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Abstract Erdős asked whether every sufficiently large set of points in general posi-
tion in the plane contains six points that form a convex hexagon without any points
from the set in its interior. Such a configuration is called an empty convex hexagon.
In this paper, we answer the question in the affirmative. We show that every set that
contains the vertex set of a convex 9-gon also contains an empty convex hexagon.

Keywords Erdős-Szekeres problem · Ramsey theory · Convex polygons and
polyhedra · Empty hexagon problem

1 Introduction

In 1935, Erdős and Szekeres [5] proved that for each positive integer n there exists
a smallest positive integer g(n) such that every planar set of at least g(n) points
in general position contains n points that are the vertices of a convex n-gon. Here,
general position means that no three points are collinear.

The best known bounds for g(n) are 2n−2 + 1 ≤ g(n) ≤ (2n−5
n−2

) + 1. The lower
bound is due to Erdős and Szekeres [6] and the upper bound was established recently
by Tóth and Valtr [11]. The lower bound is sharp for n ≤ 5 and is conjectured to be
sharp for all n by Erdős and Szekeres [5, 6]. For a survey of results related to the
Erdős–Szekeres theorem, see [1, 2, 9, 11].

In 1978, Erdős [3, 4] posed the problem of determining the smallest positive inte-
ger h(n), if it exists, such that any set X of at least h(n) points in general position in
the plane contains n points that are the vertices of an empty convex polygon; that is,
a convex n-gon whose interior does not contain any point of X. Trivially, h(n) = n
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for n ≤ 3. It is easy to see that h(4) = 5. In 1978, Harborth [7] proved that h(5) = 10,
while Horton [8] showed in 1983 that for all n ≥ 7, h(n) does not exist. The problem
of determining the existence of h(6) has since been open. Based on computer exper-
iments, Overmars [10] showed that h(6) ≥ 30 (if it exists). In this paper, we prove
the following theorem which implies that every sufficiently large planar point set in
general position contains the vertex set of an empty convex hexagon.

Theorem 1 h(6) ≤ g(9).

The above bounds yield 129 ≤ g(9) ≤ 1717. Note that there exist sets of points with-
out empty convex hexagons that have eight points on the convex hull [10].

2 Overview of the Proof

Proof In the following, let X be a finite planar set of points in general position that
contains the vertex set of a convex 9-gon. By the Erdős–Szekeres theorem [5] this
is always the case if |X| ≥ g(9). Let H ⊆ X be the vertex set of a convex 9-gon
in X with the minimum |X ∩ conv(H)|, where conv(M) denotes the convex hull of
the set M . Let I := conv(H) ∩ (X \ H) be the set of points of X inside the convex
hull of H . Note that conv(I ) is a convex polygon and denote by ∂I its vertex set. If
|I | > 2, let J := conv(I )∩ (X \∂I) be the set of points of X inside the convex hull of
∂I . Note that conv(J ) is again a convex polygon and denote by ∂J its vertex set; see
Fig. 1. Let i := |∂I | and j := |∂J |. Note that 0 ≤ i, j ≤ 8 as otherwise there would
be a 9-gon H ′ with smaller |X ∩ conv(H ′)|. This leaves the 57 cases 0 ≤ i ≤ 2 and
(i, j) ∈ {3, . . . ,8} × {0, . . . ,8}. We argue that in each case either an empty convex
u-gon can be found (u ≥ 6) or a convex 9-gon H ′ with smaller |X ∩ conv(H ′)| is
present which contradicts the minimality condition imposed on H . (More precisely,
the vertex set of an empty convex u-gon can be found. In the following, we do not
make this distinction when the meaning is clear from the context.)

Fig. 1 Basic notation
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Table 1 Overview of the proof structure: for example, the proof for the case (8,5) is given in Sects. 6
(special case) and 10 (general case)

i/j 0 1 2 3 4 5 6 7 8

0 3 – – – – – – – –

1 3 – – – – – – – –

2 3 – – – – – – – –

3 4 4 4 4 4 4 4 4 4

4 5 5 5 5 5 5 5 5 5

5 6 7.1 8 8 8 8 8 8 8

6 3 7.2 7.3 4/5 9 9 9 9 9

7 3 7.3 3 4/5 5 6/10 3/10 3/10 3/10

8 3 3 3 4 5 6/10 3/10 3/10 3/10

2.1 Notation

We use (i, j) to denote a specific case, where i and j are defined as above. Sometimes
we use the notation (i, j, k), where k refers to the number of points of X inside the
convex hull of J ; that is, the cardinality of K := conv(J ) ∩ (X \ ∂J ). The notation
≥ x indicates that x is a lower bound for i, j or k. Refer to Table 1 for locating the
proof of a specific case.

2.2 Definitions

Given three points in general position, P,Q,R, define the halfplane HPQ(R) as the
open halfplane defined by the line PQ that contains R. A convex chain is a set of
consecutive vertices of a convex polygon. Given a convex chain of three points, ABC,
the 3-sector specified by this chain is defined as

(ABC) := [HAB(C) ∩ HBC(A)] \ conv({A,B,C}).
Note that three points in general position, S,T ,U , lying in (ABC) can be used to
construct a convex hexagon if A,B,C ∈ (ST U); see Fig. 2a.

Given a convex chain of four points, ABCD, the corresponding 4-sector is defined
as

(ABCD) := [(ABC) ∩ (BCD)] \ conv({A,B,C,D}).
Note that two points, S,T , lying in (ABCD) can be used to construct a convex
hexagon if the line ST does not intersect conv({A,B,C,D}); see Fig. 2b. This means
that by construction, given an edge PQ of conv(I ) (respectively conv(J )), at most
three vertices of conv(H) (respectively conv(I )) can lie in an open halfplane that is
defined by the line PQ and does not include any other point of I (respectively J ) if
no empty convex hexagon is to occur. In the following figures, we use the notation
(PQ) to hint to this fact; see Fig. 2c.

Finally, given a convex chain of five points, ABCDE, the corresponding 5-sector
is defined as

(ABCDE) := [(ABCD) ∩ (BCDE)] \ conv({A,B,C,D,E}).
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Fig. 2 Definition: sector

Note that a single point lying in (ABCDE) can be used to construct a convex
hexagon; see Fig. 2d.

3 Elementary Cases

Note that the cases (0,0), (≥ 6,0) and (≥ 3,≥ 6,0) are trivial as an empty convex
hexagon is present. The cases (1,0) and (8,1) can be dealt with by considering a line
through the single interior point and one of the vertices of the convex 9- respectively
8-gon. Due to the general position, on one side of this line a convex chain of four
vertices must be present which together with the two preselected points can be used
to construct an empty convex hexagon. A similar argument settles the cases (2,0),
(8,2) and (7,2).

