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ABSTRACT
In a test suite, all the test cases should be independent:
no test should affect any other test’s result, and running
the tests in any order should produce the same test results.
Techniques such as test prioritization generally assume that
the tests in a suite are independent. Test dependence is a
little-studied phenomenon. This paper presents five results
related to test dependence.
First, we characterize the test dependence that arises in

practice. We studied 96 real-world dependent tests from 5
issue tracking systems. Our study shows that test dependence
can be hard for programmers to identify. It also shows that
test dependence can cause non-trivial consequences, such as
masking program faults and leading to spurious bug reports.
Second, we formally define test dependence in terms of

test suites as ordered sequences of tests along with explicit
environments in which these tests are executed. We formulate
the problem of detecting dependent tests and prove that a
useful special case is NP-complete.
Third, guided by the study of real-world dependent tests,

we propose and compare four algorithms to detect dependent
tests in a test suite.
Fourth, we applied our dependent test detection algorithms

to 4 real-world programs and found dependent tests in each
human-written and automatically-generated test suite.
Fifth, we empirically assessed the impact of dependent

tests on five test prioritization techniques. Dependent tests
affect the output of all five techniques; that is, the reordered
suite fails even though the original suite did not.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging.
General Terms: Reliability, Experimentation.
Keywords: Test dependence, detection algorithms, empir-
ical studies.

1. INTRODUCTION
Consider a test suite containing two tests A and B, where

running A and then B leads to A passing, while running B and
then A leads to A failing. We call A an order-dependent test
(in the context of this test suite), since its result depends on
whether it runs after B or not.
In a test suite, all the test cases should be independent:
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no test should affect any other test’s result, and running the
tests in any order should produce the same test results.1 The
assumption of test independence is important so that testing
techniques behave as designed. Consider a test prioritization
or selection algorithm. By design, if its input is a passing test
suite, then its output should be a passing test suite. If the
suite contains an order-dependent test, then prioritization
or selection can introduce test failures, which violates the
design requirement.
Many techniques assume test independence, including test

prioritization [20,31,50,54], test selection [7,24,27,41,42,67],
test execution [38,39], test factoring [51,63], test carving [19],
and experimental debugging techniques [55,65,68]. However,
this critical assumption is rarely questioned, investigated, or
even mentioned: none of the above papers explicitly men-
tions the assumption as a limitation or a threat to validity.
Between 2000 and 2013, 31 papers on test prioritization
were published in the research track of ICSE, FSE, ISSTA,
ASE, or ICST or in TOSEM or TSE [70]. Of these, 27
papers explicitly or implicitly assumed test independence,
3 papers acknowledged that the potential dependences be-
tween tests may affect the execution result of a prioritized test
suite [37,44,47], and only 1 paper considered test dependence
in the design of test prioritization algorithms [23].
Anecdotally, a number of researchers have told us that

they believe test dependence is not a significant concern
in practice. We investigated the validity of this unverified
conventional wisdom, in order to understand whether test
dependence arises in practice, the repercussions of dependent
tests, and how to detect dependent tests.

1.1 Manifest Test Dependence
This paper focuses on test dependence that manifests as a

difference in test result (i.e., passing or failing) as determined
by the testing oracle. We adopt the results of the default
order of execution of a test suite as the expected results;
these are the results that a developer sees when running the
suite in the standard way. A test is dependent when there
exists a possibly reordered subsequence of the original test
suite, in which the test’s pass/fail result (determined by its
existing testing oracles) differs from its expected result in
the original test suite. That is, manifest test dependence
requires a concrete order of the test suite that produces
different results than expected.
1Test dependence is undesirable in the context of regression
testing. On the other hand, for tasks like generating test cases
or bug-finding, code fragments with dependences between
them can be useful. By combining such fragments, new
behaviors of a system can be exercised. Such behaviors can
be encapsulated into independent tests to be included in a
regression test suite.
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This paper uses dependent test as a shorthand for manifest
order-dependent test unless otherwise noted. A single test
may consist of setup and teardown code, multiple statements,
and multiple assertions distributed through the test.

1.2 Causes and Repercussions
Test dependence results from interactions with other tests,

as reflected in the execution environment. Tests may make
implicit assumptions about their execution environment —
values of global variables, contents of files, etc. A depen-
dent test manifests when another test alters the execution
environment in a way that invalidates those assumptions.
Why does this happen? Each test ought to initialize (or

mock) the execution environment and/or any resources it
will use. Likewise, after test execution, it should reset the
execution environment and external resources to avoid affect-
ing other tests’ execution. However, developers sometimes
make mistakes when writing tests. Even though frameworks
such as JUnit provide ways to set up the environment for a
test execution and clean up the environment afterward, they
cannot ensure that it is done properly. This means that tests,
like other code, sometimes have unintended and unexpected
behaviors.
Here are three consequences of the fact that a dependent

test gives different results depending on when it is executed
during testing.
(1) Dependent tests can mask faults in a program. Specif-

ically, executing a test suite in the default order does not
expose the fault, whereas executing the same test suite in
a different order does. One bug [11] in the Apache CLI
library [10] was masked by two dependent tests for 3 years
(Section 2.2.2).
(2) Test dependences can lead to spurious bug reports.

When a dependent test fails, it usually represents a weakness
in the test suite (such as failure to perform proper initial-
ization) rather than a bug in the program. When a test
should pass but it fails after reordering due to the depen-
dence, people who are not aware of the dependence can get
confused and might report bugs. As an example, the Eclipse
developers investigated a bug report [18] in SWT for more
than a month before realizing that the bug report was invalid
and was caused by test dependences (i.e., a test should pass,
but it failed when a user ran tests in a different order).
(3) Dependent tests can interfere with downstream testing

techniques that change a test suite and thereby change a
test’s execution environment. Examples of such techniques
include test selection techniques (which identify a subset of
the input test suite to run during regression testing) [7, 24,
27, 41, 42, 67], test prioritization techniques (which reorder
the input to discover defects sooner) [20,31,37,50,54], test
execution techniques [38], test factoring [51, 63] and test
carving [19] (which convert large system tests into smaller
unit tests), experimental debugging techniques (such as Delta
Debugging [55,65,68] and mutation analysis [52,66,67], which
run a set of tests repeatedly), etc. Most of these techniques
implicitly assume that there are no test dependences in
the input test suite. Violation of this assumption, as we
show happens in practice, can cause unexpected output. As
an example, test prioritization may produce a reordered
sequence of tests that do not return the same results as they
do when executed in the default order. Section 6.3.3 provides
empirical evidence to show that dependent tests do affect
the output of five test prioritization techniques.

