
Journal of Intelligent & Robotic Systems

https://doi.org/10.1007/s10846-018-0865-x

Employing Natural Terrain Semantics in Motion Planning
for a Multi-Legged Robot

Dominik Belter1 · Jan Wietrzykowski1 · Piotr Skrzypczyński1

Received: 2 November 2017 / Accepted: 2 May 2018

© The Author(s) 2018

Abstract

This paper considers motion planning for a six-legged walking robot in rough terrain, considering both the geometry of

the terrain and its semantic labeling. The semantic labels allow the robot to distinguish between different types of surfaces

it can walk on, and identify areas that cannot be negotiated due to their physical nature. The proposed environment map

provides to the planner information about the shape of the terrain, and the terrain class labels. Such labels as “wall” and

“plant” denote areas that have to be avoided, whereas other labels, “grass”, “sand”, “concrete”, etc. represent negotiable

areas of different properties. We test popular classification algorithms: Support Vector Machine and Random Trees in the

task of producing proper terrain labeling from RGB-D data acquired by the robot. The motion planner uses the A∗ algorithm

to guide the RRT-Connect method, which yields detailed motion plans for the multi-d.o.f. legged robot. As the A∗ planner

takes into account the terrain semantic labels, the robot avoids areas which are potentially risky and chooses paths crossing

mostly the preferred terrain types. We report experimental results that show the ability of the new approach to avoid areas

that are considered risky for legged locomotion.

Keywords Walking robot · Mapping · Terrain classification · Motion planning

1 Introduction

In the recent decade walking robots made a great progress

toward autonomy. The legged locomotion modality makes

these robots capable of traversing diversified terrain types

and negotiating various obstacles, both natural and man-

made. These capabilities are particularly pronounced in

multi-legged robots, which are often slower than their four-

legged or bipedal counterparts but can explore a larger

number of ground contact points to move safely over

Electronic supplementary material The online version of

this article (https://doi.org/10.1007/s10846-018-0865-x) contains

supplementary material, which is available to authorized users.

� Dominik Belter

Dominik.Belter@put.poznan.pl

Jan Wietrzykowski

Jan.Wietrzykowski@put.poznan.pl

Piotr Skrzypczyński

Piotr.Skrzypczynski@put.poznan.pl

1 Institute of Control, Robotics and Information Engineering,

Poznan University of Technology, Poznan, Poland

challenging terrain. A walking robot can carry a variety of

sensors for environment monitoring. The perception-based

motion planning was shown to be more efficient in rough

terrain [5] than the popular behavior-based control paradigm

[30, 36]. Behavior-based motion forces the robot to try the

given movement of the legs many times, unless stable and

safe footholds are reached.

In the earlier publications, we presented an integrated

approach to perception-based motion planning for hexapod

robots. The main highlights of this approach are the

two-tier hierarchical motion planner named guided-RRT,

and a matching two-level environment model in the

form of coupled elevation grids. However, the planner

from [5] considered only the geometry of the terrain.

In contrast, a person walking in rough terrain or among

structured obstacles considers not only the shape of

the terrain (and objects) but also the semantics of the

perceived environment. Owing to our experience we can

associate particular semantic labels, such as “grass”, “mud”,

“concrete”, with particular physical properties, and a

proper motion behavior. Finally, we can avoid some areas

altogether if the imposed semantics tells us that stepping

over this area could be dangerous. The motion planner

(2019) 93:723–743

/ Published online: 22 May 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0865-x&domain=pdf
http://orcid.org/0000-0003-3002-9747
https://doi.org/10.1007/s10846-018-0865-x
mailto: Dominik.Belter@put.poznan.pl
mailto: Jan.Wietrzykowski@put.poznan.pl
mailto: Piotr.Skrzypczynski@put.poznan.pl

described in [5] can handle this only to a very limited extent,

as the relation between the semantics (which we want to

know) and the geometry (which is encoded in the map) is at

least ambiguous.

Therefore, we propose to include the semantic labels

directly into the terrain map. We assume that data used

for classification are produced by an RGB-D sensor.

The availability of photometric information enables our

classification method to distinguish between classes that are

similar with respect to the geometric description. Then, the

class labels are attached to cells of the elevation grids used

in the system. The motion planner can utilize information

about the semantic labels in various ways. Our research

employs this information in the guiding (upper-tier) path

planner utilizing the A∗ algorithm. The semantic labels

allow the planner to prefer some terrain classes because they

provide more stable and safer support to the robot’s feet.

Whereas concrete or asphalt-covered roads provide trustable

footholds (Fig. 1a), on a surface covered by fallen leaves

or in a lawn area (Fig. 1b) stable footholds are available

below the level suggested by the geometry of the elevation

map. Eventually, the rough guiding path computed by A∗

can make a detour from the path that is the shortest one

considering only the terrain geometry. Thus, the full motion

plan computed by the lower-tier RRT-Connect algorithm

following the rough path deals only with the areas of

preferred physical properties, which makes the execution

safer and faster. Note that in this paper we do not consider

the use of the semantic information in the RRT-based

planner. Although it is possible and could be beneficial for

safer foothold selection, we consider avoiding or preferring

whole areas as a sufficient strategy, which conserves time in

the lower-tier planner.

The main contribution of this research is the new

environment model, which combines the geometric and

the semantic description of the terrain. Unlike other recent

works on pixel-wise semantic image segmentation for

natural terrain description, we directly fuse all the perceived

information in the 3-D volumetric environment model.

We infer the semantic labels from the 3-D map, which

allows us to take advantage from the geometric structure

of this model. Moreover, we add to the guided-RRT

algorithm the ability to consider semantic labels of terrain

patches. An additional contribution is the experimental

evaluation of the Kinect v2 sensor for outdoor perception,

localization, and 3-D environment model generation. A

data set from these experiments, including semantically

labeled sequences of RGB-D images, is made publicly

available. A proof-of-concept version of our approach

to terrain semantics-aware motion planning was initially

evaluated on mockups in a laboratory, and presented in

the workshop paper [2]. The journal paper describes a full

implementation of this approach, which integrates robot

localization and improved terrain classification, and reports

results of extended tests in a real outdoor environment

(Fig. 1).

2 RelatedWork

This section addresses the most notable related work within

three aspects of our system: environment mapping, terrain

classification, and planning algorithms. We highlight the

advancements made in this research with respect to current

state of the art.

2.1 Environment Maps

The most popular terrain representation in motion planning

systems for robots moving on uneven terrain is the elevation

grid [25]. This simple concept was modified and extended in

numerous works, for example the variant described in [35]

makes it possible to model scenes with bridges, tunnels, and

similar structures. Ye and Borenstein introduced heuristic

rules to integrate 2-D laser range measurements into an

elevation grid [50]. We have modified this approach using

Kalman filtering to handle the spatial uncertainty of range

measurements [4]. Then, this method was further refined in

[3] including uncertainty modeling for RGB-D sensors. In

contrast to laser scanners, the RGB-D sensors provide dense

depth data and compatible RGB images yielding richer

data for mapping. The popular Kinect/Xtion structured-

light RGB-D sensors already proved to be useful for

indoor elevation mapping on walking robots [3]. However,

Fig. 1 Messor II robot in natural

outdoor environment: on a

pavement (a), and in a

vegetation-covered area (b).

These examples show

differences between the terrain

types that have to be handled in

motion planning

a b

J Intell Robot Syst (2019) 93:723–743724

for outdoor experiments we use the recent technology

Kinect v2 time-of-flight RGB-D sensor. The Kinect v2 was

successfully tested on a legged robot by Fankhauser et

al. [16], and proved to be superior to the structured-light

RGB-D technology in robot navigation [24].

Whereas elevation grids are a popular representation

due to the inherent simplicity of their data structure and

the ability to quickly update and query the map, they

have significant drawbacks if the representation of more

complex environments is considered. Therefore, volumetric

map representations are considered for 3-D terrain mapping.

The voxel-based map building algorithm presented in [15]

used the notion of positive and negative occupancy mass

and provided efficiency with respect to the map size. The

OctoMap library [21] employs the octree data structure to

implement a multi-resolution voxel-based map. OctoMap

efficiently handles noisy measurements and the uncertainty

in robot poses, while the octree structure results in a

memory-efficient representation of the map. Considering

these advantages we have decided to employ the OctoMap

as an intermediate data structure used to register together

with the point clouds we obtain from the RGB-D sensor.

Other types of 3-D maps are also used to represent outdoor

or mixed outdoor/indoor environments. A notable example

is the work of Droeschel et al. [14] that employs variable-

resolution grid maps and surfel-based representation in

navigation system.

2.2 Environment Classification

In some environments, the local shape of the terrain surface

does not allow for sufficient traversability assessment. In

order to fully consider the terrain properties, the robot

has to know the underlying semantics of the areas the

robot should traverse. Hoepflinger et al. [20] proposed

to recognize the type of terrain from haptic data using

a force sensor mounted on a leg performing the specific

probing motion. A more practical variant of this idea was

considered by Walas [45], who used force/torque sensors on

the forelegs of a hexapod, enabling the robot to label the

terrain type while walking. As adding force or force/torque

sensors to the legs of a walking robot increases its cost

and complicates the mechanics, some researchers propose

to use information readily available from the servo drives

of a legged robot for terrain classification [8, 30]. Similarly,

internal sensors like the inertial measurement unit (IMU)

and motor encoders were successfully employed for terrain

classification in wheeled robots [33]. Unfortunately, to

measure parameters of the interactions with the terrain

using either tactile, force/torque or IMU data, the legged

robot has to step into the given area. Thus, terrain labels

acquired this way are mainly used by reactive controllers,

rather than by path planners. For example, the amphibious

walking robot described in [17] differentiated sand from

shallow water in order to switch between the walking and

swimming gaits. More recently, a behavior-based robot

proposed by Stejskal et al. [40] had to walk on the off-road

area to realize the mistake and to go back to the desired

path.

