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�e purpose of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common �xed
point in metric spaces satisfying an implicit function essentially due to the paper of Ali and Imdad (2008). As an application to
our main result, we derive a �xed point theorem for four �nite families of self-mappings which can be utilized to derive common
�xed point theorems involving any �nite number of mappings. Our results improve and extend a host of previously known results
including the ones contained in the paper of Ali and Imdad (2008). We also furnish some illustrative examples to support our main
results.

1. Introduction and Preliminaries

�ewell-known Banach �xed point theorem is o�en referred
to as Banach contraction principle which appeared in its
explicit form in the thesis of Banach in 1922 [1]. Owing
to its simplicity and usefulness, it became a very popular
and powerful tool in solving existence problems in pure and
applied sciences which include biology, medicine, physics,
and computer science (see [2, 3]). �is natural theorem
asserts that every contractionmapping de�ned on a complete
metric space has a unique �xed point and that �xed point can
be explicitly obtained as limit of repeated iteration of themap-
ping at any point of the underlying space. Evidently, every
contraction mapping is a continuous but not conversely.

A result on the existence and uniqueness of common
�xed point in metric spaces generally involves conditions
on commutativity, continuity, and contraction along with
a suitable condition on the containment of range of one
mapping into the range of other. Hence, one is always
required to improve one or more of these conditions to prove
a new �xed point theorem. In the recent past, several authors
have contributed to the vigorous development of metric �xed
point theory (e.g., [4–18]).

In metric �xed point theory, recently implicit rela-
tions are utilized to cover several contraction conditions in
one go rather than proving a separate theorem for each
contraction condition. �e �rst ever attempt to coin an
implicit relation can be traced back to Popa [19]. In 2008,
Ali and Imdad [20] introduced a new class of implicit
functions which covers several classes of contraction con-
ditions such as Ćirić quasi-contractions, generalized con-
tractions, �-type contractions, rational inequalities, and
among others. �ey (i.e., Ali and Imdad [20]) proved
some �xed point theorems for weakly compatible map-
pings satisfying common property (E.A). �erea�er, many
researchers utilized various implicit relations to prove a
number of �xed point theorems in di�erent settings (e.g., [21–
27]).

In this paper, utilizing the implicit function of Ali
and Imdad [20], we prove some common �xed point
theorems for two pairs of weakly compatible mappings
employing common limit range property. In process, many
known results (especially the ones contained in Ali and
Imdad [20]) are enriched and improved. Some related
results are also derived besides furnishing illustrative exam-
ples.
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De�nition 1. Let �, � : � → � be two self-mappings of a
metric space (�, �). �en the pair (�, �) is said to be

(1) commuting if ��� = ���, for all � ∈ �,

(2) weakly commuting (cf. [28]) if �(���, ���) ≤�(��, ��), for all � ∈ �,

(3) compatible (cf. [29]) if lim�→∞ �(����, ����) = 0
for each sequence {��} in� such that lim�→∞ ��� =
lim�→∞ ���,

(4) noncompatible (cf. [30]) if there exists a sequence{��} in � such that lim�→∞ ��� = lim�→∞ ��� but
lim�→∞ �(����, ����) is either nonzero or nonexis-
tent,

(5) weakly compatible (cf. [31]) if they commute at their
coincidence points, that is, ��� = ��� whenever�� = ��, for some � ∈ �.

For more details on systematic comparisons and illustra-
tions of earlier described notions, we refer to Murthy [32].

De�nition 2 (cf. [33]). A pair (�, �) of self-mappings
of a metric space (�, �) is said to satisfy the prop-
erty (E.A) if there exists a sequence {��} in � such
that

lim�→∞��� = lim�→∞��� = �, (1)

for some � ∈ �.

Hence any pair of compatible as well as noncompatible
self-mappings of a metric space (�, �) satisfy the property
(E.A) but a pair of mappings satisfying the property (E.A)
need not be noncompatible (see [34, Example 1]).

In 2005, Liu et al. [35] de�ned the notion of common
property (E.A) for hybrid pairs of mappings which contains
the property (E.A).