1.3 Contributions
This paper addresses and questions conventional wisdom

about the test independence assumption. This paper makes
the following contributions:

• Study. We describe a study of 96 real-world dependent
tests from 5 software issue tracking systems to characterize
dependent tests that arise in practice. Test dependence
can have potentially non-trivial repercussions and can be
hard to identify (Section 2).
• Formalization. We formalize test dependence in terms
of test suites as ordered sequences of tests and explicit
execution environments for test suites. The formalization
enables reasoning about test dependence as well as a proof
that finding manifest dependent tests is an NP-complete
problem (Section 3).
• Algorithms. We present four algorithms to detect de-
pendent tests: reversal, randomized, exhaustive bounded,
and dependence-aware exhaustive bounded. All four al-
gorithms are sound but incomplete: every dependent test
they identify is real, but the algorithms do not guarantee
to find all dependent tests (Section 4).
• Evaluation. We implemented our algorithms in a tool
called DTDetector (Section 5)2. DTDetector detected
27 previously-unknown dependent tests in human-written
unit tests in 4 real-world subject programs. The developers
confirmed all of these as undesired (Section 6).
• Impact Assessment. We implemented five test pri-
oritization techniques and evaluated them on 4 subject
programs that contain dependent tests. The results show
that all five test prioritization techniques are affected by
dependent tests, that is, the prioritized test suite fails
even though the original suite did not (Section 6).

Implications.
Our findings are of utility to practitioners and researchers.

Both can learn that test dependence is a real problem that
should not be ignored any longer, because it leads to false
positive and false negative test results. Practitioners can
adjust their practice based on what code patterns most
often lead to test dependence, and they can use our tool
to find dependent tests. Researchers are posed important
but challenging new problems, such as how to adapt testing
methodologies to account for dependent tests and how to
detect and correct all dependent tests.

2. REAL-WORLD DEPENDENT TESTS
Little is known about the characteristics of dependent tests.

This section qualitatively studies concrete examples of test
dependence found in well-known open source software.

2.1 Sources and Study Methodology
We examined five software issue tracking systems: Apache

[1], Eclipse [18], JBoss [30], Hibernate [25], and Codehaus [12].
Each issue tracking system serves tens of projects.
For each issue tracking system, we searched for four phrases

(“dependent test”, “test dependence”, “test execution order”,
“different test outcome”) and manually examined the matched
results. For each match, we read the description of the issue
report, the discussions between reporters and developers,
2DTDetector “exceeded expectations” of the ISSTA 2014
artifact evaluation committee. It is publicly available at
https://testisolation.googlecode.com/.
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Table 1: Real-world dependent tests. Column “Severity” is the developers’ assessment of the importance
of the test dependence. Column “# Involved Tests for Manifestation” is the number of tests needed to
manifest the dependence. Column “Self” shows the number of tests that depend on themselves. Column
“Days” is the average days taken by developers to resolve a dependent test. Column “Patch Location” shows
how developers resolved the dependent tests: by modifying program code, by modifying test code, by adding
code comments, or not fixed.

Issue Dependent Tests # Involved Tests for Resolution Root Cause
Tracking Total Severity Manifestation Patch Location Static File Data- Un-
System number Major Minor Trivial Self 1 test 2 tests 3 tests Unknown Days Code Test Doc Unfixed variable system base known
Apache 26 22 3 1 0 5 18 1 2 93 5 20 0 1 9 3 8 6
Eclipse 59 0 59 0 0 0 49 1 9 48 1 8 49 1 49 0 0 10
JBoss 6 6 0 0 0 0 3 0 3 44 0 2 0 4 1 0 0 5

Hibernate 3 1 1 1 0 0 3 0 0 6 0 1 0 2 0 0 2 1
Codehaus 2 2 0 0 1 1 0 0 0 3 0 1 0 1 0 1 0 1

Total 96 31 63 2 1 6 73 2 14 194 6 32 49 9 59 4 10 23

and the fixing patches (if available). This information helped
us understand whether the report is about test dependence.
Each dependent test candidate was examined by at least
two people and the whole process consisted of several rounds
of (re-)study and cross checking. We ignored reports that
are described vaguely, and we excluded tests whose results
are affected by non-determinism (e.g., multi-threading). In
total, we examined the first 450 matched reports, of which
53 reports are about test dependence (some reports contain
multiple dependent tests). All collected dependent tests are
publicly available at: http://homes.cs.washington.edu/
~szhang/dependent_tests.html

2.2 Findings
Table 1 summarizes the dependent tests.

2.2.1 Characteristics
We summarize three characteristics of dependent tests:

manifestation, root cause, and developer actions.
Manifestation: at least 82% of the dependent tests
in the study can be manifested by 2 or fewer tests.
A dependent test is manifested if there exists a possibly
reordered subsequence of the original test suite, such that the
test produces a different result than when run in the original
suite. We measure the size of the reported subsequence
in the issue report. If the test produces a different result
when run in isolation, the number of tests to manifest the
dependent test is 1. If the test produces a different result
when run after one other test (often, the subsequence is
running these two tests in the opposite order as the full
original test suite), then the number of tests to manifest
the dependent test is 2. Among the 96 studied dependent
tests, we found only 2 of them require 3 tests to manifest
the dependence. One other test depends on itself: running
the test twice produces different results than running it once,
because this test side-effects a database it reads. We count
this special case separately in the “Self” column of Table 1.
For the remaining 14 dependent tests, the number of in-

volved tests is unknown, since the relevant information is
missing or vaguely described in the issue tracking systems.
For example, some reports simply stated that “running all
tests in one class before test t makes t fail” or “randomizing
the test execution order makes test t fail”.
Root cause: at least 61% of the dependent tests in
the study arise because of side-effecting access to
shared static variables. Among 96 dependent tests: 59
(61%) of them arise due to access to shared static variables,
10 (10%) of them arise due to access to a database, and 4

Table 2: Repercussions of the 96 dependent tests.
Issue tracking system False alarm Missed alarm