In contrast, terrain classification based on visual and/or

range sensing gives the robot a potential to take the right

decision in advance, before any physical contact with the

undesirable area occurs. Visual terrain classification was

researched extensively for wheeled ground robots [12, 18]

and self-driving cars [41]. The cited works used stereo

or monocular cameras and laser scanners, respectively,

but terrain classification for navigation of ground robots

employs also RGB-D sensors, and multi-sensor setups.

Information from a passive camera can be complemented

by laser scanner data [27, 47]. The laser scanner provides

intensity values of the reflected light that help distinguish

vegetation [49].

The visual terrain classification systems known from

the literature extract various features from the RGB and/or

depth images, and apply a broad range of classifiers. The

most popular seems to be the Support Vector Machine

(SVM) [9], but the Random Trees classifiers [10] were

also applied successfully [47], as well as regression-

based classifiers [18] and neural networks [33]. In the

last few years, the Convolutional Neural Network (CNN)

architecture and the deep learning paradigm significantly

improved the state of the art in semantics segmentation of

images. Following this success, deep learning is nowadays

also the most researched approach in terrain classification

using visual data. A notable recent example is the work

of Maturana et al. [29] employing a custom CNN for

segmentation of images into regions belonging to several

classes relevant for terrain traversability. The semantic

information is then projected onto a 2.5D elevation map

obtained from laser range data and used to plan the

motion of a wheeled vehicle. Deep learning can be also

applied in semantics segmentation of multi-sensory data, as

demonstrated in [43], where RGB, depth, and near-infra-red

images are processed together to obtain pixel-wise terrain

labels. In spite of their good performance, the CNN-based

approaches have some drawbacks. They require a long

process of learning on a large data set, which has to labeled.

In contrary, our Random Tress classifier was successfully

learned on a sequence of 60 frames. Moreover, in the

CNN solutions taken from computer vision, the images are

directly fed to a CNN to generate a pixel-wise labeling.

Our solution performs classification on the voxel-based 3-

D map, which allows us to use features that depend on the

local geometry of the map. A terrain classification system

can be enhanced by performing probabilistic inference

after the main classification stage. Laible et al. [27] use

J Intell Robot Syst (2019) 93:723–743 725

conditional random fields (CRF) in the inference stage to

describe dependencies between image segments labeling

in a way that encourages similar neighboring segments

to have the same labels. This concept was also applied

in our recent work [47] resulting in significantly fewer

misclassified segments in the traversable areas. Therefore,

in this research we also applied CRF to post-process

the voxel-based map labeled by using the Random Trees

classifier.

2.3 Motion Planning

Motion planning for a multi-legged robot is a challenging

task because the algorithm has to avoid collisions with

obstacles, find feasible contact points, and preserve the

stability of the robot. Larger legged robots traversing

moderately rough terrain can adopt well-known 2-D path

planning algorithms, such as A∗ [48] or D∗-Lite [13]. The

information from a terrain map available to the robot may

be used to adjust parameters of the cyclic gait, as in the LS3

robot [1]. However, an accurate terrain map can be used

directly to define constraints imposed on the robot motion,

as in the RRT-based planners, or can be used to define

a cost map that guides the planner along low-cost paths.

The latter approach, characteristic of most of the classic

planning algorithms requires defining the traversability cost

upon some perceivable features of the terrain [34]. Our

coarse path planner, based on the A∗ algorithm also utilizes

a cost map computed using the spherical variance [38],

which captures in a compact form the local roughness of the

terrain. It should be noted that classic planning algorithms,

such as A∗, can be used with topological maps that represent

recognizable areas in the space [51].

Some motion planning systems for legged robots divide

the planning problem into two separate stages, considering

at first the main body path, and then footholds and feet

trajectories [23]. This can lead to suboptimal results, as

some feasible movements are not considered by the 2-D

planner. Therefore, we plan the path of the whole robot

and the motion of the legs (i.e. the contact points) at the

same time. In such an approach it is essential to avoid

combinatorial explosion due to the high-dimensional search

space of a multi-legged robot. Thus, sampling-based motion

planners, as the Probabilistic Roadmap Method (PRM)

[22], and the Rapidly-exploring Random Tree (RRT) [28],

were found to be an efficient way to handle the problem

of high-dimensionality [19]. The idea of RRT spawned

many variants of this algorithm and made sampling-based

motion planning popular for high-dimensional problems

in robotics. The RRT∗ algorithm was used recently on

the StarlETH quadruped to avoid obstacles [46]. Planning

motion of statically stable robots, such as hexapods or

crawling quadrupeds allows to neglect the dynamics, and

use more elaborated kinematic models instead [39]. The

RRT-Connect variant [26], which is used in our approach,

grows two Random Trees that expand towards each other

to increase the chance of finding a feasible solution. Our

two-tier motion planner, which combines RRT-Connect and

A∗ [5] was to some extent inspired by the work of Vonasek

et al. [44] that employs an auxiliary path to guide the growth

of the tree through the environment, increasing the chance to

quickly explore narrow passages of the configuration space.

Achieving the ability to plan and execute feasible motion

of a walking robot on uneven terrain in real-time is naturally

related to the terrain mapping and localization capabilities

of the robot. Earlier motion planning systems, e.g. those

developed for the LittleDog robot within the Learning

Locomotion Programme [23, 52] relied mostly on accurate

terrain maps known in advance and external motion capture

systems for localization. On the other hand, the perception-

based motion planning systems for multi-legged robots

described so far in the literature were often limited to coarse

path planning, employing some form of cyclic gaits and

reflexes to control the motion of the legs [1, 37, 48]. In [5]

we have shown that the adaptive, two-tier motion planner

can work autonomously with real-time terrain perception

and mapping using on-board sensors, and integrated

localization that utilized the same sensory data. Recently,

real-time motion planning capabilities with on-line mapping

have been also demonstrated by others, e.g. for a quadruped

robot [46], and a hybrid legged-wheeled mobile manipulator

[14].

3 Perception and Environment Model

3.1 Perception System

The approach to motion planning presented in this paper

is tightly coupled with a dedicated terrain mapping system,

which in turn is tailored to the requirements of this planner,

taking also into account properties of the legged robot

perception system.

The perception system is designed for the Messor II

hexapod [7] (Fig. 1). The body of the robot is 299 mm

long and 205 mm wide, and the mass of the whole machine

is 2.5 kg. The maximal clearance between the body and

the ground is 290 mm. The robot has 18 active degrees

of freedom actuated by Robotis Dynamixel RX-28 servos.

Though the robot is small, the torques produced by its

servos (2.5 Nm in each joint) are sufficient to carry external

sensors attached to the upper deck of the body. For most

of the experiments, Messor II is equipped with an RGB-D

sensor, usually the compact Asus Xtion PRO Live. Although

using larger and heavier sensors is possible, they limit the

motion capabilities, causing excessive slippage of the feet

J Intell Robot Syst (2019) 93:723–743726

and occasional overheating of the servos. While the robot

has an IMU module and touch sensors in the feet, they are

currently not integrated within the mapping framework and

used only by the reactive control functions. Therefore, the

RGB-D sensor is the sole source of data for environment

mapping and yields both information about the observed

surfaces, and the pose of the robot with respect to a global

reference frame.

The localization function is accomplished by a program

that is external to our perception and mapping framework

– the ORB-SLAM2 [31]. This is a real-time SLAM system

that can work with passive camera images in the monocular

mode, or in the stereo mode, using either pairs of images

or RGB-D data with depth information. The stereo/RGB-

D mode enables to avoid the annoying map initialization

procedure [31] and provides more reliable pose estimates

without a scale drift. Thus, the ORB-SLAM2 was used with

the Kinect v2 RGB-D frames to localize the robot in the

outdoor scenes. However, for the early indoor experiments,

the poses of the RGB-D sensor were obtained off-line by

manually stitching the local point clouds [2].

3.2 Environment Model Architecture

The mapping procedure involves two main data structures:

the 3-D, voxel-based octree map, and the 2.5-D, grid-

based elevation map. The octree voxel map implemented

through the OctoMap library [21] is used as an intermediate

environment representation, which allows our system to

capture all aspects of the environment that are perceived

by the RGB-D sensor. Then, we generate from the voxel-

based map a simpler, grid-based map, which provides quick

access to the terrain elevation values for both planning

algorithms in the two-tier motion planner. Also, the

OctoMap is used at two different spatial resolutions. This is

motivated by the requirements of the semantic classification

procedure. The terrain classification process is integrated

within the mapping framework. The semantic categories

are determined for individual voxels of the OctoMap

and then transferred to the elevation grid. However,

a sufficient number of RGB-D measurements have to

accumulate in a voxel to enable efficient classification.

Thus, the OctoMap structure is also used at two different

resolutions. The RGB-D measurements are integrated into

a fine granularity OctoMap, having 1.5×1.5×1.5 cm

voxels, which describes all geometric aspects of the scene.