De�nition 3. Two pairs (�, �) and (, �) of self-mappings of
a metric space (�, �) are said to satisfy the common property
(E.A), if there exist two sequences {��} and {��} in � such
that

lim�→∞��� = lim�→∞��� = lim�→∞�� = lim�→∞��� = �, (2)

for some � ∈ �.

Motivated by the observation that the majority of the
�xed point results always require the closedness of the
underlying subspaces for the existence of common �xed
point under the property (E.A) and common property (E.A),
Sintunavarat and Kumam [36] coined the idea of “common
limit range property” (also see [37]). Recently, Imdad et al.
[38] extended the notion of common limit range property to
two pairs of self-mappings which relaxes the requirements on
closedness of the underlying subspaces.

De�nition 4 (cf. [36]). A pair (�, �) of self-mappings of a
metric space (�, �) is said to satisfy the common limit range

property with respect to �, denoted by (CLR�), if there exists
a sequence {��} in� such that

lim�→∞��� = lim�→∞��� = �, (3)

where � ∈ �(�).
�us, one can infer that a pair (�, �) satisfying the prop-

erty (E.A) along with closedness of the subspace �(�) always
enjoys the (CLR�) propertywith respect to themapping � (see
[38, Examples 2.16-2.17]).

De�nition 5. Two pairs (�, �) and (, �) of self-mappings of
a metric space (�, �) are said to satisfy the common limit
range property with respect to mappings � and �, denoted
by (CLR��), if there exist two sequences {��} and {��} in �
such that

lim�→∞��� = lim�→∞��� = lim�→∞�� = lim�→∞��� = �, (4)

where � ∈ �(�) ∩ �(�).
De�nition 6 (cf. [39]). Two families of self-mappings {� �}��=1
and {�	}�	=1 are said to be pairwise commuting if

(1) � ��
 = �
� � for all �, � ∈ {1, 2, . . . , �},
(2) �	�� = ���	 for all �, � ∈ {1, 2, . . . , �},
(3) � ��	 = �	� � for all � ∈ {1, 2, . . . , �} and � ∈{1, 2, . . . , �}.

2. Implicit Functions

In an attempt to cover Ćirić’s quasi-contractions, Ali and
Imdad [20] introduced a new class of implicit functions
which includes a variety of contraction classes such as

Ćirić quasi-contractions, generalized contractions, �-type
contractions, rational inequalities, and among others.

Let Φ be the family of lower semicontinuous functions� : R6 → R satisfying the following conditions:

(�1): �(�, 0, �, 0, 0, �) > 0, for all � > 0,
(�2): �(�, 0, 0, �, �, 0) > 0, for all � > 0,
(�3): �(�, �, 0, 0, �, �) > 0, for all � > 0.
�e following examples furnished in Ali and Imdad’s [20]

establishes the utility of the preceeding de�nition.

Example 7. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − �max {�2, �3, �4, �5, �6} ,
where � ∈ [0, 1) . (5)

Example 8. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − �max {�2, �3, �3�5, �4�6} ,
where � ∈ [0, 1) . (6)
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Example 9. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)=�1−�[max {�22, �3�4, �5�6, �3�5, �4�6}]1/2,
where � ∈ [0, 1) .

(7)

Example 10. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)
= �1 − ! [#max {�2, �3, �4, �5, �6}

+ (1 − #) (max {�22, �3�4, �5�6, �3�6, �4�5})1/2] ,
(8)

where ! ∈ [0, 1) and # ≥ 0.
Example 11. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)
= �21 − !max {�22, �23, �24} − #max {�3�5, �4�6} − *�5�6,

(9)

where !, #, * ≥ 0 and ! + * < 1.
Example 12. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = (1 + !�2) �1 − !max {�3�4, �5�6}
− #max {�2, �3, �4, �5, �6} , (10)

where ! ≥ 0 and # ∈ [0, 1).
Example 13. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)
= �1 − !�2 − #max {�3, �4} − *max {�3 + �4, �5 + �6} ,

(11)

where !, #, * ≥ 0 and ! + # + 2* < 1.
Example 14. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − � (max {�2, �3, �4, �5, �6}) , (12)

where� : R → R is an upper semicontinuous function such
that �(0) = 0 and �(�) < � for all � > 0.
Example 15. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − � (�2, �3, �4, �5, �6) , (13)

where � : R5 → R is an upper semicontinuous function
such that max{�(0, �, 0, 0, �), �(0, 0, �, �, 0), �(�, 0, 0, �, �)} < �
for each � > 0.

