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a b s t r a c t

Finding an efficient method to detect counterfeit banknotes is an imperative task in business transactions.
In this paper, we propose a system based on multiple-kernel support vector machines for counterfeit ban-
knote recognition. A support vector machine (SVM) to minimize false rates is developed. Each banknote is
divided into partitions and the luminance histograms of the partitions are taken as the input of the system.
eywords:
anknote recognition
upport vector machine
alanced error rate
ultiple-kernel learning

Each partition is associated with its own kernels. Linearly weighted combination is adopted to combine
multiple kernels into a combined matrix. Optimal weights with kernel matrices in the combination are
obtained through semi-definite programming (SDP) learning. Two strategies are adopted to reduce the
amount of time and space required by the SDP method. One strategy assumes the non-negativity of the
kernel weights, and the other one is to set the sum of the weights to be unity. Experiments with Taiwanese

propo
ers.
emi-definite programming banknotes show that the
and multiple-SVM classifi

. Introduction

With the advance of digital imaging technologies, color scan-
ers and laser printers make it increasingly easier to produce
ounterfeit banknotes with high resolution. The proliferation of
ounterfeit banknotes in circulation leads to profit loss of traders
nd banks. Therefore, finding an efficient method to detect coun-
erfeit banknotes is an imperative and demanding task for business
ransactions in our daily life.

Several approaches have been proposed for counterfeit ban-
note recognition. Takeda et al. [1] proposed a mask optimization
echnique using genetic algorithms (GA) and neural networks to
etect counterfeit banknotes. Frosini et al. [2] employed neural
etworks to develop a paper currency recognition and verification
ystem. He et al. [3] presented one-class classifiers for counterfeit
anknote recognition. Each banknote is divided into m × n parti-
ions. An individual classifier is constructed for each partition, and
hen these classifiers are combined to make the final decision. In

ddition, GA is employed to find optimal values for m and n. How-
ver, this GA-based method is very time consuming. Ionescu and
alescu [4] also proposed one-class classifiers for counterfeit ban-
note recognition. For each banknote, several specific regions are

� This work was supported by the National Science Council under the grant NSC
5-2221-E-110-055-MY2.
∗ Corresponding author at: Department of Electrical Engineering, No. 70, Lienhai
d., Kaohsiung 80424, Taiwan.

E-mail address: leesj@mail.ee.nsysu.edu.tw (S.-J. Lee).

568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2010.04.015
sed approach outperforms single-kernel SVMs, standard SVMs with SDP,

© 2010 Elsevier B.V. All rights reserved.

considered, and each region is divided into m × n partitions. In addi-
tion, fuzzy Hamming distance is used to measure the similarity
between banknotes.

Support vector machines (SVMs) have been shown to be an
effective tool for solving classification problems [5–11]. However,
the practitioner has to determine the kernel function and the
associated kernel hyperparameters in advance. Unsuitably cho-
sen kernel functions or hyperparameters may lead to significantly
bad performance. Thus, determining suitable kernel functions and
hyperparameters becomes an important issue for the application
of SVMs [12–14]. Most researchers use trial-and-error to choose
proper values for the hyperparameters; this obviously takes a lot
of efforts. In addition, using a single kernel may not be suffi-
cient to solve a complex problem accurately. Several researchers
have adopted multiple kernels to solve these problems successfully
[15–22].

Lanckriet et al. [18] used a linear combination of matrices to
combine multiple kernels; they integrated multiple-kernel learn-
ing with SVMs, and transformed the problem into a semi-definite
programming (SDP) problem, which, as a convex optimization
problem, has a global optimum. SDP can be solved efficiently by
the interior-point method. Other efficient multiple-kernel learn-
ing algorithms include Bach et al. [15], Sonnenburg et al. [21], and
Rakotomamonjy et al. [20]. These approaches deal with large-scale

problems by iteratively using the SMO algorithm [23] to update
Lagrange multipliers and kernel weights in turn. Although these
methods are faster than SDP, they tend to suffer from local min-
imum traps. Multiple-kernel learning based on hyperkernels has
also been studied in [19,24]. On the other hand, Crammer et al. [17]

dx.doi.org/10.1016/j.asoc.2010.04.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:leesj@mail.ee.nsysu.edu.tw
dx.doi.org/10.1016/j.asoc.2010.04.015
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nd Bennett et al. [16] use boosting methods to combine heteroge-
eous kernel matrices.

