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Abstract

There are two types of high-performance graph processing engines: low- and high-level engines. 

Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation 

models but require users to write low-level imperative code, hence ensuring that efficiency is the 

burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or 

SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-

level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-

like query language and achieves performance comparable to that of low-level engines. At the core 

of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical 

guarantees but have thus far not achieved performance comparable to that of specialized graph 

processing engines. To achieve high performance, EmptyHeaded introduces a new join engine 

architecture, including a novel query optimizer and data layouts that leverage single-instruction 

multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level 

approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-

Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. 

We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), 

achieving comparable performance on PageRank and at most 3× worse performance on SSSP.
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Categories and Subject Descriptors

H.2 [Information Systems]: Database Management System Engines

1. INTRODUCTION

The massive growth in the volume of graph data from social and biological networks has 

created a need for efficient graph processing engines. As a result, there has been a flurry of 

activity around designing specialized graph analytics engines [8, 21, 35, 43, 50]. These 

specialized engines offer new programming models that are either (1) low-level, requiring 

users to write code imperatively or (2) high-level, incurring large performance gaps relative 

to the low-level approaches. In this work, we explore whether we can meet the performance 

of low-level engines while supporting a high-level relational (SQL-like) programming 

interface.

Low-level graph engines outperform traditional relational data processing engines on 

common benchmarks due to (1) asymptotically faster algorithms [17, 49] and (2) optimized 

data layouts that provide large constant factor runtime improvements [35]. We describe each 

point in detail:

1. Low-level graph engines [8, 21, 35, 43, 50] provide iterators and domain-

specific primitives, with which users can write asymptotically faster 

algorithms than what traditional databases or high-level approaches can 

provide. However, it is the burden of the user to write the query properly, 

which may require system-specific optimizations. Therefore, optimal 

algorithmic runtimes can only be achieved through the user in these low-

level engines.

2. Low-level graph engines use optimized data layouts to efficiently manage 

the sparse relationships common in graph data. For example, optimized 

sparse matrix layouts are often used to represent the edgelist relation [35]. 

High-level graph engines also use sparse layouts like tail-nested tables 

[23] to cope with sparsity.

Extending the relational interface to match these guarantees is challenging. While some have 

argued that traditional engines can be modified in straightforward ways to accommodate 

graph workloads [20, 25], order of magnitude performance gaps remain between this 

approach and low-level engines [8, 23, 43]. Theoretically, traditional join engines face a 

losing battle, as all pairwise join engines are provably suboptimal on many common graph 

queries [17]. For example, low-level specialized engines execute the “triangle listing” query, 

which is common in graph workloads [30, 47], in time O(N3/2) where N is the number of 

edges in the graph. Any pairwise relational algebra plan takes at least Ω(N2), which is 

asymptotically worse than the specialized engines by a factor of . This asymptotic 

suboptimality is often inherited by high-level graph engines, as there has not been a general 

way to compile these queries that obtains the correct asymptotic bound [20, 23]. Recently, 

new multiway join algorithms were discovered that obtain the correct asymptotic bound for 

any graph pattern or join [17].
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These new multiway join algorithms are by themselves not enough to close the gap. 

LogicBlox [25] uses multiway join algorithms and has demonstrated that they can support a 

rich set of applications. However, LogicBlox’s current engine can be orders of magnitude 

slower than the specialized engines on graph benchmarks (see Section 5). This leaves open 

the question of whether these multiway joins are destined to be slower than specialized 

approaches.

We argue that an engine based on multiway join algorithms can close this gap, but it requires 

a novel architecture (Figure 1), which forms our main contribution. Our architecture 

includes a novel query compiler based on generalized hypertree decompositions (GHDs) [2, 

13] and an execution engine designed to exploit the low-level layouts necessary to increase 

single-instruction multiple data (SIMD) parallelism. We argue that these techniques 

demonstrate that multiway join engines can compete with low-level graph engines, as our 

prototype is faster than all tested engines on graph pattern queries (in some cases by orders 

of magnitude) and competitive on other common graph benchmarks.

We design EmptyHeaded around tight theoretical guarantees and data layouts optimized for 

SIMD parallelism.