The granularity of the OctoMap is compatible with the

resolution of the elevation grid, which in turn is chosen

considering the size of the robot foot. In contrast, the

classification process uses much larger, 18×18×18 cm

blocks that are imposed on the main OctoMap structure.

The architecture of the whole mapping system is depicted in

Fig. 2.

3.3 Data Registration and OctreeMap

Environment mapping starts with the registration of the

RGB-D point clouds obtained from a sensor into an octree

representation with 1.5 × 1.5 × 1.5 cm voxels. To obtain

information about geometry of the whole scene each point

cloud measured by the RGB-D camera pC , and expressed

in the camera frame C is transformed into the global map

coordinate system M using homogeneous transformation

(Fig. 3):

pM = M−1 · C · pC, (1)

where M and C are the transformation from the global frame

to the map and camera coordinate frames, respectively. To

find the coordinates of a point cloud obtained from the

particular vantage point we have to find the pose of the

RGB-D camera C, or in other words, to localize the robot.

Whereas as demonstrated in [2] a simple procedure using

the Umeyama algorithm [42] can be applied to register few

point clouds during indoor experiments, for the outdoor

missions, we applied the ORB-SLAM2 to estimate the

sensor poses directly from the sequence of RGB-D frames.

Comparing to the original OctoMap from [21], each

voxel is augmented by information that is then needed for

terrain classification. As it is inefficient to keep all the

registered RGB-D measurements in the octree structure,

the additional information is updated sequentially when the

measurements are integrated into the voxels. These values

are the average RGB color of the voxel kv
n+1, and its average

elevation hv
n+1:

hv
n+1 = hv

n +
1

n + 1
(hv

new − hv
n), (2)

kv
n+1 = kv

n +
1

n + 1
(kv

new − kv
n), (3)

where hv
n is the previous value of the voxel elevation, hv

new

is the measured height of the next integrated RGB-D point,

kv
n is the previous value of the average color, kv

new is color

of the next integrated point, and n is the number of the

voxel updates. Note that kv is a vector, as it holds three

color parameters, while hv is a scalar value. Then, the actual

features used in classification are defined upon these basic

values. These features are computed only whenever they

are required by the classifier to conserve memory. Once the

terrain gets classified, the voxels are also augmented with

the computed semantic labels. The example set of aligned

point clouds and corresponding octree representation of the

environment is presented in Fig. 4a and b, respectively.

3.4 ElevationMap

We use two motion planning algorithms, the RRT-Connect,

and the A∗ that require grid maps of different resolution.

J Intell Robot Syst (2019) 93:723–743 727

1.5x1.5 cm

9x9 cm

(RRT-Connect)

Fig. 2 General scheme of the terrain modeling system and its relation

to motion planning which shows how the colored point cloud is used

to create a geometric terrain model enhanced by the information about

terrain type. Rectangles denote processing blocks, while rounded

rectangles are data structures with the virtual data structures marked

by the dashed contour. Note that this scheme focuses on data structures

and shows only main processing blocks of the planner

The RRT-Connect algorithm involves foothold selection,

thus it requires a fine grid with the cell size smaller than

the footprint of the robot’s leg. Using this fine elevation

grid for coarse path planning with the A∗ algorithm would

be inefficient, as the A∗ computation time depends on

the number of states it has to visit (i.e. the number of

cells). On the other hand, the traversability cost computation

procedure used by this planner does not require a fine terrain

model. In result, we implemented a grid data structure

with small cells (1.5×1.5 cm), but the coarse path planner

reads from this grid much bigger virtual cells (9×9 cm)

that suit this algorithm. The size of the larger cells is

chosen considering the dimensions of the walking robot’s

body, as it is assumed that the coarse path planner should

prefer terrain where the whole robot can get through.

Possible more difficult passages are handled by the RRT-

Connect planner that considers individual footholds and

controls the robot posture. The elevation grid is generated

directly from the OctoMap structure of matching voxel size

(1.5×1.5×1.5 cm) with respect to the global coordinate

system. Hence, we avoid the data filtering and integration

procedures in the elevation grid that we have used in our

earlier implementations [3, 4].

The elevation grid is stored in a two-dimensional

array which provides constant and short access to each

...
....

... ..
.

M
M

O

C

C

p
M

p
C

Fig. 3 Geometrical relations between the map and camera coordinate

frames used to update the map from the RGB-D point cloud

cell value. This property is very important regarding the

sampling-based motion planning method used in this

research. We compute the elevation map directly from the

voxel-based octree representation. We take into account

the stack of n voxels v[i,j,0]. . . v[i,j,n], where i and j

are the indices of the structure in the horizontal plane,

located above the c[i,j] cell of the elevation grid. From all

voxels in that stack the one that has the highest elevation

v[i,j,k]hmax (k ∈ 0 . . . n) is used to set the elevation of the

considered cell c[i,j] in the 2.5-D grid. OctoMap voxels that

are located higher than the maximal height of the robot

(including the sensors on top) with respect to the local

ground plane level are not considered for elevation grid

update. The input OctoMap and the obtained elevation map

are presented in Figs. 4b and 4c, respectively. To make

the semantic information available to the path and motion

planning algorithms, we augment the elevation grid with

terrain class labels. To this end, the information contained

in the coarse 18×18×18 cm blocks of voxels has to be

projected onto the elevation grid. For each voxel of the

octree map belonging to a coarse block that got classified as

a particular terrain type, we read the class label held there.

This 3-D semantic information has to be projected onto the

planar grid structure. We use the class label that is on top of

the OctoMap stack of voxels to augment the corresponding

cell in the elevation grid. Only labels of the voxels that

were used for elevation update are considered. This choice is

justified by the observation that voxels placed higher carry

more useful information about the obstacles, and in general,

they are classified better, as seen as in Fig. 5. In result,

each cell of the elevation grid contains information about

the terrain type. The map of terrain type semantic labels is

shown in Fig. 4d.

Although the terrain class labels are transferred to the

fine-grained elevation grid, the semantic information is used

by the coarse path planner that requires a map with 9×9

J Intell Robot Syst (2019) 93:723–743728

a b

c d

Fig. 4 The representations of the environment used by the walking robot. The aligned point clouds (a) are used to update OctoMap (b). The

elevation map (c) is obtained from the octree representation together with the map of classes (d)

cm cells. Hence, we downsample the fine grid to obtain the

coarse grid. Taking into account the memory requirements,

the coarse grid is a temporary data structure only (virtual

local map). We do not create the whole coarse grid, but we

compute the elevation values for the queried cells whenever

they are needed. However, for the computational efficiency,

we store information about updated cells of the virtual

coarse grid. To compute the elevation of the coarse grid cell,

the maximal elevation of the fine grid cells covered by the

larger cell is selected. However, the downsampled coarse

Fig. 5 Close-up view on a scene represented as colored voxels in the

octree map (a), and classification results for RT (b) and RT+CRF (c)

methods. To update the map of terrain classes we use a label of the

top voxel. It is justified by the fact that those voxels are usually better

classified in contrast to those placed lower in the stack

J Intell Robot Syst (2019) 93:723–743 729

cell does not get a unique terrain class label transferred from

the fine grid. We use the larger cells in the coarse grid to

establish a simple probabilistic representation of the terrain

semantics, and we compute a probability that the specified

region (larger cell) belongs to the n-th class P(sn):

P(sn) =
1

imax · jmax

imax
∑

i=1

jmax
∑

j=1

{

1 if ci,j is sn
0 if ci,j is not sn,

(4)

where imax and jmax are the number of rows and columns,

respectively, in the patch of fine grid covered by a single cell

of the coarse grid (imax=6,jmax=6 in the implementation), sn
is the specified class label, and si,j is the class label stored in

the [i, j] cell of the fine grid. Finally, the cells of the coarse

grid contain information about the height of the terrain and

probability of occurrence of the specified terrain type. In

Eq. 4 we can use probabilities given by the Random Trees

algorithm. Instead, we use a voting scheme, which assumes

that the fine grid cells are labeled according to the decision

taken by the majority of trees in the classifier. Thus, the

probability that the larger cell belongs to the given class

depends only on the number of the small cells belonging to

that class located within the larger one. This scheme avoids

situations when a few fine grid cells classified with high

certainty outweigh a much larger number of cells that have

however more uncertain labels. As a result, we obtain larger

differences between class probabilities P(sn) stored in the

coarse grid. Searching for the path in such a grid is faster

because the differences between preferred and undesirable

terrain types are larger.

4 Terrain Classification

Whereas the motion planner relies mainly on the geometry

of the terrain surface encoded by the elevation map,

the coarse path planning algorithm A∗ can benefit from

the recognized terrain classes by taking more informed

decisions as to the nature of the areas it suggests to

traverse. The robot not only should distinguish different

terrain surfaces, such as pavement and grass, but should

be aware of such obstacles as tree trunks and man-made

structures. Therefore, terrain classification is performed on

the augmented octree structure, rather than on the elevation

grid. This allows our system to collect and use more

information about the environment semantics, particularly

about the vertically extended structures: trees, bushes, and

walls. The classification process needs larger voxels that

capture a much bigger number of measured points, because

a sufficient statistic has to be gathered for each voxel. Thus,

all operations related to classification are performed on

blocks of the octree voxels that are 18×18×18 cm in size,

i.e. they contain 12 × 12 voxels.