We propose a system based on multiple-kernel support vec-
or machines for counterfeit banknote recognition. For counterfeit
anknote recognition, a false positive is usually more harmful than
false negative, since counterfeit banknotes can cause a bigger

nancial loss if they are not detected. We develop a SVM architec-
ure to favorably reduce false positives. Each banknote is divided
nto partitions and the luminance histograms of the partitions
re taken as the input of the system. Each partition is associated
ith its own kernels. Linearly weighted combination is adopted

o combine multiple kernels into a combined matrix. By applying
ultiple-kernel learning, optimal weights with kernel matrices in

he combination are obtained through semi-definite programming
SDP) learning. The original SDP problem was formulated on trans-
uction setting where the kernel matrix is created by using the
raining patterns and the testing patterns. The amount of time and
pace may grow rapidly as the quantity of data increases. Instead,
e consider an induction setting by using only the training patterns

o construct the kernel matrix and adopt two strategies to improve
he performance of SDP without degrading the accuracy. One strat-
gy assumes the non-negativity of the kernel weights, and the other
ne is to set the sum of the weights to be unity. Experiments with
aiwanese banknotes show that the proposed method outperforms
ingle-kernel SVMs, standard SVMs with SDP, and multiple-SVM
lassifiers.

The rest of this paper is organized as follows. Section 2 briefly
ntroduces SVMs and multiple-kernel learning. In Section 3, the
roposed SVM architectures are presented. Section 4 describes the
roposed SDP with induction for multiple-kernel learning. The sys-
em for counterfeit banknote recognition is described in Section 5.
xperimental and comparison results are presented in Section 6.
inally, conclusion is given in Section 7.

. Background

In this section, basic concepts about SVMs are introduced. Com-
osition of kernel matrices and semi-definite programming for
ultiple-kernel learning are also briefly described.

.1. Weighted SVMs

Given a set of training patterns, SVM [5,25–27] is a kernel
ethod which finds the maximum margin hyperplane in feature

pace to separate the training patterns into two groups. To allow
or the possibility of outliers in the dataset and to make the method

ore robust, some patterns need not be strictly and correctly clas-
ified by the hyperplane, but the misclassified patterns should be
enalized. For this purpose, slack variables �i are introduced to
ccount for the misclassified patterns. The objective function and
onstraints of the problem can therefore be formulated as:

min
w,b

1
2

‖w‖2 + C

l∑
i=1

�i

s.t. yi(〈w, �(xi)〉 + b) ≥ 1 − �i, �i ≥ 0, i = 1, 2, . . . , l,

(1)

here l is the number of training patterns, xi is the input vector
f training pattern i, and C is a parameter which gives a tradeoff
etween maximum margin and classification error. In the above
etup, � : X → F is a mapping from the input space to a feature

pace, F, where patterns are more easily separated. Note that
w, �(x)〉 + b = 0 is the hyperplane in the feature space acting as
he decision boundary for the two groups yi = +1 and yi = −1.

For some classification problems, different training patterns
ay have different impacts on the decision of the separating
uting 11 (2011) 1439–1447

hyperplane [28–32]. Weighted SVM which uses different penalty
parameters in the SVM formulation have been proposed for solving
these problems as follows:

min
w,b

1
2

‖w‖2 + C

l∑
i=1

di�i

s.t. yi(〈w, �(xi)〉 + b) ≥ 1 − �i, �i ≥ 0, i = 1, 2, . . . , l

(2)

where each �i can be assigned with a penalty di, allowing different
training patterns to make different contributions to the construc-
tion of the hyperplane. When a training pattern owns a bigger
weight, it is more likely to be classified correctly. Eq. (2) can be
transformed to the following dual form:

ω(K) = max˛

l∑
i=1

˛i − 1
2

l∑
i=1

l∑
j=1

yiyj˛i˛jk(xi, xj)

s.t. Cdi ≥ ˛i ≥ 0, i = 1, 2, . . . , l,
l∑

i=1

yi˛i = 0,

(3)

where k(xi, xj) = 〈�(xi), �(xj)〉 is a kernel function, calculating the
inner product between �(xi) and �(xj). By rewriting Eq. (3) in matrix
form, we have

ω(K) = max˛˛T e − 1
2

˛T G(K)˛

s.t. ˛ ≥ 0,

Cd − ˛ ≥ 0,

˛T y = 0,

(4)

where G(K) = diag(y)K diag(y), and d = [d1, . . . , dl]
T . Throughout

this paper, the radial basis function (RBF) kernel is adopted. That is,

k(xi, xj) = exp(−�‖xi − xj‖2), (5)

where � is the width parameter of the RBF kernel.

