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Abstract 32 

Standard workflows for analyzing microbiomes often include the creation and curation of 33 

phylogenetic trees. Here we present EMPress, an interactive tool for visualizing trees in the 34 

context of microbiome, metabolome, etc. community data scalable beyond modern large 35 

datasets like the Earth Microbiome Project. EMPress provides novel functionality—including 36 

ordination integration and animations—alongside many standard tree visualization features, and 37 

thus simplifies exploratory analyses of many forms of ‘omic data. 38 

 39 
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 40 

Main Text 41 

 42 

The increased availability of sequencing technologies and automation of molecular methods 43 

have enabled studies of unprecedented scale [1] prompting the creation of tools better suited to 44 

store, analyze [2], and visualize [3] studies of this magnitude. Many of these tools, such as [4, 5, 45 

6, 7], use phylogenies detailing the evolutionary relationships among features or dendrograms 46 

that organize features in a hierarchical structure (e.g. clustering of mass spectra) [8]. The 47 

challenge of enabling fully interactive analyses stems from the disconnect between feature-level 48 

tools and dataset-level tools; few can interactively integrate multiple representations of the data 49 

[9], and to our knowledge none scale  to display large datasets. This is a key unresolved 50 

challenge for the field: to allow researchers to contextualize community-level patterns 51 

(groupings of samples) together with feature-level structure, i.e. which features lead to the 52 

groupings explained in a given sample set.  53 

 54 

Here, we introduce EMPress (https://github.com/biocore/empress), an open-source (BSD 3-55 

clause), interactive and scalable phylogenetic tree viewer accessible as a QIIME 2 [2] plugin. 56 

EMPress is built around the high-performance balanced parentheses tree data structure [10], 57 

and uses a hardware-accelerated WebGL-based rendering engine that allows EMPress to 58 

visualize trees with hundreds of thousands of nodes using a laptop’s web browser (Methods). 59 

By integrating EMPress with the widely-used EMPeror software [3] within QIIME 2, EMPress 60 

can simultaneously visualize a phylogenetic tree of features in a study coupled with an 61 

ordination of the same study’s samples. User actions in one visualization, such as selecting a 62 

set of samples in the ordination, update the other, providing context that would not be easily 63 

accessible with independent visualizations. This tight integration between displays streamlines 64 

several use-cases elaborated below that previously required manual investigation or writing 65 

custom scripts. 66 

 67 

EMPress visualizations can be created solely from a tree, or users can provide additional 68 

metadata files and a feature table to augment the tree. Using these common data files,users 69 

can interactively configure many visual attributes in the tree (see Methods and Figures for 70 

examples). 71 

 72 

Rather than providing a programmatic interface for the procedural generation of styled 73 

phylogenetic trees [11, 12, FigTree (http://tree.bio.ed.ac.uk/software/figtree/)], EMPress 74 

provides an interactive environment to support exploratory feature- and sample-level tree-based 75 

analyses. Many use-cases supported in EMPress accommodate community analysis tasks; this 76 

differs from Anvi’o [13] which is centered on the analysis of metagenomic assembled-genomes, 77 

pangenomes, etc.. PHYLOViZ [9], SigTree [14], and iTOL [15] are similar to EMPress in terms 78 

of their implementation (PHYLOViZ Online also uses WebGL), and/or use-cases (SigTree is 79 

mostly used to visualize differential abundance patterns, and iTOL supports the visualization of 80 

QIIME 2 tree artifacts). EMPress stands out in its scalability: iTOL claims trees with more than 81 
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10,000 tips to be “very large” (https://itol.embl.de/help.cgi), while EMPress readily supports trees 82 

with over hundreds of thousands of tips, as shown in Fig. 1. Many visualization customization 83 

options available in EMPeror, iTOL [15] and Anvi’o [13] are immediately accessible in EMPress’ 84 

interface. Continuous feature metadata can be visualized in tip-level barplots as a color gradient 85 

and/or by adjusting the lengths of individual tips’ barplots; categorical sample metadata 86 

information can be visualized using a stacked barplot showing—for each tip—the proportion of 87 

samples containing that tip stratified by category. These options are available on the user 88 

interface and do not require programming or configuration files. 89 

 90 

Ordination plots computed from UniFrac distances are often used to visualize sample clustering 91 

patterns in microbiome studies. However, interpreting the patterns in these plots—and 92 

determining which features influence sample group separation—is not always straightforward. 93 