4 The Cases (3,≥ 0) and (≥ 6,3)

We approach the cases (3,≥ 0) and (≥ 6,3) in two batches:

4.1 The Cases (3,≥ 0) and (8,3)

Follow the notation as indicated in Fig. 3. The variables stand for the number of
vertices of the convex 9- respectively 8-gon in each sector. Assume that no empty
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Fig. 3 Notation for the cases
(3,≥ 0) and (≥ 6,3)

convex hexagon is present. Note that

1 ≤ a1 + b1 + a2 ≤ 3, (4.1)

1 ≤ a2 + b2 + a3 ≤ 3, (4.2)

1 ≤ a3 + b3 + a1 ≤ 3 (4.3)

by construction and as otherwise a convex chain of four vertices together with two
vertices of the triangle could be used to form an empty convex hexagon. Also,

0 ≤ bi ≤ 2 (1 ≤ i ≤ 3) (4.4)

as otherwise a convex chain of three points together with two vertices of the triangle
and either the third vertex of the triangle or (if existent) one of its interior points
can be used to form an empty convex hexagon. Summing up the upper bounds in
(4.1–4.4) yields

2 ·
3∑

i=1

(ai + bi) ≤ 15. (4.5)

Therefore, at most seven vertices can be placed around the triangle and in the two
cases at hand an empty convex hexagon is present.

4.2 The Cases (6,3) and (7,3)

The cases (6,3,0) and (7,3,0) can be settled by a careful investigation of the
(a1, b1, a2, b2, a3, b3)-tuples that are feasible for the set of constraints (4.1–4.4). Note
that tuples (ai, bi, ai+1) with ai = ai+1 = 0 are not feasible, as a convex 9-gon H ′
with smaller |X ∩ conv(H ′)| could be constructed; see Fig. 4. In Fig. 4a, replace
the vertices of the 9-gon lying in the union of sectors (AQB) and (BRC) (at least
one by construction and at most four in total if no empty convex hexagon is present)
by points from the convex chain AQRC of length four. In Fig. 4b, accordingly re-
place the at most four vertices of the 9-gon lying in the union of sectors (AQB1),
(B1QPRB2) and (B2RC).



244 Discrete Comput Geom (2008) 39: 239–272

Fig. 4 (x,3): degenerate cases with (ai , bi , ai+1) = (0,1,0) and (ai , bi , ai+1) = (0,2,0) respectively.
Numbers indicate the number of vertices of the 9-gon that can lie in each sector without forming an empty
convex hexagon

Table 2 Cases (6,3,0) and (7,3,0): Combinatorial subcases under the assumptions (i) a1 ≥ a2 ≥ a3 and
(ii) b2 ≥ b3 for fixed (a1, b1, a2)

a1 a2 a3 b1 b2 b3 Solution

3 0 0 * * * Infeasible

2 1 1 0 (≤1) 0
∑3

i=1 (ai + bi ) ≤ 5

2 1 0 0 (≤2) (≤1) (2,0,1,2,0,1)

2 0 0 * * * Infeasible

1 1 1 (≤1) (≤1) (≤1) (1,1,1,1,1,1)

1 1 0 1 2 2 (1,1,1,2,0,2)

1 1 0 1 2 1 (1,1,1,2,0,1)

1 1 0 1 2 0
∑3

i=1 (ai + bi ) = 5

1 1 0 1 (≤1) (≤1)
∑3

i=1 (ai + bi ) ≤ 5

1 1 0 0 2 2 (1,0,1,2,0,2)

1 1 0 0 (≤2) (≤1)
∑3

i=1 (ai + bi ) ≤ 5

1 0 0 * * * Infeasible

0 0 0 * * * Infeasible

*Marks an arbitrary entry

Note that constraint (4.1) implies a1 + a2 ≤ 3

Now assume without loss of generality that (i) a1 ≥ a2 ≥ a3 and (ii) b2 ≥ b3

for fixed (a1, b1, a2); see Fig. 3. Then the only solutions to the above set of
constraints (modulo rotations and reflections) are (2,0,1,2,0,1), (1,1,1,1,1,1),
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Fig. 5 The case (6,3,0) with (2,0,1,2,0,1)

(1,1,1,2,0,2), (1,1,1,2,0,1) and (1,0,1,2,0,2); see Table 2. These can be
treated individually as follows:

• The subcase (2,0,1,2,0,1) can be treated as indicated in Fig. 5. Here and in the
following, numbers indicate the number of vertices of the outer polygon that can lie
in each sector without forming an empty convex hexagon. As the union of sectors
allows for at most eight points in convex position in the outmost layer, due to the
presence of a convex 9-gon an empty convex hexagon must occur.

• Figure 6 indicates how to settle the subcase (1,1,1,1,1,1), provided the vertex
Q of triangle PQR lies inside the triangle BDF . In that case the quadrilateral
BQDC exists. Similarly we can treat the case that some other of the points P , Q

lies inside the triangle BDF . If none of the points P,Q,R lies inside the triangle
BDF , the empty convex hexagon PBQDRF occurs.

• Figure 7 indicates how to settle the subcase (1,1,1,2,0,2), provided that the point
Q lies outside the triangle BCD. In that case the quadrilateral CBQD exists. If Q

lies inside the triangle BCD, the empty convex hexagon BQDERP occurs.
• The subcase (1,1,1,2,0,1) can be treated as indicated in Fig. 8.
• Figure 9 indicates how to settle the subcase (1,0,1,2,0,2).

The proof for the cases (6,3,≥ 1) and (7,3,≥ 1) is given in the following Sect. 5.

5 The Cases (4,≥ 0) and (≥ 7,4)

The cases (4,≥ 0) and (≥ 7,4) can be dealt with simultaneously in three steps:
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Fig. 6 The case (6,3,0) with (1,1,1,1,1,1). It is assumed that Q ∈ �BDF

Fig. 7 The case (7,3,0) with (1,1,1,2,0,2). It is assumed that Q 	∈ �BCD
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Fig. 8 The case (6,3,0) with (1,1,1,2,0,1)

Fig. 9 The case (6,3,0) with (1,0,1,2,0,2)
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Fig. 10 Notation for the cases
(4,≥ 0) and (≥ 7,4)

5.1 Step 1a

First, consider the cases (4,0) and (8,4,0). We use the same type of approach as in
Sect. 4. Following the notation as indicated in Fig. 10, where variables again refer to
the number of vertices of the 9- respectively 8-gon lying in each sector, we arrive at
the set of inequalities

1 ≤ a1 + b1 + a2 ≤ 3, (5.1)

1 ≤ a3 + b3 + a4 ≤ 3, (5.2)

if no empty convex hexagon is to occur. (Vertices lying in more than one sector are
assigned arbitrarily to one particular sector they lie in and therefore only counted
once.) If no empty convex hexagon is to be present, the constraint

0 ≤ b2 + b4 ≤ 1 (5.3)

must also hold. By summing up the upper bounds in (5.1–5.3), it follows that at most
seven vertices can be placed around the 4-gon, a contradiction in these two cases.