A schematic overview of the whole terrain classification

module is depicted in Fig. 6. The whole process starts

with an RGB-D point cloud acquired by the robot. Points

from different views are transformed to a common frame

of reference using the known RGB-D sensor poses. The

point cloud is used to build the octree map, and to estimate

the ground plane in the scene area. The estimated ground

plane is required to localize the octree voxels with respect

to the global scene coordinate system, to know how high

above the ground each voxel is located. The octree map is

then classified and the results are refined using Conditional

Random Fields (CRF) to perform a probabilistic inference.

The coarse octree map holds in each voxel the average

color kv , median elevation hv , and histograms of H and

S components from the HSV space, denoted fhist
H and

fhist
S , respectively. The classifiers we apply require features

that enable to distinguish between terrain types and these

quantities are used to recognize the basic semantics of the

observed scene. The features should also generalize the

description of voxels belonging to the same terrain type to

account for appearance variations. For each octree voxel,

separate features were concatenated to form a features

vector and then fed to the classifier. The choice of a proper

features vector is crucial for the classification results. In

our system, the features can be chosen depending on the

characteristics of the environment, and the expectations

as to the discriminative power of the particular feature.

Thus, in our initial indoor experiments, we used extremely

simple features to facilitate the computing speed. These

features were the average color components in the voxel.

To minimize the influence of the varying lighting, the

Hue-Saturation-Value (HSV) representation of the average

color was used, resulting in the vector of features:

find =
[

fH̄ , fS̄

]

, where fH̄ and fS̄ stand for the average

hue and saturation components, respectively. The value

component is not used, as it depends too much on the

external lighting conditions.

The information about the color properties of the voxel

turned out to be sufficient to distinguish between few classes

of the flat surfaces the robot was confronted with in the

lab experiments [2]. However, we had to extend the set of

features for the outdoor operation. Both, the natural and

the man-made objects encountered outdoors come in many

different shades of their basic colors and their surfaces

are often characterized by the strong local variation of

the color. Therefore, the set of features was modified by

replacing mean color values with the color histograms

computed in each voxel. Specifically, histograms of H and

S components fhist
H and fhist

S , respectively, were used with

32 bins for each one. These histograms represent well the

scattering of the color on each surface type. Moreover,

the median elevation fh of the voxel was added as the

feature, because some objects having surfaces of similar

J Intell Robot Syst (2019) 93:723–743730

Fig. 6 Block scheme of the data flow inside the terrain classification

module that finally produces a fine elevation grid augmented with

terrain semantics. Virtual data structures are marked by dashed

contours

photometric characteristics, e.g. pavement and concrete

walls, can be distinguished by their elevation above the

ground plane. The resulting vector of features had three

elements: fout = [fh, fhist
H , fhist

S]. Although we had to use a

more complex vector of features for the outdoor settings,

we tried to keep it as simple and compact as possible to

facilitate real-time operation of the terrain classification

system. We also took into account the properties of the

sensor mounted on the legged robot. Our earlier results in

terrain classification for wheeled robots [47] suggest that we

should avoid the use of image texture that is easily destroyed

by motion blur. As our other results, [32] show that RGB-

D frames acquired in-motion on a legged robot are usually

corrupted by motion blur, we used features based on the

color and global geometry of the voxel, but not on texture.

The estimation of the ground plane is based on a

detection of dominant directions in which the registered

points, forming the point cloud P , are scattered. By means

of the principal component analysis (PCA), we find the

principal component with the lowest variance, and we

assume that it represents the coarse normal vector nc of the

ground plane. If we denote by C the covariance matrix of

points positions, the normal vector is the eigenvector that

corresponds to the lowest eigenvalue. Having the normal

vector, we compute a histogram w of points positions along

the direction of the normal, that is positions of points pi

projected onto this vector. The position of the histogram bin

with the largest number of points determines the distance

d∗ from the origin to the ground plane. The values of the

histogram bins are computed as follows:

wj =
∣

∣

{

pi : |pi · n − dj | ≤ 0.5τg

}∣

∣ , (5)

where wj is the value of the j -th bin, dj is the center of this

bin, and τg is the width of the bins. The maximum value of

wj is then used to choose d∗:

d∗ = arg max
dj ∈D

wj , (6)

where D is a set of bins centers. To increase the accuracy

of the ground plane model, we further refine the obtained

estimate, calculating coefficients of the final ground plane

equation π using all inlier points, that is, points that are

closer than τg to the initial ground plane. To ensure that

points are evenly scattered across the whole area, we use

only one, central point per the fine octree map voxel

(denoted as Of). The pseudocode of the algorithm is

presented as Algorithm 1, while the example results are

shown in Fig. 7.

Algorithm 1 Ground plane estimation: P,Of → π

// Compute coarse plane normal and centroid

[nc, cc] = PCA(P) ;

// Initialize histogram with zeros

w = [0, . . . , 0] ;

// Build histogram of vertical positions of points

for p ∈ P do

j = COMPUTEBININDEX(p, nc) ;

wj = wj + 1 ;

end

// Find the bin with the largest number of points

d∗ = arg maxdj ∈D wj ;

// Initialize a set of ground points as an empty set

Pg = {} ;

// Select points from fine octree map that belong to the

ground surface

for p ∈ Of do
// If distance to the origin is within bin’s range

if | DISTANCE(p, nc)−d∗| < 0.5τg then

Pg = P ∪ p ;

end

// Compute refined plane normal and centroid
[

nf , cf

]

= PCA(Pg) ;

// Compute plane equation using refined normal and

centroid

π = PLANEEQUATION(nf , cf) ;

return π ;

Besides a proper choice of features, a crucial decision

that has to be made while designing a classification system

J Intell Robot Syst (2019) 93:723–743 731

is the classifier itself. From the implementation point of

view, the most convenient decision was to use the Support

Vector Machine algorithm, which is available in the libSVM

software [11]. The SVM is a widely known classifier

[9], used in many state-of-the-art solutions to terrain

recognition. In the system presented in this paper, SVM

was used with a Radial Basis Function (RBF) kernel. This

solution was tested for the indoor experiments using only

the average color features [2]. The classifier was trained on

series of raw RGB images. Pixels in the training images

were labeled manually. Five surface classes were used:

grass, floor, asphalt, sandstone, and wood. The sufficient

number of training examples for the SVM classifier has

been verified experimentally [2]. Considering these results,

each separate class was trained using 1600 images.

Though the SVM classifier working with the simple

color features enabled the robot to properly distinguish

between the five classes of flat artificial surfaces in the

indoor experiments [2], it performed much worse in the

outdoor setting, even fed with the extended features vector

fout (Fig. 8). We attributed this problem to the varying

importance of particular features for different classes. The

semantic classes defined outdoors were: grass, bushes, trees,

leaves, walls, concrete, pavement, and asphalt. Some of

these categories could get a common label from the point of

view of the terrain traversability for a walking robot, such

as trees and bushes that both are non-traversable vegetation.

However, distinguishing a larger number of categories

increases the reliability of classification, decreasing the

intra-class appearance diversity, as only really similar

objects belong to the same class. Moreover, the larger

number of classes enables to construct more flexible

policies for path planning.

Whereas the average color was important when distin-

guishing between grass and asphalt or wall, it was less

discriminative when making the distinction between grass

and pavement, as some pavement tiles got a quite greenish

shade over the years. A similar observation can be made for

the pavement and the concrete, where the former label was

used to describe such structures as outer parts of the man-

holes protruding from the ground. For these two classes, the

median elevation is much more important than the color.

Therefore, for the outdoor experiments, we have replaced

SVM by the Random Trees (RT) classifier, which has the

ability to rank the importance of the features in a natural

way [10]. Random Trees is based on a collection of decision

trees Ti , that is also called a forest. Given the input features

fout, classification is performed separately on every tree. The

result is a probability distribution of the class labels s for

the considered block. The probability values are computed

as the ratio of the number of trees that voted for the class to

the number of all trees:

rl =

∣

∣

{

Ti : Ti(f
out) = l

}
∣

∣

|T |
, (7)

where Ti(f
out) denotes an output from tree Ti , and T is

the set of all trees. In the presented system, we chose

RT classifier to be a trade-off between complexity and

discriminative abilities, hence there were 200 trees of

maximal depth equal to 10. Because other features than the

pixel color had to be taken into account, the RT classifier

was trained on data from the octree, not directly on RGB

images. This is a feature distinguishing our approach from

the state-of-the-art methods, including the recent solutions

based on deep learning.

Fig. 7 A visualization of ground plane estimation process showing a the full point cloud and a ground plane segment (red square) and b points

recognized as belonging to the ground plane and principal components scaled by their eigenvalues (red arrows)

J Intell Robot Syst (2019) 93:723–743732

Fig. 8 Comparison of

classification methods:

registered colored point clouds

(a), SVM classifier (b), RT

classifier (c), and RT classifier +

CRF results (d)

- grass
- pavement
- asphalt
- bushes

- leaves
- trees
- wall
- concrete

- grass
- pavement
- asphalt
- bushes

- leaves
- trees
- wall
- concrete

- grass
- pavement
- asphalt
- bushes

- leaves
- trees
- wall
- concrete

a b

c d

To further improve the results of the classification,

we perform a probabilistic inference using Conditional

Random Fields (CRF). CRFs enable to build a probabilistic

model M that describes dependencies between neighboring

blocks, thus making it possible to compute a consistent

set of labels that maximizes the joint probability, not

only marginal probabilities for each block individually.