GHDs as Query Plans

The classical approach to query planning uses relational algebra, which facilitates 

optimizations such as early aggregation, pushing down selections, and pushing down 

projections. In EmptyHeaded, we need a similar framework that supports multiway (instead 

of pairwise) joins. To accomplish this, based off of an initial prototype developed in our 

group [51], we use generalized hypertree decompositions (GHDs) [13] for logical query 

plans in EmptyHeaded. GHDs allow one to apply the above classical optimizations to 

multiway joins. GHDs also have additional bookkeeping information that allow us to bound 

the size of intermediate results (optimally in the worst case). These bounds allow us to 

provide asymptotically stronger runtime guarantees than previous worst-case optimal join 

algorithms that do not use GHDs (including LogicBlox).1 As these bounds depend on the 

data and the query it is difficult to expect users to write these algorithms in a low-level 

framework. Our contribution is the design of a novel query optimizer and code generator 

based on GHDs that is able to achieve the above results via a high-level query language.

Exploiting SIMD: The Battle With Skew

Optimizing relational databases for the SIMD hardware trend has become an increasingly 

hot research topic [37, 44, 55], as the available SIMD parallelism has been doubling 

consistently in each processor generation.2 Inspired by this, we exploit the link between 

SIMD parallelism and worst-case optimal joins for the first time in EmptyHeaded. Our 

initial prototype revealed that during query execution, unoptimized set intersections often 

account for 95% of the overall runtime in the generic worst-case optimal join algorithm. 

1LogicBlox has described a (non-public) prototype with an optimizer similar but distinct from GHDs. With these modifications, 
LogicBlox’s relative performance improves similarly to our own. It, however, remains at least an order of magnitude slower than 
EmptyHeaded.
2The Intel Ivy Bridge architecture, which we use in this paper, has a SIMD register width of 256 bits. The next generation, the Intel 
Skylake architecture, has 512-bit registers and a larger number of such registers.
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Thus, it is critically important to optimize set intersections and the associated data layout to 

be well-suited for SIMD parallelism. This is a challenging task as graph data is highly 

skewed, causing the runtime characteristics of set intersections to be highly varied. We 

explore several sophisticated (and not so sophisticated) layouts and algorithms to 

opportunistically increase the amount of available SIMD parallelism in the set intersection 

operation. Our contribution here is an automated optimizer that, all told, increases 

performance by up to three orders of magnitude by selecting amongst multiple data layouts 

and set intersection algorithms that use skew to increase the amount of available SIMD 

parallelism.

We choose to evaluate EmptyHeaded on graph pattern matching queries since pattern 

queries are naturally (and classically) expressed as join queries. We also evaluate 

EmptyHeaded on other common graph workloads including PageRank and Single-Source 

Shortest Paths (SSSP). We show that EmptyHeaded consistently outperforms the standard 

baselines [20] by 2–4× on PageRank and is at most 3× slower than the highly tuned 

implementation of Galois [8] on SSSP. However, in our high-level language these queries 

are expressed in 1–2 lines, while they are over 150 lines of code in Galois. For reference, a 

hand-coded C implementation with similar performance to Galois is 1000 lines.

Contribution Summary

This paper introduces the EmptyHeaded engine and demonstrates that a novel architecture 

can enable multi-way join engines to compete with specialized low-level graph processing 

engines. We demonstrate that EmptyHeaded outperforms specialized engines on graph 

pattern queries while remaining competitive on other workloads. To validate our claims we 

provide comparisons on standard graph benchmark queries that the specialized engines are 

designed to process efficiently.

A summary of our contributions and an outline is as follows:

• We describe the first worst-case optimal join processing engine to use 

GHDs for logical query plans. We describe how GHDs enable us to 

provide a tighter theoretical guarantee than previous worst-case optimal 

join engines (Section 3). Next, we validate that the optimizations GHDs 

enable provide more than a three orders of magnitude performance 

advantage over previous worst-case optimal query plans (Section 5).

• We describe the architecture of the first worst-case optimal execution 

engine that optimizes for skew at several levels of granularity within the 

data. We present a series of automatic optimizers to select intersection 

algorithms and set layouts based on data characteristics at runtime 

(Section 4). We demonstrate that our automatic optimizers can result in up 

to a three orders of magnitude performance improvement on common 

graph pattern queries (Section 5).