5.2 Step 1b

We next consider the case (7,4,0) and evaluate the feasible solutions to the set of
constraints (5.1–5.3). By symmetry, any feasible (a1, b1, a2, b2, a3, b3, a4, b4)-tuple
must also satisfy the following set of inequalities:

1 ≤ a1 + b4 + a4 ≤ 3, (5.4)

1 ≤ a2 + b2 + a3 ≤ 3, (5.5)

0 ≤ b1 + b3 ≤ 1. (5.6)

It follows directly from (5.3) and (5.6) that
∑4

i=1 bi ≤ 2. Furthermore, it follows
from (5.1) and (5.2) (respectively (5.4) and (5.5)) that if b2 = b4 = 0 or b1 = b3 = 0,
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Fig. 11 The case (7,4,0) with (2,1,0,1,2,0,1,0)

at most six vertices can be placed around the 4-gon. Therefore, (b1, b2, b3, b4) =
(1,1,0,0) without loss of generality. By choosing a1 ∈ {0,1,2}, it follows that only
the following (a1, b1, a2, b2, a3, b3, a4, b4)-tuples are feasible: (2,1,0,1,2,0,1,0),
(1,1,1,1,1,0,2,0) and (0,1,2,1,0,0,3,0) (modulo rotations and reflections).
These can be treated individually as follows:

• The subcase (2,1,0,1,2,0,1,0) can be treated as indicated in Fig. 11. Note that
at most two of the points D,E,F can lie in one of the sectors (QPR) and (RPS)

without the occurrence of an empty convex hexagon. The same holds for A,B,C

and the sectors (QRP) and (PRS). This is indicated by the arrows. Note that one
4- and one 5-sector arise.

• Figure 12 indicates how to settle the subcase (1,1,1,1,1,0,2,0), provided that
the vertex Q of the quadrilateral PQRS lies outside the triangle BCD. In that
case, the quadrilateral BQDC exists. Note that if Q lies inside the triangle BCD,
there exists an empty convex hexagon BQDRSP .

• The subcase (0,1,2,1,0,0,3,0) can be treated as indicated in Fig. 13. Note that if
B and C both lie in (PSQ) or both lie in (QSR), an empty convex hexagon occurs
(ABCQSP and BCDRSQ respectively). Again, this is indicated by the arrows.

5.3 Step 2

Now we investigate the cases (4,1) and (8,4,1). Consider the sectors occurring
when rays emanate from the single point in J (respectively K) through the vertices
of the convex 4-gon. Each of the four sectors can only contain two vertices of the
convex 9- respectively 8-gon as otherwise an empty convex hexagon could be con-
structed. Since 4 · 2 < 9, in the case of the 9-gon an empty convex hexagon must
occur. The case of the 8-gon is settled with a similar sector argument on the next
level as indicated in Fig. 14.
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Fig. 12 The case (7,4,0) with (1,1,1,1,1,0,2,0). It is assumed that Q 	∈ �BCD

Fig. 13 The case (7,4,0) with (0,1,2,1,0,0,3,0)
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Fig. 14 The case (8,4,1)

5.4 Step 3

In dealing with the cases (4,≥ 2), fix a point P ∈ J , construct the sectors as in
Step 2 and afterwards replace P with an appropriate point from J in each sector (if
necessary). Now argue as in Step 2. Proceed accordingly in the cases (8,4,≥ 2) by
choosing an arbitrary P ∈ K .

5.5 Remark

The approach of Sects. 5.3 and 5.4 also works straightforwardly in the cases
(6,3,≥ 1) (as indicated in Fig. 15), (7,3,≥ 1) and (7,4,≥ 1) (as indicated in
Fig. 16). Again, the idea is to fix a point P ∈ K and to create sectors from rays
emanating from P that pass through the vertices of the j -gon. Argue that each of
these sectors can only contain at most two vertices of the i-gon without the occur-
rence of an empty convex hexagon. This remains true if other points of K should lie
in some of the sectors. Now create another set of sectors such that their union covers
the complete region outside of conv(I ) as indicated in the figures. This approach is
extended in Sect. 10 dealing with the cases (≥ 7,≥ 5,≥ 1).

6 The Cases (5,0) and (≥ 7,5,0)

6.1 The cases (5,0) and (8,5,0)

We use the same basic approach as in Sects. 4 and 5, extending the concept and
notation of Figs. 3 and 10 in the natural way. We arrive at the set of inequalities

bi = 0 (1 ≤ i ≤ 5) and (6.1)

1 ≤ ai + ai+1 ≤ 3 (1 ≤ i ≤ 5, a6 := a1) (6.2)
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Fig. 15 The case (6,3,1)

Fig. 16 The case (7,4,1)

if no empty convex hexagon is to be present (again counting vertices lying in more
than one sector only once). This set of inequalities yields

2 ·
5∑

i=1

(ai + bi) ≤ 15, (6.3)

which implies the desired contradiction that an outer convex polygon with at most
seven vertices can be present.
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Fig. 17 The case (7,5,0)

6.2 The Case (7,5,0)

A closer investigation of the constraints (6.1–6.3) shows that in this case the only fea-
sible (a1, b1, a2, b2, a3, b3, a4, b4, a5, b5)-tuple (modulo rotation) is (2,0,1,0,2,0,

1,0,1,0). This case can be settled as indicated in Fig. 17.

7 Individual Cases

7.1 The Case (5,1)

This case can be dealt with as indicated in Fig. 18. Observe that P must lie in one
of the triangles �ABD, �BCE, �CDA, �DEB or �EAC (as these cover the
convex 5-gon). Without loss of generality P is inside the triangle ABD (as in the
figure). The line PD cuts the 5-gon into the two quadrilaterals AEDP and PDCB

(and one triangle). It follows that m1 + m2 ≤ 1 and n1 + n2 ≤ 1 if no empty convex
hexagon is to be present. (As in previous sections, variables refer to the number of
vertices of the 9-gon lying in the corresponding sectors.) This leads to at most eight
points that can be placed in convex position around the 5-gon without creating an
empty convex hexagon.
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Fig. 18 The case (5,1)

Fig. 19 The case (6,1).
See Sect. 7.2 for details

7.2 The Case (6,1)

This case can be dealt with as indicated in Fig. 19. Note that P must lie in one of the
4-gons ADEF or ABCD (as in the figure). Note furthermore that if in the latter case,
P ∈ �ABC or P ∈ �BCD, an empty convex hexagon occurs (APCDEF respec-
tively BPDEFA). Therefore, assume that the convex 4-gons APCB and CBPD

exist and argue as indicated in the figure.
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Fig. 20 The case (6,2).
See Sect. 7.3 for details

7.3 The Cases (6,2) and (7,1)

The case (6,2) can be dealt with as indicated in Fig. 20. Note that if four vertices
of the 6-gon lie on one side of the line PQ, an empty convex hexagon can be con-
structed. The case (7,1) is treated similarly. Here, one of the vertices of the convex
7-gon takes the role of P .

8 The Cases (5,≥ 2)

8.1 A Key Observation

The following observation is needed in later sections.

Observation 1 Suppose that j > 2 and let 2 ≤ t ≤ min{i − 1, j}. Consider a se-
quence of t consecutive vertices V1,V2, . . . , Vt of conv(J ). Denote by Tn the set of
vertices of the i-gon conv(I ) lying in the halfplane that is defined by the line VnVn+1
and that does not contain any other points of J . If |⋃t−1

n=1 Tn| < t , a 9-gon H ′ with
smaller |X ∩ conv(H ′)| can be constructed.

Proof We prove by induction over t . We use Ul (l ∈ N0) to denote vertices
of conv(I ). Note that |Tn| > 0 for all n by the definition of J .