2.2. Kernel fusion and weight learning

Early SVM-based methods used a single-kernel function,
k(x, y) ≡ 〈�(x), �(y)〉, to calculate the inner product between two
images in the feature space F. In practice, the kernel function
is characterized by a kernel matrix computed from the training
patterns. A kernel matrix is a square matrix K ∈ Rl×l where each
matrix entry measures the similarity between �(xi) and �(xj). If a
dataset has varying local distributions, using a single kernel may
lose some information to cope with this varying distribution. Most
researchers use the trial-and-error heuristic to choose the best
hyperparameters, which obviously takes a lot of efforts. Kernel
fusion can help to solve this problem [15–17]. A simple direct sum
fusion can be defined as k(xi, xj) ≡ 〈�(xi), �(xj)〉, where � is a new

feature mapping defined as �(x) = [�1(x), . . . , �M(x)]T . This fea-
ture mapping can handle issues of varying pattern distributions by
using multiple-kernel functions. The kernel matrix can be easily
written as K = K1 + · · · + KM in this case, with Ki obtained from �i.
This simple fusion can be generalized to a weighted combination
of kernel matrices as follows:

M∑

K =

s=1

�sKs, (6)

where M is the total number of kernel matrices and �s is the weight
of the sth kernel matrix. The goal of kernel fusion is to find an
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ptimal weight (�s) for each kernel matrix. When optimal ker-
el weights are obtained, the optimal hyperplane will be located
orrespondingly.

The objective function and constraints of the multiple-kernel
earning problem can be formulated as follows:

min
K̃

max˛˛T e − 1
2

˛T G(K)˛

s.t. ˛ ≥ 0,

Cd − ˛ ≥ 0,

˛T y = 0,

K̃ � 0,

trace(K̃) = c,

(7)

here K̃ =
∑M

s=1�sK̃s is obtained from the training patterns and the

esting patterns, and K =
∑M

s=1�sKs is obtained from the training

atterns and G(K) = G(
∑M

s=1�sKs) = diag(y)(K)diag(y).
Lanckriet et al. [18] transformed Eq. (7) into the SDP standard

orm as follows:

min
t,K̃,�,�,ı

t

s.t. K̃ � 0,

trace(K̃) = c,[
G(K) (e + � − ı + �y)

(e + � − ı + �y)T t − 2CıT d

]
� 0,

� ≥ 0,

ı ≥ 0,

(8)

here � ≥ 0, ı ≥ 0, and � ∈ R are Lagrange multipliers, and A � 0
eans that A is a positive semi-definite matrix. Eq. (8) can then be

olved by applying the primal-dual interior-point method.

. Proposed SVM architectures

The goal of counterfeit banknote recognition is to minimize the
umber of false decisions. A false decision can be a false positive
FP) or false negative (FN). A FP is a forged note that was recognized
s a genuine note, while a FN is a genuine note that was recog-
ized as a forged note. In particular, we would like to minimize FPs
ore preferably than to minimize FNs, since a FP can cause a bigger

nancial loss than a FN.

.1. Single-kernel weighted SVM

The single-kernel SVM designed for our purpose can be formu-
ated as follows:

min
w,b

1
2

‖w‖2 + C

⎛
⎝ ∑

{i|yi=+1}
d+

i
�i +

∑
{i|yi=−1}

d−
i

�i

⎞
⎠

s.t. yi(〈w, �(xi)〉 + b) ≥ 1 − �i, �i ≥ 0, i = 1, 2, . . . , l

(9)

here yi = +1 denotes that xi is a genuine banknote while yi = −1
enotes that xi is a counterfeit banknote. The penalty parameter d+

i
nd d−

i
of Eq. (2) are defined as

+
i

= 1
+ , (10a)
2l

−
i

= 1
2l−

(10b)

here l+ is the number of genuine banknotes, and l− is the number
f counterfeit banknotes in the training set. Note that l+ + l− = l.
uting 11 (2011) 1439–1447 1441

Usually, l+ is much larger than l− since counterfeit banknotes are
rarely found. Therefore, the penalty d+ associated with a FP is larger
than the penalty d− associated with a FN. A dual form, which is
identical to Eq. (4), can be derived in a similar way.