• We validate that our general purpose engine can compete with specialized 

engines on standard benchmarks in the graph domain (Section 5). We 

demonstrate that on cyclic graph pattern queries our approach outperforms 
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graph engines by 2–60x and LogicBlox by three orders of magnitude. We 

demonstrate on PageRank and Single-Source Shortest Paths that our 

approach remains competitive, at most 3× off the highly tuned Galois 

engine (Section 5).

2. PRELIMINARIES

We briefly review the worst-case optimal join algorithm, trie data structure, and query 

language at the core of the EmptyHeaded design. The worst-case optimal join algorithm, trie 

data structure, and query language presented here serve as building blocks for the remainder 

of the paper.

2.1 Worst-Case Optimal Join Algorithms

We briefly review worst-case optimal join algorithms, which are used in EmptyHeaded. We 

present these results informally and refer the reader to Ngo et al. [18] for a complete survey. 

The main idea is that one can place (tight) bounds on the maximum possible number of 

tuples returned by a query and then develop algorithms whose runtime guarantees match 

these worst-case bounds. For the moment, we consider only join queries (no projection or 

aggregation), returning to these richer queries in Section 3.

A hypergraph is a pair H = (V, E), consisting of a nonempty set V of vertices, and a set E of 

subsets of V, the hyperedges of H. Natural join queries and graph pattern queries can be 

expressed as hypergraphs [13]. In particular, there is a direct correspondence between a 

query and its hypergraph: there is a vertex for each attribute of the query and a hyperedge for 

each relation. We will go freely back and forth between the query and the hypergraph that 

represents it.

A recent result of Atserias, Grohe, and Marx [3] (AGM) showed how to tightly bound the 

worst-case size of a join query using a notion called a fractional cover. Fix a hypergraph H = 

(V, E). Let x ∈ ℝ|E| be a vector indexed by edges, i.e., with one component for each edge, 

such that x ≥ 0; x is a feasible cover (or simply feasible) for H if

Algorithm 1

Generic Worst-Case Optimal Join Algorithm

  1 //Input: Hypergraph H = (V, E), and a tuple t.

  2 Generic–Join (V, E, t):

  3  if |V| = 1 then return ∩e∈ERe[t].

  4  Let I = {v1} // the first attribute .

  5  Q ← Ø // the return value

  6  // Intersect all relations that contain v1

  7  // Only those tuples that agree with t.

  8

 for every  do

  9   Qt ← Generic–Join (V − I, E, t :: tv)
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10   Q ← Q∪{tv} × Qt

11  return Q

A feasible cover x is also called a fractional hypergraph cover in the literature. AGM showed 

that if x is feasible then it forms an upper bound of the query result size |OUT| as follows:

(1)

For a query Q, we denote AGM(Q) as the smallest such right-hand side.3

Example 2.1—For simplicity, let |Re| = N for e ∈ E. Consider the triangle query, R(x, y) ⋈ 
S(y, z) ⋈ T(x, z), a feasible cover is xR = xS = 1 and xT = 0. Via Equation 1, we know that |

OUT| < N2. That is, with N tuples in each relation we cannot produce a set of output tuples 

that contains more than N. However, a tighter bound can be obtained using a different 

fractional cover . Equation 1 yields the upper bound N3/2. Remarkably, this 

bound is tight if one considers the complete graph on  vertexes. For this graph, this 

query produces Ω(N3/2) tuples, which shows that the optimal solution can be tight up to 

constant factors.

The first algorithm to have a running time matching these worst-case size bounds is the 

NPRR algorithm [17]. An important property for the set intersections in the NPRR 

algorithm is what we call the min property: the running time of the intersection algorithm is 

upper bounded by the length of the smaller of the two input sets. When the min property 

holds, a worst-case optimal running time for any join query is guaranteed. In fact, for any 
join query, its execution time can be upper bounded by AGM(Q). A simplified high-level 

description of the algorithm is presented in Algorithm 1. It was also shown that any pairwise 

join plan must be slower by asymptotic factors. However, we show in Section 3.1 that these 

optimality guarantees can be improved for non-worst-case data or more complex queries.

2.2 Input Data

EmptyHeaded stores all relations (input and output) in tries, which are multi-level data 

structures common in column stores and graph engines [28, 35].

