on identifying anomalous taxi trajectories, in order to detect fraud or

special events. Ferreira et al. (2013) created a graphical querying tool which

can be used to count taxi trips between arbitrary geometrical regions as a

function of time. They noted the drop in the frequency of taxi trips during

Hurricane Sandy and Hurricane Irene, pointing out that the Irene-related

drop was more significant, but the Sandy-related drop was longer lasting.

By examining pace, we confirm that Hurricane Sandy had a longer recovery

time, but find the contrasting result that Hurricane Sandy also has a more

significant peak disruption.

1.3. Outline and Contributions

The contributions of this work are as follows. In Section 2, a method is

proposed to use taxis as pervasive city-scale resilience sensors. This method

detects unusual events and measures them in terms of peak disruption and
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recovery time. It introduces paces between regions of the city as the key

performance measure, and it uses the historical pace distribution to detect

and measure extreme events. In Section 3, the method is applied to a four-

year dataset from New York City to identify and compare properties of events

such as Hurricane Sandy. Of practical significance, the analysis identifies

minor atypical traffic is observed pre-Sandy, contrasted with the extreme

conditions observed post-Sandy. Conclusions and future work is summarized

in Section 4. As a technical contribution, all data (Donovan andWork (2014))

and source code3 used in this analysis is made publicly available.

2. Methodology

2.1. Overview

The proposed technique to measure city-scale resilience of the transporta-

tion network in response to various events by examining taxi trip data is

constructed in three steps. In section 2.2, individual taxi trips are aggre-

gated by origin-destination pairs in order to measure typical paces between

various regions of the city. This aggregation technique makes it possible

to extract city-scale features at various points in time, since it is difficult

to measure resilience from individual trips. Section 2.3 imposes a one-week

periodic pattern on the paces. Defining the variance across weeks as a prob-

ability distribution allows for a description of typical behavior that accounts

for noisy day-to-day variations. Finally, Section 2.4 uses these distributions

to quantify how typical or atypical the pace is at a particular point in time.

3source code available at: https://github.com/Lab-Work/gpsresilience.
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Atypical times (e.g., the 5% most unlikely points in time) are flagged as

events, and they are examined in more detail.

2.2. Extraction of Time-Series Features from Aggregated Trips

In the first stage of analysis, trips are grouped by their geographic loca-

tions and times of occurrence. More specifically, the city is divided into k

regions, for example defined by census tracts or neighborhoods. This allows

each taxi trip to be labeled as belonging to one of k2 unique origin-destination

pairs. Time is discretized into hours, so a large sample of trips can be gath-

ered at any point in time. The start zone, end zone, and departure time are

used to partition all of trips into subsets. The variable Ti,j,t denotes the set

of all trips from zone i to zone j at time t, where t is an absolute time in

hours with the convention that t = 0 refers to the first hour of the dataset:

Ti,j,t = {r|o(r) 2 z(i), d(r) 2 z(j), bs(r)c = t} . (1)

In (1), o(r) is the origin of trip r, d(r) is the destination of trip r, z(i) is the

geographic region of zone i, and bs(r)c is the start time of trip r rounded

down to the hour using the floor operator b·c. The start time of the trip

s(r) is recorded by the taximeter, and is typically reported to the nearest

minute. It is assumed that i and j are both in {0, 1, · · · , k � 1}. Once these

subsets of trips are defined, macroscopic traffic features can be extracted from

them. Of particular interest is the expected travel time between two regions.

However, travel times of individual vehicles between the same two regions are

not equal, due to the varying lengths of trips that connect the regions. Much

of the travel time variation can be accounted for by normalizing against the
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trip distance before averaging the trip, which results in a quantity called the

average pace (Daganzo (1997); Saberi et al. (2014)).

On a single road segment, the average pace of traffic is equal to the inverse

of the Edie’s generalized average speed (Edie (1963); Daganzo (1997)), which

satisfies the relation that the flow is the product of the density and speed.

When derived at the network scale, the pace P (i, j, t), of taxis from zone i

to zone j at time t is computed as the ratio of the total duration of all trips

to the total distance of all trips as follows:

P (i, j, t) =

P

r2Ti,j,t

u(r)

P

r2Ti,j,t

l(r)
, (2)

where u(r) is the travel time of trip r and l(r) is the metered length of trip r.