Apache 24 2
Eclipse 59 0
JBoss 6 0

Hibernate 3 0
Codehaus 2 0
Total 94 2

(4%) of them arise due to access to the file system. The root
cause for the remaining 23 (25%) tests is not apparent in the
issue tracking system.
Developer actions: dependent tests often indicate
flaws in the test code, and developers usually mod-
ify the test code to remove them. Among 96 dependent
tests, developers considered 94 (98%) to be major or minor
problems, and the developers’ discussions showed that the
developers thought that the test dependence should be re-
moved. Nonetheless, developers fixed only 38 (40%) of the 96
dependent tests. Another 49 (51%) were “fixed” by adding
comments to the test code to document the existing depen-
dence. For the remaining 9 (9%) unfixed tests, developers
thought they were not important enough given the limited
development time, so they simply closed the issue report
without taking any action.
A dependent test usually reveals a flaw in the test code

rather than the program code: only 16% of the code fixes
(6 out of 38) are on the program code. In all 6 cases, the
developers changed code that performs static variable ini-
tialization, which ensures that the tests will not read an
uninitialized value. Section 2.2.2 gives an example. The
other 32 code fixes were in the test code: 28 (87%) of the
dependent tests were fixed by manually specifying the test
execution order in a test script or a configuration file, 3
(10%) of them were simply deleted by developers from the
test suite, and the remaining 1 (3%) test was merged with
its initializing test.

2.2.2 Repercussions of Dependent Tests
A dependent test may manifest as a false alarm or a missed

alarm (Table 2).
False alarm. Most of the dependent tests (94 out of 96)
result in false alarms: the test should pass but fails after
reordering due to the dependence. The test dependence
arises due to incorrect initialization of program state by one
or more tests. Typically, one test initializes a global variable
or the execution environment, and another test does not
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public final class OptionBuilder {
private static String argName = null;
private static void reset() {

...
argName = "arg";
...

}
}

Figure 1: Simplified fault-related code in CLI [10]
(revision 661513). The fault was masked by two de-
pendent tests for over 3 years.
perform any initialization, but relies on the program state
after the first test’s execution. Such dependence in the test
code is often masked because the initializing test always
executes before other tests in the default execution order.
The dependent tests are not revealed until the initializing
test is reordered to execute after other tests.
Sometimes developers introduce dependent tests intention-

ally because it is more efficient or convenient [35,61]. Even
though the developers are aware of these dependences when
they create tests, this knowledge can get lost. Other people
who are not aware of these dependences can get confused
when they run a subset of the test suite that manifests the
dependence, so they might report bugs about the failing tests
even though this is exactly the intended behavior. If the
dependence is not documented clearly and correctly, it can
take a considerable amount of time to work out that these
reported failures are spurious. The Eclipse project contains
at least 49 such dependent tests. In September 2003, a user
filed a bug report in SWT [56] [18], stating that 49 tests
were failing unexpectedly if she ran any other test before
TestDisplay — a test suite that creates a new Display object
and tests it. However, this bug report was spurious and was
caused by undocumented test dependence. All 49 failing
tests are dependent tests with the same root cause: in SWT,
only one global Display object is allowed; the user ran tests
that create but do not dispose of a Display object, while the
tests in TestDisplay attempt to create a new Display object,
which fails, as one is already created. This is the desired
behavior of SWT, and points to a weakness in the test suite.
Missed alarm. In rare cases, dependent tests can hide a
fault in the program, exactly when the test suite is executed
in its default order. Masking occurs when a test case t should
reveal a fault, but tests executed before t in a test suite always
generate environments in which t passes accidentally and
does not reveal the fault. Tests in this category result in
missed alarms — a test should fail but passes due to the
dependence.
We found two such dependent tests in the Apache CLI li-

brary [10,40]. Figure 1 shows the simplified fault-related code.
The fault is due to side-effecting initialization of the static
variable argName. CLI should set value "arg" to the static vari-
able argName before its clients instantiate an OptionBuilder
object. However, the CLI implementation in Figure 1 only
sets the value after the clients call method reset(). In CLI,
two test cases BugsTest.test13666 and BugsTest.test27635
can reveal this fault by directly instantiating a OptionBuilder
object without calling reset(). These two tests fail when
run in isolation, but both pass when run in the default order.
This is because in the default order, tests running before
these two tests call reset() at least once, which sets the
value of argName and masks the fault.

This fault was reported in the bug database several times
[11], starting on March 13, 2004 (CLI-26). The report was
marked as resolved three years later on March 15, 2007 when

developers realized the test dependence. The developers
fixed this fault by adding a static initialization block which
calls reset() in class OptionBuilder.

2.2.3 Implications for Dependent Test Detection
We summarize the main implications of our findings.

Dependent tests exist in practice, but they are not
easy to identify. None of the dependent tests we studied
can be identified by running the existing test suite in the
default order. Every dependent test was reported when the
test suite was reordered, either accidentally by a user or by
a testing tool. This indicates the need for a tool to detect
dependent tests.
Dependent test detection techniques can bound the
search space to a small number of tests. In theory, a
technique needs to exhaustively execute all n! permutations
of a n-sized test suite to detect all dependent tests. This
is not feasible for realistic n. Our study shows that most
dependent tests can be manifested by executing no more than
2 tests together (Section 2.2.1). Thus, a practical technique
can focus on running only short subsequences (whose length
is bounded by a parameter k) of a test suite. This reduces
the permutation number to O(nk), which is tractable for
small k and n.
Dependent test detection techniques should focus
on analyzing accesses to global variables. Dependent
tests can result from many interactions with the execution
environment, including global variables, databases, the file
system, network, etc. However, in our study, most of the
real-world dependent tests are caused by side-effecting static
variable accesses. This implies that a dependent test detec-
tion technique may find most dependent tests by focusing
on global variables.

2.3 Threats to Validity
Our findings apply in the context of our study and method-

ology and may not apply to arbitrary programs. The appli-
cations we studied are all written in Java and have JUnit
test suites.
We accepted the developers’ judgment regarding which

tests are dependent, the severity of each dependent test, and
how many tests are needed to manifest the dependence. We
are unlikely to have found all the dependent tests in those
projects. We did not intentionally ignore any test dependence
in the issue tracking system. However, a limitation is that
the developers might have made a mistake or might not have
marked a test dependence in a way we found it (different
search terms might discover additional dependent tests).

3. FORMALIZING TEST DEPENDENCE
The result of a test depends not only on its input data but

also on its execution conditions. To characterize the relevant
execution conditions, our formalism represents (a) the order
in which test cases are executed and (b) the environment in
which a test suite is executed.

