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Abstract: An increasing problem in today’s society is the spiraling number of people suffering
from various sleep disorders. The research results presented in this paper support the use of a
novel method that employs techniques from the classification of sleep disorders for more accurate
scoring. Applying this novel method will assist researchers with better analyzing subject profiles for
recommending prescriptions or to alleviate sleep disorders. In biomedical research, the use of animal
models is required to experimentally test the safety and efficacy of a drug in the pre-clinical stage.
We have developed a novel LSTM Recurrent Neural Network to process Pharmaco-EEG Profiles
of rats to automatically score their sleep–wake stages. The results indicate improvements over the
current methods; for the case of combined channels, the model accuracy improved by 1% and 3% in
binary or multiclass classifications, respectively, to accuracies of 93% and 82%. In the case of using a
single channel, binary and multiclass LSTM models for identifying rodent sleep stages using single
or multiple electrode positions for binary or multiclass problems have not been evaluated in prior
literature. The results reveal that single or combined channels, and binary or multiclass classification
tasks, can be applied in the automatic sleep scoring of rodents.

Keywords: recurrent neural network (RNN); electroencephalography (EEG); long short-term memory
(LSTM); automatic sleep scoring; deep learning

1. Introduction

Sleep is important to both humans and animals. Sleep disorders are increasing and
are grouped into anxiety, insomnia, sleep related movement disorders, etc. [1]. Benzodi-
azepines are recommended for the treatment of sleep disorders on a short-term basis [2],
but their long-term use risks addiction and dependence. Furthermore, the side effects
include decreased perceptual-motoric performance, disturbed EEG patterns during sleep,
and dependence, among others. Hypnotic and anxiolytic drugs are required, such that
do not produce dependence or other serious adverse effects. The Lavender EO (essential
oil) has a long history of therapeutic use and does have anxiolytic properties. It is widely
utilized by rural populations all over the world. According to Persian medicine protocol,
lavender is beneficial in the treatment of chronic respiratory ailments.
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EEG is an examination technique to measure brain activity and allows for identifying
the sleep stages from a polysomnographic recording [3]. An EMG is useful for diagnostics
of the neck muscles. Polysomnography (PSG) is used to analyze and diagnose sleep
health. In a sleep center, the patient’s overnight sleep activity is recorded in the form of PSG
recordings. A PSG is a set of bio-signals such as respiratory signals, electroencephalography
(EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG).
The system by which the EEG electrodes are applied to the head and the display of the
EEG record is called the international 10–20 system [4]. A human sleep analyst visually
inspects every 30 s epoch of the sleep data, and manually assigns a score to each type of
signal. Manually, three sleep stages are defined, namely Wake, Random Eye Movement
(REM), and Non-Random eye movement (NREM) [5]. It is essential to have sleep stage
information for diagnosing sleep related problems.

The manual sleep scoring is a tedious task and the results can be perturbed by loss of
concentration, and they also depend on various other factors such as data quality, artifacts,
sleep fragmentation, etc [6]. Sleep experts take up to 3 h in order to score 24 h of EEG/EMG
recordings, whereas to score the same amount of data, novice staff may take up to 6 h.
Sleep related studies have a challenge in achieving high data quality and in establishing
long-term studies with internal consistency [7].

Sleep scoring takes advantage of machine learning techniques to overcome the afore-
mentioned issues. Automated sleep scoring relies on feature engineering in order to create
classifier models. The feature engineering approach necessitates professional expertise and
may not produce characteristics that are optimal for sleep scoring. Deep Learning (DL)
takes a huge amount of data and new methods to automate the sleep annotation process.

We propose a trainable LSTM model for detecting sleep stages in rodents. The advan-
tage of the LSTM method is that it is effective and has performed well for long time-series
data [8]. It learns to recognize the next possible sleep stage among the consecutive stages.
To generate Pharmaco-EEG profiles and sleep patterns, lavender EO was used in vivo to
treat a rat model.

We studied the effectiveness of single or multiple electrode positions for rodent sleep
stage classification. The main purpose was twofold: to reduce the computational complexity
of signal processing by selecting the relevant channels, and to reduce the amount of
overfitting that may arise due to unnecessary channels. Secondly, multiclass classification
problems are challenged by imbalanced data, which causes problems for several ML
algorithms. Therefore, a related binary classification problem was posed along with the
multiclass one, in order to assess the comparative effectiveness of these approaches in the
identification of rodent sleep stage combinations.