Let t = 2. Assume that T1 =: {U1}; see Fig. 21. We claim that at most four ver-
tices of the 9-gon can lie in the union of the 3-sectors (U0V1U1) and (U1V2U2),
where U0 and U2 are the vertices of conv(I) preceding and succeeding U1. (Note that
U0 	= U2 as we presume t < i.) The bound follows directly if no other point of J lies
within the triangles �U0V1U1 respectively �U1V2U2. Otherwise replace V1 (respec-
tively V2) by appropriate V ′

1 ∈ J ∩ �U0V1U1 and V ′
2 ∈ J ∩ �U1V2U2 to obtain new
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Fig. 21 Observation 1: t = 2

3-sectors (U0V
′
1U1) and (U1V

′
2U2) such that the corresponding triangles �U0V

′
1U1

and �U1V
′
2U2 do not contain any points of J . Note that these 3-sectors cover the

region outside of conv(I ) that was originally covered by (U0V1U1) and (U1V2U2).
(In fact, they cover a larger region.) Each of them allows for at most two vertices of
the 9-gon without the occurrence of an empty convex hexagon and the claim follows.
Replacing these vertices by points from the convex chain U0V1V2U1 of length four
yields a 9-gon H ′ with smaller |X ∩ conv(H ′)|. (A similar argument was used in
Sect. 4.2.)

Now let t > 2. We have to prove that if |⋃t−1
n=1 Tn| < t , a 9-gon H ′ with smaller

|X ∩ conv(H ′)| can be constructed. If |⋃t−1
n=1 Tn| < t − 1, we are done by the in-

duction hypothesis as |⋃t−2
n=1 Tn| ≤ |⋃t−1

n=1 Tn|. Therefore, assume that |⋃t−1
n=1 Tn| =

t − 1. Label the consecutive vertices of conv(I ) as Ul (l ∈ N0) in such a way that
U1 ∈ T1 and U0 	∈ T1. By the induction hypothesis this implies U2 ∈ T1 as otherwise
|T1| = 1. Now construct sectors as follows: start with the 3-sector (U0V1U1) that
can hold at most two vertices of the 9-gon without the occurrence of an empty con-
vex hexagon. (As above, replace V1 by V ′

1 if necessary.) Next construct the 4-sectors
(U1V1V2U2), (U2V2V3U3), . . . , (Ut−2Vt−2Vt−1Ut−1) that can hold at most one ver-
tex of the 9-gon each if no empty convex hexagon is to occur; see Fig. 22.

Note that at each step the construction is well-defined by the induction hypoth-
esis. We can construct the 4-sector (U1V1V2U2) as U1,U2 ∈ T1. Assume there
exists a smallest p ∈ N such that UpVpVp+1Up+1 is not a convex quadrilateral.

This means that Up ∈ (⋃p−1
m=1 Tm

) \ Tp or Up+1 ∈ (⋃t−1
m=p+1 Tm

) \ Tp . In the first

case, this implies |⋃t−1
m=p Tm| ≤ (t − 1) − p. In the second case, it follows that

|⋃p

m=1 Tm| ≤ p. In both cases, the induction hypothesis implies that a 9-gon H ′
with smaller |X ∩ conv(H ′)| can be constructed.

Therefore, the 4-sectors can be constructed as described. Finally construct the
3-sector (Ut−1VtUt ) that can hold at most two vertices of the 9-gon without the
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Fig. 22 Observation 1: t > 2

occurrence of an empty convex hexagon. (As above, replace Vt by V ′
t if neces-

sary.) Note that Ut 	∈ Tt−1 as we presume |⋃t−1
n=1 Tn| = t − 1. It follows that at most

2 · 2 + (t − 2) · 1 = t + 2 vertices of the 9-gon can lie in the union of sectors

(U0V1U1) ∪
t−2⋃

l=1

(UlVlVl+1Ul+1) ∪ (Ut−1VtUt ).

Replacing these vertices by points from the convex chain U0V1V2 · · ·VtUt of length
t + 2 yields a 9-gon H ′ with smaller |X ∩ conv(H ′)|. �

8.2 The Cases (5,≥ 2)

Consider the line through two consecutive vertices of conv(J ), say P and Q, and let
TPQ be the set of vertices of the convex 5-gon lying in a halfplane that is defined by
the line PQ and that does not contain any other points of J . (This halfplane is unique
if |J | > 2.) Consider possible values for |TPQ|:
• |TPQ| = 0: This case is not possible by the definition of J .
• |TPQ| = 1: In this case, a 9-gon H ′ with smaller |X ∩ conv(H ′)| can be con-

structed. Set t = 2 in Observation 1.
• 2 ≤ |TPQ| ≤ 3: This is the assumption for our subsequent considerations.
• |TPQ| > 3: In this case, an empty convex hexagon can be constructed by using a

convex chain of four vertices of the 5-gon together with P and Q.
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Fig. 23 The cases (5,≥ 2): Example with |TPQ ∪ TQR | ≥ 4

Therefore, assume that

2 ≤ |TPQ| ≤ 3. (8.1)

Let R be the next vertex on the convex hull of J after passing through P and Q

(if |J | = 2 then R = P ). Define the set TQR accordingly (take the other halfplane if
|J | = 2). For the same reasons as above assume that

2 ≤ |TQR| ≤ 3 (8.2)

and consider the following three possibilities:

8.2.1 |TPQ ∪ TQR| ≥ 4

In this case we can choose consecutive vertices A,B,C,D of the 5-gon such that
A,B ∈ TPQ and C,D ∈ TQR . Label the remaining vertex of the 5-gon E. Con-
struct the two 4-sectors (APQB) and (CQRD) that can hold at most one vertex
of the 9-gon each without the occurrence of an empty convex hexagon. Next con-
struct the 3-sector (BQC) that can hold at most two vertices of the 9-gon if no empty
convex hexagon is to occur. Construct furthermore the two 3-sectors (DRE) and
(EPA). Note that the union of these five sectors covers the complete region outside
of conv(I ); see also Fig. 23. Each of the two latter 3-sectors can hold at most two ver-
tices of the 9-gon without the occurrence of an empty convex hexagon. (If necessary,
replace R (respectively P ) by appropriate R′ ∈ J ∩ �DRE and P ′ ∈ J ∩ �EPA

to obtain new 3-sectors (DR′E) and (EP ′A) such that the corresponding triangles
�DR′E and �EP ′A do not contain any points of J as in the proof of Observation 1.)
It follows that at most 2 · 1 + 3 · 2 = 8 vertices of the 9-gon can be placed around the
5-gon without the occurrence of an empty convex hexagon. Note in particular that the
case (5,2) is covered by the argument in this subsection.
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8.2.2 |TPQ ∪ TQR| = 3

The case |TPQ ∪TQR| = 3 can be treated by the same approach as in the previous sub-
section. Choose consecutive vertices A,B,C of the 5-gon such that A,B ∈ TPQ and
B,C ∈ TQR . Label the remaining vertices of the 5-gon D and E such that the vertices
C, D, E are consecutive. Construct the two 4-sectors (APQB) and (BQRC). Next
construct the 3-sectors (CRD), (DRE) and (EPA). As above, replace the points R

and P by appropriate points in J and modify the 3-sectors if necessary. Again, we
arrive at the contradiction that at most 2 · 1 + 3 · 2 = 8 vertices of the 9-gon can be
placed around the 5-gon without the occurrence of an empty convex hexagon.