While biplots show information about influential features alongside samples, the phylogenetic 94 

relationships of these features are not immediately obvious. EMPress aids interpretation of 95 

these plots by optionally providing a unified interface where the tree and ordination 96 

visualizations are displayed side-by-side and “linked” through sample and feature identifiers 97 

[16]. This combination allows for novel exploratory data analysis tasks. For example, selecting a 98 

group of samples in the ordination highlights nodes in the tree present in those samples, and 99 

vice versa (see Methods). This integration extends to biplots: clicking feature arrows in the 100 

ordination highlights their placement in the tree. Lastly, EMPress allows visualizing longitudinal 101 

studies by simultaneously showing the tree nodes unique to groups of samples at each 102 

individual time point during an EMPeror animation (see Methods). 103 

 104 

Using the first data release of the Earth Microbiome Project (EMP), we demonstrate EMPress’ 105 

scalability by rendering a 26,035 sample ordination and a 756,377 node tree (Figure 1A). To 106 

visualize the relative proportions of taxonomic groups at the phylum level, we use EMPress’ 107 

feature metadata coloring to highlight the top 5 most prevalent phyla (see Methods). Next, we 108 

add a barplot layer showing, for each tip in the tree, the proportions of samples containing each 109 

tip summarized by level 2 of the EMP ontology (Animal, Plant, Non-Saline, and Saline). Paired 110 

visualizations allow us to click on a tip in the tree and view the samples that contain that feature 111 

in the ordination. This functionality is useful when analyzing datasets with outliers or mislabeled 112 

metadata. Tip-aligned barplots summarize environmental metadata: for example, Figure 1B 113 

shows the subset of samples (4,002) with recorded pH information and a barplot layer with the 114 

mean pH where each feature was found. The barplot reveals a relatively dark section near 115 

many Firmicutes-classified features on the tree; in concert with histograms showing mean pH 116 

for each phylum (Figure 1C), we can confirm that Firmicutes-classified features are more 117 

commonly found in higher pH environments. 118 

 119 

EMPress can be applied to various ‘omic datasets. To illustrate this versatility we reanalyzed a 120 

COVID-19 metatranscriptome sequencing dataset [17], a liquid chromatography mass-121 

spectrometry (LC-MS) untargeted metabolomic food-associated dataset [8], and a 16S rRNA 122 

sequencing oral microbiome dataset [18]. Despite the vastly different natures of these datasets, 123 

EMPress provides meaningful functionality for their analysis and visualization. Supplemental 124 

Video 1 (supplementary-video-1.mp4) shows a longitudinal exploratory analysis using EMPress 125 
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and EMPeror representing a subset of SARS-CoV-2 genome data from GISAID. This paired 126 

visualization emphasizes the relationships in time and space among “community samples” and 127 

the convergence of locales in the United States with the outbreak in Italy (See Methods). The 128 

interactive nature of EMPress allows rapid visualization of strains observed in a collection of 129 

samples from different geographical locations. 130 

 131 

Figure 2A showcases Empress’ ability to identify feature clusters that are differentially abundant 132 

in COVID-19 patients compared to community-acquired pneumonia patients and healthy 133 

controls [17]. Clades showing KEGG enzyme code (EC) [19] annotations are collapsed at level 134 

two except for lyases, highlighting feature 4.1.1.20 (carboxy-lyase diaminopimelate 135 

decarboxylase) that was more abundant in COVID-19 here and in an independent 136 

metaproteomic analysis of COVID-19 respiratory microbiomes [20].  137 

 138 

Recent developments in cheminformatics enabled the analysis and visualization of small 139 

molecules in the context of a cladogram [8]. Using a tree that links molecules by their structural 140 

relatedness, we analyzed untargeted LC-MS/MS data from 70 food samples (see Methods). 141 