The model exploits the classification results as a prior

knowledge and additionally harnesses the knowledge of

adjacency between blocks. For each pair of adjacent blocks,

their relation is conditioned on how similar are features

describing them. Those features, denoted as f E
i,k for node

i and feature k, are different from features used during

classification to avoid overcomplicated models. We used

mean RGB values and median height as the inference

features, because computing differences in RGB space is

straight-forward in opposition to HSV space. The model

was described with the following formula for the joint

probability:

p(s|f) =
1

Z(f)
exp

⎧

⎨

⎩

∑

i∈N

∑

l∈L

θN
l gl(si , fi) +

∑

(i,j)∈E

∑

k∈F

θE
k h(si , sj , f

E
i,k, f

E
j,k)

⎫

⎬

⎭

,

(8)

g(si, fi) = − log(p(si |fi)), (9)

h(si, sj , f
E
i,k, f

E
j,k) = 1{si �=sj } exp(−β(f E

i,k − f E
j,k)

2), (10)

where s is a set of labels for all blocks, Z(f) is a normalizing

factor, N is a set of blocks, L is a set of labels, θN
l are

parameters controlling trust in classification results, E is

Algorithm 2 Terrain classification: Oc, T → Occ

// Initialize classified coarse octree map with the given

coarse octree map

Occ = Oc ;

// For each cell in the map

for B ∈ Occ do

f = EXTRACTCLASSFEATURES(B) ;

r = CLASSIFY(T , f) ;

ADDCLASSRESULTS(Occ, r) ;

end

// Build CRF model using structure of the map and

inference features

M = BUILDCRFMODEL(Occ) ;

INFERENCE(M) ;

// For each cell in the map

for B ∈ Occ do
// Extract the label that with other labels gives the

the highest joint probablility

s= EXTRACTINFERENCERESULTS(M,B) ;

ADDINFERENCERESULTS(Occ, s) ;

end

return Occ ;

J Intell Robot Syst (2019) 93:723–743 733

a set of edges, F is a set of inference features, θE
k are

parameters controlling the level of agreement depending

on inference feature k, p(si |fi) are probablities from the

classification step and β is a parameter controlling how fast

grows the tendency to neighboring blocks having the same

label when their features approach the same value.

As an inference mechanism, we used Loopy Belief Prop-

agation algorithm with Tree Reparametrization scheduling.

The parameters θ were computed with log-likelihood max-

imization procedure that used a set of labeled examples.

The parameter β had to be tuned manually and a value

0.05 was chosen. Figure 9 contains a comparison between

classification results without and with the inference step.

A data set consisting of 2944 RGB-D frames from

three sequences, recorded with the Kinect v2 sensor in the

outdoor experimental site was used. A global octree map

representation for each sequence was built from these RGB-

D frames using the same procedure which was used during

classification. Every 50-th RGB image in those sequences

was manually labeled indicating the image areas belonging

to the considered classes. Some small areas that didn’t fit

to any of the defined classes were left unlabeled. Then, the

labels from the 2-D areas in the images were projected onto

the octree voxels, using the known position of the Kinect

v2 sensor. Finally, we had 3 instances of the labeled octree

maps that were used for training both, the classifier and the

probabilistic model.

5Motion Planning

To find the path between initial and goal pose of the robot

we applied the guided-RRT algorithm [5]. The algorithm

utilizes two motion planning algorithms: A∗ and RRT-

Connect. The block diagram of the algorithm is presented in

Fig. 10 and the formal description is given in Algorithm 3.

The goal position of the robot q3D
goal is defined in 3-D space

by a human operator. It is more practical than defining the

full state of the robot at the end of the trajectory. Instead, our

algorithm computes footholds for the goal position of the

robot (x, y, yaw) and optimizes posture to find the optimal

inclination of the robot’s body and distance to the ground

(q24D
goal). The algorithm returns a sequence of robot poses

defined in 24-dimensional space between the initial pose of

the robot q24D
curr and goal position q3D

goal.

In the first step, the A∗ planner uses coarse grid and

the map of classes to find a coarse path between current

and goal position of the robot (Fig. 10). The heuristic cost

estimation from the current node is computed using the

Euclidean distance. The adjacent cost between considered

and neighboring nodes of the graph is computed using

Euclidean distance and spherical variance ω on the elevation

map [5]. We also use probabilistic predictor based on the

Kernel Density Estimation to estimate if the transition

between considered nodes is possible as it was proposed

in [5]. However, in contrast to [5], we compute the final cost

of the transition taking into account the terrain type. The

transition cost for the robot cfinal is computed as follows:

cfinal = k1 · (d + ω) + k2 ·

5
∑

i=0

(wi · P(ci)), (11)

where ω is the normalized spherical variance, wi is the cost ass-

igned to terrain class ci (safety factor), d is the distance between

neighboring nodes, k1 and k2 are coefficients which scale the

cost to 1. The spherical variance ω is computed for the region

of the map which has the same size as the robot’s body.

Similarly, to take into account the size of the robot

we compute the distance d between neighboring nodes

considering the maximal height of the cells below the

robot’s body. The weight wi is assigned to each class

by the human operator. The weight allows to intuitively

determine the preferences for the robot. We divide terrain

types according to their physical properties as safe for

the robot (asphalt, pavement, concrete), moderately safe

(leaves, grass) and objects that should be avoided by the

robot (bushes, wall, trees). The A∗ planner guides the robot

through regions which are potentially less risky. The safety

factor is also related to the efficiency of walking. Walking

on a grass requires more energy than walking on pavement

or asphalt due to slippages and a higher risk of robot’s fall.

Algorithm 3 Guided-RRT: q24D
curr , q

3D
goal → {q24D

curr , ...,24D
goal }

while q24D
R != q3D

goal do

Apath = ASTARFIND(q24D
curr , q

3D
goal);

if Apath is NULL then

return NO PATH;

end

while not RRT SUCCESS do

q3D
temp = CREATETEMPGOAL(Apath, rrtdistance);

RRTpath = RRTConnect({q24D
curr , q

3D
temp});

if RRTpath is not NULL then

RRT SUCCESS = true;

else if q3D
temp = q3D

goal then

return NO PATH;

else

rrtdistance = rrtdistance + 0.2;

end

end

Execute path from q24D
curr to q24D

m ;

q24D
R = q24D

m ;

end

return {q24D
curr , ..., q24D

goal };

J Intell Robot Syst (2019) 93:723–743734

a b b

Fig. 9 Confusion matrices for the SVM (a), RT (b), and RT+CRF (c) classification methods. The overall classification accuracy is 71.5%, 80.0%,

and 87,6% for SVM, RT, and RT+CRF, respectively

If the A∗ planner does not return a path to the goal

position we assume that the feasible path for the robot

does not exist. In the other case, the algorithm uses the

A∗ path Apath to determine the temporary goal q3D
temp for

the RRT-based planner. The temporal goal is located on the

A∗ path Apath. The minimal distance between the current

position of the robot and temporary goal should be bigger

than rrtdistance (in our case 1.2 m). Then, the precise RRT

planner determines the full state of the robot in the 24-

dimensional space. First, the algorithm computes footholds

for the temporal 3-D position q3D
temp of the robot. Then, the

planner finds the posture of the robot which is statically

stable and maximizes the kinematic margin [5].

The path between the current position of the robot q24D
curr

and temporary goal q24D
temp is found by the modified version

of the RRT-Connect algorithm [26]. The planner creates

two trees. The root of the first tree is located in the current

position of the robot. The root of the second tree is located

in the position determined in the previous step. The trees

are alternately extended to the random direction. If the

tree is extended successfully, the algorithm tries to extend

the second tree in the direction to the previously added

node. The algorithm ends with success when two trees are

connected. The algorithm is general and does not assume

any specific shape of obstacles. The obtained motion path

allows to efficiently climb over obstacles.

We adopted the EXTEND procedure of the RRT-Connect

algorithm to find the full state of the robot. The EXTEND

procedure checks if the robot can reach a stable position in

the given direction. At the beginning of the procedure, the

new footholds for the robot are selected using the algorithm

from [6]. Then, the posture of the robot is optimized to

maximize kinematic range, preserve stability and avoid

collisions. We check collisions taking into account full 3D

mesh model of the robot. The minimal clearance between

the robot’s body and the terrain is set to 0.02 m. Then, the

algorithm plans the motion of the legs above the obstacles.

The planner avoids collisions and keeps the feet inside the

workspace of the robot’s legs. If the planner successfully

finds the transition between the current and the new node,

the new node is added to the tree. The new node contains

information about the full state of the robot (inclination,

distance to the ground and footholds) and transition path

for body and legs from the current node to the neighboring

node. The details of the RRT-based planner for the

six-legged robot are given in [5].

The RRT planner returns the path between the current

and temporal position of the robot q24D
temp. The robot executes

Fig. 10 Block diagram of the

guided-RRT algorithm. Note

that for the sake of clarity data

structures exchanged by the

processing modules are not

shown explicitly – see text for

details

J Intell Robot Syst (2019) 93:723–743 735

y [m]

x [m]

z
 [
m

]

0.3
0.4
0.5
0.6
0.7
0.8

0

0.5

1

1.5

2

-0.5

2.5

-1
-1.5

-1

-0.5

0

0.5

1

1.5

0.3
0.4
0.5
0.6
0.7
0.8

0

0.5

1

1.5

2

-0.5

2.5

-1
-1.5

-1

-0.5

0

0.5

1

1.5

x [m]

y [m]

z
 [
m

]

START

GOAL

START

GOALA* path
Body path
Feet paths
Re-planning point

A* path
Body path
Feet paths
Re-planning point

a b

Fig. 11 Results of the comparison experiment with the original version of the guided-RRT algorithm and the proposed version which uses

information about terrain type to plan the motion of the robot

the planned path using selected gait (if not mentioned the

tripod gait is used in experiments presented in the paper).