Interestingly, the penalty term in Eq. (9) is closely related to the
balanced error rate (BER) which was adopted as the main perfor-
mance index in NIPS 2003 Feature Selection Challenge [33]. BER is
defined as

BER = 1
2

(FNR + FPR) = 1
2

(
FN

TP + FN
+ FP

TN + FP

)
= FN

2l+
+ FP

2l−
(11)

where TP is the number of true positives and TN is the number
of true negatives for the training patterns. True positives and true
negatives are notes that were recognized correctly. If we simplify
�i to 1, the penalty term in Eq. (9) would be∑
{i|yi=+1}

d+
i

�i +
∑

{i|yi=−1}
d−

i
�i =

∑
{i|yi=+1}

�i

2l+
+
∑

{i|yi=−1}

�i

2l−

= FN

2l+
+ FP

2l−
= BER. (12)

In this case, our proposed SVM can minimize the balanced error
rate.

3.2. Multiple-kernel weighted SVM

Note that the first two constraints of Eq. (8) imply that the
amount of time and space requirements grows rapidly as the quan-
tity of data increases, since K̃ is obtained from the training patterns
and the testing patterns. One needs to check whether the combined
matrix is positive semi-definite in each iteration. Furthermore, the
constraint for the weights is loose in the last constraint, i.e., �s,
s = 1, . . . , M can be negative. This introduces huge search space for
finding optimal solutions. To reduce the computational complexity,
we consider an induction setting by using only the training patterns
to construct the kernel matrix. In addition, we adopt two strategies
to help narrow down the search space for kernel weights. The first
strategy is to assume the non-negativity of kernel weights and the
second strategy is to set the sum of weights equal to 1. The multiple-
kernel optimization problem can thus be formulated as follows:

min
�

max˛˛T e − 1
2

˛T G(K)˛

s.t. ˛ ≥ 0,

Cd − ˛ ≥ 0,

˛T y = 0,

� ≥ 0,

eT � = 1

(13)

where K =
∑M

s=1�sKs is obtained from the training patterns.
Let ˛∗ and �∗ be the solutions to Eq. (13). Define Isv =

{i|i ∈ {1, 2, . . . l}, ˛∗
i

> 0}. With k ∈ Isv, the optimal offset (b∗) can be
obtained by the following equation:

b∗ = yk −
l∑

i=1

˛∗
i yi

(
M∑

s=1

�∗
s ks(xk, xi)

)
. (14)

Then the decision function obtained from the multiple-kernel SVM-
based classifier can be expressed as
f (x) = sgn

(
l∑

i=1

˛∗
i yi

(
M∑

s=1

�∗
s ks(x, xi)

)
+ b∗

)
(15)

where sgn is the sign function.



1 Comp

4

c
b
p
t
c
s
b

B
t

L

w
m
w

e

N
t
m

˛

w
i
t
f

ω

T
h

t

B
�
f[
442 C.-Y. Yeh et al. / Applied Soft

. SDP with induction

By following the process proposed by Lanckriet et al. [18], we
an transform Eq. (13) into the SDP standard form which can then
e solved by applying the primal-dual interior-point method. A SDP
roblem is an optimization problem with a linear objective func-
ion, linear matrix inequality (LMI) constraints, and affine equality
onstraints. First of all, we introduce an auxiliary variable t that
erves as an upper bound on the objective function, and Eq. (13)
ecomes:

min
t,�

t

s.t. t ≥ max˛≥0,Cd−˛≥0,˛T y=0˛T e − 1
2

˛T G(K)˛,

� ≥ 0,

eT � = 1.

(16)

y the Lagrange technique, the maximum on the right hand side of
he first constraint can be expressed with the following Lagrangian:

(˛, �, ı, �) = ˛T e − 1
2

˛T G(K)˛ + �T ˛ + ıT (Cd − ˛) + �(˛T y) (17)

here � ≥ 0, ı ≥ 0, and � ∈ R are Lagrange multipliers. L has to be
aximized with respect to ˛ given �, ı, and �, and then minimized
ith respect to �, ı, and �.