When calculated according to (2), the pace is simply the inverse of the speed

as defined for the macroscopic (network) fundamental diagram (Saberi et al.

(2014)).

Note also that the average pace (2) can be interpreted as a weighted

average of the individual trip paces:

P (i, j, t) =

P

r2Ti,j,t

u(r)

P

r2Ti,j,t

l(r)
=

P

r2Ti,j,t

l(r)u(r)
l(r)

P

r2Ti,j,t

l(r)

P

r2Ti,j,t

l(r)p(r)

P

r2Ti,j,t

l(r)
, (3)

where p(r) = u(r)
l(r)

is the pace of trip r.

For a fixed value of t, all k2 distance-weighted average paces collectively

form the mean pace vector, denoted a(t) 2 R
k2 . This vector is a function of

time, and contains the k2 pace values at a particular point in time. Specifi-
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cally, the nth element is given by

a(t)n = P
⇣jn

k

k

, n mod k, t
⌘

, (4)

where n 2 {0, 1, 2, · · · , k2 � 1}.

It is desirable to use pace as the performance metric instead of the more

traditional measure of vehicle counts, since the goal is to measure traffic

conditions during extreme events. If the flow of vehicles between two regions

drops significantly, it is difficult to determine whether this is due to increased

congestion or decreased demand. However, an increase in pace indicates

congestion, while a decrease in pace indicates decreased demand. Although

the pace of taxis might be a biased estimate of the pace of all vehicles, it

is assumed that if taxis are stuck in traffic jams, so are the other vehicles

around them. In summary, we follow a standard assumption that the taxi

travel times are sufficiently representative to infer the true traffic conditions

on the roadway (Zhan et al. (2013)). Practical validation of this assumption is

difficult due to limited urban sensing infrastructure or the public availability

of large GPS datasets for personal vehicles.

2.3. Identification of City-Scale Typical Behavior

The mean pace vector, a(t), has a strongly periodic weekly pattern. Dur-

ing rush hour, the pace is high, especially in dense downtown regions, and

at night the pace is low. On weekends, the rush hour is less extreme. How-

ever, the mean pace vector has some variance around this periodic pattern,

so it is viewed as a distribution conditioned on time. For example, the mean

pace vector for all Tuesdays at 3pm will be different, with larger derivations

during an unusual event. To facilitate this grouping, the reference set Qt is
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defined for all times t. This set contains all of the mean pace vectors which

occur at the same point in the periodic pattern as a(t), except for a(t) itself.

Intuitively, when deciding how typical the traffic data is at time t, that data

should not be used as part of the definition of typical. Since there are 168

hours in a week, the reference set can be defined as

Qt = {a(h)|h ⌘ t mod 168, h 6= t}. (5)

The reference set Qt makes it possible to compute the expected value

of the mean pace vector µ(t) as well as the covariance matrix Σ(t). This

covariance matrix is important because it quantifies the noisy day-to-day

fluctuations in the mean pace vector, outside of the event at hand, and how

the dimensions correlate. The time-dependent sample mean and covariance

matrices can be defined as:

µ(t) = 1
|Qt|

P

a2Qt

a

Σ(t) = |Qt|
|Qt|�1

P

a2Qt

⇣

aa
>

|Qt|
� µ(t)µ(t)>

⌘

.
(6)

Note the presentation of the nonstandard but equivalent calculation of the

sample covariance matrix is used for computational benefits when working

with datasets too large to fit into memory, as discussed later in Section 3.2.

If an independence assumption is desired, the diagonal components of these

matrices can be extracted. However, it is likely that many of the k2 dimen-

sions of a(t) are highly correlated, so the full covariance matrix is used for the

remainder of the analysis. For example, trips that start or end in the same

region often have highly correlated paces. Together, µ(t) and Σ(t) define the

first two moments of a probability distribution, conditioned on time.
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2.4. Detection of Deviations from Typical Behavior

Intuitively, µ(t) captures the expected traffic conditions at a particular

point in time. If the observed traffic conditions are significantly far from

this expectation, then those conditions are classified as an extreme event.