Example 16. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �21 − � (�22, �3�4, �5�6, �3�6, �4�5) , (14)

where � : R5 → R is an upper semicontinuous function
such that max{�(0, 0, 0, �, 0), �(0, 0, 0, 0, �), �(�, 0, �, 0, 0)} < �
for each � > 0.
Example 17. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)

= {{{{{
�1 − !�2 − #�23 + �24�3 + �4 − * (�5 + �6) , if �3 + �4 ̸= 0;
�1, if �3 + �4 = 0,

(15)

where !, #, * ≥ 0 and # + * < 1.
Example 18. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)

= {{{{{
��1 − ���2 − �3��4 + �5��6�3 + �4 , if �3 + �4 ̸= 0;
�1, if �3 + �4 = 0,

(16)

where 6 ≥ 1 and 0 ≤ � < ∞.

Example 19. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)

= {{{{{
�1 − !�2 − #�25 + �26�5 + �6 − * (�3 + �4) , if �5 + �6 ̸= 0;
�1, if �5 + �6 = 0,

(17)

where !, #, * ≥ 0 and # + * < 1.
Example 20. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)

= {{{
�1 − ��2 − �3�4 + �5�6�5 + �6 , if �5 + �6 ̸= 0;
�1, if �5 + �6 = 0,

(18)

where 0 ≤ � < ∞.

Example 21. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6)

=
{{{{{{{

�1 − ��2 − �3�4 + �5�6�3 + �4 − �3�5 + �4�6�5 + �6 ,
if �3 + �4 ̸= 0, �5 + �6 ̸= 0;

�1, if �3 + �4 = 0, �5 + �6 = 0,
(19)

where 0 ≤ � < ∞.
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Example 22. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − �3�4 + �5�61 + �2 . (20)

Example 23. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − !�2 − # �3 + �41 + �5�6 , (21)

where !, # ∈ [0, 1).
Example 24. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �21 − !�22 − # �5�61 + �23 + �24 , (22)

where !, # ≥ 0 and ! + # < 1.
Example 25. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �31 − �23�24 + �25�261 + �2 . (23)

Example 26. De�ne �(�1, �2, �3, �4, �5, �6) : R6 → R as

� (�1, �2, �3, �4, �5, �6) = �31 − !�21�2 − #�1�3�4 − *�25�6 − 8�5�26,
(24)

where !, #, *, 8 ≥ 0 and ! + * + 8 < 1.
Apart from earlier stated de�nitions, still there are many

contractive de�nitions which meet the requirements (�1),(�2) and (�3) but due to paucity of the spacewe have not opted
to include more examples.

3. Main Results

Firstly, we observe the following.

Lemma 27. Let �, , �, and � be self-mappings of a metric
space (�, �). Suppose the following:

(1) the pair (�, �) satis�es the (CLR�) property (or (, �)
satis�es the (CLR�) property),

(2) �(�) ⊂ �(�) (or (�) ⊂ �(�)),
(3) �(�) (or �(�)) is a closed subset of �,

(4) there exists � ∈ Φ such that (for all �, � ∈ �)
� (� (��, �) , � (��, ��) , � (��, ��) , � (�, ��) ,

� (��, �) , � (��, ��)) ≤ 0. (25)

en the pairs (�, �) and (, �) share the (CLR��) property.
Proof. If the pair (�, �) enjoys the (CLR�) property with
respect to mapping �, then there exists a sequence {��} in �
such that

lim�→∞��� = lim�→∞��� = �, (26)

where � ∈ �(�). Since �(�) ⊂ �(�), for each sequence{��} there exists a sequence {��} in � such that ��� = ���.
�erefore, due to closedness of �(�),

lim�→∞��� = lim�→∞��� = �, (27)

where � ∈ �(�)∩�(�).�us in all, we have��� → �, ��� →� and ��� → � as � → ∞. Now, we show that �� → � as� → ∞. On using inequality (25) with � = ��, � = ��, we
have

� (� (���, ��) , � (���, ���) , � (���, ���) ,
� (��, ���) , � (���, ��) , � (���, ���)) ≤ 0. (28)

Let on contrary that �� → �( ̸= �) as � → ∞. �en, on
taking limit as � → ∞ in the preceeding inequality, we get

� (� (�, �) , � (�, �) , � (�, �) , � (�, �) , � (�, �) , � (�, �)) ≤ 0, (29)

or

� (� (�, �) , 0, 0, � (�, �) , � (�, �) , 0) ≤ 0, (30)

which is a contradiction to (�2). Hence, �� → � which
shows that the pairs (�, �) and (, �) share the (CLR��)
property. �is concludes the proof.