Setting partial derivatives of L with respect to primal variables
qual to 0 yields the following results:

∂L

∂˛
= e − G(K)˛ + � − ı + �y = 0,

⇒ G(K)˛ = e + � − ı + �y,

⇒ ˛ = (G(K))−1(e + � − ı + �y).

(18)

ote that G(K) may not be invertible for some combinations of
he kernel weights. This can be overcome by using the following

odification:

= (G(K) + εI)−1(e + � − ı + �y) (19)

here ε is an arbitrarily small positive real number, and I is a l × l
dentity matrix. Substituting Eq. (18) into Eq. (17), we can eliminate
he primal variables ˛, turning the Lagrangian into the Wolfe dual
orm:

(K) = (e + � − ı + �y)T (G(K))−1(e + � − ı + �y) + 2CıT d. (20)

his implies that for any t > 0, the inequality constraint t ≥ ω(K)
olds if and only if there exits � ≥ 0, ı ≥ 0, and � such that

≥ (e + � − ı + �y)T (G(K))−1(e + � − ı + �y) + 2CıT d. (21)

ecause G(K) � 0 and (t − 2CıT d) − (e + � − ı + �y)T (G(K))−1(e +
− ı + �y) ≥ 0, the inequality constraint is now equivalent to the
ollowing LMI due to the Schur complement lemma [34]:

G(K) (e + � − ı + �y)

(e + � − ı + �y)T t − 2CıT d.

]
� 0. (22)

Fig. 1. Block diagram
uting 11 (2011) 1439–1447

Taking Eq. (22) into account, Eq. (16) can be expressed in the fol-
lowing standard SDP form:

min
t,�,�,�,ı

t

s.t.

[
G(K) (e + � − ı + �y)

(e + � − ı + �y)T t − 2CıT d

]
� 0,

� ≥ 0,

� ≥ 0,

ı ≥ 0,

eT � = 1.

(23)

Then, by applying the primal-dual interior-point method, Eq. (23)
can be solved. Finally, the decision function for classification can be
obtained by Eqs. (14)–(15).

5. Recognition system

We propose a system based on our proposed SVMs for coun-
terfeit banknote recognition. The block diagram of the system is
shown in Fig. 1. In the training phase, the image of each training
banknote, either genuine or forged, is captured (block 1). Then each
image is divided into m × n partitions (block 2). The histograms of
the partitions of all the training images are obtained (block 3) and
used to form a combined kernel matrix (block 4). Each partition
is associated with its own kernels. Optimal kernel weights and
Lagrange multipliers are obtained, and the decision function is
constructed by Eq. (15) (block 5). In the testing phase, our system
is applied to determining whether a given banknote is genuine or
forged (block 6).

We capture the image of a banknote by a webcam with
the banknote placed on a backlight panel. Each pixel of an
image is represented by three components: red (R), green (G),
and blue (B). The dimension of an image is 1200 × 520 × 3 =
1, 872, 000 pixels. The images of two Taiwanese banknotes,
one genuine and the other counterfeit, are shown in Fig. 2. In
Fig. 2(a), the watermark of a chrysanthemum and the figure
‘1000’ can be seen easily. One can see the difference of water-
marks between genuine and counterfeit banknotes. In addition, the
difference in ink and paper quality between genuine and counter-
feit banknotes can also be detected with the help of a backlight
panel.

Note that the image obtained is large. Using the components of
all the pixels as input is not practical for a classifier. Two meth-
ods are applied to reduce the input dimension. Firstly, we adopt
the Y component of the YIQ coordinates of each pixel to represent
the pixel. In the YIQ color space, Y represents the luminance infor-
mation, while I and Q represent the chrominance information. A
simple relationship exists between the RGB color space and the

YIQ color space [35]. Experimental results show that the Y compo-
nent works better than the other components. Secondly, we take
the histogram of the Y components of all the pixels as the input for
the classification system. We use 256 bins for each histogram. In
this way, an input vector of size 256, instead of 1,872,000, is used

of our system.
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Fig. 2. Images of two banknotes taken from web

or each image. Fig. 3 shows the luminance histograms of the two
anknotes of Fig. 2.