8.2.3 |TPQ ∪ TQR| ≤ 2

This case leaves the possibility of constructing a 9-gon H ′ with smaller |X ∩
conv(H ′)|. Set t = 3 in Observation 1.

9 The Cases (6,≥ 4)

The approach is similar to the one in Sect. 8. The key idea is to partition the region
outside of conv(I ) into two 3-sectors and four 4-sectors. Each 3-sector is defined
by two consecutive vertices of the 6-gon and one vertex of conv(J ). It can hold
at most two vertices of the 9-gon if no empty convex hexagon is to occur. Each
4-sector is defined by two consecutive vertices of the 6-gon and two consecutive
vertices of conv(J ). It can hold at most one vertex of the 9-gon without the occurrence
of an empty convex hexagon. It follows that a total of 2 · 2 + 4 · 1 = 8 vertices of the
9-gon can be placed around the 6-gon without the occurrence of an empty convex
hexagon.

Consider a chain of consecutive vertices of conv(J ), V WXYZ, where V = Z if
j = 4. Define the sets TV W , TWX , TXY and TYZ as in Sect. 8 (that is, TV W is the set
of vertices of the convex 6-gon lying in the halfplane defined by the line V W that
does not contain any other points of J , etc.). As in Sect. 8, we assume that

2 ≤ |TKL| ≤ 3 ((K,L) ∈ {(V ,W), (W,X), (X,Y ), (Y,Z)}). (9.1)

By setting t = 3,4,5 in Observation 1 (Sect. 8), it follows that we may also assume
that

|TKL ∪ TLM | ≥ 3, (9.2)

|TKL ∪ TLM ∪ TMN | ≥ 4, (9.3)

|TV W ∪ TWX ∪ TXY ∪ TYZ| ≥ 5 (9.4)

with (K,L,M) ∈ {(V ,W,X), (W,X,Y ), (X,Y,Z)} (in (9.2)) and (K,L,M,N) ∈
{(V ,W,X,Y ), (W,X,Y,Z)} (in (9.3)). Note that (9.4) also holds in the case (6,4),
where Observation 1 does not apply (since t > j ). Note furthermore that by construc-
tion it is not possible that there is a P ∈ TKL ∩ TMN with P 	∈ TLM ((K,L,M,N) ∈
{(V ,W,X,Y ), (W,X,Y,Z)}). We now give an explicit construction for the two
3-sectors and the four 4-sectors. A concrete example can be found in Fig. 24. The
combinatorial subcases are depicted in Fig. 25.



260 Discrete Comput Geom (2008) 39: 239–272

Fig. 24 The cases (6,≥ 4): Example with TWX ∩ TXY 	= ∅

9.1 TWX ∩ TXY 	= ∅

Label the consecutive vertices of the 6-gon A,B,C,D,E,F such that B ∈ TWX , C ∈
TWX ∩ TXY and D ∈ TXY . Note that F 	∈ TWX and F 	∈ TXY as otherwise |TWX| > 3
or |TXY | > 3. Consider the following possibilities:

(1) A 	∈ (TV W ∪ TWX); see Fig. 25a. It follows from (9.1) and (9.2) that B,C ∈ TV W

and D ∈ TWX . (9.3) implies E ∈ TXY . Construct the three 4-sectors (BV WC),
(CWXD) and (DXYE). Next, construct the 3-sector (AV B). (Replace V by an
appropriate V ′ ∈ J ∩ �AV B if necessary.)

• If E ∈ TYZ then (9.4) implies F ∈ TYZ . Construct the 4-sector (EYZF) and
the 3-sector (FZA). (Again, replace Z by Z′ if necessary.)

• If E 	∈ TYZ then it follows from (9.1) that A,F ∈ TYZ . (F 	∈ TXY implies in
particular F 	∈ TXY \ TYZ .) In this case construct the 3-sector (EYF) together
with the 4-sector (FYZA).

In both cases we arrive at a set of four 4-sectors and two 3-sectors as claimed. In
the following cases, assume that A ∈ (TV W ∪ TWX).

(2) E 	∈ (TXY ∪ TYZ). This case is symmetric to the previous one. Therefore, in the
following assume that E ∈ (TXY ∪ TYZ).

(3) A ∈ TWX \ TV W ; see Fig. 25b. It follows from (9.1) that E,F ∈ TV W .
(F 	∈ TWX implies in particular that F 	∈ TWX \ TV W .) Construct the 3-sectors
(FWA) and (BXC) together with the 4-sectors (EV WF), (AWXB) and
(CXYD). It follows that D ∈ TYZ as otherwise |TYZ ∪ TV W | = |{E,F }| < 3.
Note that (E ∈ TV W ) ∧ (E ∈ (TXY ∪ TYZ)) implies E ∈ TYZ . Therefore, we
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Fig. 25 The cases (6,≥ 4): Combinatorial subcases. The assumption in (a)–(c) is that B ∈ TWX ,
C ∈ TWX ∩TXY and D ∈ TXY . In (a), A 	∈ (TV W ∪TWX). In (b), A ∈ TWX \TV W and E ∈ (TXY ∪TYZ).
In (c), A ∈ TV W and E ∈ TYZ . In (d), it is assumed that A,B ∈ TWX \TXY and C,D ∈ TXY \TWX . Only
those point positions that are essential for the construction of the sectors are indicated

can construct the 4-sector (DYZE). Again the six sectors can be constructed as
claimed. In the following assume that A ∈ TV W .

(4) E ∈ TXY \ TYZ . This case is symmetric to the previous one. Therefore, in the
following assume that E ∈ TYZ .

(5) A ∈ TV W and E ∈ TYZ ; see Fig. 25c. Construct the 4-sectors (BWXC) and
(CXYD). Consider the following four possibilities:

• B ∈ TV W ∧ D ∈ TYZ . Construct the 4-sector (AV WB) together with the
3-sector (FV A). (Replace V by V ′ if necessary.) Accordingly, construct the
4-sector (DYZE) together with the 3-sector (EZF). (Replace Z by Z′ if nec-
essary.)

• B 	∈ TV W ∧ D ∈ TYZ . Construct the 4-sector (DYZE) together with the
3-sector (EZ′F) as in the previous subcase. If B 	∈ TV W , it follows from (9.1)
that F ∈ TV W . In this case, construct the 3-sector (AWB) together with the
4-sector (FV WA).

• B ∈ TV W ∧ D 	∈ TYZ . This subcase is symmetric to the previous one.
• B 	∈ TV W ∧ D 	∈ TYZ . It follows that F ∈ TV W and F ∈ TYZ . Accordingly,

construct the 4-sectors (FV WA) and (EYZF) together with the 3-sectors
(AWB) and (DYE).
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In each case, we arrive at a set of four 4-sectors and two 3-sectors that cover the
complete region outside of conv(I ) as claimed.