The covariance matrix Σ(t) is also considered; if there is typically very little

deviation from µ(t), then a large deviation is even more extreme. In one

dimensional cases, this is typically addressed by standardizing the data via

a z-score. In higher dimensions, the generalized z-score is called the Ma-

halanobis distance Mahalanobis (1936). For this analysis, the Mahalanobis

distance for an observed mean pace vector is viewed as a function of the time

that the observation occurred:

M(t) =
p

(a(t)� µ(t))>Σ(t)�1(a(t)� µ(t)). (7)

This time-dependent Mahalanobis distance serves as an outlier score for

observations at various points in time. Note that it normalizes the deviations

in each dimension by the corresponding variances, and also considers corre-

lations between dimensions. The Mahalanobis distance is a natural way of

measuring outliers in multivariate normal data, and it has shown to be useful

even when the data is not normal (Warren et al. (2011)). In fact, the mul-

tivariate generalization of Chebyshev’s inequality gives an upper bound on

the probability of observing a Mahalanobis distance greater than some fixed

value (Navarro (2014)). In other words, it is unlikely to observe a datapoint

with a high Mahalanobis distance, regardless of the distribution. So, when

M(t) rises above a given threshold, an unusual event is detected. The event

is declared complete when M(t) returns to a value lower than the threshold.
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Figure 1: Demonstration of event detection. Events are detected when M(t) goes above

the threshold, but thrashing often occurs. The top graph shows that this thrashing causes

events to be divided into several pieces. For this reason, events with fewer than six hours

between them are merged, as shown in the bottom graph.

In this work, the choice of the threshold is the 95% quantile of M(t), but

this value can easily be lowered to detect smaller events or raised to detect

only the most severe events.

The function M(t) is a fairly noisy, which means that it can occasionally

thrash over the threshold. In other words, M(t) may rise above the threshold,

then immediately drop back below it, effectively breaking the event into two

pieces. To prevent this, consecutive events separated by fewer than six hours

are merged. Figure 1 illustrates this process.
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Once the recovery time of an event is computed, other properties can

be computed. For example, it is possible to compute the maximum pace

deviation, or the slowest type of trip during the event. Thus, each event

can be described with a set of meaningful statistics. Comparisons between

various events make it possible to describe which types of events the city can

easily endure, and where there is room for improvement. For longer-lasting

events like Hurricane Sandy, it is possible to examine different stages of the

event in greater detail.

3. Application to Hurricane Sandy with New York City Taxi Data

In this section, the previously described methodology is applied to a

dataset of New York City taxi trips. This dataset, which was obtained

through a Freedom of Information Law (FOIL) request, covers four years

of operation and details nearly 700 million trips. Many events are detected

within this four year span and compared quantitatively. Special attention is

given to the Hurricane Sandy and some interesting properties are discovered.

3.1. The Dataset

The New York City data used in this work details every yellow taxi trip

that occurred in the city between 2010 and 2013 inclusive. The dataset

contains 697,622,444 trips, which requires 180 GB to store in a PostgreSQL

database. Each trip records the pickup and dropoff dates, times, and coor-

dinates, as well as the metered distance reported by the taximeter. The trip

data also includes fields such as the taxi medallion number, fare amount, and

tip amount which are not relevant to the present analysis. Table 1 contains a

small subset of this data for reference, and the full dataset is made publicly
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pickup
datetime

dropoff
datetime

duration
(sec)

distance
(mi)

pickup
lon

pickup
lat

dropoff
lon

dropoff
lat

2013-05-01
00:02:11

2013-05-01
00:14:28 737 2.9 -74.00 40.74 -74.01 40.71

2013-05-01
00:02:12

2013-05-01
00:12:31 618 1.8 -74.00 40.73 -73.98 40.72

2013-05-01
00:02:12

2013-05-01
00:07:39 326 1.3 -73.97 40.76 -73.96 40.77

2013-05-01
00:02:13

2013-05-01
00:04:35 141 0.6 -73.99 40.75 -74.00 40.75

2013-05-01
00:02:14

2013-05-01
00:04:09 115 0.5 -73.98 40.75 -73.99 40.74

Table 1: A small subset of the data used in this analysis. Each row corresponds to an

occupied taxi trip.

available (Donovan and Work (2014)) in CSV format with this manuscript.