3.1 Definitions
We express test dependences through the results of exe-

cuting ordered sequences of tests in a given environment.

Definition 1 (Test). A test is a sequence of executable
program statements and an oracle — a Boolean predicate
that decides whether the test passes or fails.
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Definition 2 (Test Suite). A test suite T is an n-
tuple (i.e., ordered sequence) of tests 〈t1, t2, . . . , tn〉.

Definition 3 (Environment). An environment E for
the execution of a test consists of all values of global variables,
files, operating system services, etc. that can be accessed by
the test and program code exercised by the test case.

We use E0 to represent the initial environment, such as
a fresh JVM initialized by frameworks like JUnit before
executing any test.

Definition 4 (Test Execution). Let T be the set of
all possible tests and E the set of all possible environments.
The function exec : T × E → E represents test execution.
exec maps a test t ∈ T and an environment E ∈ E to a
(potentially updated) environment E′ ∈ E.

Given a test suite T = 〈t1, t2, . . . , tn〉, we use the short-
hand exec(T, E) for exec(tn, exec(tn−1, . . . exec(t1, E) . . .)),
to represent its execution.

Tests call into a program, but our definitions leave the
program implicit, since it is always clear from context.

Definition 5 (Test Result). The result of a test t
executed in an environment E, denoted R(t|E), is defined by
the test’s oracle and is either PASS or FAIL.

The result of a test suite T = 〈t1, . . . , tn〉, executed in
an environment E, denoted R(〈t1, . . . , tn〉|E), is a sequence
of results 〈o1, . . . , on〉 with oi ∈ {PASS , FAIL}. We use
R(T |E)[t] to denote the result of a specific test t ∈ T .
For example, R(〈t1, t2〉|E1) = 〈FAIL, PASS〉 represents

that if t1 then t2 are run, starting with the environment E1,
then t1 fails and t2 passes.

A manifest order-dependent test (for short, dependent test)
is one that can be exposed by reordering existing test cases.
A dependent test t manifests only if there are two test suites
S1 and S2 which are two permutations of the original test
suite T , in which t exhibits a different result in the execution
exec(S1, E0) than in the execution exec(S2, E0).

Definition 6 (Manifest Order-Dependent Test).
Given a test suite T , a test t ∈ T is a manifest order-depen-
dent test in T if ∃ two test suites S1, S2 ∈ permutations(T ):
R(S1|E0)[t] 6= R(S2|E0)[t].

It would be possible to consider a test dependent if re-
ordering could affect any internal computation or heap value
(non-manifest dependence); but these internal details, such
as order of elements in a hash table, might never affect any
test result: they could be false dependences. Another alter-
native would be to ask whether it is possible to write a new
dependent test for an existing test suite; but the answer to
this question is trivially “yes”. This paper focuses on mani-
fest dependence and works with real, existing test suites to
determine the practical impact and prevalence of dependent
tests.

3.2 The Dependent Test Detection Problem
We prove that the problem of detecting dependent tests is

NP-complete.

Definition 7 (Dependent Test Detection Problem).
Given a set suite T = 〈t1, . . . , tn〉 and an initial environment
E0, is t ∈ T a dependent test in T?

We prove that this problem is NP-hard by reducing the
NP-complete Exact Cover problem to the Dependent Test
Detection problem [36]. Then we provide a linear-time algo-
rithm to verify any answer to the question. Together these
two parts prove that the Dependent Test Detection Problem
is NP-complete.

Theorem 1. The problem of determining whether a test
is a dependent test for a test suite is NP-complete.

Proof. Due to space limits, we omit the proof. Interested
readers can refer to [69] for details.

3.3 Discussion
For the sake of simplicity, our definition does not con-

sider non-deterministic tests, non-terminating tests, and
tests aborting the JVM. Our formalism only considers de-
terministic tests, and excludes tests whose results might
be affected by non-determinism such as thread scheduling
and timing issues. Our formalism excludes self-dependence,
when executing the same test twice may lead to different
results. Our empirical study in Section 2.2.1 indicates that
self-dependent tests are rare in practice. In addition, typical
downstream testing techniques such as test selection and
prioritization do not usually execute a test twice within the
same JVM.

4. DETECTING DEPENDENT TESTS
Since the general form of the dependent test detection

problem is NP-complete, we do not expect to find an efficient
algorithm that fully solves it.
To approximate the exact solution, this section presents

four algorithms that find a subset of all dependent tests.
Section 4.1 describes a heuristic algorithm that executes all
the tests of a suite in the reverse order. Section 4.2 describes
a randomized algorithm that repeatedly executes all the tests
of a suite in random order. Section 4.3 describes an exhaus-
tive bounded algorithm that executes all possible sequences
of k tests for a bounding parameter k (specified by the user).
Section 4.4 describes a dependence-aware k-bounded algo-
rithm. The dependence-aware algorithm dynamically collects
the static fields that each test reads or writes, and uses the
collected information to reduce the search space. All four
algorithms are sound but incomplete: every dependent test
they find is real, but they do not guarantee to find every
dependent test (unless the bound is n, the size of the test
suite).

4.1 Reversal Algorithm
Figure 2 shows the base algorithm. Given a test suite

T = 〈t1, t2, . . . , tn〉, the base algorithm first executes T with
its default order to obtain the expected result of each test
(line 2). It chooses some set of test suites (line 3) and then
executes each test suite to observe its results (line 4). The
algorithm checks whether the result of any test differs from
the expected result (lines 5–9).
Figure 3 instantiates the base algorithm (Figure 2) by

reversing the original test execution order.

4.2 Randomized Algorithm
Figure 4 instantiates the base algorithm (Figure 2) by

randomizing the original test execution order (line 2).
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Input: a test suite T
Output: a set of dependent tests dependentTests
1: dependentTests ← ∅
2: expectedResults ← R(T |E0)
3: for each ts in getPossibleExecOrder(T ) do
4: execResults ← R(ts|E0)
5: for each test t in ts do
6: if execResults[t] 6= expectedResults[t] then
7: dependentTests ← dependentTests ∪ t
8: end if
9: end for
10: end for
11: return dependentTests
Figure 2: The base algorithm to detect dependent
tests. The getPossibleExecOrder function is instanti-
ated by different algorithms in Figures 3, 4, 5, and 6.

getPossibleExecOrder(T ):
1: yield reverse(T )
Figure 3: The reversal algorithm to detect depen-
dent tests. It instantiates the algorithm of Figure 2,
defining the getPossibleExecOrder function.