2. Related Work

A number of rat sleep scoring methods have been proposed. Kohn introduced the
first algorithm for rodent sleep stage scoring [9]. In most of the existing methods, a
subset of data for each subject’s sleep stage analysis is prepared with human interaction
to identify wake-sleep state cut-off or to perform manual sleep scoring, but the employed
techniques or methods can differ. Manual sleep scoring is annotated by the sleep expert,
whereas machine and deep learning models have the ability to classify the sleep stages
automatically without intervention by a human. The conventional sleep scoring methods
extract frequency domain features by employing the fast Fourier transform [10–12].

In contrast, in unsupervised learning, the sleep stages are discriminated by using
rules, possibly embedded in a trained artificial neural network or in a Bayes net. Few
unsupervised algorithms have been proposed, but they can be computationally intensive
and have only been tested on a limited number of animals. The various classification
models used to handle features and sleep stages include Support Vector Machines [11],
Hidden Markov Model, and LSTM (which is designed for time series and employs sleep
transition rules to obtain a high level of accuracy) [13].
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Numerous studies have pursued automated sleep scoring. The authors [14] proposed
MC-SleepNet, which is based on the convolutional neural network and long-short-term
memory (LSTM) and attained 96.6% accuracy. Another author [8] introduced a convolu-
tional neural network (CNN) architecture for automated sleep scoring in mice and accom-
plished an F1-Score of 0.95. The study [15] compared machine and deep learning models
for automated sleep scoring of rodents, both mice and rats. They obtained accuracies
within 0.77–0.83 for the rodent with a convolutional neural network (that was compared
to Random Forest (0.78–0.81)). Another approach known as sleep scoring artificial neural
network for rodents achieved 96.8% accuracy [16].

To the best of our knowledge, numerous studies have discussed sleep stage classifica-
tion accuracy, but the relationship between the sleep stages and model performance is not
discussed. Furthermore, the effect of electrode position on model performance is not dealt
with in the literature. A hybrid approach combining CNN and LSTM for automatic sleep
stage classification is discussed in [17].

In order to fill the gap, we have employed the LSTM neural network to improve the
classification accuracy of binary or multiple sleep stages, along with comparison of single
or multiple electrode positions.

3. Experimental Setup

In this section, we will explain the steps in experimentation with a particular focus on
the data collected and how it was used.

3.1. Data Collection

A description on the subjects identified for the study is presented. In addition, the
data acquisition processes are explained in Section 3.2.

3.1.1. Subjects

The subjects were 6 male Wistar rats of weights 250–300 g in the Southern Laboratory
Animal Facility, Prince of Songkla University, Songkhla, Thailand. They were fed com-
mercial food pellets and provided water. The tests were conducted in the hours between
9:00 a.m. and 3:00 p.m. The work adhered to the European Science Foundation’s (ESF)
(Use of Animals in Research, 2001) and the International Committee on Laboratory An-
imal Science’s (ICLAS) ethical guidelines (2004). The Animal Ethical Committee of the
Prince of Songkla University (MOE 0521.11/613) approved and guided the experimental
methodology.

3.1.2. EEG Electrode Implantation

Pre-injection of 60 mg/kg Zoletil 100 intramuscularly sedated the animals. According
to the bregma of the rat brain atlas, see Figure 1, a set of screw electrodes made of stainless
steel were implanted on the frontal (AP; +3 mm, ML; 3 mm) and left side of the skull in the
parietal cortex (AP; −4 mm, ML; 4 mm). The reference and ground electrodes were placed
at the midline over cerebellum [4]. For electromyography (EMG), bipolar electrodes were
implanted in the dorsal neck muscles. To avoid infection, the antibiotic ampicillin (General
Drug House Co., Ltd., Bangkok, Thailand) was given intramuscularly (100 mg/kg) once a
day for three days, and the subjects were permitted at least ten days to recover completely.