The dataset only includes trips occupied by a passenger, and does not include

(empty) roaming trips in search of passengers.

Since the data contains only two coordinates for each trip, the quality is

lower than GPS data collected by traffic monitoring companies, which contain

the location of vehicles at periodic rates up to once per second. In spite of

the lack of intermediate waypoints in the data, the methods presented in this
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article are able to analyze the city-scale resilience of the traffic conditions.

As with many large datasets, the taxi trip data contains errors. Some

errors are easy to identify, such as pickup or dropoff coordinates of (0, 0), or

trips with metered distances in excess of one million miles. Other errors are

identified by examining the consistency of redundant information contained

in each trip. For example, the winding factor is computed as the metered

distance divided by the straight-line distance between the pickup and dropoff

coordinates. Trips with a winding factor less than one are geometrically

impossible, although values slightly less than one are permissible due to errors

in the GPS positioning data.

Other trips are discarded because they are not informative to the anal-

ysis of traffic conditions. For example, a winding factor of five or more is

technically possible, but it indicates that the driver did not proceed directly

to the destination. These trips are ignored because their paces might be cor-

rupted by the traffic conditions in other unknown regions. Table 2 shows the

thresholds used in each filter as well as the quantity of trips that violate the

threshold. Figure 2 shows the distribution of the trip data for each filtering

metric. Overall, 11% of the data is discarded in this step. Other data rec-

onciliation steps not detailed here (e.g., unit conversions) allowed additional

erroneous data records to be cleaned and used in the analysis.

3.2. Computational Issues

Due to the size of the dataset, an efficient software implementation of

the analysis is crucial. This section discusses the algorithmic and practical

aspects of the analysis, using the New York City taxi dataset as an exam-

ple. In this way, concrete figures can be used for quantities like runtime or
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Feature Lower ThresholdUpper ThresholdPortion of Errors

Latitude
(Degrees) 40.65 40.9 3.61%

Longitude
(Degrees) -74.05 -73.85 3.91%

Straightline Distance
(Miles) 0 8 3.18%

True Distance
(Miles) 0 15 1.97%

Winding Factor 0.95 5 6.04%

Duration
(Minutes) 1 60 0.89%

Pace
(Min/Mi) 0.667 60 0.45%

Table 2: The error thresholds that are applied to various features of the dataset. The last

column shows the percentage of trips that violate each threshold. Some trips may violate

multiple feature thresholds.
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Figure 2: Distributions of individual features of taxi trips. Simple thresholds are used to

filter trips that contain errors, or are otherwise uninformative. Note that the straightline

distance is the Euclidean distance between start and end coordinates, while the metered

distance is the value returned by the odometer. The winding factor is the metered distance

divided by the straightline distance. A winding factor less than 1 is geometrically impos-

sible, and a large value indicates that the taxi did not proceed directly to its destination.
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data size. More general concepts like time complexity do not depend on the

dataset.

The overarching concern when performing any analysis on the dataset is

due to its size (i.e., 180GB), which is too large to store in memory of most

commodity computers available today. Consequently all calculations must

be performed in an online or streaming setting, where only a small subset of

the data is loaded into memory at a given time. For larger datasets, a fully

distributed computing framework may be required.

The first step described in Section 2.2 is the most computationally ex-

pensive. All of the 697,622,444 individual trips are aggregated into 35,064

mean pace vectors, and consequently t 2 {0, · · · , 35, 063}. Recall that there

are a total of 4⇥ 365⇥ 24+24 = 35, 064 hours in a 4 year dataset (including

a leap day). Since the trip data is sorted chronologically, it is possible to

compute these mean pace vectors in a single pass. Recall from (2) that the

mean pace computation involves the sum of trip durations and the sum of

trip distances. Thus, these two sums are initialized to zero for each of the

origin-destination trips. Each time a trip is read from the file, the relevant

sums are incremented. The error filtering from Section 3.1 can also be per-

formed at this stage, so an additional pass of the dataset is not required.