4.3 Exhaustive Bounded Algorithm
This algorithm uses the findings of our study (Section 2)

that most dependent tests can be found by running only
short subsequences of test suites. For example, in our study,
at least 82% of the real-world dependent tests can be found
by running no more than 2 distinct tests together. Instead of
executing all permutations of the whole test suite, our algo-
rithm (Figure 5) executes all k-permutations for a bounding
parameter k. By doing so, the algorithm reduces the number
of permutations to execute to O(nk), which is tractable for
small k and n.
Figure 5 shows the algorithm.
An advantage of this algorithm is that it produces the

shortest possible test suite as a witness that a specific test
is dependent. By contrast, the reversal and randomized
algorithms produce a large test suite, which the user must
inspect and/or minimize in order to understand why a specific
test is dependent.

4.4 Dependence-Aware Bounded Algorithm
The key idea of the dependence-aware k-bounded algo-

rithm is to avoid permutations that cannot reveal a dependent
test. Suppose that all tests in suite S1 pass. The algorithm
determines, for every field (or other external resource such
as a file) read by a test in S1, which test previously wrote
that field. If suite S2 has the same relationships, then suite
S2 also passes (and, therefore, it need not be run). Thus,
the dependence-aware k-bounded algorithm detects the same
number of dependent tests as the exhaustive k-bounded al-
gorithm does (when using the same k), but it prunes the
search space.
As a special case, suppose that for each test, every global

field (and other resources from the execution environment)
it reads is not written by any test executed before it; then
each test in the permutation produces the same result as
when executed in isolation. Dependent tests whose isola-
tion execution results are different from the results in the
default execution order can be cheaply detected. Thus, the
permutation can be safely ignored.
We give two cases for the algorithm: an optimized version

for k=1 using the original suite as S1, and a general version
for k≥2 using isolated execution (one test at a time) as S1.

getPossibleExecOrder(T ):
1: for i in 1..numtrials do
2: yield shuffle(T )
3: end for
Figure 4: The randomized algorithm to detect de-
pendent tests. It instantiates the algorithm of Fig-
ure 2, defining the getPossibleExecOrder function.
Our experiments use numtrials = 10, 100, 1000.
Auxiliary methods:
kPermutations(T , k): returns all k-permutations of T ; that
is, all sequences of k distinct elements selected from T

getPossibleExecOrder(T ):
1: return kPermutations(T , k)
Figure 5: The exhaustive k-bounded algorithm to de-
tect dependent tests. It instantiates the algorithm
of Figure 2, defining the getPossibleExecOrder func-
tion. Our experiments use k = 1 and k = 2.

In the case of k=1, the algorithm executes all tests in the
default order within the same JVM. Any test that does
not access (read or write) any global fields or other external
resources such as a file is not a dependent test. The algorithm
executes each of the remaining tests in isolation (i.e., in a
fresh JVM); a test is dependent if its result is different than
when executed in the default order.

In the case of k≥2, the algorithm is shown in Figure 6. The
defined getPossibleExecOrder function first executes each
test in isolation, and records the fields that each test reads
and writes (lines 1–3). It uses the isolation execution result
of each test as a comparison baseline. When generating all
possible test permutations of length k, the algorithm checks
whether all global fields that each test (in the generated
permutation) may read are not written by any test executed
before it (lines 6–11). If so, all tests in the permutation
must produce the same results as executed in isolation, and
the algorithm can safely discard this permutation without
executing it. Otherwise, the algorithm adds the generated
permutation to the result set (line 9). Finally, the algorithm
adds all 1-permutations to the result set (line 13) to find all
dependent tests that exhibit different results when executed
in isolation. The algorithm in Figure 2 takes the returned
result set (line 14) and identifies dependent tests. We have
proved the dependence-aware k-bounded algorithm to be
correct. Interested readers can refer to [69] for the proof.
The given algorithm uses isolated execution results as a

baseline and avoids executing permutations that are redun-
dant with them. It has two major benefits. First, it clusters
tests by the fields they read and write. Only tests reading
or writing the same global field(s), rather than all tests in a
suite, are treated as potentially dependent. Second, for tests
reading or writing the same global field(s), some permuta-
tions are ignored by checking the global fields each test may
access (lines 6–11 in Figure 6).

5. TOOL IMPLEMENTATION
We implemented our four dependent test detection algo-

rithms in a tool called DTDetector. DTDetector supports
JUnit 3.x/4.x tests.
To ensure there is no interaction between different runs,

DTDetector launches a fresh JVM when executing a test per-
mutation, and after a run it resets resources, such as deleting
any temporary files that were created. When comparing the
observed result of a test in a permutation with its expected
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Auxiliary methods:
recordFieldAccess(t): executes test t in a fresh JVM and
returns the fields it reads and writes.
getPossibleExecOrder(T ):
1: for each t in T do
2: 〈readst, writest〉 ← recordFieldAccess(t)
3: end for
4: result ← ∅
5: for each ts in kPermutations(T , k) do
6: for i in 1 ... k do
7: previousWrites ←

⋃
j<i writests[j]

8: if previousWrites ∩ readsts[i] 6= ∅ then
9: result ← result ∪ ts
10: end if
11: end for
12: end for
13: result ← result ∪ kPermutations(T , 1)
14: return result
Figure 6: The dependence-aware k-bounded algo-
rithm to detect dependent tests, for k≥2. It instan-
tiates the algorithm of Figure 2, defining the getPos-
sibleExecOrder function. For k=1, see Section 4.4.
The kPermutations auxiliary method is defined in
Figure 5.
result, DTDetector considers two JUnit test results to be
the same when both tests pass, or when both tests exhibit
exactly the same exception or assertion violation, from the
same line of code.
To implement the dependence-aware k-bounded algorithm,

DTDetector uses ASM [3] to perform load-time bytecode
instrumentation. DTDetector inserts code to monitor each
static field access (including read and write), and monitors
each file access by installing a Java SecurityManager that pro-
vides file-level read/write information. Each test produces
a trace file containing both field and file access information,
after being executed on a DTDetector-instrumented pro-
gram. The dependence-aware k-bounded algorithm uses the
recorded read/write information to detect test dependence
(Figure 6).