The robot executes only part of the planned path which is

within the area measured by the precise range sensor. In our

case, the robot executes 0.8 m of the planned path. If the

RRT planner reaches the maximal number of iterations and

can’t find the path the temporary goal q3D
temp is moved further

along A∗ path Apath from the current position of the robot. In

this case, the rrtdistance is increased. The planning procedure

is repeated until the robot reaches the goal position. The

computation of RRT path to the goal position which is

1 m from current position takes about 10 s on flat terrain.

The computation time increases with the roughness of the

terrain.

6 Results

6.1 Indoor Experiments

First, we performed a set of experiments in the laboratory

to show the selected features of the proposed motion

planning algorithm.1 We simulated outdoor environment

using five various terrain patches (floor, grass, asphalt,

wood, sandstone). The global map of the environment is

obtained off-line, before the experiment. We align point

clouds obtained from the RGB-D camera (Asus Xtion)

moving above the terrain mockup and create the proposed

environment model. The elevation maps enhanced by the

information about the terrain type is used to plan precise

motion of the robot to the goal position. The highest cost

of transition (weight wi) for the A∗ planner is set to

sand-rocks and wood. The cost of transition decreases

gradually for grass, floor, and asphalt. We expect that with

1Video is available at http://lrm.cie.put.poznan.pl/terrainPlan.mp4

this configuration the robot will avoid sand-rocks and prefer

routes over asphalt. Small detours to grass and floor are also

acceptable by the planner.

The first experiment is performed in the environment

presented in Fig. 4a. The obtained paths are shown in

Fig. 11. We use the environment presented in Fig. 4a to

compare the original version of the guided-RRT with the

algorithm presented in this article. In Fig. 11a we show

the path found by the original version of the guided-RRT

algorithm. A∗ planner in the guided-RRT algorithm takes

into account geometrical properties of the terrain. The cost

of the transition depends on the roughness of the terrain and

distance to the goal position. Because the considered terrain

is almost flat the A∗ planner returns straight path to the goal

position. The precise RRT planner follows this path and

returns almost straight path. For the same environment, the

proposed planner returns path which avoids grass (the cost

of transition for the grass is higher than for the asphalt). The

robot takes a detour from the shortest path and selects longer

but more secure path to the goal (Fig. 11b). In this case, the

robot avoids grass and prefers walking over the asphalt.

The second experimental set is presented in Fig. 12. The

wooden box between the initial and goal pose of the robot

prevents taking the straight path. The robot has to take

a longer detour from the straight path to reach the goal

position. Two ways are possible: on the asphalt (left of the

wooden box) and on the on the floor (right of the wooden

box). The robot chooses the path on the asphalt because the

cost of the transition for the asphalt is smaller than for the

floor. From the beginning of the experiment, the A∗ planner

guides the RRT algorithm above the asphalt (Fig. 12c). We

also use this experiment to show that the planner is robust to

classification results or non-uniform structure of the terrain

(Fig. 12b). For each cell of the map used by the A∗ planner,

we compute the probability of each class. The final cost

of the transition depends on the occurrence probability of

J Intell Robot Syst (2019) 93:723–743736

http://lrm.cie.put.poznan.pl/terrainPlan.mp4

Fig. 12 Second experiment on the terrain mockup: aligned color point cloud (a), corresponding class map (b) and the obtained path of the robot

on the elevation map (c)

the terrain type below the robot (11). Thus, even incorrect

classification result for some voxels of the OctoMap does

not influence significantly the proposed motion planner.

In the third experiment, we added a rough terrain mockup

between the initial and goal pose of the robot. The robot

chooses the path along the asphalt (Fig. 13) despite the fact

that it can climb the mockup [5]. Note that the information

about the terrain type is used by the A∗ planner only. The

RRT planner, which is guided by the A∗ planner, searches

for the acceptable path on the regions of the map which

are less risky and safe for the robot. The robot still can

place its feet on the less preferred terrain types (grass,

floor) or move above sand-stone. This approach allows the

robot to find stable footholds or avoid collisions with the

obstacles (Fig. 13c). Again, despite some misclassified cells

(Fig. 13b) the robot plans its path through preferred regions

of the map (asphalt).

6.2 Outdoor Experiments

The maps for the outdoor experiments are obtained using

Kinect v2 sensor. The sensor is moved freely above

the ground and localized using ORB-SLAM2 [31]. The

initial pose of the sensor in ORB-SLAM2 is set to be

identical to the global reference frame. The proposed

model of the environment is obtained using procedures

presented in chapter 3.3. Finally, we plan the motion from

the initial to the goal position of the robot using the

terrain-aware guided-RRT algorithm. We recognize eight

terrain categories of terrain. The lowest transition cost is

set to asphalt and pavement and higher cost is set for

grass and fallen leaves laying on the ground. The highest

transition cost, which forces the robot to avoid this type

of obstacles, is set for bushes, trees, walls and concrete

structures.

Fig. 13 Third experiment on the terrain mockup: aligned color point clouds (a), corresponding class map (b) and the obtained path of the robot (c)

J Intell Robot Syst (2019) 93:723–743 737

Fig. 14 Experimental set (a), classification results on the elevation map (b) and motion planning results when the robot prefers pavement over the

grass (c) and when the robot uses geometric properties of the environment only to plan its motion (d)

The results of the first experiment are presented in

Fig. 14. The experimental set is presented in Fig. 14a. The

classification results are shown in Fig. 14b. we don’t have

the ground truth map for the classification (the map contains

hundreds of thousands of cells that should be labeled

manually) so we can assess visually the classification

results. The classifier can easily distinguish between grass,

bushes, and leaves. Some cells of the pavement are

incorrectly classified as asphalt because they are visually

similar. This is not a problem for the planner because it

uses the probability of the terrain type in the considered cell

and because the pavement and asphalt have similar physical

properties. The robot can safely walk on both terrain types.

The final path obtained from guided-RRT planner is

presented in Fig. 14c. The close-up view on the planned

trajectory at the start and goal pose of the robot is presented

in Fig. 15. The planner returns positions of the supporting

feet on the ground, the trajectory of feet above obstacles

during swing phase, the inclination of the platform and

distance of the body to the ground. Each position of the

robot is collision-free and statically stable. The robot walks

on the pavement as long as possible. The planner minimizes

the length of the path which goes above the grass because

it is a less preferable type of the terrain for the robot.

We compare the computed path to the path obtained from

the original version of the guided-RRT algorithm [5]. The

results of the original guided-RRT algorithm, which takes

into account geometrical properties of the environment, are

presented in Fig. 14d. The length of the obtained path is

11.84 m (Fig. 14d) while the length of the path obtained

from the proposed planner is 14.34 m (Fig. 14c). The

proposed planner returns longer but much safer path for

the robot. The robot voluntarily takes the longer path on

the pavement and avoids more risky grass and leaves. The

planning time for the path presented in Fig. 14c is 212 s, and

for the path presented in Fig. 14d is 223 s.

Fig. 15 Close-up view on the

planned trajectory at the start (a)

and goal pose of the robot (b)

J Intell Robot Syst (2019) 93:723–743738

Fig. 16 Experimental set (a),

classification results on the

elevation map (b) and motion

planning results when the robot

prefers pavement over the grass

(c) and when the robot prefers

grass over the pavement and

asphalt (d)

The second experiment was performed on the terrain

presented in Fig. 16a. The proposed classifier can properly

identify pavement, asphalt, and grass (Fig. 16b). Also, the

robot is aware of trees, leaves and concrete construction.

The path found by the planner is presented in Fig. 16c.

The robot walks on the preferred terrain types: pavement

and asphalt and avoids grass and non-traversable obstacles.

The precise RRT based-planner, which is computationally

more demanding than A∗ planner, does no explore risky

areas (leaves, trees, concrete construction). The A∗ planner

guides the RRT method to the areas which are potentially

safer for the robot. The length of the obtained path is

15.23 m. We also modified the weights related to the terrain

types to verify the output from the planner. The results are

presented in Fig. 16d. In this case, the robot has a different

strategy. The weight related to the grass is the smallest. We

also increased weight related to the pavement and asphalt.

The modified strategy gives shorter path (13.45 m) but

potentially more risky for the robot. The planning time for

the path presented in Fig. 16c is 379 s, and for the path

presented in Fig. 16d is 202 s.

The experimental set for the last outdoor experiment is

presented in Fig. 17a. The robot can identify the obstacles

and terrain types in the environment (Fig. 17b) and plan its

path to avoid contact with unwanted terrain types (Fig. 17c).

We use this experimental set to show the flexibility of the

proposed algorithm. The results are presented in Fig. 17d.