Remark 28. In general, the converse of Lemma 27 is not true
(see [38, Example 3.5]).

Now, we state and prove our main result for two pairs of
weakly compatiblemappings satisfying the (CLR��) property.
�eorem 29. Let �, , �, and � be self-mappings of a metric
space (�, �) satisfying the inequality (25) of Lemma 27. If the
pairs (�, �) and (, �) share the (CLR��) property, then (�, �)
and (, �) have a coincidence point each.Moreover,�, , � and� have a unique common �xed point provided that both pairs(�, �) and (, �) are weakly compatible.

Proof. Since the pairs (�, �) and (, �) satisfy the (CLR��)
property, there exist two sequences {��} and {��} in � such
that

lim�→∞��� = lim�→∞��� = lim�→∞�� = lim�→∞��� = �, (31)

where � ∈ �(�) ∩ �(�). Since � ∈ �(�), there exists a point� ∈ � such that �� = �. We show that �� = ��. If not, then
using inequality (25) with � = �, � = ��, we get
� (� (��, ��) , � (��, ���) , � (��, ��) , � (��, ���) ,

� (��, ��) , � (���, ��)) ≤ 0, (32)

which on making � → ∞ reduces to

� (� (��, �) , � (�, �) , � (��, �) , � (�, �) , � (�, �) , � (�, ��)) ≤ 0,
(33)

or

� (� (��, �) , 0, � (��, �) , 0, 0, � (�, ��)) ≤ 0, (34)
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a contradiction to (�1). Hence, �� = �� = �. �erefore, � is a
coincidence point of the pair (�, �).

Also � ∈ �(�), there exists a point V ∈ � such that�V = �.
We assert that V = �V. If not, then using inequality (25) with� = �, � = V, we get

� (� (��, V) , � (��, �V) , � (��, ��) , � (V, �V) ,
� (��, V) , � (�V, ��)) ≤ 0, (35)

which reduces to

� (� (�, V) , � (�, �) , � (�, �) , � (V, �) , � (�, V) , � (�, �)) ≤ 0,
(36)

or

� (� (�, V) , 0, 0, � (V, �) , � (�, V) , 0) ≤ 0, (37)

a contradiction to (�2). Hence, V = �V = �, which shows
that V is a coincidence point of the pair (, �).

Since the pair (�, �) is weakly compatible and �� = ��,
hence �� = ��� = ��� = ��. Now, we show that � is a
common �xed point of the pair (�, �). Suppose that �� ̸= �,
using inequality (25) with � = �, � = V, we have

� (� (��, V) , � (��, �V) , � (��, ��) , � (V, �V) ,
� (��, V) , � (�V, ��)) ≤ 0, (38)

or

� (� (��, �) , � (��, �) , 0, 0, � (��, �) , � (�, ��)) ≤ 0, (39)

a contradiction to (�3); we get �� = � = �� which shows that� is a common �xed point of the pair (�, �).
Also the pair (, �) is weakly compatible and V = �V,

then � = �V = �V = ��. Suppose that � ̸= �, then using
inequality (25) with � = �, � = �, we have

� (� (��, �) , � (��, ��) , � (��, ��) , � (�, ��) ,
� (��, �) , � (��, ��)) ≤ 0, (40)

or

� (� (�, �) , � (�, �) , 0, 0, � (�, �) , � (�, �)) ≤ 0, (41)

a contradiction to (�3). �erefore, � = � = �� which shows
that � is a common �xed point of the pair (, �) and in all� is a common �xed point of both pairs (�, �) and (, �).
Uniqueness of common �xed point is an easy consequence of
the inequality (25) in view of condition (�3). �is concludes
the proof.