DTDetector conservatively treats both read and write to
a mutable static field as a write effect. DTDetector assumes
that the JDK is stateless, and thus does not track field
access in JDK classes. DTDetector does not perform any
sophisticated points-to or shape analyses. It uses the side-
effect annotations provided by Javari [45] to determine the
immutable classes. That is, if a method is annotated as side-
effect-free in Javari, DTDetector ignores all fields accessed
by this method.
Optionally, a user can specify a list of “dependence-free”

fields (e.g., a static field for logging or counting), which
will not be considered as the root cause of manifest test
dependence by DTDetector.

6. EMPIRICAL EVALUATION
Our evaluation answers the following research questions:

1. How many dependent tests can each detection algorithm
detect in real-world programs (Section 6.3.1)?

2. How long does each algorithm take to detect dependent
tests (Section 6.3.2)?

3. Can dependent tests interfere with downstream testing
techniques such as test prioritization (Section 6.3.3)?

Table 3: Subject programs used in our evalua-
tion. Column “Tests” shows the number of human-
written unit tests. Column “Auto Tests” shows the
number of unit tests generated by Randoop [43].
Program LOC Tests Auto Tests Revision
Joda-Time 27183 3875 – b609d7d66d
XML Security 18302 108 665 version 1.0.4
Crystal 4676 75 3198 1a11279d3d6c
Synoptic 28872 118 2467 d5ea6fb3157e

6.1 Subject Programs
Table 3 lists the programs and tests used in our evaluation.

Each of the programs includes a well-written unit test suite.
Joda-Time [32] is an open source date and time library.

XML Security [64] is a component library implementing XML
signature and encryption standards. Crystal [8, 13] is a tool
that pro-actively examines developers’ code and identifies tex-
tual, compilation, and behavioral conflicts. Synoptic [6,57] is
a tool to mine a finite state machine model representation of
a system from logs. All of the subject programs’ test suites
are designed to be executed in a single JVM, rather than
requiring separate processes per test case [4].
Given the increasing importance of automated test gener-

ation tools [15, 21, 43, 71], we also want to investigate depen-
dent tests in automatically-generated test suites. For each
subject program, we used Randoop [43], an automated test
generation tool, to create a suite of 5,000 tests. Randoop
discards redundant tests [46, §III.E]; Table 3 shows how
many non-redundant tests Randoop output.
We discarded the automatically-generated test suite of

Joda-Time, since many tests in it are non-deterministic —
they depend on the current time.

6.2 Evaluation Procedure
We evaluated each algorithm on both the human-written

test suite and the automatically-generated test suite of each
subject program in Table 3.
We ran the randomized algorithm 10, 100, and 1000 times

on each test suite, and recorded the total number of detected
dependent tests and time cost for each setting. The choice of
1000 times is based on a practical guideline for using random-
ized algorithms in software engineering, as summarized in [2].
For the exhaustive k-bounded algorithm and the depend-
ence-aware k-bounded algorithm, we use isolated execution
(k = 1) and pairwise execution (k = 2). The choice of k is
based on the results of our empirical study (Section 2) that
a small k can find most realistic dependent tests.
We provided DTDetector with a list of 39 “dependence-

free” fields for the 4 subject programs. This manual step
required about 30 minutes in total.
We examined each output dependent test manually to

make sure the test dependence is not caused by non-deter-
ministic factors, such as multi-threading.
Our experiments were run on a 2.67GHz Intel Core PC

with 4GB physical memory (2GB was allocated for the JVM),
running Windows 7.
6.3 Results
Table 4 summarizes the number of detected dependent

tests and the time cost for each algorithm in DTDetector.

6.3.1 Detected Dependent Tests
DTDetector detected 29 human-written dependent tests

(among which 27 dependent tests were previously unknown)
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Table 4: Experimental results. Column “# Tests” shows the total number of tests, taken from Table 3.
Column “# Detected Dependent Tests” shows the number of detected dependent tests in each test suite.
When evaluating the randomized algorithm, we used numtrials = 10, 100, and 1000 (Figure 4). “—” means the
test suite is not evaluated due to its non-determinism. An asterisk (*) means the algorithm did not finish
within 1 day: the number of dependent tests is those discovered before timing out, and the time estimation
methodology is described in Section 6.3.2.
Subject # # Detected Dependent Tests Analysis Cost (seconds)
Programs TestsRev Randomized Exhaustive Dep-Aware Rev Randomized Exhaustive Dep-Aware

10 100 1000 k=1 k=2 k=1 k=2 10 100 1000 k=1 k=2 k=1 k=2

Human-written unit tests
Joda-Time 3875 2 1 1 6 2 ≥2 * 2 ≥2 * 11 57 528 5538 1265 4×106 * 291 5×105 *
XML Security 108 0 1 4 4 4 4 4 4 11 65 594 5977 106 11927 93 3322
Crystal 75 18 18 18 18 17 18 17 18 2 14 131 1304 166 7323 95 4155
Synoptic 118 1 1 1 1 0 1 0 1 1 7 67 760 25 3372 24 1797
Total 4176 21 21 24 29 23 ≥24 23 ≥25 26 143 1320 13579 1562 4×106 * 503 5×105 *

Automatically-generated unit tests
Joda-Time 2639 — — — — — — — — — — — — — — — —
XML Security 665 138 167 171 171 129 ≥129 * 128 ≥128 * 6 50 430 4174 133 1×105 * 128 5×104 *
Crystal 3198 75 159 162 164 55 ≥55 * 55 ≥55 * 18 103 949 9436 2477 8×106 * 2297 1×106 *
Synoptic 2467 3 3 7 10 2 ≥2 * 2 ≥2 * 12 81 770 6311 454 1×106 * 454 2×104 *
Total 8969 216 329 340 345 186 ≥186 185 ≥185 36 234 2149 19921 3064 1×107 * 2879 1×106 *

and 1311 automatically-generated dependent tests. A larger
percentage (20% vs. 0.7%) of automatically-generated tests
are dependent. Developers’ understanding of the code, and
their goals when writing the tests, help them build well-
structured tests that carefully initialize and destroy the
shared objects they may use. By contrast, most automated
test generation tools are not “state-aware”: the generated
tests often “misuse” APIs, such as not setting up the environ-
ment correctly. This misuse may indicate that the tests are
invalid; it may indicate weaknesses, poor design, or fragility
of the APIs; or it may indicate that the human-written tests
have failed to exercise some functionality.
The root cause of all the detected dependent tests is im-

proper access to static fields. The XML Security and Crystal
developers use more static fields in the test code, so those
projects have relatively more dependent tests.
The randomized algorithm is surprisingly effective in de-

tecting dependent tests. In our experiments, when run 1000
times, it found every dependent test identified by the other
algorithms, plus 4 more human-written dependent tests in
Joda-Time. These 4 tests only manifest when a sequence of 3
tests is run in a specified, non-default order. Both exhaustive
and dependence-aware k-bounded algorithms fail to detect
these tests, because they cannot scale to k=3 for Joda-Time.
The randomized algorithm also detects more dependent tests
in the automatically-generated test suites.
The dependence-aware bounded algorithm found the same

number of dependent tests as the exhaustive bounded al-
gorithm except that it missed one dependent test in XML
Security’s automatically-generated test suite. The dependent
test was missed because DTDetector did not track static
field accesses in dynamically-loaded classes.