Trie Annotations—The sets of values in the trie can optionally be associated with data 

values (1–1 mapping) that are used in aggregations. We call these associated values 

annotations [36]. For example, a two-level trie annotated with a float value represents a 

3One can find the best bound, AGM(Q), in polynomial time: take the log of Eq. 1 and solve the linear program.
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sparse matrix or graph with edge properties. We show in Section 5 that the trie data structure 

works well on a wide variety of graph workloads.

Dictionary Encoding—The tries in EmptyHeaded currently support sets containing 32-

bit values. As is standard [21, 37], we use the popular database technique of dictionary 

encoding to build a EmptyHeaded trie from input tables of arbitrary types. Dictionary 

encoding maps original data values to keys of another type—in our case 32-bit unsigned 

integers. The order of dictionary ID assignment affects the density of the sets in the trie, and 

as others have shown this can have a dramatic impact on overall performance on certain 

queries. Like others, we find that node ordering is powerful when coupled with pruning half 

the edges in an undirected graph [49]. This creates up to 3× performance difference on 

symmetric pattern queries like the triangle query. Unfortunately this optimization is brittle, 

as the necessary symmetrical properties break with even a simple selection. On more general 

queries we find that node ordering typically has less than a 10% overall performance impact. 

We explore the effect of various node orderings in Appendix A.1.1.

Column (Index) Order—After dictionary encoding, our 32-bit value relations are next 

grouped into sets of distinct values based on their parent attribute (or column). We are free to 

select which level corresponds to each attribute (or column) of an input relation. As with 

most graph engines, we simply store both orders for each edge relation. In general, we 

choose the order of the attributes for the trie based on a global attribute order, which is 

analogous to selecting a single index over the relation. The trie construction process 

produces tries where the sets of data values can be extremely dense, extremely sparse, or 

anywhere in between. Optimizing the layout of these sets based upon their data 

characteristics is the focus of Section 4. The complete transformation process from a 

standard relational table to the trie representation in EmptyHeaded is detailed in Figure 2.

2.3 Query Language

Our query language is inspired by datalog and supports conjunctive queries with 

aggregations and simple recursion (similar to LogicBlox and SociaLite). In this section, we 

describe the core syntax for our queries, which is sufficient to express the standard 

benchmarks we run in Section 5. Table 1 shows the example queries used in this paper. 

Above the first horizontal line are conjunctive queries that express joins, projections, and 

selections in the standard way [52]. Our language has two non-standard extensions: 

aggregations and a limited form of recursion. We overview both extensions next and provide 

an example in Appendix A.2.

Aggregation—Following Green et al. [36], tuples can be annotated in EmptyHeaded, and 

these annotations support aggregations from any semiring (a generalization of natural 

numbers equipped with a notion of addition and multiplication). This enables EmptyHeaded 

to support classic aggregations such as SUM, MIN, or COUNT, but also more sophisticated 

operations such as matrix multiplication. To specify the annotation, one uses a semicolon in 

the head of the rule, e.g., q(x,y;z:int) specifies that each x,y pair will be associated 

with an integer value with alias z similar to a GROUP BY in SQL. In addition, the user 

expresses the aggregation operation in the body of the rule. The user can specify an 
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initialization value as any expression over the tuples’ values and constants, while common 

aggregates have default values. Directly below the first line in Table 1, a typical triangle 

counting query is shown.

Recursion—EmptyHeaded supports a simplified form of recursion similar to Kleene-star 

or transitive closure. Given an intensional or extensional relation R, one can write a Kleene-

star rule like:

The rule R* iteratively applies q to the current instantiation of R to generate new tuples 

which are added to R. It performs this iteration until (a) the relation doesn’t change (a 

fixpoint semantic) or (b) a user-defined convergence criterion is satisfied (e.g. a number of 

iterations, i=5). Examples that capture familiar PageRank and Single-Source Shortest Paths 

are below the second horizontal line in table 1.

3. QUERY COMPILER

We now present an overview of the query compiler in EmptyHeaded, which is the first 

worst-case optimal query compiler to enable early aggregation through its use of GHDs for 

logical query plans. We first discuss GHDs and their theoretical advantages. Next, we 

describe how we develop a simple optimizer to select a GHD (and therefore a query plan). 