Remark 30. �eorem 29 improves the corresponding results
contained in Ali and Imdad’s [20, �eorem 3.1] as closedness
of the underlying subspaces is not required.

Now, we present an example which demonstrates the
validity of the hypotheses and degree of generality of our
main result over comparable ones from the existing literature.

Example 31. Consider � = [5, 21) equipped with the usual
metric. De�ne four self-mappings �, , �, and � by

� (�) = {5, if � ∈ {5} ∪ (9, 21) ;
20, if � ∈ (5, 9] ,

 (�) = {5, if � ∈ {5} ∪ (9, 21) ;
13, if � ∈ (5, 9] ,

� (�) =
{{{{{{{

5, if � = 5;
10, if � ∈ (5, 9] ;� + 1

2 , if � ∈ (9, 21) ,

� (�) = {{{{{
5, if � = 5;
18, if � ∈ (5, 9] ;
� − 4, if � ∈ (9, 21) .

(42)

Also, de�ne implicit function �(�1, �2, �3, �4, �5, �6) :
(R+)6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − �max {�2, �3, �4, �5, �6} (43)

or

� (��, �)
≤ �max {� (��, ��) , � (��, ��) , � (�, ��) ,

� (��, �) , � (��, ��)} ,
(44)

for all �, � ∈ � and � ∈ [0, 1). By a routine calculation, one
can verify the inequality (44) with � = 1/2. If we choose two
sequences as {��} = {9 + (1/�)}�∈N, {��} = {5} (or {��} = {5},{��} = {9 + (1/�)}�∈N), then the pairs (�, �) and (, �) satisfy
the (CLR��) property:

lim�→∞��� = lim�→∞��� = lim�→∞��
= lim�→∞��� = 5 ∈ � (�) ∩ � (�) . (45)

Also, �(�) = {5, 20} ̸⊆ [5, 17) ∪ {18} = �(�) and(�) = {5, 13} ̸⊆ [5, 11) = �(�). �us all the conditions
of �eorem 29 are satis�ed and 5 is a unique common �xed
point of the pairs (�, �) and (, �) which also remains a
point of coincidence as well. Here, one may notice that all
the involved mappings are discontinuous at their unique
common �xed point 5.

Notice that the subspaces �(�) and �(�) are not closed
subspaces of �; therefore, �eorem 29 of Ali and Imdad
[20] cannot be used in the context of this example which
establishes the genuineness of our extension.

�eorem 32. Let �, , �, and � be self-mappings of a metric
space (�, �) satisfying all the hypotheses of Lemma 27. en�, , �, and� have a unique common �xed point provided that
both pairs (�, �) and (, �) are weakly compatible.

Proof. In view of Lemma 27, the pairs (�, �) and (, �) share
the (CLR��) property so that there exist two sequences {��}
and {��} in� such that

lim�→∞��� = lim�→∞��� = lim�→∞��� = lim�→∞�� = �, (46)
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where � ∈ �(�)∩�(�).�e rest of the proof can be completed
on the lines of the proof of �eorem 29. �is completes the
proof.

�e following example demonstrates the utility of �eo-
rem 32 over �eorem 29.

Example 33. In the setting of Example 31, replace the self-
mappings � and  by the following besides retaining the rest
(i.e., � and �):

� (�) = {5, if � ∈ {5} ∪ (9, 21) ;
15, if � ∈ (5, 9] ,

 (�) = {5, if � ∈ {5} ∪ (9, 21) ;
10, if � ∈ (5, 9] ,

� (�) =
{{{{{{{

5, if � = 5;
11, if � ∈ (5, 9] ;� + 1

2 , if � ∈ (9, 21) ,

� (�) = {{{{{
5, if � = 5;
17, if � ∈ (5, 9] ;
� − 4, if � ∈ (9, 21) .