When the start hour of the current trip (rounded) is greater than the start

hour of the previous trip, the sums are complete for the previous hour. The

mean pace vector is computed by division and output, then the sums are re-

set to zero. Thus, the computation is one large loop over the entire dataset.

A short pseudocode is given in Algorithm 1. Note that NUM TYPES is the

total number of trip types (i.e., k2).

19



Algorithm 1 Online Mean Pace Vector Extraction

prev hour := �1 . Start at beginning of time

sum duration := zeros(NUM TYPES) . Initialize sums to 0

sum distance := zeros(NUM TYPES) . Initialize sums to 0

for all trip 2 chronological trips do . Loop over all trips

while trip.hour > prev hour do . If previous hour is complete:

output
�

prev hour, sum duration
sum distance

�

. Output mean pace vector

sum duration := zeros(NUM TYPES) . Reset sums to 0

sum distance := zeros(NUM TYPES) . Reset sums to 0

prev hour+= 1 . Advance to next hour

end while

if trip.isValid() then . Data filtering

i category(trip.pickup, trip.dropoff) . Determine trip type

sum duration[i] += trip.duration . Update distance sum

sum distance[i] += trip.distance . Update duration sum

end if

end for
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Since each trip is accessed only once, the computation is O(N), where

N is the total number of trips. The computation of each hour time-slice

is independent, making it possible to employ parallel processing if the data

is partitioned ahead of time. The analysis was implemented in python and

run on an 8-core 2.5GHz machine with 24GB of ram. The extraction of all

35,064 mean pace vectors took about 75 minutes, using roughly 40MB of

RAM for each of the eight processes. The fact that the runtime is much

shorter than the real timespan of the dataset combined with the single-pass

property means that this preprocessing could be performed in realtime. In

other words, this system could realistically collect trips as they occur, update

the relevant sums, then output the mean pace vector at the end of the hour.

The remaining computations involve mean pace vectors instead of raw

trip data. They also have linear time complexity and are much faster than

the preprocessing. Recall from (5) and (6) that, at a particular hour, the

mean and covariance need to be computed for all hours in the periodic pat-

tern except that hour. The naive implementation of this calculation has a

quadratic time complexity, since each mean pace vector much be compared

against every other mean pace vector. However, it is possible to compute all

of these quantities in linear time. Instead of directly computing the mean of

all values except a(t), the sum of all values including a(t) is computed up

front. Then, in the loop, a(t) is subtracted from this sum. Formally, the

inclusive reference set, Qt+, is defined in a similar way to (5), except that it

includes the mean pace vector a(t). In other words,

Qt+ = {a(h)|h ⌘ t mod 168} = Qt [ {a(t)}. (8)
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Unlike the reference set from (5), the inclusive reference set is identical

for values of t that occur at the same point in the periodic pattern. Thus,

Qt+ and the sum of all vectors in Qt+ only need to be computed once. To

compute the sum of all vectors in Qt+ except a(t), it is sufficient to subtract

a(t) from this sum. Thus, the mean computation can be written as

µ(t) =
1

|Qt|

X

a2Qt

a =
1

|Qt+|� 1

0

@

0

@

X

b2Qt+

b

1

A� a(t)

1

A . (9)

A similar technique is used for the sum of outer products in the covariance

computation (6). This method avoids redoing most of the addition in each

iteration, allowing for a significant improvement on large datasets. Once µ(t)

and Σ(t) are computed, M(t) can be computed in constant time. Thus, the

entire operation runs in linear time. On the same machine, this computation

ran in less than 30 seconds, producing the timeseries of M(t). Again, this

operation would be feasible in a real-time system. However, it is worth

noting that it may be desirable to re-generate old values of M(t) in light of

new information.

Once M(t) is generated, the event detection described in Section 2.4 can

also be performed in linear time. Events and spaces between events are

stored as a linked list, where each node contains the start time and end time.

Scanning through M(t) chronologically, a new node in the linked list is gen-

erated each time M(t) crosses above or below the threshold. Then, to remove

short spaces between events, this linked list is iterated upon. Each time a

non-event node of less than the desired duration is discovered, that node and

its two neighbors are replaced with one larger node. On the same machine

as the previous computations, it took less than one second to perform the
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event detection.