3.2. Data Acquisition Process

The animals were acclimatized to the experimental circumstances in the inhalation
chamber for two days after they had fully recovered from surgery before being tested.
The animals were subjected to the same conditions as the habituation days during the
testing days, and their EEGs were recorded. Baseline activity was monitored for 30 min
before treatment. Animals were divided into three groups to receive the inhalation of
either 200 microliters of lavender EO or 200 microliters of distilled water (control), or an
intraperitoneal injection of 15 mg/kg diazepam (positive control). Post-drug recording was
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performed for 180 min after treatment. Values of EEG parameters were normalized with
baseline levels and are expressed in % baseline. The overall experimental protocol setup
for EEG recording is shown in Figure 1.

Figure 1. From animal surgery to experimental setup for EEG recordings, a schematic overview.

An airtight cylindrical plastic chamber was used as the inhaling chamber. The diameter
was 25 cm, and the length was 50 cm (height). It was perforated with two small openings
for intake and outlet (opposite to each other) having air tubing connections. The inlet
tubing was connected to a fan delivering ambient air and/or volatile molecules into the
chamber. The outlet tubing was for outflow ventilation. The fan engine was powered by
direct current and required 1.92 W of electricity. The rotation speed was 4000 rpm with an
air flow of 0.41 cmm (cubic meters per minute).

EEG and EMG Signal Acquisition

EEG and EMG signals were collected with low-pass 50 Hz and high-pass 0.1 Hz filters,
and were sampled at 400 Hz by a PowerLab/4SP system (AD Instruments) with 12-bit
A/D, and then stored in a PC through the LabChart 7 software. The EEG and EMG signals
were handled using band-pass digital filters that ranged from 0.78 to 45.31 Hz and from
1 to 100 Hz, respectively. Standard LFP analysis, the frequency analysis, was performed
using the Fast Fourier transform (FFT) function in LabChart 7.

3.3. Data Pre-Processing

The process of noise removal and data scaling is explained in this section.

3.3.1. Noise Removal

In order to remove the noise from sleep EEG signals, we applied a Butterworth low-
pass filter. A sample of filtered data is shown in Figure 2.

3.3.2. Data Scaling

We tested our model on Sleep EEG datasets with data scaling and without data scaling.
We found that the model performed better with data scaling. However, a Recurrent Neural
Network (LSTM) tends to learn better with small values, so we scaled the data to between
−1 and 1. A sample showing original and rescaled values re-scaled data is seen in Figure 3.
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Figure 2. Butterworth low-pass filtering for noise removal

Figure 3. An example of an 0.5 s signal segment logged, showing the re-scaling with the sec-
ondary scale.
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4. Interpretation of Pharmaco-EEG Fingerprint Using Frequency Analysis

During the pre-treatment period, EEG recording was performed for 30 min. Signals
collected during the pre-treatment were used to determine the baselines for scaling further
data (to % baseline). Then, effects on spectral EEG power were observed for 180 min after
treatment with either distilled water, diazepam, or lavender EO. Changes in the recorded
electrical power (V2/Hz) were expressed as percent of baseline in 30 min intervals. The
spectral powers were then averaged within specific frequency ranges as given in Table 1,
and Pharmaco-EEG fingerprint was plotted as a color-coded graph.

Table 1. Frequency ranges for computing spectral power.

Delta [∆] Theta [Θ] Alpha1 [α1] Alpha2 [α2] Beta1 [β1] Gamma [Γ]

0.78–4.30 4.69–6.64 7.03–9.38 9.77–12.50 12.89–18.36 35.55–45.31

Visual inspection was done to overview the recorded EEG signals. To remove the
noise from power line artefacts, 50 Hz notch filtering was used: the signals of 45–55 Hz
were excluded from further analysis.

The digitized data were subjected to frequency analysis, which included power spec-
tral density (PSD) and spectrogram analysis (frequency versus time plots). The signals
were transformed to power spectra using the FFT, after the EEG data were divided into
1024-point bins with 50% overlap (Hanning window cosine transform, 2.56-s sweeps per
window, 0.39 Hz frequency resolution).

5. Sleep Stages of Rodents

Visual inspection of the EEG and EMG patterns separated the basic states of sleep-
wake profiles, which included awake, non-rapid eye movements sleep (NREM), and rapid
eye movements sleep (REM); see Figure 4. Based on earlier research, EEG and EMG patterns
were used to rate sleep-wake states.