(47)

�en, like earlier example, the pairs (�, �) and (, �)
satisfy the (CLR��) property. Consider the implicit function

�(�1, �2, �3, �4, �5, �6) : (R+)6 → R as

� (�1, �2, �3, �4, �5, �6) = �1 − �max {�2, �3, �4, �5, �6} , (48)

which implies

� (��, �) ≤ �max {� (��, ��) , � (��, ��) , � (�, ��) ,
� (��, �) , � (��, ��)} ,

(49)

for all �, � ∈ � and � ∈ [0, 1). By a routine calculation,
one can verify inequality (49) with � = 1/2. Also, �(�) ={5, 15} ⊂ [5, 17] = �(�) and (�) = {5, 10} ⊂ [5, 11] = �(�).
�e pairs (�, �) and (, �) commute at 5 which is also their
common coincidence point as well. �us all the conditions
of �eorems 32 are satis�ed and 5 is a unique common �xed
point of the involved mappings �, , �, and �.

Here, it can be pointed out that �eorem 29 is not
applicable to this example as both �(�) and �(�) are closed
subsets of � which demonstrates the situational utility of
�eorem 32 over �eorem 29.

Corollary 34. e conclusions of Lemma 27, eorems 29,
and 32 remain true if inequality (25) is replaced by one of the
following contraction conditions. For all �, � ∈ �,

� (��, �) ≤ �max {� (��, ��) , � (��, ��) , � (�, ��) ,
� (��, �) , � (��, ��)} ,

(50)

where � ∈ [0, 1).

Consider

� (��, �)
≤ �max {� (��, ��) , � (��, ��) , � (��, ��) � (��, �) ,

� (�, ��) � (��, ��)} ,
(51)

where � ∈ [0, 1).
Consider

� (��, �)
≤ � [max {�2 (��, ��) , � (��, ��) � (�, ��) ,

� (��, �) � (��, ��) , � (��, ��) � (��, �) ,
� (�, ��) � (��, ��) }]1/2,

(52)

where � ∈ [0, 1).
Consider

� (��, �)
≤ ! [#max {� (��, ��) , � (��, ��) , � (�, ��) ,

� (��, �) , � (��, ��)}
+ (1 − #) (max {�2 (��, ��) , � (��, ��) � (�, ��) ,

� (��, �) � (��, ��) ,
� (��, ��) � (��, ��) ,
�(�, ��)�(��, �)})1/2] ,

(53)

where ! ∈ [0, 1) and # ≥ 0.
Consider

�2 (��, �)
≤ !max {�2 (��, ��) , �2 (��, ��) , �2 (�, ��)}

+ #max {� (��, ��) � (��, �) , � (�, ��) � (��, ��)}
+ *� (��, �) � (��, ��) ,

(54)

where !, #, * ≥ 0 and ! + * < 1.
Consider

(1 + !� (��, ��)) � (��, �)
≤ !max {� (��, ��) � (�, ��) , � (��, �) � (��, ��)}

+ #max {� (��, ��) , � (��, ��) , � (�, ��) ,
� (��, �) , � (��, ��)} ,

(55)

where ! ≥ 0 and # ∈ [0, 1).
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Consider

� (��, �)
≤ !� (��, ��) + #max {� (��, ��) , � (�, ��)}

+ *max {� (��, ��) + � (�, ��) ,
� (��, �) + � (��, ��)} ,

(56)

where !, #, * ≥ 0 and ! + # + 2* < 1.
Consider

� (��, �)
≤ � (max {� (��, ��) , � (��, ��) , � (�, ��) ,

� (��, �) , � (��, ��)}) ,
(57)

where � : R+ → R is an upper semicontinuous function such
that �(0) = 0 and �(�) < � for all � > 0.

Consider

� (��, �) ≤ � (� (��, ��) , � (��, ��) , � (�, ��) ,
� (��, �) , � (��, ��)) , (58)

where � : (R+)5 → R is an upper semicontinuous function
such that max{�(0, �, 0, 0, �), �(0, 0, �, �, 0), �(�, 0, 0, �, �)} < �
for each � > 0.

Consider

�2 (��, �)
≤ � (�2 (��, ��) , � (��, ��) � (�, ��) ,

� (��, �) � (��, ��) ,
� (��, ��) � (��, ��) , � (�, ��) � (��, �) ) ,

(59)

where � : (R+)5 → R is an upper semicontinuous function
such thatmax{�(0, 0, 0, �, 0), �(0, 0, 0, 0, �), �(�, 0, �, 0, 0)} < �
for each � > 0.