Using 256 histogram values to represent the image of a banknote
ay lose some information and reduce the discrimination power.

o cope with varying histogram distributions in different areas of
banknote, each banknote is divided into m × n non-overlapping
artitions of equal size, Pij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. For convenience,
he partitions are labeled from left to right and then top to bot-
om. Each partition is represented by the luminance histogram of
hat partition. For example, the 2 × 2 partitions of a banknote and
he histogram of each partition for a genuine banknote and a coun-
erfeit banknote, respectively, are depicted in Fig. 4. Note that the
lack line near the center of the image is the window thread for
he sake of imitation-prevention. From Figs. 3 and 4, we can see
hat, due to partitioning, the difference between the histograms of
enuine and forged banknotes is more obvious.

Now we are ready to construct the combined kernel matrix for
ur system. Suppose each partition is associated with q RBF kernels
aving different widths. Let the combined kernel matrix be K. Then
is computed as

=
M∑

s=1

�sKs (24)

here M = m × n × q, and Ks is the kernel matrix of partition Pij

ith the vth kernel, and

= (i − 1) × n × q + (j − 1) × q + v (25)
ith 1 ≤ v ≤ q. Recall that each partition has an input vector of size
× 256. For a set of l training patterns, each Ks is a l × l matrix.
he (a, b)th entry, 1 ≤ a, b ≤ l, of Ks is k(xa, xb) where k is the vth
ernel associated with partition Pij , and xa and xb are input vectors
orresponding to partition Pij of training patterns a and b.

Fig. 3. Luminance histograms of two banknotes. (a)
(a) Genuine banknote; (b) counterfeit banknote.

Now we apply multiple-kernel learning to learn optimal
weights for �s, 1 ≤ s ≤ M, in Eq. (24). We construct a multiple-
kernel weighted SVM according to Eq. (13). Then by applying
SDP with induction, as described in Section 4, we can obtain
˛∗ and �∗. The decision function for separating genuine from
forged banknotes is then derived by Eqs. (14)–(15). This ends
the training phase of our classification system. Now our system
is ready to be applied to determining whether a given ban-
knote is genuine or forged. The image of the given banknote is
captured and partitioned. The histograms of the image substi-
tute x in Eq. (15) (block 6). If the resulting function value is
+1, then the given note is genuine. On the other hand, if the
resulting function value is −1, then the given note is a forged
one.

6. Experimental results

In this section, we test and compare the performance of the
proposed method with other methods on a set of 99 Taiwanese
banknotes. In these banknotes, 70 are genuine and 29 are forged.
We randomly chose 50 genuine notes and 18 forged ones as
training patterns, and the others as testing patterns. For conve-
nience, we call the SVMs of Eq. (1) standard SVMs. In the following
experiments, we use C = 1 for standard SVMs and C = 2l+ for our
proposed SVMs of Eq. (9). In addition, we use SeDuMi [36] as the
SDP solver, and use YALMIP [37] to convert the equations into the
standard form required by SeDuMi.
6.1. Experiment I

First of all, we compare the performance of our proposed SVMs
with that of standard SVMs. A single kernel is used. No partition-
ing is done, i.e., the whole image of each banknote constitutes

Genuine banknote; (b) counterfeit banknote.
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tions.

o
h

S
w
f

Fig. 4. Histograms of banknotes with 2 × 2 parti

ne partition. Table 1 presents the results obtained with different

yperparameters.

Note that in the table, Sd-Sk indicates that it is standard
VM with single kernel. Op-Sk stands for our proposed SVM
ith single kernel. FPR stands for false positive rate. FNR stands

or false negative rate. ACC stands for accuracy. Best figures
(a) Genuine banknote; (b) counterfeit banknote.

are indicated by bold fonts. From Table 1 we can see that

our proposed SVMs performs better than standard SVMs. At
hyperparameter � = 0.5, both methods get 80.645% in accu-
racy. We also use line search to find the best hyperparameter
� ∈ {0.001, 0.002, . . . , 10}. At � = 0.165, Sd-Sk-Np achieves the
highest accuracy rate of 83.871%, while at � = 0.2, Op-Sk-Np
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Table 1
Comparison between different SVM architectures (maximum values indicated in
boldface).