Figure 4. (A,B) Frontal and Parietal EEG, (C) EMG, (D) EEG Power Spectrum, (E) EEG Spectrogram,
(F) Hypnogram.

Awake: the period was determined by the frontal signal’s fast wave and low amplitude,
as well as the presence of high EMG activity. Slow wave and high amplitude frontal and
parietal signals were used to identify NREM sleep stage. Fast wave and low amplitude of
the frontal signal, as well as the absence of EMG activity, were used to detect REM: sleep.
Theta frequency (Hz) amplitude in the parietal cortex was found to be a key feature of
REM sleep.
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Between the three stages, EEG power spectra from both the frontal and parietal cortices
show distinguishing patterns (Figure 4). The sleep-wake cycles were also validated visually
with the help of a spectrogram. It was easy to distinguish the phases of Wake, NREM,
and REM sleep using representative colors of EEG power. As a result, the length of each
segment was measured in order to produce a hypnogram. For statistical analysis, each
variable in each group was averaged.

6. Long-Short-Term Memory Neural Network (LSTM)

RNN is among the popular neural networks used with sequence data. An RNN
comprises several hidden layers distributed across the previous time-steps. Such sequence
models are capable of storing previous information to predict a future output [18]. Due
to the sequence inputs, RNNs are considered computationally very complex and inten-
sive models.

In their applications within different domains, such models have not been able to
handle long-term dependencies due to forgetting the long-term effects in back-propagation
of current error [19]. This limitation of RNN is called ’the vanishing gradient problem’. This
vanishing gradient problem occurs due to lack of (ht−1) in Equation (1), where the long-term
effects of derivatives of ht−1 with respect to ht vanish. Here, xt, ht, and yt represent input,
hidden state, and output at time step t. Moreover, tanh and sigmoid activation functions
are applied for nonlinearity:{

ht = tanh(Whxt + whyyt−1)
yt = σ(Wht)

}
(1)

In order to cope with this challenge, we have employed an updated version of RNN
widely known as LSTM. It includes an additional and complex block of components, called
gates, which store the necessary information from previous time-steps [19,20]. These gates
significantly eliminate the vanishing gradient problem by including long-term gradient
dependencies.

Recently, LSTM has gained remarkable attention in scientific communities associated
with different domains [21]. In addition to the explicit memory element, the model com-
prises an input, output, and forget gate. Each gate in the cell (see Figure 5) receives inputs
from preceding time-steps such as xt and ht−1 as inputs from current state and from the
hidden states, respectively. Moreover, the state information Ct−1 is in the cell’s internal
memory to retain the necessary information from preceding time-steps. The output at
time-step t1 is determined by applying the tanh activation function at the hidden unit of the
previous time-step, i.e., ht−1. This provides nonlinearity to the model, which significantly
improves learning capabilities of the LSTM architecture.

The overall processing of one time-step in LSTM is described as follows: Unnecessary
information from previous time-steps is rectified by applying sigmoid activation function,
which is termed the forget gate and mathematically defined as

f (t) = σ
[
wW f (ht−1, xt) + b f

]
(2)

Here, W f is a weight matrix and h(t−1) is the output from previous time-step, xt is the
updated input, and b f is the bias term.

Furthermore, the information to be stored in the cell memory is determined by a
sigmoid activation function often called an input gate in LSTM literature. Then, the tanh
layer produces a vector, which is represented by ĉ It could be further added to the state as
follows: {

it = σ[wi(ht−1, xt) + bi]
ĉi = tanh[Wc(ht−1, xt) + bi]

}
(3)

On the basis of candidate state, the old cell state is updated with new cell state
as follows:
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ct = ft ∗ ct−1 + it ∗ ĉt (4)

Finally, the output of cell state is passed through a sigmoid activation function which
uses part of the information, from a previous stage:

ot = σ[Wo(ht−1, xt) + bi] (5)

ht = ot ∗ tanh(ct) (6)

In this study, we exploited the capabilities of the LSTM architecture shown in Table 2.
In addition to this, we have addressed potential over fitting by employing two regulariza-
tion techniques, namely by including dropout with 0.2 probability at the dropout layer,
and, secondly, by using the learning rate 0.0003 to avoid overshoot problem in the gradient.