6.3.2 Performance of DTDetector
The time cost of the reversal algorithm is very low, and

the time cost of the randomized algorithm is proportional to
the run time of the suite and the number of runs. Overall,
the time cost is acceptable for practical use. For example,

Table 5: Five test prioritization techniques used to
assess the impact of dependent tests. These five
techniques are introduced in Table 1 of [20]. (We
use the same labels as in [20]. We did not implement
the other 9 test prioritization techniques introduced
in [20], since they require a fault history that is not
available for our subject programs.)
Label Technique Description
T1 Randomized ordering
T3 Prioritize on coverage of statements
T4 Prioritize on coverage of statements not yet covered
T5 Prioritize on coverage of methods
T7 Prioritize on coverage of functions not yet covered

the randomized algorithm took around 1.5 hours to finish
1000 runs, for Joda-Time’s human-written test suite (3875
tests).
The time cost of running the exhaustive k-bounded algo-

rithm is prohibitive. The JVM initialization time is the main
cost. The exhaustive algorithm failed to scale to one human-
written test suite and all four automatically-generated test
suites when k=2, and failed to scale to all test suites when
k=3. The primary reason is the large number of possible
test permutations. For example, there are 15,011,750 size-2
permutations for Joda-Time’s human-written test suite (3875
tests), which would take approximately 58 days to execute.
Table 4 gives an estimated time cost for each test suite

that an algorithm failed to scale to. For each test suite, we
randomly chose 1000 permutations from all test permutations,
executed them, and measured the average time cost per
permutation. Then, we multiplied the average cost by the
total number of permutations to estimate the time cost.
The dependence-aware k-bounded algorithm ran about an

order of magnitude faster than the exhaustive k-bounded
algorithm, when k=2. The dependence-aware algorithm
helps most when there are relatively many tests, each one of
them relatively small.

392



Table 6: Differences in test results between original
and prioritized human-written unit test suites. Each
cell shows the number of tests that do not return
the same results as they do when executed in the
default, unprioritized order.

Subject Program T1 T3 T4 T5 T7
Joda-Time 0 0 1 0 0
XML Security 0 0 0 0 0
Crystal 12 11 16 11 12
Synoptic 0 0 0 0 0
Total 12 11 17 11 12

6.3.3 The Impact on Test Prioritization
We implemented five test prioritization techniques [20]

(summarized in Table 5) and applied them to the human-
written test suites of our subject programs.
For each test prioritization algorithm, we counted the

number of dependent tests that return different results (pass
or fail) in the prioritized order than they do when executed
in the unprioritized order. Table 6 summarizes the results.
The dependent tests in our subject programs interfere

with all five test prioritization techniques in Table 5. This
is because all these techniques implicitly assume that there
are no test dependences in the input test suite. Violation of
this assumption, as happened in real-world test suites, can
cause the prioritized suite to fail even though the original
suite passed.
We did not evaluate the effect of test dependence on metrics

such as APFD [49]; there is no point optimizing such a metric
at the cost of false positives or false negatives.

6.4 Discussion
Developers’ Reactions to Dependent Tests. We sent
the identified human-written dependent tests to the subject
program developers, asking for their feedback.
One dependent test in Joda-Time was previously known

and had already been fixed. Joda-Time’s developers con-
firmed the other new dependent tests, and thought that they
are due to unintended interactions in the library. The Crys-
tal developers confirmed that all dependent tests found in
Crystal were unintentional and happened because of depen-
dence through global variables. The developers considered
the dependent tests undesirable and opened a bug report for
this issue [14]. The dependent test in Synoptic was previ-
ously known. The developers merged two related tests to
fix the dependent test. The SIR [53] maintainers confirmed
our reported dependent tests in XML-Security, and accepted
our suggested patch to fix them. They also highlighted the
practice that tests should always “stand alone” without de-
pendency on other tests, and characterized that as “test
engineering 101”.
Threats to Validity There are several threats to the valid-
ity of our evaluation. First, the 4 open-source programs and
their test suites may not be representative enough. However,
these are the first 4 subject programs we tried, and the fact
that we found dependent tests in all of them is suggestive.
Second, in this evaluation, we focus specifically on the man-
ifest dependence between unit tests. JUnit executes many
unit tests in a single JVM. Integration or system tests, or
tests written using a different testing framework, might have
less dependence if each one is run in its own environment.
Third, due to the computational complexity of the general

dependent test detection problem, we do not yet have em-
pirical data regarding DTDetector’s recall and how many
dependent tests exist in a test suite. Fourth, we only assessed
the impact of dependent tests on five test prioritization tech-
niques. Using other test prioritization techniques might yield
different results.
Experimental Conclusions We have four chief findings.
(1) Dependent tests do exist in practice, both in human-
written and automatically-generated test suites. (2) These
dependent tests reveal weakness in a test suite rather than
defects in the tested code. (3) Dependent tests can interfere
with test prioritization techniques and cause unexpected test
failures. (4) The randomized algorithm is the most effective
in detecting dependent tests.

7. RELATED WORK
Treating test suites explicitly as mathematical sets of tests

dates at least to Howden [26, p. 554] and remains common
in the literature. The execution order of tests in a suite is
usually not considered: that is, test independence is assumed.
Nonetheless, some research has considered it. We next discuss
some existing definitions of test dependence, techniques that
assume test dependence, and tools that support specifying
test dependence.