We modified the weights related to each class so the A∗

Fig. 17 Experimental set (a),

classification results on the

elevation map (b) and motion

planning results when the robot

prefers pavement over the grass

(c) and when the robot prefers

grass and modifies gait type

according to the terrain type (d)

J Intell Robot Syst (2019) 93:723–743 739

Table 1 Comparison between

various motion planning

strategies: A – proposed

method, B – method from [5],

C – proposed method with

modified planning preferrences

(robot preferrs grass over

pavement and asphalt). Bold

values correspond to the terrain

type preferred by the robot

with method A, B, and C

Exp. 1 Exp. 2 Exp. 3

Method A B A B C A B C

Length [m] 14.34 11.84 15.23 13.17 13.45 10.89 9.69 9.29

Planning time [s] 212 223 379 418 202 99 108 106

Sph. var. ω 2.5e-7 6.3e-8 1.1e-8 1.4e-8 1.0e-8 1.5e-8 1.4e-8 1.4e-8

P(grass) 0.54 0.78 0.04 0.59 0.69 0.01 0.78 0.79

P(pavement) 0.41 0.12 0.58 0.26 0.11 0.89 0.17 0.17

P(asphalt) 0.05 0.0 0.35 0.11 0.15 0.07 0.04 0.02

planner prefers grass. However, in this case, the planner

is aware of the higher cost of transition of the grass in

comparison to the pavement and modifies the walking

pattern. On the pavement, the robot uses tripod gait which

is the fastest statically stable gait for a hexapod robot, but

less stable. When the robot walks on the grass it changes

the gait to wave gait to increase the support polygon and

stability margin. With this strategy, the robot can switch

between various gaits when walking on various terrain

types. Moreover, the robot can ignore the foothold selection

and precise path planning on compliant terrain types, e.g.

high grass or leaves. When walking on this type of the

terrain the geometrical properties are hardly related to the

stable support for robot’s leg. In this case, the robot should

use behavioral approach but plan this strategy in advance.

The planning time for the path presented in Fig. 17c is 99 s,

and for the path presented in Fig. 17d is 106 s.

The results from the outdoor experiments are summa-

rized in Table 1. We compare the proposed method (column

A in Table 1) with the guided-RRT planner which uses

geometric information only [5] (column B in Table 1). Addi-

tionally, we show results for the planner with modified

terrain preferences (robot prefers grass over pavement and

asphalt – column C in Table 1). For each experiment, we

show the length of the obtained path, the planning time,

average spherical variance ω and the average probability

of three selected terrain classes (grass, pavement, asphalt)

along the obtained path.

When we compare the average spherical variance (which

is related to the roughness of the terrain) for each

experiment we can note that the value for the path along

the grass and for the pavement does not differ significantly.

For some experiments, the roughness of the pavement is

even larger than for the lawn area. This is related to the

properties of the perception system. The uncertainty of

the depth measurements from the RGB-D sensor does not

allow to properly distinguish between some terrain types

on the basis of their geometry. The semantic information

which we added to the elevation map allows the planner

to choose a path over the preferred terrain, in spite of the

fact that the roughness measure provides a vague support

for the computation of the cost function. The statistics of

the terrain roughness shows that the qualitative semantic

information helps to cope with the unavoidable uncertainty

of the geometric terrain map. In Table 1 we also compare the

average probability of the specified classes. For the method

presented in the article, the probability of pavement and

asphalt is maximized. In experiments 2 and 3 the robot spends

more than 90% of the time on the pavement and asphalt. In

the first experiment, the average probability of the pavement

along the grass is 0.41. The probability decreases to 0.12

when we modify the preferences of the planner. When the

robot uses geometric features for planning the probability of

grass increases from 0.54 to 0.78.

7 Conclusions

Extensive experiments in both a controlled lab environment

and real outdoor settings demonstrate that it is possible to

determine the basic semantics of a natural environment,

and then to use the semantic labeling to enhance motion

planning capabilities of a legged robot. Specifically,

the ability to distinguish between a sufficient number

of classes (eight labels in the outdoor experiments) to

describe the semantics of a typical urban outdoor scene

was demonstrated. Then, the influence of the semantic

interpretation of the particular areas perceived by the

robot on the coarse path planning results was shown. The

robot was forced to consider different terrain classes as

preferable, which resulted in different paths with the same

elevation map. We consider this as a first step toward terrain

perception that is similar to the way animals or even human

beings perceive a natural environment.

Although the main building blocks of the presented

system have been already used in our previous research

[3, 5, 47] or are known from the literature and available

to the community, as the OctoMap [21], we demonstrate

J Intell Robot Syst (2019) 93:723–743740

here how they can be used to obtain a complete architecture

for perception-based motion planning. In particular, we

contribute the following new elements:

– The use of the octree map structure for semantic

labeling of natural environments from RGB-D data.

Making an informed choice of the features and the

classifier (motivated by our previous experience) we are

able to classify the voxels on relatively large scenes

obtaining results that are consistent with the meaning a

human being would ascribe to particular areas of these

scenes. Unlike many terrain classification systems that

use raw images adopting semantic image segmentation

methods well known in computer vision, we implement

classification directly on the octree map structure. This

approach makes possible to consider also geometry-

related features in classification.

– The new terrain mapping architecture, which combines

the OctoMap and the elevation grid. The octree structure

is used for efficient 3-D data registration, ensuring

proper object representation and sufficient statistics for

classification. The elevation map serves as a projection

of those aspects of the 3-D model that are essential

to the guided-RRT planner, ensuring a compact data

structure and quick access to the information.

– The coarse path planner, based on the A∗ algorithm, but

extended by the ability to take into account the semantic

labels in the elevation grid. This method is engineered

to be maximally flexible – we ascribe weights to the

semantic categories that result in different behaviors

of the coarse planner (cautious or aggressive terrain

exploration). Moreover, we compute the probability

of semantic labeling for the coarse grid cells used

by the path planner, which results in an increased

tolerance to isolated, wrongly classifies voxels. Owing

to this concept we obtain satisfying results even without

the use of the CRF-based reasoning, which improves

classification results, but slows down the whole

classification process. To the best of our knowledge, we

are the first who demonstrate full motion planning for

a legged robot that considers 3-D semantic labeling in

a natural terrain in contrast to reactive controllers [8,

40] that employ semantic labels only to avoid specific

terrain types.

Obviously, the presented system can be improved and

extended in a number of directions. In the OctoMap we

have terrain classes detected at the granulation of the

1.5×1.5 cm voxels. This information is in fact not used

in the current implementation, but may be useful for an

enhanced foothold selection procedure, and can assist in the

implementation of a gait supported by reflexive behaviors.

Also, tighter integration of the semantic information within

the RRT-Connect planner is possible, as the “meaning” of

the given area may influence the probability of sampling

the robot configurations in that area. Whereas the presented

experiments relied on RGB-D data, we expect similar

performance with a good quality stereo camera, which may

be more suitable for outdoor operations.

Acknowledgements This research is part of a project that has

received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 780883. We

thank Szymon Bartoszyk and Patryk Kasprzak who worked on the

environment model for the indoor experiments and provided the initial

version of the terrain classifier.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

References

1. Bajracharya, M., Ma, J., Malchano, M., Perkins, A., Rizzi,

A., Matthies, L.: High fidelity day/night stereo mapping with

vegetation and negative obstacle detection for vision-in-the-loop

walking. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 3663–3670. Tokyo (2013)

2. Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion

planning for a walking robot. In: Proceedings of International

Workshop on Robot Motion and Control, pp. 29–34. Wasowo (2017)

3. Belter, D., Łabȩcki, P., Fankhauser, P., Siegwart, R.: RGB-D,

terrain perception and dense mapping for legged robots. Int. J.

Appl. Math. Comput. Sci. 26(1), 81–97 (2016)

4. Belter, D., Łabȩcki, P., Skrzypczyński, P.: Estimating terrain

elevation maps from sparse and uncertain multi-sensor data.

In: Proceedings IEEE International Conference on Robotics and

Biomimetics, pp. 715–722. Guangzhou (2012)

5. Belter, D., Łabȩcki, P., Skrzypczyński, P.: Adaptive motion

planning for autonomous rough terrain traversal with a walking

robot. J. Field Robot. 33(3), 337–370 (2016)

6. Belter, D., Skrzypczyński, P.: Rough terrain mapping and

classification for foothold selection in a walking robot. J. Field

Robot. 28(4), 497–528 (2011)

7. Belter, D., Walas, K.: A compact walking robot – flexible research

and development platform. In: Szewczyk, R., et al. (eds.) Recent

Advances in Automation, Robotics and Measuring Techniques,

AISC, vol. 267, pp. 343–352 (2014)

8. Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain

classification using a hexapod robot. In: Proceedings of the

Australasian Conference on Robotics and Automation (2013)

9. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm

for optimal margin classifiers. In: Fifth Annual Workshop on

Computational Learning Theory, COLT ’92, pp. 144–152 (1992)

10. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

J Intell Robot Syst (2019) 93:723–743 741

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

11. Chang, C.C., Lin, C.J.: libSVM: A library for support vector

machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

12. Chetan, J., Krishna, M., Jawahar, C.V.: Fast and spatially-smooth

terrain classification using monocular camera. In: International

Conference on Pattern Recognition, pp. 4060–4063. Istanbul (2010)

13. Chilian, A., Hirschmüller, H.: Stereo camera based navigation

of mobile robots on rough terrain. In: Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp.

4571–4576 (2009)

14. Droeschel, D., Schwarz, M., Behnke, S.: Continuous mapping and

localization for autonomous navigation in rough terrain using a 3D

laser scanner. Robot. Auton. Syst. 88, 104–115 (2017)

15. Dryanovski, I., Morris, W., Xiao, J.: Multi-volume occupancy

grids: An efficient probabilistic 3D mapping model for micro aerial

vehicles. In: Proceedings of IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 1553–1559 (2010)

16. Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter,

M., Siegwart, R.: Kinect v2 for mobile robot navigation:

Evaluation and modeling. In: Proceedings of International

Conference on Advanced Robotics, pp. 388–394. Istanbul (2015)

17. Giguére, P., Dudek, G., Saunderson, S., Prahacs, C.: Environment

identification for a running robot using inertial and actuator cues.