Finally, we show how EmptyHeaded translates a GHD into a series of loops, aggregations, 

and set intersections using the generic worst-case optimal join algorithm [17]. Our 

contribution here is the design of a novel query compiler that provides tighter runtime 

guarantees than existing approaches.

3.1 Query Plans using GHDs

As in a classical database, EmptyHeaded needs an analog of relational algebra to represent 

logical query plans. In contrast to traditional relational algebra, EmptyHeaded has multiway 

join operators. A natural approach would be simply to extend relational algebra with a 

multiway join algorithm. Instead, we advocate replacing relational algebra with GHDs, 

which allow us to make non-trivial estimates on the cardinality of intermediate results. This 

enables optimizations, like early aggregation in EmptyHeaded, that can be asymptotically 

faster than existing worst-case optimal engines. We first describe the motivation for using 

GHDs while formally describing their advantages next.

3.1.1 Motivation—A GHD is a tree similar to the abstract syntax tree of a relational 

algebra expression: nodes represent a join and projection operation, and edges indicate data 

dependencies. A node v in a GHD captures which attributes should be retained (projection 

with χ(v)) and which relations should be joined (with λ(v)). We consider all possible query 

plans (and therefore all valid GHDs), selecting the one where the sum of each node’s 

runtime is the lowest. Given a query, there are many valid GHDs that capture the query. 

Finding the lowest-cost GHD is one goal of our optimizer.
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Before giving the formal definition, we illustrate GHDs and their advantages by example:

Example 3.1: Figure 3a shows a hypergraph of the Barbell query introduced in Table 1. This 

query finds all pairs of triangles connected by a path of length one. Let OUT be the size of 

the output data. From our definition in Section 2.1, one can check that the Barbell query has 

a feasible cover of  with cost  and so runs in time O(N3). In 

fact, this bound is worst-case optimal because there are instances that return Ω(N3) tuples. 

However, the size of the output OUT could be much smaller.

There are multiple GHDs for the Barbell query. The simplest GHD for this query (and in 

fact for all queries) is a GHD with a single node containing all relations; the single node 

GHD for the Barbell query is shown in Figure 3b. One can view all of LogicBlox’s current 

query plans as a single node GHD. The single node GHD always represents a query plan 

which uses only the generic worst-case optimal join algorithm and no GHD optimizations. 

For the Barbell query, OUT is N3 in the worst-case for the single node GHD.

Consider the alternative GHD shown in Figure 3c. This GHD corresponds to the following 

alternate strategy to the above plan: first list each triangle independently using the generic 

worst-case optimal algorithm, say on the vertices (x,y,z) and then (x′, y′, z′). There are at 

most O(N3/2) triangles in each of these sets and so it takes only this time. Now, for each (x, x
′) ∈ U we output all the triangles that contain x or x′ in the appropriate position. This 

approach is able to run in time O(N3/2 + OUT) and essentially performs early aggregation if 

possible. This approach can be substantially faster when OUT is smaller than N3. For 

example, in an aggregation query OUT is just a single scalar, and so the difference in 

runtime between the two GHDs can be quadratic in the size of the database. We describe 

how we execute this query plan in Section 3.3. This type of optimization is currently not 

available in the LogicBlox engine.

3.1.2 Formal Description—We describe GHDs and their advantages formally next.

Definition 1: Let H be a hypergraph. A generalized hypertree decomposition (GHD) of H 
is a triple D = (T, χ, λ), where:

• T(V(T), E(T)) is a tree;

• χ : V(T) → 2V(H) is a function associating a set of vertices χ(v) ⊆ V(H) 

to each node v of T;

• λ : V(T) → 2E(H) is a function associating a set of hyperedges to each 

vertex v of T;

such that the following properties hold:

1. For each e ∈ E(H), there is a node v ∈ V(T) such that e ⊆ x(v) and e ∈ 
λ(v).

2. For each t ∈ V(H), the set {v ∈ V(T)|t ∈ χ(v)} is connected in T.

3. For every v ∈ V(T), χ(v) ⊆ ∪λ(v).
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A GHD can be thought of as a labeled (hyper)tree, as illustrated in Figure 3. Each node of 

the tree v is labeled; χ(v) describes which attributes are “returned” by the node v–this 

exactly captures projection in traditional relational algebra. The label λ(v) captures the set 

of relations that are present in a (multiway) join at this particular node. The first property 

says that every edge is mapped to some node, and the second property is the famous 

“running intersection property” [31] that says any attribute must form a connected subtree. 