Figure 5. A complete unit architecture of LSTM states. Different activation functions at different cell
states are used to retain important information for the next state.

Table 2. Summary of the RNN model.

Layer (Type) Output Shape No. of Params

lstm (LSTM) (None, 100, 55) 12,760

dropout (Dropout) (None, 100, 55) 0

lstm1 (LSTM) (None, 100, 100) 62,400

dropout1 (Dropout) (None, 100, 100) 0

lstm2 (LSTM) (None, 40) 22,560

dropout2 (Dropout) (None, 40) 0

dense (Dense) (None, 100) 4100

dropout3 (Dropout) (None, 100) 0

dense1 (Dense) (None, 3) 303

7. LSTM Architecture

We have tested two different approaches, namely RNN (LSTM) and hybrid approach
(LSTM and 1DCNN). We found that RNN (LSTM) performed better. However, in this study,
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we present an improved approach, namely LSTM that includes a “memory cell” capable
of storing information for lengthy periods of time. Our LSTM is based on the following
configuration: For each EEG window, the number of data points in one-time series is 100,
and the number of features is 2 or 1.

However, in the first LSTM layer, we have 12,760 parameters, and the output size is 55
with 100 data points. The second LSTM1 layer has 62,400 parameters, and its output size is
100 with 100 data points. The third LSTM2 layer has 22,560 parameters, and the output size
is 40.

Two dense layers were added to the model. The first dense layer D1 was used after
the LSTM2 layer and its output size is (4100, 100). The second dense layer D2 is used as
the last one, with output size (303, 3). Moreover, to deal with the over fitting problem, we
utilized two regularization techniques, one of which is dropout with 0.2 probability in the
dropout layer. Secondly, the learning rate 0.0003 was used to fix the gradient problem in
the model. A complete summary of our RNN model is given in Table 2.

8. Experimental Results

In this section, the results from the experimentation are presented and elaborated.

8.1. Performance Evaluation of Electrode Positions

A number of performance metrics of a classifier were employed, and precision of the
model developed is assessed in the results presented.

8.1.1. Classification Accuracy

Precision, recall, F1-score, and support describe the performance of the model in each
class label [22]. Precision indicates the number of true positives and the number of false
negatives in each class label. However, precision is typically used along with recall metrics
to define the ratio of positive instances correctly classified by the model. F1-score indicates
the combination of both precision and recall, and support defines the event of each class
that lies in a targeted class. For binary and multiclass classifications, Tables 3–5 provide
precision, recall, F1-scores, and support metrics. The model’s precision is lowest for the
REM stage, and this, together with the similar recall score for REM, indicates that the
classifier is unable to learn to recognize the REM stage. In its predictions, it is unable to
precisely categorize every actual occurrence of REM. The NREM and Wake stages were
predicted more accurately than the REM state. This may be due to the fact that they have a
greater number count in the training data.

It is apparent from the table that the accuracy of binary classification was 92% when
NREM and REM stages were combined. It is surprising that, when a class with a large
number of occurrences is combined with others, the classifier accuracy increased to 92%.
Interestingly, the class imbalance affects the classification performance. It can apply a key
effect on significance and accuracy, and on other performance metrics [23].

Multiclass classification accuracy is lower than that of binary classification as shown in
Table 3. The data complexity is increased with the addition of more classes. It is observed
that the classification performance is affected negatively whether the data are balanced
or not. We conclude that the multiclass problem cannot be simply solved by adding
more classes.
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Table 3. Performance measures for binary and multiclass classifications.

SINGLE PC ELECTRODE

NREM and REM

Classification Problem Stages Precision Recall F1-Score Support

BI
N

A
R

Y

NREM 0.92 0.99 0.96 46,138

REM 0.60 0.14 0.22 4360

Accuracy 0.92

NREM and Wake

NREM 0.82 0.90 0.86 46,312

WAKE 0.75 0.60 0.67 23,374

Accuracy 0.80

Wake and REM

WAKE 0.87 0.98 0.92 23,455

REM 0.64 0.22 0.32 4344

Accuracy 0.86

NREM, REM, Wake

M
U

LT
I

C
LA

SS

NREM 0.80 0.88 0.84 46,158

REM 0.61 0.23 0.33 4362

WAKE 0.72 0.66 0.69 23,471

Accuracy 0.77

Table 4. Performance measures for binary and multiclass classifications.