Kernel Sd-Sk Op-Sk
ACC (%)/FPR (%)/FNR (%) ACC (%)/FPR (%)/FNR (%)

� = 0.01 67.742/90.909/0.000 70.968/45.455/20.000

a
t

6

k
f

t
t
T
t
r
t
o

6

s
t
r

� = 0.1 74.194/54.546/10.000 77.419/36.364/15.000
� = 0.05 74.194/54.546/10.000 74.194/45.455/15.000
� = 0.5 80.645 /45.455/5.000 80.645 /45.455/5.000

chieves the highest accuracy rate of 87.097%. However, line search
akes a lot of efforts.

.2. Experiment II

In this experiment, we investigate the effect of using multiple
ernels. No partitioning is done. The results are shown in Table 2
or two sets of kernels, 3-kernels and 5-kernels.

In the table, Op-Mk-Tr stands for our proposed SVM with mul-
iple kernels and the kernel weights are learned by SDP with
ransduction, while Op-Mk-Id learns by SDP with induction. From
ables 1 and 2, we can see that using multiple kernels helps improve
he accuracy rate, from 80.645% to 83.871%. However, the accuracy
ate does not change noticeably with different sets of kernels. Note
hat our proposed approach improves the time efficiency of the
riginal SDP method without degrading the performance.

.3. Experiment III
In this experiment, we investigate the effect of applying the
trategy of partitioning. Tables 3 and 4 present the results for
wo sets of kernels, � = [0.050.55]T and � = [0.010.050.10.51]T ,
espectively.

Table 2
Results obtained from combining multiple kernels.

RBF kernel Op-Mk-Tr
ACC (%)/FPR (%)/FNR (%)

� = [0.050.55]T 83.871 /36.364/5.000/15
� = [0.010.050.50.11]T 80.645/45.455/5.000/15

Table 3
Results obtained from partitioning for � = [0.05 0.5 5]T .

RBF kernel � = [0.05 0.5 5]T

Methods Op-Mk-Tr-Pa
Partitions ACC (%)/FPR (%)/FNR (%)/time (

2 × 2 96.774 /9.091/0.000/17.271
2 × 4 80.645/54.546/0.000/21.683
4 × 2 96.774 /9.091/0.000/22.974
4 × 4 90.323/27.273/0.000/35.968
8 × 8 77.419/63.636/0.000/93.182
8 × 16 87.097/36.364/0.000/218.608

Table 4
Results obtained from partitioning for � = [0.01 0.05 0.1 0.5 1]T .

RBF kernel � = [0.01 0.05 0.1 0.5 1]T

Methods Op-Mk-Tr-Pa
Partitions ACC (%)/FPR (%)/FNR (%)/time (

2 × 2 93.548/18.182/0.000/18.806
2 × 4 87.097/36.364/0.000/24.418
4 × 2 100.000 /0.000/0.000/26.111
4 × 4 93.548/18.182/0.000/39.462
8 × 8 80.645/54.546/0.000/177.823
8 × 16 90.323/27.273/0.000/497.102
uting 11 (2011) 1439–1447 1445

In these tables, Op-Mk-Tr-Pa and Op-Mk-Id-Pa stand for Op-Mk-
Tr and Op-Mk-Id, respectively, with partitioning. Clearly, different
ways of partitioning may result in different performances. For
example, partition 2 × 2 gets 100% in accuracy for Op-Mk-Id-Pa
with 3-kernels, while partition 2 × 4 gets a poor performance, only
80.645% in accuracy. Also, a partition may behave differently with
different sets of kernels. For example, partition 4 × 2 gets 96.774%
in accuracy for Op-Mk-Id-Pa with 3-kernels, while it gets 100%
in accuracy for Op-Mk-Id-Pa with 5-kernels. The variation in per-
formance indicates the variation in histogram distribution due to
different ways of partitioning. Again, Tables 3 and 4 show that our
proposed SDP method improves the time efficiency of the original
SDP method.