In the following contraction conditions, one denotes L =�(��, ��) + �(�, ��) and L1 = �(��, �) + �(��, ��):
� (��, �)

≤
{{{{{{{{{

!� (��, ��) + #�2 (��, ��) + �2 (�, ��)
� (��, ��) + � (�, ��)

+* (� (��, �) + � (��, ��)) , if L ̸= 0;
0, if L = 0,

(60)

where !, #, * ≥ 0 and # + * < 1,
�� (��, �)

≤
{{{{{{{{{{{{{{{

��� (��, ��)
+� (��, ��) �� (�, ��) + � (��, �) �� (��, ��)

� (��, ��) + � (�, ��) ,
if L ̸= 0;

0, if L = 0,
(61)

where 6 ≥ 1 and 0 ≤ � < ∞,

� (��, �)

≤
{{{{{{{{{

!� (��, ��) + #�2 (��, �) + �2 (��, ��)
� (��, �) + � (��, ��)

+* (� (��, ��) + � (�, ��)) , if L1 ̸= 0;
0, if L1 = 0,

(62)

where !, #, * ≥ 0 and # + * < 1,
� (��, �)

≤
{{{{{{{{{{{{{{{

�� (��, ��)
+� (��, ��) � (�, ��) + � (��, �) � (��, ��)

� (��, �) + � (��, ��) ,
if L1 ̸= 0;

0, if L1 = 0,
(63)

where 0 ≤ � < ∞,

� (��, �)

≤

{{{{{{{{{{{{{{{{{{{{{{{{{

�� (��, ��)
+� (��, ��) � (�, ��) + � (��, �) � (��, ��)

� (��, ��) + � (�, ��)
+� (��, ��) � (��, �) + � (�, ��) � (��, ��)

� (��, �) + � (��, ��) ,
if L ̸= 0, L1 ̸= 0;

0, if L = 0, L1 = 0,
(64)

where 0 ≤ � < ∞

� (��, �) ≤ � (��, ��) � (�, ��) + � (��, �) � (��, ��)
1 + � (��, ��) ,

� (��, �) ≤ !� (��, ��) + # � (��, ��) + � (�, ��)
1 + � (��, �) � (��, ��) ,

(65)

where !, # ∈ [0, 1),
�2 (��, �)

≤ !�2 (��, ��) + # � (��, �) � (��, ��)
1 + �2 (��, ��) + �2 (�, ��) ,

(66)
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where !, # ≥ 0 and ! + # < 1,
�3 (��, �)

≤ �2 (��, ��) �2 (�, ��) + �2 (��, �) �2 (��, ��)
1 + � (��, ��) ,

�3 (��, �)
≤ !�2 (��, �) � (��, ��)

+ #� (��, �) � (��, ��) � (�, ��)
+ *�2 (��, �) � (��, ��) + 8� (��, �) �2 (��, ��) ,

(67)

where !, *, 8, # ≥ 0 and ! + * + 8 < 1.
Proof. �e proof of each inequality (50)–(67) easily follows
from�eorem 29 in view of Examples 7–26.

Remark 35. Corollary 34 improves and generalizes a mul-
titude of well-known results especially those contained in
[12, 14, 29, 30, 35, 40–42].

By choosing �, , �, and � suitably, we can deduce
corollaries involving two as well as three self-mappings. For
the sake of naturality, we only derive the following corollary
involving a pair of self-mappings.

Corollary 36. Let � and � be self-mappings of a metric space(�, �). Suppose the following:
(1) the pair (�, �) satis�es the (CLR�) property,
(2) there exists � ∈ Φ such that

� (� (��, ��) , � (��, ��) , � (��, ��) , � (��, ��) ,
� (��, ��) , � (��, ��)) ≤ 0, (68)

for all �, � ∈ �.

en (�, �) has a coincidence point. Moreover, if the pair(�, �) is weakly compatible, then the pair has a unique common
�xed point in �.

As an application of �eorem 29, we have the following
result involving four �nite families of self-mappings.