3.3. Extraction of Pace Features

The map of New York City is first split into four large regions, shown

in Figure 3. For the remainder of the analysis, the zones will be referred to

in the following way: Upper Manhattan (U), Midtown (M), Lower Manhat-

tan (L), and East of the Hudson River (E). Note that the Eastern region is

connected only by bridges and tunnels and thus problems with this infras-

tructure will tend to increase travel times between this region and others.

Specifically relevant to Hurricane Sandy is the Lower Manhattan region,

since it experienced severe flooding and power outages. Choosing four large

regions in this way satisfies the first goal outlined in Section 1.1 because it

defines meaningful city-scale properties. Instead of looking at every street in

New York in detail, it defines large areas with key geographic and infrastruc-

tural properties. The travel times between these regions reflect the overall

performance of city-scale transportation infrastructure. It is worth noting

that the methodology allows for an arbitrary choice of regions, which can

be chosen manually or automatically via graph clustering techniques. The

present implementation chooses zones manually to aid interpretation of the

results. The regions are also selected to study areas where the taxis typically

operate, and consequently some regions (e.g., Staten Island) are not included

in the analysis due to the lack of taxi trips to/from the region.

Recall that a taxi can take one of 16 possible trips between these regions.

Aggregating these trips by type and hour as in Section 2.2 produces the 16-

dimensional mean pace vector, a(t), at all points in time. Figure 4 shows

three typical weeks of mean pace vectors (as identified by visual inspection of
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Figure 3: Division of New York City into four large regions denoted U,M,E, and L. A

random sample of 0.01% of the taxi trips in 2012 are shown. Pickups locations are marked

in green, and the corresponding dropoffs are marked in red. The majority of trips occur

in Manhattan, with especially high concentration in the Midtown region.
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the Mahalanobis distance time series), revealing the expected weekly periodic

pattern assumed in the analysis. Note the data from these three weeks are

only used for illustration purposes and not in any formal analysis.

Several elements of the pace vector over the four year dataset are esti-

mated with an extremely large number of trips (e.g., 10% of the elements

in the pace vector time series have more than 3200 trips), while 80% of the

elements have more than 225 trips in the given hour. At the extreme tail,

we find 97% of the elements are estimated with more than 50 trips in the

hour, and 99.9% of the elements in the pace vector time series have at least

10 trips.

3.4. Analysis of Events

As detailed in Section 2.3, the expected behavior is generated for all

times t according to µ(t) and Σ(t). An interesting way to view the mean

pace vector a(t) is by standardizing it, element by element, producing the

standardized pace vector. The ith element of this vector is given by

S(t)i =
a(t)i � µ(t)i
p

Σ(t)i,i
. (10)

Intuitively, the standardized pace vector tells how many standard devi-

ations away from the mean the pace of each category of trips is at time t.

In other words, it is possible to identify the trips that are going slower or

faster than expected, and how significant this difference is. Figure 5 shows

the standardized pace vector during the week of Hurricane Sandy. This fig-

ure gives some intuition on the behavior of various regions of the city during

and after the hurricane. It also includes labels indicating the occurrences of
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Figure 4: The mean pace vector, a(t) for three typical weeks, starting on April 4, 2010. A

periodic pattern is observable, with high paces during rush hour.
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various phases of the event, obtained from a post-Sandy study byKaufman

et al. (2012). The most notable finding is that the slowest traffic occurred on

Wednesday October 31st, almost two days after the hurricane struck land.

On this day, some airports, buses, and commuter rails attempted to resume

normal service, but much of the infrastructure was still damaged (Kaufman

et al. (2012)).

However, it is even more surprising that Midtown-to-Lower Manhattan

and Lower Manhattan-to-Lower Manhattan travel times are significantly

lower than expected during this time. The pace of these trips remains almost

five standard deviations below the mean until Saturday the 3rd, despite the

severe flooding and power outages in Lower Manhattan. The fact that a hur-

ricane can actually make traffic move faster in some areas of the city indicates

that the usage of the infrastructure changed. It is likely that the hurricane

decreased demand on the transportation network in Lower Manhattan until

the infrastructure recovered.