6.4. Experiment IV

In this experiment, we compare our recognition system with
multiple-SVM classifiers [38–40]. In a multiple-SVM classifier, each
banknote is divided into m × n partitions. A single-kernel SVM is
constructed for each partition. Note that the same kernel is used
for all partitions of a banknote. Then a posterior class probability
Pr(yi = +1|xj) of the jth partition is calculated. The classifier output
for class +1 is calculated by

Pr(yi = +1|x) ∝ Pr(yi = +1)L
L∏

j=1

Pr(yi = +1|xj) (26)
where L = m × n and Pr(yi = +1) = l+
l . The classifier output for class

−1 is calculated by

Pr(yi = −1|x) = 1 − Pr(yi = +1|x). (27)

Op-Mk-Id
/time (s) ACC (%)/FPR (%)/FNR (%)/time (s)

.074 83.871 /36.364/5.000/10.646
.960 83.871 /36.364/5.000/13.046

Op-Mk-Id-Pa
s) ACC (%)/FPR (%)/FNR (%)/time (s)

100.000 /0.000/0.000/11.025
80.645/54.546/0.000/12.270
96.774/9.091/0.000/12.139
93.548/18.182/0.000/14.138
96.774/9.091/0.000/31.559
100.000 /0.000/0.000/71.629

Op-Mk-Id-Pa
s) ACC (%)/FPR (%)/FNR (%)/time (s)

100.000 /0.000/0.000/11.815
80.645/54.546/0.000/13.403
100.000 /0.000/0.000/13.656
93.548/18.182/0.000/16.878
90.323/27.273/0.000/53.398
93.548/18.182/0.000/149.829



1446 C.-Y. Yeh et al. / Applied Soft Computing 11 (2011) 1439–1447

Table 5
Results obtained by multiple-SVM classifiers.

RBF kernel � = 0.05 � = 0.5 � = 5
Partitions ACC (%)/FPR (%)/FNR (%) ACC (%)/FPR (%)/FNR (%) ACC (%)/FPR (%)/FNR (%)

2 × 2 90.323/27.273/0.000 93.548 /18.182/0.000 64.516/100.000/0.000
2 × 4 90.323/27.273/0.000 90.323/27.273/0.000 64.516/100.000/0.000
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4 × 2 90.323/27.273/0.000
4 × 4 93.548 /18.182/0.000
8 × 8 93.548 /18.182/0.000
8 × 16 83.871/45.455/0.000

he posterior class probability Pr(yi = +1|xj) is approximated by a
igmoid function [38,39]:

r(yi = +1|xj) ≈ PrA,B(fi) = 1
1 + exp(Afi + b)

(28)

here fi = fi(xj).
Table 5 presents the results obtained by multiple-SVM classifiers

or three different kernels.
We can see clearly that multiple-SVM classifiers provide worse

erformances than our system. In particular, multiple-SVM classi-
ers get very low accuracies for all ways of partitioning in the case
f � = 5. This shows the importance of choosing suitable hyperpa-
ameters for multiple-SVM classifiers.

. Conclusion

We have presented a system based on multiple-kernel support
ector machines for counterfeit banknote recognition. Each ban-
note is divided into partitions and the histograms of the partitions
re taken as the input of the system. Each partition is associated
ith its own kernels. Linearly weighted combination is adopted

o combine multiple kernels into a combined matrix. A SVM
rchitecture, which allows false positive pattern to have a larger
enalty than a false negative pattern was developed. Such SVMs
an approximately minimize the balanced error rate. By applying
ultiple-kernel learning, optimal weights with kernel matrices in

he combination are obtained through semi-definite programming
SDP) learning. We also proposed a modified multiple-kernel learn-
ng method which can narrow down the search space for searching
ptimal parameter settings. Only training patterns are used to con-
truct kernel matrices, and we do not need to check whether the
ombined kernel matrix is positive semi-definite in each iteration.
xperiments with Taiwanese banknotes show that the proposed
ethod outperforms single-kernel SVMs, standard SVMs with SDP,

nd multiple-SVM classifiers.
Our system has one big advantage. Suppose more counterfeit-

reventive features are added to the banknotes. Our system can
till be capable of distinguishing between genuine and forged ban-
notes without any modification. Currently, only histograms of
he captured images are used as the system input. Other features
hich are useful to increase the discrimination power of our system

re being investigated. Furthermore, banknotes are easily contam-
nated due to their wide circulation. The contamination levels are

ost likely different for different banknotes. In addition, genuine
anknotes may contain imperfections, and they may slightly differ-
nt from one another. Fuzzy theory [41,42] can be a good technique
o use for this problem.
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