�eorem 37. Let {� �}��=1, {
}��=1, {�	}�	=1, and {��}��=1 be four
�nite families of self-mappings of a metric space (�, �) with� = �1�2 ⋅ ⋅ ⋅ ��,  = 12 ⋅ ⋅ ⋅ �, � = �1�2 ⋅ ⋅ ⋅ �� and� = �1�2 ⋅ ⋅ ⋅ �� satisfying the condition (25). Suppose that the
pairs (�, �) and (, �) enjoy the (CLR��) property, then (�, �)
and (, �) have a point of coincidence each.

Moreover, {� �}��=1, {
}�
=1, {�	}�	=1, and {��}��=1 have a

unique common �xed point if the families ({� �}, {�	}) and({�}, {�ℎ}) commute pairwise wherein � ∈ {1, 2, . . . , �}, � ∈{1, 2, . . . , 6}, � ∈ {1, 2, . . . , �}, and � ∈ {1, 2, . . . , N}.
Proof. �e proof of this theorem can be completed on the
lines of �eorem 2.2 of Imdad et al. [10, �eorem 2.2].

Remark 38. (1) A result similar to�eorem 37 can be outlined
in respect of �eorem 29.

(2) �eorem 37 improves and extends the result of Ćirić
et al. [5] and Pathak et al. [25].

Now, we indicate that �eorem 37 can be utilized to
derive common �xed point theorems for any �nite number
of mappings. As a sample, for �ve mappings, we can derive
the following by setting one family of two members while the
remaining three of single members.

Corollary 39. Let �, , O, �, and � be self-mappings of a
metric space (�, �). Suppose the following:

(1) the pairs (�, �O) and (, �) share the (CLR(��)(�))
property,

(2) there exists � ∈ Φ such that

� (� (��, �) , � (�O�, ��) , � (��, �O�) , � (�, ��) ,
� (�O�, �) , � (��, ��)) ≤ 0, (69)

for all �, � ∈ �.

en (�, �O) and (, �) have a coincidence point each.
Moreover, �, , O, �, and � have a unique common �xed point
provided that both pairs (�, �O) and (, �) commute pairwise,
that is, �� = ��, �O = O�, �O = O�, � = �.

Similarly, we can derive a common �xed point theorem
for six mappings by setting two families of two members
while the rest two of single members.

Corollary 40. Let �, , P, O, �, and � be self-mappings of a
metric space (�, �). Suppose that

(1) the pairs (�, �O) and (, �P) share the (CLR(��)(��))
property,

(2) there exists � ∈ Φ such that

� (� (��, �) , � (�O�, �P�) , � (��, �O�) , � (�, �P�) ,
� (�O�, �) , � (�P�,��)) ≤ 0,

(70)

for all �, � ∈ �.

en (�, �O) and (, �P) have a coincidence point each.
Moreover, �, , P, O, �, and � have a unique common �xed
point provided that both pairs (�, �O) and (, �P) commute
pairwise, that is, �� = ��, �O = O�, �O = O�, � = �,P = P, and �P = P�.

By setting �1 = �2 = ⋅ ⋅ ⋅ = �� = �, 1 = 2 = ⋅ ⋅ ⋅ =� = , �1 = �2 = ⋅ ⋅ ⋅ = �� = � and �1 = �2 = ⋅ ⋅ ⋅ = �� = � in
�eorem 37, we deduce the following.

Corollary 41. Let �, , �, and � be self-mappings of a metric
space (�, �). Suppose the following:

(1) the pairs (��, ��) and (�, ��) share the (CLR�� ,��)
property,



International Journal of Analysis 9

(2) there exists � ∈ Φ such that

� (� (���, ��) , � (���, ���) , � (���, ���) ,
� (��, ���) , � (���, ��) , � (���, ���)) ≤ 0, (71)

for all �, � ∈ � where �, �, 6, N are �xed positive
integers.

en �, , �, and � have a unique common �xed point
provided that �� = �� and � = �.
Remark 42. Corollary 41 is a slight but partial generalization
of �eorem 29 as the commutativity requirements (i.e., �� =�� and � = �) in this corollary are relatively stronger as
compared to weak compatibility in �eorem 29.

Remark 43. Results similar to Corollary 41 can be derived
from�eorem 29 and Corollary 34.

Remark 44. It may be noticed that the earlier proved results,
namely, �eorems 29–37 (also Corollaries 36–41) remain
valid in symmetric space (�, �) whenever � is continuous.
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