9.2 TWX ∩ TXY = ∅
See Fig. 25d. Then by construction, there exist consecutive vertices A,B,C,D of
conv(I) such that A,B ∈ TWX \ TXY and C,D ∈ TXY \ TWX . Construct the 4-sectors
(AWXB) and (CXYD) as well as the 3-sector (BXC). Label the remaining vertices
of the 6-gon E,F such that D,E,F are consecutive. Now distinguish four possibil-
ities:

• D ∈ TYZ ∧ A ∈ TV W . It follows that E ∈ TYZ as otherwise |TXY ∪ TYZ| < 3.
Accordingly, F ∈ TV W as otherwise |TV W ∪ TWX| < 3. Construct the 4-sectors
(DYZE) and (FV WA) together with the 3-sector (EZF). (Replace Z by an ap-
propriate Z′ if necessary.)

• D 	∈ TYZ ∧ A ∈ TV W . As in the previous case, construct the 4-sector (FV WA). If
E ∈ TXY \ TYZ it follows that |TYZ ∪ TV W ∪ TWX| = |{A,B,F }| < 4. Therefore,
assume that E ∈ TYZ . It follows that F ∈ TYZ as otherwise |TYZ| < 2. Construct
the 3-sector (DYE) and the 4-sector (EYZF).

• D ∈ TYZ ∧ A 	∈ TV W . This case is symmetric to the previous one.
• D 	∈ TYZ ∧ A 	∈ TV W . Note that this case is not feasible as it would imply |TYZ ∪

TV W | = |{E,F }| < 3.

In each feasible case, we can construct the six sectors as claimed above.

10 The Cases (≥ 7,≥ 5,≥ 1)

Up to this point, we have settled all cases except for (≥ 7,≥ 5,≥ 1). These cases,
except for three special cases (see below), can all be settled via the same set of ar-
guments. As above, let K := conv(J ) ∩ (X \ ∂J ). Fix a point P ∈ K . Consider rays
emanating from P through each vertex of the convex j -gon conv(J ). This divides
the region outside the j -gon into j sectors and in each sector at most two vertices
of conv(I ) can lie without forming an empty convex hexagon. (To see this, construct
3-sectors and replace P by an appropriate P ′ ∈ K where needed.) Consider all pos-
sible vertex distributions. (These are summarized in Table 3.) We want to partition
the region outside the convex i-gon conv(I ) into sectors and to show that in each
case at most eight vertices of the 9-gon can be placed inside the union of these sec-
tors without creating an empty convex hexagon. The following three simple rules are
sufficient to prove this:

10.1 The First Rule

The first rule deals with two vertices of conv(I ) lying in the same sector.

Rule 1 Let A1,A2 denote two consecutive vertices of conv(I ) lying in the same sec-
tor (aPb), where a and b are consecutive vertices of conv(J ). Then no vertex of
the 9-gon can lie in the sector (A1abA2) without the occurrence of an empty convex
hexagon.
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Table 3 The cases
(≥ 7,≥ 5,≥ 1): Combinatorial
subcases. (� indicates possible
permutations)

(7,5,≥ 1) (8,5,≥ 1)

�(2,2,2,1,0) �(2,2,2,2,0)

�(2,2,1,1,1) �(2,2,2,1,1)

(7,6,≥ 1) (8,6,≥ 1)

�(2,2,2,1,0,0) �(2,2,2,2,0,0)

�(2,2,1,1,1,0) �(2,2,2,1,1,0)

(2,1,1,1,1,1) �(2,2,1,1,1,1)

(7,7,≥ 1) (8,7,≥ 1)

�(2,2,2,1,0,0,0) �(2,2,2,2,0,0,0)

�(2,2,1,1,1,0,0) �(2,2,2,1,1,0,0)

�(2,1,1,1,1,1,0) �(2,2,1,1,1,1,0)

(1,1,1,1,1,1,1) (2,1,1,1,1,1,1)

(7,8,≥ 1) (8,8,≥ 1)

�(2,2,2,1,0,0,0,0) �(2,2,2,2,0,0,0,0)

�(2,2,1,1,1,0,0,0) �(2,2,2,1,1,0,0,0)

�(2,1,1,1,1,1,0,0) �(2,2,1,1,1,1,0,0)

(1,1,1,1,1,1,1,0) �(2,1,1,1,1,1,1,0)

(1,1,1,1,1,1,1,1)

Fig. 26 Rule 1

Proof The claim follows directly from the presence of an empty convex 5-gon
A1aP ′bA2, where P ′ ∈ J ∩ �aPb is chosen appropriately; see Fig. 26. �
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Fig. 27 Rule 2

10.2 The Second Rule

The second rule gives an upper bound on the number of vertices of the 9-gon that can
lie between two non-empty sectors.

Rule 2 Let A1,A2 denote two consecutive vertices of conv(I ) lying in distinct sec-
tors (a1Pb1) and (a2Pb2), where a1 and b1 respectively a2 and b2 are consecutive
vertices of conv(J ). Suppose that a1, b1, a2, b2 are part of a chain of consecutive ver-
tices of conv(J ). Let S := (A1b1a2A2) if A1b1a2A2 is a convex quadrilateral and
S := (A1b1A2)∪ (A1a2A2) otherwise. Then at most two vertices of the 9-gon can lie
within S .

Remark 1 It is possible in Rule 2 that b1 = a2.

Proof A 3-sector that does not contain any points of J and covers the region S can
be constructed by choosing A1, A2 and an appropriate ar among the consecutive
vertices of conv(J ) between b1 and a2 (inclusively); see Fig. 27. �

10.3 Application of Rules 1 and 2

The first two rules are already sufficient to settle the cases (7,5,≥ 1) with distribu-
tions �(2,2,2,1,0), (7,6,≥ 1) with distributions �(2,2,2,1,0,0), (7,7,≥ 1) with
distributions �(2,2,2,1,0,0,0), (7,8,≥1) with distributions �(2,2,2,1,0,0,0,0),
(8,5,≥ 1) with distributions �(2,2,2,2,0), (8,6,≥ 1) with distributions �(2,2,2,

2,0,0), (8,7,≥ 1) with distributions �(2,2,2,2,0,0,0) and (8,8,≥ 1) with distri-
butions �(2,2,2,2,0,0,0,0). To see this, apply Rule 1 whenever two consecutive
vertices of conv(I ) lie in the same sector. Note that two such vertices correspond to a
2 in the underlying distribution. For consecutive vertices of conv(I ) lying in distinct
sectors, apply Rule 2. Note that in the cases at hand, Rule 2 needs to be applied ex-
actly four times as there are always exactly four non-zero entries in the corresponding
distribution sequences. It follows that at most 4 · 2 = 8 vertices of the 9-gon can be
placed without the occurrence of an empty convex hexagon. An example is given in
Fig. 28.
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Fig. 28 Application of Rules 1 and 2: Example for the case (7,6,≥ 1) with distribution (2,0,2,1,0,2)

Fig. 29 Rule 3

10.4 The Third Rule

The third rule deals with a sequence of sectors, where each sector contains at most
one vertex of conv(I ). See also Fig. 29.
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Fig. 30 Proof of Rule 3: n = 1

Rule 3 Let 1 ≤ n ≤ i −2. Consider a sequence A0,A1, . . . ,An+1 of consecutive ver-
tices of conv(I ). For 1 ≤ l ≤ n+ 1, let Al ∈ (alP bl), where al and bl are consecutive
vertices of conv(J ). Suppose that for 1 ≤ l ≤ n, each sector (alP bl) contains exactly
one vertex of conv(I ) and that a1, b1, a2, b2, . . . , an+1, bn+1 are part of a chain of
consecutive vertices of conv(J ). Then at most n + 2 vertices of the 9-gon lie in the

union of sectors
⋃n+1

l=1 (Al−1alAl).