7.1 Test Dependence
Definitions in the testing literature are generally clear that

the conditions under which a test is executed may affect its re-
sult. The importance of context in testing has been explored
in databases [9, 22, 35], with results about test generation,
test adequacy criteria, etc., and mobile applications [60]. For
the database domain, Kapfhammer and Soffa formally de-
fine independent test suites and distinguish them from other
suites that “can capture more of an application’s interaction
with a database while requiring the constant monitoring of
database state and the potentially frequent re-computations
of test adequacy” [35, p. 101]. By contrast, our definition
differs from that of Kapfhammer and Soffa by considering
test results rather than program and database states (which
may not affect the test results).
The IEEE Standard for Software and System Test Docu-

mentation (829-1998) §11.2.7, “Intercase Dependencies,” says
in its entirety: “List the identifiers of test cases that must
be executed prior to this test case. Summarize the nature
of the dependences” [28]. The succeeding version of this
standard (829-2008) adds a single sentence: “If test cases are
documented (in a tool or otherwise) in the order in which
they need to be executed, the Intercase Dependencies for
most or all of the cases may not be needed” [29].
Bergelson and Exman characterize a form of test depen-

dence informally: given two tests that each pass, the compos-
ite execution of these tests may still fail [5, p. 38]. However,
they do not provide any empirical evidence of test dependence
nor any detection algorithms.
The C2 wiki acknowledges test dependence as undesir-

able [59]:

Unit testing . . . requires that we test the unit in isola-
tion. That is, we want to be able to say, to a very high
degree of confidence [emphasis added], that any actual
results obtained from the execution of test cases are
purely the result of the unit under test. The introduc-
tion of other units may color our results.
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They further note that other tests, as well as stubs and
drivers, may “interfere with the straightforward execution of
one or more test cases.”
Compared with these informal definitions, we formalize

test dependence and characterize test dependence in practice.

7.2 Techniques Assuming Test Independence
The assumption of test independence lies at the heart of

most techniques for automated regression test selection [7,24,
41,42,67], test case prioritization [20,31,37,50,54], coverage-
based fault localization [33,55,68], etc.
Test prioritization seeks to reorder a test suite to detect

software defects more quickly. Early work in test prioritiza-
tion [49,62] laid the foundation for the most commonly used
problem definition: consider the set of all permutations of
a test suite and find the best award value for an objective
function over that set [20]. The most common objective
functions favor permutations where higher code coverage
is achieved and more faults in the underlying program are
found with running fewer tests. Test independence is a re-
quirement for most test selection and prioritization work
(e.g., [50, p. 1500]). Evaluations of selection and prioritiza-
tion techniques are based in part on the test independence
assumption as well as the assumption that the set of faults
in the underlying program is known beforehand [17, 49, et
alia]; the possibility that test dependence may interfere with
these techniques is not studied.
Coverage-based fault localization techniques often treat a

test suite as a collection of test cases whose result is inde-
pendent of the order of their execution [33]. They can also
be impacted by test dependence. In a recent evaluation of
several coverage-based fault locators, Steimann et al. found
that fault locators’ accuracy is affected by tests that fail
due to violation of the test independence assumption [55].
Compared to our work, Steimann et al.’s work focuses on
identifying possible threats to validity in evaluating coverage-
based fault locators, and does not present any formalism,
study, or detection algorithms for dependent tests.
Test independence is different than determinism. Non-

determinism does not imply dependence: a program may
execute non-deterministically, but its tests may determinis-
tically succeed. Further, a test may non-deterministically
pass/fail without being affected by any other test, including
its own previous executions. Determinism does not imply
independence: a program may have no sources of nonde-
terminism, but two of its tests can be dependent. The
testing community sometimes mentions determinism (such
as multithreading) and execution environment (such as li-
brary versions), without considering test dependence [42]. A
stronger assumption than determinism is the Controlled Re-
gression Testing Assumption (CRTA) [48]. It forbids porting
to another system, nondeterminism, time-dependencies, and
interactions with the external environment. It also forbids
test dependence, though the authors did not mention test
dependence explicitly. The authors state that CRTA is “not
necessarily impossible” to employ. We have a practical focus
on the often-overlooked issue of test dependence.
As shown in Sections 2 and 6, the test independence as-

sumption often does not hold for either human-written or
automatically-generated tests; and the dependent tests iden-
tified in our subject programs interfere with existing test
prioritization techniques. Thus, techniques that rely on this
assumption may need to be reformulated.

7.3 Tools Supporting Test Dependence
Testing frameworks provide mechanisms for developers

to define the context for tests. JUnit 4.11 supports execut-
ing tests in lexicographic order by test method name [34].
DepUnit [16] allows developers to define dependences between
two unit tests. TestNG [58] allows dependence annotations
and supports a variety of execution policies that respect
these dependences. What distinguishes our work from these
testing frameworks is that, while they allow dependences to
be made explicit and respected during execution, they do
not help developers identify dependences.
Haidry and Miller proposed a set of test prioritization

techniques that consider test dependence [23]. Their work
assumes that dependencies between tests are known, and
improves existing test prioritization techniques to make them
produce a test ordering that preserves the test dependencies.
By contrast, our work formally defines test dependence, stud-
ies the characteristics of real-world test dependence, shows
how to detect dependent tests, and empirically evaluates
whether dependent tests exist in real-world programs and
their impact on test prioritization techniques.
Our previous work proposed an algorithm to find bugs by

executing each unit test in isolation [40]. With a different
focus, this work investigates the validity of the test inde-
pendence assumption rather than finding new bugs, and it
presents five new results. Further, as indicated by our study
and experiments, most dependent tests reveal weakness in
the test code rather than bugs in the program. Thus, using
test dependence may not achieve a high return in bug finding.
A simple way to eliminate test dependence is starting a

new process or otherwise completely re-initializing the envi-
ronment (variables, heap, files, etc.) before executing each
test; JCrasher does this [15], as do some SIR applications [53]
and some database or GUI testing tools [9, 22,35]. However,
such an approach is computationally expensive: Table 4
shows that executing each test in a separate JVM introduces
10–138× slowdown (compare the “Exhaustive k = 1” column
to the “Rev” column).

8. CONCLUSION
Test independence is widely assumed but rarely addressed,

and test dependence has largely been ignored in previous
research on software testing. We formalized the dependent
test detection problem. To detect dependent tests, we de-
signed and implemented four algorithms to identify manifest
test dependence in a test suite. We showed that test de-
pendence does arise in practice: our experiments revealed
dependent tests in every subject program we studied, from
both human-written and automatically-generated test suites.
The dependent tests cause real-world prioritized test suites
to fail, for five existing test prioritization techniques.
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