SINGLE FC ELECTRODE

NREM and REM

Classification Problem Stages Precision Recall F1-Score Support

BI
N

A
R

Y

NREM 0.92 1.00 0.96 46,255

REM 0.74 0.08 0.14 4243

Accuracy 0.92

NREM and Wake

NREM 0.85 0.91 0.88 46,239

WAKE 0.85 0.91 0.88 23,447

Accuracy 0.83

Wake and REM

WAKE 0.86 0.99 0.92 23,552

REM 0.63 0.12 0.21 4247

Accuracy 0.85

NREM, REM, Wake

M
U

LT
I

C
LA

SS

NREM 0.82 0.91 0.86 46,230

REM 0.55 0.14 0.23 4307

WAKE 0.74 0.69 0.71 23,454

Accuracy 0.79
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Table 5. Performance measures for binary and multiclass classifications.

SINGLE PC-FC ELECTRODE

NREM and REM

Classification Problem Stages Precision Recall F1-Score Support

BI
N

A
R

Y

NREM 0.94 0.99 0.96 46,073

REM 0.69 0.35 0.46 4425

Accuracy 0.93

NREM and Wake

NREM 0.85 0.91 0.88 46,181

WAKE 0.80 0.68 0.73 23,505

Accuracy 0.83

Wake and REM

WAKE 0.88 0.98 0.93 23,515

REM 0.70 0.29 0.41 4284

Accuracy 0.87

NREM, REM, Wake

M
U

LT
I

C
LA

SS

NREM 0.86 0.89 0.88 46,368

REM 0.68 0.36 0.47 4297

WAKE 0.75 0.76 0.75 23,326

Accuracy 0.82

8.1.2. Training and Validation Loss

Tables 6–8 show the validation loss and accuracy for binary and multi-class classifica-
tions. When REM stages are combined to create a binary classification job, the validation
accuracy can be observed to be highly unstable. The fluctuation in validation accuracy can
be explained by the fact that the model is still learning the appropriate weights to generalize
effectively in validation data. In addition, the fluctuation in validation loss is consistent,
which could be due to the initialization of pre-trained weights. In the case of multi-class
classification, the validation loss does not appear to be locked in a local minimum and
converges smoothly. The validation loss and accuracy have improved.



Appl. Sci. 2022, 12, 5248 12 of 18

Table 6. Validation loss and accuracy for a single PC electrode.
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Table 7. Validation loss and accuracy for a single FC electrode.
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Table 8. Validation loss and accuracy for a single PC-FC electrode.
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8.1.3. Confusion Matrix

The confusion matrix, see Table 9, shows that the NREM stage is the most accurately
classified, followed by Wake and REM stages. In binary classification, the NREM has been
mis-classified the most by calling it Wake stage; one explanation could be the increased
number of Wake stage cases. In the case of multi-class classification, the most mis-classified
stage is Wake mislabeled as NREM.
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Table 9. Confusion matrices.

SINGLE PC ELECTRODE

Predicted

Actual

Stages NREM REM
NREM 45,747 391
REM 3769 591

Stages NREM WAKE
NREM 41,720 4592
Wake 9354 14,020
Stages WAKE REM
WAKE 22,939 516
REM 3409 935

Stages NREM REM Wake
NREM 40,157 496 5531
REM 2457 1129 694

WAKE 7086 286 16,155

Confusion Matrix of Single PC Electrode

SINGLE FC ELECTRODE

Predicted

Actual

Stages NREM REM
NREM 46,144 111
REM 3923 320

Stages NREM WAKE
NREM 42,073 4166
Wake 7593 15,854
Stages WAKE REM
WAKE 23,246 306
REM 3726 521