Remark 2 It is possible in Rule 3 that bl = al+1 (1 ≤ l ≤ n) or bn+1 = a1. Further-
more, it is possible that A0 and An+1 both lie in (an+1Pbn+1).

Proof We prove by induction over n.
If n = 1, we can argue that it is not possible that A1 lies above the line a1b1

while A0 and A2 lie below it, where lying below refers to lying in the halfplane
defined by a1b1 that includes P . Otherwise, |Ta1b1 | = 1 and a 9-gon H ′ with smaller
|X ∩ conv(H ′)| could be constructed. (Set t = 2 in Observation 1 in Sect. 8.) Assume
that A0 also lies above a1b1. (The case that only A1 and A2 lie above the line is
similar.) Construct the 4-sector (A0a1b1A1) together with the 3-sector (A1a2A2).
If necessary, replace a2 by an appropriate a′

2 ∈ �A1a2A2 to obtain a new 3-sector
(A1a

′
2A2) with no points of J lying in �A1a

′
2A2. Together, the 4- and the 3-sector

cover (at least) the region of (A0a1A1) ∪ (A1a2A2). This is clear for points lying
in (A1a2A2) since (A1a

′
2A2) covers (at least) this region. Note that there cannot be

a point Q ∈ ((A0a1A1) \ (A1a
′
2A2)) \ (A0a1b1A1). Such a point would have to lie

in the shaded region in Fig. 30. If a2 lies to the right of b1A1 (or a2 = b1) then
Q ∈ (A1a

′
2A2). Otherwise b1 ∈ (A1a2A2) and we could have chosen a′

2 := b1. The
4- and the 3- sector allow for at most 1 + 2 = 3 vertices of the 9-gon without the
occurrence of an empty convex hexagon.

For the induction step, assume that the claim is true for 1,2, . . . , n − 1. By the
induction hypothesis, we know that at most (n − 1) + 2 vertices of the 9-gon can
lie in the union of sectors

⋃n
l=1(Al−1alAl). At most two additional vertices of the

9-gon can lie in the sector (AnanAn+1) \ ⋃n
l=1(Al−1alAl) without the occurrence of

an empty convex hexagon as it is part of the 3-sector (AnanAn+1). Therefore, the
number of vertices of the 9-gon that can lie in the union of sectors

⋃n+1
l=1 (Al−1alAl)

is at most (n − 1 + 2) + 2 = n + 3 if no empty convex hexagon is to occur. It also
follows from the induction hypothesis that at most (n − 1) + 2 vertices of the 9-gon
can lie in the union of sectors

⋃n+1
l=2 (Al−1alAl) without the occurrence of an empty
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convex hexagon. Accordingly, at most two additional vertices of the 9-gon can lie
in the sector (A0a1A1) \ ⋃n+1

l=2 (Al−1alAl) if no empty convex hexagon is to occur.
Therefore, the above bound is sharp if and only if exactly two vertices of the 9-gon
lie in the sectors (A0a1A1) and (Anan+1An+1) respectively.

It follows that A0 must lie below the line a1b1 and An+1 must lie below the
line anbn as otherwise one could again replace one of the 3-sectors (A0a1A1) and
(Anan+1An+1) by the 4-sector (A0a1b1A1) respectively (AnanbnAn+1) as above.
This sector could hold only one vertex of the 9-gon (without the occurrence of an
empty convex hexagon) and the union of all sectors would still cover the same re-
gion.

This implies |⋃n
l=1 Tal bl

| = n < n + 1, though, and a 9-gon H ′ with smaller
|X ∩ conv(H ′)| can be constructed by Observation 1. To see this, note that
a1, b1, a2, b2, . . . , an, bn are part of a chain of consecutive vertices of conv(J ) of
length L ≥ n + 1. Therefore, the claim follows. �

10.5 Application of Rules 1–3

Based on the three rules we can now settle all the remaining subcases of
(≥ 7,≥ 5,≥ 1) with the exception of (7,7,≥ 1) with distribution (1,1,1,1,1,1,1),
(7,8,≥ 1) with distribution (1,1,1,1,1,1,1,0) and (8,8,≥ 1) with distribution
(1,1,1,1,1,1,1,1). (These cases do not allow for a direct application of Rule 3.
They are treated individually in the following subsections.) In the other cases, at least
one 2 appears in the distribution sequence. We can argue as follows:

Whenever two consecutive vertices of conv(I ) lie within the same sector, apply
Rule 1. Note that two such vertices correspond to a 2 in the underlying distribution.
No vertices of the 9-gon can lie in the corresponding sectors.

Now take maximal series of consecutive sectors containing at most one vertex of
conv(I ) each and apply Rule 3 (respectively Rule 2 if none of them contains a vertex).
The number of vertices of the 9-gon that can lie in the union of all corresponding
sectors is equal to q + s · 2, where q is the total number of 1’s in the underlying
distribution and s is the number of distinct series. Note that s is equal to the number
of gaps between two occurrences of a 2 in the distribution sequence. As this number
is equal to the number of 2’s in the sequence, it follows that q + s · 2 is equal to the
sum of the elements of the distribution sequence. It can easily be verified that this
sum is always smaller than 9. Therefore, in all these cases an empty convex hexagon
occurs. (An example is given in Fig. 31.)

10.6 The Case (1,1,1,1,1,1,1)

This case can be dealt with by applying Rule 3 with n = 5 seven times with each
vertex of conv(I ) as a starting point. Each 3-sector (Ar−1arAr) is left out exactly
once. Therefore, in the union of all sectors at most (7 · (5 + 2))/6 < 9 vertices of the
9-gon can lie without the occurrence of an empty convex hexagon.

10.7 The Case (1,1,1,1,1,1,1,0)

For the case (1,1,1,1,1,1,1,0), label the vertices of the polygon conv(J ) in clock-
wise order al (1 ≤ l ≤ 8) and assume that the sector (a6Pa7) is the one that does not
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Fig. 31 The case (8,8,≥ 1) with (2,1,1,1,0,2,0,1)

Fig. 32 The case (7,8,≥ 1)

with (1,1,1,1,1,1,1,0)

contain a vertex of conv(I ). Applying Rule 3 with n = 5, we can conclude that at
most 5 + 2 = 7 vertices of the 9-gon can lie in the union of sectors

⋃6
l=1(Al−1alAl);

see Fig. 32. Consider A6. Note that it is not possible that A6 lies below the line a1a8
and below the line a6a7 (where below refers to the halfplane that includes P ), as
otherwise a 9-gon H ′ := (a8a1a2 · · ·a7A6) with smaller |X ∩ conv(H ′)| is present.