This standardized pace vector gives a meaningful interpretation of un-

usual travel times between various regions of the city. However, it fails to ac-

count for correlations between these typical travel times i.e., the off-diagonal

elements of Σ(t). In contrast, the Mahalanobis distance M(t) considers the

full covariance matrix. As described in Section 2.4, events are detected when

M(t) goes above a threshold for a significant period of time. Figure 6 shows

this process, along with the average pace of all taxis. Note Figure 6 also

indicates that the disruption caused by Hurricane Sandy actually begins in

the late evening of October 28, nearly 24 hours before the storm hit the city.

Figure 5 gives further insight as to why the Mahalanobis distance is extreme
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Standardized Pace Over Time − Week of Hurricane Sandy

Sandy Hits Land

Weather Improves

Partial Metro
Service Resumes

Carpool Restrictions

Power Restored
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Figure 5: The standardized pace vector (i.e., vector of z-scores) during the week of Hur-

ricane Sandy, 2012. Labels are included to show the times of specific phases of the event

(Kaufman et al. (2012)). An average week would have values of zero everywhere, but

significant deviations are shown during the week of Hurricane Sandy. Missing data (hours

where there are less than five occurrences of a given trip) are marked with black Xs.
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during this period, namely that the traffic conditions were generally much

faster than would be typically expected during those times.

Table 3 shows the top ten events, sorted by duration. At the top of the list

is Hurricane Sandy, taking over five and a half days for travel times to return

to normal, which is more than three times the recovery time of Hurricane

Irene. The longer duration of Hurricane Sandy agrees with the results of

Ferreira et al. (2013), which showed that the total number of Manhattan taxi

trips returned to normal more quickly during Hurricane Irene than Hurricane

Sandy. At its worst, Sandy added over two minutes to each mile driven by

taxis in the city, while Irene added less 40 seconds. This is in contrast to

the results of Ferreira et al. (2013), which showed that the peak drop in

the number of taxi trips was greater during Hurricane Irene. The blizzard

of December 2010, while shorter, added four minutes of travel time to each

mile at its peak.

Note it is difficult to evaluate the accuracy of the results in Table 3, since

the true severity of each event is not known. If a training set of events is

available, one could raise or lower the detection threshold until the desired

balance between type I and type II errors is reached.

4. Conclusions and future work

This analysis has shown that it is possible to detect and measure the ef-

fects of unusual events on transportation infrastructure using only taxi GPS

data. This is a first step toward assessing and improving city-scale resilience.

Of key importance, the method is extremely low cost, because it does not

require the installation of any additional sensors beyond GPS data streams
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Figure 6: Probabilistic detection and measurement of the event Hurricane Sandy. The

Mahalanobis distance, M(t), is plotted in the top figure and events are detected when

it goes below the threshold. For comparison, the average pace of all taxis in the city is

plotted below and compared to the expected value. Green areas indicate that travel times

are low, but red indicates that they are unusually high.
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Event Start Time
Duration
(hours)

Max
(min/mi)

Min
(min/mi)Worst Trip

Sandy 2012-10-28 21:00:00 132 2.25 -1.6 E ! M

Blizzard 2010-12-26 13:00:00 112 4.41 0 M ! M

Blizzard 2011-01-31 08:00:00 49 2.04 0 E ! E

Irene 2011-08-27 13:00:00 43 0.64 -1.66 E ! E

Unknown 2013-10-12 03:00:00 33 1.09 0 E ! L

Blizzard 2013-02-08 06:00:00 26 1.54 -0.58 E ! E

Blizzard 2010-02-10 06:00:00 24 0.67 -1.01 E ! E

New Years 2012-12-31 15:00:00 20 1.42 -2.66 E ! M

Memorial 2011-09-09 08:00:00 19 1.66 0 U ! U

Blizzard 2011-01-28 02:00:00 18 2.57 0 L ! L

Table 3: Comparison of New York City transportation infrastructure resilience to the 10

longest events. The duration in hours, and the maximum/minimum pace deviation in

minutes/mile is given for each event. Note that a positive number indicates a delay while

a negative indicates a decreased pace. The final column indicates which of the 16 trips

most frequently had the highest standardized pace during the event. Labels for events

(the first column) are determined manually.
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available from GPS equipped fleet vehicles such as taxis, or personal naviga-

tion services. This method proposes computing origin-destination paces, or

average travel time per mile between various regions of the city. The effects

of various events are quantified by the sizes and durations of pace deviations

from typical values. Importantly, this measurement is done in a probabilis-

tic way, so significant events can be distinguished from random day-to-day

fluctuations.