Stages NREM REM Wake
NREM 42,095 146 3877
REM 2020 605 1781

WAKE 7145 177 16,145
Confusion Matrix of Single FC Electrode

SINGLE PC-FC ELECTRODE

Predicted

Actual

Stages NREM REM
NREM 45,387 686
REM 2889 1536

Stages NREM WAKE
NREM 42,154 4027
Wake 7559 15,946
Stages WAKE REM
WAKE 22,986 529
REM 3025 1259

Stages NREM REM Wake
NREM 42,124 375 3814
REM 1508 1654 1198

WAKE 6029 428 16,861
Confusion Matrix of Single PC-FC Electrode

9. Discussion

We introduced a deep learning based Recurrent Neural Network (RNN) that calls
the different states of consciousness in rats from EEG and EMG recordings. The proposed
model automatically learns features which exist in the data and uses them to classify
sleep stages. We analyzed the challenge of class imbalance problem and investigated the
generalization of the model. Two types of class imbalance problems, i.e., minority and
majority cases for binary and multiclass classification, were studied in depth. Both types
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show negative correlations with the performance measures: precision, recall, or F1-Score.
This indicates that the performance is inversely proportional to the number of imbalanced
classes. The performance trend indicates that performance degraded as the majority group
increases. The reason is that the imbalance rate increases in the minority cases.

Based on the analysis, we investigated a dichotomy of the sleep stages, i.e., binary
classification with the aim of handling majority and minority classes. When minority
and majority class difference was small, the results for Recall and F1-Score improved.
This shows that we can do generalization for a minority class, and, furthermore, help to
balance performance.

Moreover, the results show that the class decomposition into binary form does not
provide any advantages in learning with class imbalance. In the case of REM stage, the
Recall and F1-Score were reduced by class decomposition. A possible explanation for
this behavior is that the global information of class distribution is reduced as a result
of class decomposition. We conclude that a non-decomposition method is better than
decomposition because the class distribution information is fully utilized. Hence, the
model performance is improved.

Our model achieves high F1 scores in the multi-class problem. Decreasing the number
of input channels that were available for our model to infer sleep stages decreased the
prediction performance. This shows that our model will yield good prediction performance
even for experiments in which multiple channels are included.

For multiple channels and classes, F1 scores became better. This observation agrees
with our expectation that the accuracy increases if all channel recordings are available. The
prediction performance of our model was poorer for a single channel when compared to
multiple channel data. This may, however, be related to our training set, which had many
artifact contaminated epochs.

The performance comparison with existing state-of-the-art methods is shown in the
following Table 10. In contrast to those prior studies, the contributions in this study are
demonstrating a trainable LSTM network model, along with addressing the following
questions: how effective are single and alternatively multiple electrode positions for rodent
sleep stage classification, and is binary or multiclass classification more effective?

Table 10. Performance comparison with existing state-of-the-art methods

Model Sleep Stages Accuracy—F1 Score Reference

Hybrid Model (CNN and
LSTM) Wake, REM and NREM 96.6% [17]

CNN Wake, Pre REM, NREM,
REM and Artifact 95.0% [15]

CNN and Radmon Forest Sleep-wake states 77.0–83.0% [16]

ANN Wake, REM and NREM 96.8% [18]

Proposed method LSTM

Binary classes (Wake-REM,
Wake-NREM,
REM-NREM), multiple
classes (Wake-REM-NREM)
with single and multiple
electrode position

92.0–79.0%,
93.0–82.0%

We are interested in sleep stage combinations, seeking better balance, and their effect
on classifier performance. As each electrode has its position in signal recording, it is
important to appreciate that sleep scoring performance is sensitive to the position(s) of a
single or of multiple electrodes. Furthermore, a classification algorithm is hampered by the
unbalance when one class with only few instances co-exists with another class of a much
larger size, in the training data.
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10. Conclusions

The proposed RNN and LSTM method can find automatically effective features that
would be difficult to extract using handcrafted filters. The experimental results reveal that
the classification accuracy is affected by the selection of multiple electrode positions as
well as by the classification problem posed. In the multi-class problem, imbalance appears
challenging, while binary-class imbalance can be less, but still, in the case of multiple
electrode positions, a high accuracy was achieved for multiple classes. In future research,
we may pursue finding optimal hyper-parameters for training a classifier; this is another
important and interesting topic.
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