If A6 lies above the line a1a8, only one vertex of the 9-gon can lie in the then ex-
isting 4-sector (A6a8a1A0) and therefore, without the occurrence of an empty convex
hexagon, at most eight vertices of the 9-gon can lie in the union of sectors

6⋃

l=1

(Al−1alAl) ∪ (A6a8a1A0),

which by construction covers the complete region outside of conv(I ).



Discrete Comput Geom (2008) 39: 239–272 269

Similarly, if A0 lies above the line a6a7 (and therefore also A6 by construction),
at most eight vertices of the 9-gon can lie in the union of sectors

6⋃

l=1

(Al−1alAl) ∪ (A6a6a7A0)

(which by construction covers the complete region outside of conv(I )) without the
occurrence of an empty convex hexagon.

Finally, if A0 lies below the line a6a7 and A6 lies above it, we know that A5

must also lie above the line a6a7 as otherwise |Ta6a7 | < 2 and a 9-gon H ′ with
smaller |X ∩ conv(H ′)| could be constructed by Observation 1. Therefore, the 4-
sector (A5a6a7A6) exists, which can only hold one vertex of the 9-gon without the
occurrence of an empty convex hexagon. Now, applying Rule 3 with n = 5 yields that
at most seven vertices of the 9-gon can lie in the union of sectors

(A6a8A0) ∪
5⋃

l=1

(Al−1alAl)

without the occurrence of an empty convex hexagon. Therefore, without the occur-
rence of an empty convex hexagon, at most eight vertices of the 9-gon can lie in the
union of sectors

(A6a8A0) ∪
5⋃

l=1

(Al−1alAl) ∪ (A5a6a7A6)

which by construction covers the complete region outside of conv(I ).

10.8 The Case (1,1,1,1,1,1,1,1)

Note that in the case (1,1,1,1,1,1,1,1), applying the induction argument with
n = 6 eight times with each vertex of conv(J ) as a starting point (in analogy to
our approach to the case (7,7,≥ 1) with distribution (1,1,1,1,1,1,1) in Sect. 10.6)
only gives us an estimate of a total of (8 · (6 + 2))/7 > 9 vertices of the 9-gon that
can lie in the union of all sectors. Therefore, a different approach for this subcase is
required.

Label the vertices of conv(J ) in clockwise order as ar (1 ≤ r ≤ 8). Consider four
consecutive vertices of the convex 8-gon conv(J ), as, at , au and av . Note that no
vertex of conv(I ) can lie below the line asat and below the line auav (where below
refers to the halfplane that includes P ) as otherwise we could use such a vertex to
construct a 9-gon H ′ with smaller |X ∩ conv(H ′)|. Denote by Rt the region above
both lines asat and atau; see Fig. 33. The union of all regions Rr (1 ≤ r ≤ 8) defines
the feasible region for vertices of conv(I ). Label the vertices of conv(I ) as Am (Am ∈
(amPam+1), 1 ≤ m ≤ 8, a9 := a1). Note that Am lies in Rm or Rm+1 (or both) (1 ≤
m ≤ 8, R9 := R1). Consider the following three possibilities:
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Fig. 33 The case (8,8,≥ 1) with (1,1,1,1,1,1,1,1): Definition Rt

10.8.1 There Exists a Region Rw with no Am Lying in It

There can be at most one such region as otherwise one could construct a 9-gon H ′
with smaller |X ∩ conv(H ′)|. To see this, eliminate successively the possibilities that
the next Rz with this property is Rw+1, Rw+2, Rw+3 or Rw+4. In the first case,
|Taw aw+1 | < 2 and in the other three cases one can replace one to three vertices of
the 8-gon a1a2 · · ·a8 by two to four points Am in such a way that a 9-gon H ′ with
smaller |X ∩ conv(H ′)| appears.

Let a1 be the vertex associated with the region that does not contain any Am. Since
the existence of such a region is independent of the choice of P , we may assume that
P lies in the pentagon a6a2a3a4a5. Such a P must exist for otherwise an empty
convex hexagon appears; see also Fig. 34. (A different choice of P might result in
a different distribution sequence. If this is the case, we arrive at a subcase that has
already been settled.) As a consequence, at most three vertices of the 9-gon can lie in
the sector (A6a6Pa2A1) as otherwise a 9-gon H ′ with smaller |X ∩ conv(H ′)| could
be constructed (as 5 + 4 = 9).

We claim that Am ∈ Rm ∩ Rm+1 for 2 ≤ m ≤ 7; that is, each Am lies above both
lines am−1am and am+1am+2 (2 ≤ m ≤ 7, a9 := a1). To see this, start from the line
a1a2 and work clockwise to prove that Am is above the line am−1am (2 ≤ m ≤ 7).
Note that configurations, where |⋃l−1

n=1 Tan an+1 | < l (2 ≤ l ≤ 8) yield a 9-gon H ′
with smaller |X ∩ conv(H ′)| by Observation 1 (Sect. 8). Now start from the line a1a8

and work counter clockwise to prove that Am is above the line am+1am+2 (7 ≥ m ≥ 2,
a9 := a1).

Finally, as we are assuming that no Ar lies in R1, it follows that A1 ∈ R2 and
A8 ∈ R8. Therefore, this case can be settled as indicated in Fig. 34.
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Fig. 34 The case (8,8,≥ 1) with (1,1,1,1,1,1,1,1): R1 contains no Am

10.8.2 (At Least) One Am Lies in Each Region Rr (1 ≤ r ≤ 8) and, Say,
A1 ∈ R1 \ R2

We claim that this implies that Au ∈ Ru (3 ≤ u ≤ 8) as otherwise a 9-gon H ′ with
smaller |X ∩ conv(H ′)| appears. To see this, first consider the point A8. If A8 ∈
R1 \R8, the 9-gon H ′ := A1a2a3 · · ·a8A8 with smaller |X∩conv(H ′)| occurs. There-
fore, A8 ∈ R8. Next, consider A7, then A6 and so on. Finally, as we are assuming that
at least one Am lies in each region Rr (1 ≤ r ≤ 8) it follows that A2 ∈ R2; see Fig. 35.
In this case, the region outside of conv(I ) can be partitioned into eight 4-sectors
(Alalal+1Al+1) (1 ≤ l ≤ 8, a9 := a1, A9 := A1) that together allow at most eight
vertices of the 9-gon without the occurrence of an empty convex hexagon.

10.8.3 Each Am Lies in Both Rm and Rm+1

Again, the region outside of conv(I ) can be partitioned into eight 4-sectors
(Alalal+1Al+1) (1 ≤ l ≤ 8, a9 := a1, A9 := A1) that together allow at most eight
vertices of the 9-gon without the occurrence of an empty convex hexagon. �
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Fig. 35 The case (8,8,≥ 1) with (1,1,1,1,1,1,1,1): A1 ∈ R1 \ R2
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9. Morris, W., Soltan, V.: The Erdős-Szekeres problem on points in convex position—a survey. Bull.

Am. Math. Soc. 37, 437–458 (2000)
10. Overmars, M.: Finding sets of points without empty convex 6-gons. Discrete Comput. Geom. 29,

153–158 (2003)
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