The main benefit of the method is that it is quantitative, and can presum-

ably be applied to any city with large volumes of GPS trip data. The main

limitation of the method is that it only provides a partial view of the resilience

of the infrastructure. For example, it does not indicate the actual state of

the physical infrastructure (e.g., if an individual road segment is damaged

or destroyed), or the demand placed on the infrastructure (e.g., the number

of people in the city desiring travel over the infrastructure). Similarly, the

method only indicates the magnitude and duration of the disruption, it does

not indicate why a particular event recovers faster or slower than another.

Regardless, it does represent a practical step towards building comprehensive

real-time analytics for measuring infrastructure resilience.

The proposed method is applied to a dataset from New York City, and

Hurricane Sandy is analyzed in detail. The analysis shows this was the

longest event in the four year dataset, and one of the most severe in terms

of peak pace deviation. At its worst, Hurricane Sandy caused over two min-

utes of delay per mile, but actually resulted in faster traffic for most of its

duration. Most interestingly, the spike in delay occurred two days after the

hurricane struck. This post-disaster traffic congestion was extreme, suggest-
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ing that more traffic management might be necessary following an event. The

analysis of an extreme event like Hurricane Sandy demonstrates the ability

of the proposed method to capture and describe atypical city-scale properties

of the transportation network.

Several extensions to the methodology are anticipated in our future work.

In this work, the origin-destination regions are manually selected to aid in-

terpretation. Automatic region identification is potentially possible by lever-

aging recent advances in road graph partitioning (e.g., the patented algo-

rithm of Delling et al. (2011) to emphasize travel times of trips crossing

connection-critical infrastructure. It is also possible to apply the outlier-

detection methods to other types of paces. For example, instead of measuring

paces between various origin-destination zones, one may desire to compute

approximate paces on each link of the network graph. Algorithms exist which

can estimate link travel times (for example Hunter et al. (2009); Zhan et al.

(2013); Santi et al. (2014); Zhan et al. (2016b)), but they are computation-

ally expensive for large datasets. If the same outlier-detection methods are

applied to link-level pace data, it is possible to examine whether such a heavy

computation is necessary. If the results are unchanged, the simpler method

presented in this article may be sufficient. Otherwise, an higher resolution

approach may provide additional insight, for example by explicitly including

the network structure from the road graph.

We also note the current method does not allow direct comparison of

some holidays that occur on a fixed date, such as Independence Day (4

July) in the US, because it appears on different days of the week in the

dataset, Practically, identifying an extreme holiday compared to the typical
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holiday would require significantly more data, since only four observations of

the holiday are present in the current dataset. Regardless, extensions that

directly exploit the temporal structure of the traffic patterns is an interesting

future direction.

We emphasize that the method as presented is a static analysis and does

not account for changes like gradual increases in travel demand or changes

in the infrastructure capacity. As more data becomes available, it may both

be possible and necessary to de-trend the data. Alternatively, old data can

be discarded, and the method could be rerun using the most recent years

only. Such techniques are conceptually straightforward extensions that may

require additional practical engineering effort to implement them in a com-

putationally efficient framework.

Finally, application of the methodology across multiple cities would en-

able resilience comparisons both across event types within a city, as well as

the same event type across different cities. We note that our preliminary

efforts to acquire taxi data in other large cities in the US have been initially

unsuccessful, for example due to the fact that the data is stored by the pay-

ment processors that manage the credit card readers in the taxis, and not

the city. It is however currently possible to acquire suitable taxi datasets in

other parts of the world (Zhang et al. (2015); Yuan et al. (2010)).
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