In: Robotics: Science and Systems (2006)

18. Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M.,

Kavukcuoglu, K., Muller, U., LeCun, Y.: Learning long-range

vision for autonomous off-road driving. J. Field Robot. 26(2),

120–144 (2009)

19. Hauser, K., Bretl, T., Latombe, J.C., Harada, K., Wilcox, B.:

Motion planning for legged robots on varied terrain. Int. J. Robot.

Res. 27(11-12), 1325–1349 (2008)

20. Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L.,

Siegwart, R.: Haptic terrain classification for legged robots. In:

Proceedings of IEEE International Conference on Robotics and

Automation, pp. 2828–2833 (2010)

21. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard,

W.: OctoMap: An efficient probabilistic 3D mapping framework

based on octrees. Auton. Robot. 34(3), 189–206 (2013)

22. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.:

Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580

(1996)

23. Kolter, J.Z., Rodgers, M.P., Ng, A.Y.: A control architecture

for quadruped locomotion over rough terrain. In: Proceedings of

IEEE International Conference on Robotics and Automation, pp.

811–818 (2008)

24. Kraft, M., Nowicki, M., Schmidt, A., Fularz, M., Skrzypczyński,

P.: Toward evaluation of visual navigation algorithms on RGB-

D data from the first- and second-generation Kinect. Mach. Vis.

Appl. 28(1), 61–74 (2017)

25. Krotkov, E., Hoffman, R.: Terrain mapping for a walking

planetary rover. IEEE Trans. Robot. Autom. 10(6), 728–739

(1994)

26. Kuffner, J., LaValle, S.: RRT-Connect: An efficient approach to

single-query path planning. In: Proceedings of IEEE International

Conference on Robotics and Automation, pp. 995–1001 (2000)

27. Laible, S., Khan, Y., Zell, A.: Terrain classification with

conditional random ields on fused 3D lidar and camera data.

In: Proceedings of European Conference on Mobile Robots, pp.

172–177. Barcelona (2013)

28. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees:

Progress and prospects. In: Donald, B.R. (ed.) Algorithmic and

Computational Robotics: New Directions, pp. 293–308. A. K.

Peters/CRC Press (2001)

29. Maturana, D., Chou, P., Uenoyama, M., Scherer, S.: Real-time

semantic mapping for autonomous off-road navigation. In: Hutter,

M., Siegwart, R. (eds.) Field and Service Robotics, SPAR, vol. 5,

pp. 335–350. Springer (2018)

30. Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only

for blind hexapod walking robot. In: Proceedings of International

Workshop on Robot Motion and Control, pp. 240–245. Poznań

(2015)

31. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an opensource SLAM

system for monocular, stereo and RGB-D cameras. IEEE Trans.

Robot. 33(5), 1255–1262 (2017)

32. Nowicki, M., Belter, D., Kostusiak, A., Cı́zek, P., Faigl, J.,

Skrzypczyński, P.: An experimental study on feature-based SLAM

for multi-legged robots with RGB-D sensors. Indus. Robot: Int. J.

44(4), 428–441 (2017)

33. Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain

characterization and classification with a mobile robot. J. Field

Robot. 23(2), 103–122 (2006)

34. Papadakis, P.: Terrain traversability analysis methods for

unmanned ground vehicles: a survey. Eng. Appl. Artif. Intel.

26(4), 1373–1385 (2013)

35. Pfaff, P., Triebel, R., Burgard, W.: An efficient extension to

elevation maps for outdoor terrain mapping and loop closing. Int.

J. Robot. Res. 26(2), 217–230 (2007)

36. Roennau, A., Kerscher, T., Ziegenmeyer, M., Marius, J., Zölner,

J.M., Dillmann, R.: Adaptation of a six-legged walking robot to

its local environment. In: Kozłowski, K. (ed.) Robot Motion and

Control 2009, LNCIS, vol. 396, pp. 155–164. Springer (2009)

37. Rusu, R.B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal,

M., Latombe, J.C., Beetz, M.: Leaving flatland: efficient real-

time 3D perception and motion planning. J. Field Robot. 26(10),

841–862 (2009)

38. Sanctis, L., Garrido, S., Moreno, L., Blanco, D.: Outdoor motion

planning using fast marching. In: Tosun, O. et al. (eds.) Mobile

Robotics: Solutions and Challenges, pp. 1071–1080. World

Scientific, Singapore (2009)

39. Satzinger, B., Lau, C., Byl, M., Byl, K.: Tractable locomotion plan-

ning for RoboSimian. Int. J. Robot. Res. 34(13), 1541–1558 (2015)

40. Stejskal, M., Mrva, J., Faigl, J.: Road following with blind

crawling robot. In: Proceedings of IEEE International Conference

on Robotics and Automation, pp. 3612–3617 (2016)

41. Thrun, S., Montemerlo, M., Aron, A.: Probabilistic terrain

analysis for high-speed desert driving. In: Robotics: Science and

Systems. Philadelphia (2006)

42. Umeyama, S.: Least-squares estimation of transformation param-

eters between two point patterns. IEEE Trans. Pattern Anal. Mach.

Intell. 13(4), 376–380 (1991)

43. Valada, A., Oliveira, G., Brox, T., Burgard, W.: Towards robust

semantic segmentation using deep fusion. In: RSS Workshop on

Limits and Potentials of Deep Learning in Robotics. Ann Arbor

(2016)

44. Vonasek, V., Faigl, J., Krajnik, T., Preucil, L.: RRT-path – a guided

rapidly exploring random tree. In: Kozłowski, K. (ed.) Robot Motion

and Control 2009, LNCIS, vol. 396, pp. 307–316. Springer (2009)

45. Walas, K.: Terrain classification and negotiation with a walking

robot. J. Intell. Robot. Syst. 78(3), 401–423 (2015)

46. Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P.A.,

Siegwart, R., Hutter, M.: Navigation planning for legged robots

in challenging terrain. In: Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 1184–1189

(2016)

47. Wietrzykowski, J., Skrzypczyński, P.: Terrain classification for

autonomous navigation in public urban areas. In: Silva, M.

et al. (eds.) Human-Centric Robotics, pp. 319–326. World-

Scientific (2017)

48. Wooden, D., Malchano, M., Blankespoor, K., Howardy, A.,

Rizzi, A., Raibert, M.: Autonomous navigation for BigDog. In:

J Intell Robot Syst (2019) 93:723–743742

Proceedings of IEEE International Conference on Robotics and

Automation, pp. 4736–4741 (2010)

49. Wurm, K.M., Stachniss, C., Kümmerle, R., Burgard, W.:

Improving robot navigation in structured outdoor environments

by identifying vegetation from laser data. In: Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 1217–1222. St. Louis (2009)

50. Ye, C., Borenstein, J.: A novel filter for terrain mapping with laser

rangefinders. IEEE Trans. Robot. Autom. 20(5), 913–921 (2004)

51. Zhong, C., Liu, S., Zhang, B., Lu, Q., Wang, J., Wu, Q., Gao, F.: A

fast on-line global path planning algorithm based on regionalized

roadmap for robot navigation. IFAC-PapersOnLine 50(1), 319–

324 (2017). 20th IFAC World Congress

52. Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell, J.A.,

Atkeson, C.G., Kuffner, J.: Optimization and learning for rough

terrain legged locomotion. Int. J. Robot. Res. 30(2), 175–191

(2011)

Dominik Belter graduated from Poznan University of Technology

(2007). He received PhD degree in robotics from the same University

in 2012. Since 2012, he has been an Assistant Professor at the Institute

of Control and Information Engineering of the Poznan University of

Technology. Dominik Belter is the author or co-author of over 60

technical papers in the fields of robotics and computer science. His

research interests include walking robots, machine learning, vision,

robot manipulation and soft computing.

JanWietrzykowski graduated from Poznan University of Technology

in 2015. He received BSc and MSc in Automatic Control and Robotics

from the same university in 2014 and 2015, respectively. Since 2015

he is a PhD student at the Faculty of Electrical Engineering. In 2016 he

became a research assistant at the Institute of Control and Information

Engineering. His is author or coauthor of 13 technical papers in

the area of robotics and machine learning. His current research

interests include robotic global localization, machine learning, and

simultaneous localization and mapping.

Piotr Skrzypczyński received the Ph.D. and D.Sc. degrees in Robotics

from Poznań University of Technology (PUT) in 1997 and 2007,

respectively. Since 2010 he is an associate professor at the Institute

of Control, Robotics and Information Engineering (ICRIE) of PUT,

and head of the Mobile Robotics Laboratory at ICRIE. He is author

or co-author of over 160 technical papers in robotics and computer

science. His current research interests include: autonomous mobile

robots, simultaneous localization and mapping, multisensor fusion,

machine learning, and computational intelligence in robotics.

J Intell Robot Syst (2019) 93:723–743 743

	Employing Natural Terrain Semantics in Motion Planning for a Multi-Legged Robot
	Abstract
	Abstract
	Introduction
	Related Work
	Environment Maps
	Environment Classification
	Motion Planning

	Perception and Environment Model
	Perception System
	Environment Model Architecture
	Data Registration and Octree Map
	Elevation Map

	Terrain Classification
	Motion Planning
	Results
	Indoor Experiments
	Outdoor Experiments

	Conclusions
	Acknowledgements
	Open Access
	Publisher's Note
	References