With EMPress’ sample metadata barplots, we can inspect the relationship between chemical 142 

annotations and food types. Figure 2B shows a tree where each tip is colored by its chemical 143 

super class, and where barplots show the proportion of samples in the study containing each 144 

compound by food type. This representation reveals a clade of lipids and lipid-like molecules 145 

that are well represented in animal food types and seafoods. In contrast, salads and fruits are 146 

broadly spread throughout the cladogram.  147 

 148 

Lastly, in Figure 2C, we compare three differential abundance methods in an oral microbiome 149 

dataset [18] as separate barplot layers on a tree. This dataset includes samples (n=32) taken 150 

before and after subjects brushed their teeth (see Methods). As observed across the three 151 

differential abundance tools’ outputs, all methods agree broadly on which features are 152 

particularly “differential” (for example, the cluster of Firmicutes-classified sequences in the 153 

bottom-right of the tree; see Methods), although there are discrepancies due to different 154 

methods’ assumptions and biases. 155 

Conclusions 156 

By providing an intuitive interface supporting both categorically new and established 157 

functionality, EMPress complements and extends the available range of tree visualization 158 

software. EMPress can perform community analyses across distinct “omics” types, as 159 

demonstrated here. Moving forward, facilitating the integration of multiple orthogonal views of a 160 

dataset at a more generalized framework level (for example, using QIIME2’s [2] visualization 161 

API) will be important as datasets continue to grow in complexity, size, and heterogeneity. 162 
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 185 
Figure 1. Earth Microbiome Project paired phylogenetic tree (including 756,377 nodes) and 186 

unweighted UniFrac ordination (including 26,035 samples) . (a) Graphical depiction of Empress’ 187 

unified interface with fragment insertion tree (left), and unweighted UniFrac sample ordination (right). Tips 188 

are colored by their phylum-level taxonomic assignment; the barplot layer is a stacked barplot describing 189 

the proportions of samples containing each tip summarized by level 2 of the EMP ontology. Inset shows 190 

summarized sample information for a selected feature. The ordination highlights the two samples 191 

containing the tip selected in the tree enlarged to show their location. (b) Subset of EMP samples with pH 192 

information: the inner barplot ring shows the phylum-level taxonomic assignment, and the outer barplot 193 

ring represents the mean pH of all the samples where each tip was observed (c) pH distributions 194 

summarized by phylum-level assignment with median pH indicated by dotted lines. Interactive figures can 195 

be accessed here. 196 

 197 
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 198 
Figure 2. EMPress is a versatile exploratory analysis tool adaptable to various -omics data types. 199 

(a) RoDEO differential abundance scores of microbial functions from metatranscriptomic sequencing of 200 

COVID-19 patients (n=8), community-acquired pneumonia patients (n=25), and healthy control subjects 201 

(n=20). The tree represents the four-level hierarchy of the KEGG enzyme code. The barplot colors 202 

significantly differentially abundant features (p<0.05) in COVID-19 patients. Clicking on a tip produces a 203 

pop-up insert tabulating the name of the feature, its hierarchical ranks, and any feature annotations. 204 

(b) Global FoodOmics Project LC-MS data. Stacked barplots indicate the proportions of samples (n=70) 205 

(stratified by food) containing the tips in an LC-MS Qemistree of food-associated compounds, with tip 206 

nodes colored by their chemical superclass. 207 

(c) de novo tree constructed from 16S rRNA sequencing data from 32 oral microbiome samples. Samples 208 

were taken before (n=16) and after (n=16) subjects (n=10) brushed their teeth; each barplot layer 209 

represents a different differential abundance method’s measure of change between before- and after-210 

brushing samples. The innermost layer shows estimated log-fold changes produced by Songbird; the 211 

middle layer shows effect sizes produced by ALDEx2; and the outermost layer shows the W-statistic 212 

values produced by ANCOM (see Methods). The tree is colored by tip nodes’ phylum-level taxonomic 213 

classifications. Interactive figures can be accessed here. 214 

 215 

 216 

 217 
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EMPress and EMPeror are dynamically linked together. For example, clicking on a tip reveals the node’s 
inspection menu, and highlights the 2 samples in the ordination that contain that microbial feature.
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