The third property is redundant for us, as any GHD violating this condition is not considered 

(has infinite width which we describe next).

Using GHDs, we can define a non-trivial cardinality estimate based on the sizes of the 

relations. For a node v, define Qv as the query formed by joining the relations in λ(v). The 

(fractional) width of a GHD D is AGM(Qv), which is an upper bound on the number of tuples 

returned by Qv. The fractional hypertree width (fhw) of a hypergraph H is the minimum 

width of all GHDs of H. Given a GHD with width w, there is a simple algorithm to run in 

time O(Nw + OUT). First, run any worst-case optimal algorithm on Qv for each node v of 

the GHD; each join takes time O(Nw) and produces at most O(Nw) tuples. Then, one is left 

with an acyclic query over the output of Qv, namely the tree itself. We then perform 

Yannakakis’ classical algorithm [54], which for acyclic queries enables us to compute the 

output in linear time in the input size (O(Nw)) plus the output size (OUT).

3.2 Choosing Logical Query Plans

We describe how EmptyHeaded chooses GHDs, explain how we leverage previous work to 

enable aggregations over GHDs, and describe how GHDs are used to select a global attribute 

ordering in EmptyHeaded. In Appendix B.l, we provide detail on how classic database 

optimizations, such as pushing down selections, can be captured using GHDs.

GHD Optimizer—The EmptyHeaded query compiler selects an optimal GHD to ensure 

tighter theoretical run time guarantees. It is key that the EmptyHeaded optimizer selects a 

GHD with the smallest width w to ensure an optimal GHD. Similar to how a traditional 

database pushes down projections to minimize the output size, EmptyHeaded minimizes the 

output size by finding the GHD with the smallest width. In contrast to pushing down 

projections, finding the minimum width GHD is NP-hard in the number of relations and 

attributes. As the number of relations and attributes is typically small (three for triangle 

counting), we simply brute force search GHDs of all possible widths.

Aggregations over GHDs—Previous work has investigated aggregations over hypertree 

decompositions [13, 48]. EmptyHeaded adopts this previous work in a straightforward way. 

To do this, we add a single attribute with “semiring annotations” following Green et al. [36]. 

EmptyHeaded simply manipulates this value as it is projected away. This general notion of 

aggregations over annotations enables EmptyHeaded to support traditional notions of 

queries with aggregations as well as a wide range of workloads outside traditional data 

processing, like message passing in graphical models.

Global Attribute Ordering—Once a GHD is selected, EmptyHeaded selects a global 

attribute ordering. The global attribute ordering determines the order in which EmptyHeaded 
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code generates the generic worst-case optimal algorithm (Algorithm 1) and the index 

structure of our tries (Section 2.2). Therefore, selecting a global attribute ordering is 

analogous to selecting a join and index order in a traditional pairwise relational engine. The 

attribute order depends on the query. For the purposes of this paper, we assume both trie 

orderings are present, and we are therefore free to select any attribute order. For graphs (two-

attributes), most in-memory graph engines maintain both the matrix and its transpose in the 

compressed sparse row format [8, 35]. We are the first to consider selecting an attribute 

ordering based on a GHD and as a result we explore simple heuristics based on structural 

properties of the GHD. To assign an attribute order for all queries in this paper, 

EmptyHeaded simply performs a pre-order traversal over the GHD, adding the attributes 

from each visited GHD node into a queue.

3.3 Code Generation

EmptyHeaded’s code generator converts the selected GHD for each query into optimized C+

+ code that uses the operators in Table 2. We choose to implement code generation in 

EmptyHeaded as it is has been shown to be an efficient technique to translate high-level 

query plans into code optimized for modern hardware [46].

3.3.1 Code Generation API—We first describe the storage-engine operations which 

serve as the basic high-level API for our generated code. Our trie data structure offers a 

standard, simple API for traversals and set intersections that is sufficient to express the 

worst-case optimal join algorithm detailed in Algorithm 1. The key operation over the trie is 

to return a set of values that match a specified tuple predicate (see Table 2). This operation is 

typically performed while traversing the trie, so EmptyHeaded provides an optimized 

iterator interface. The set of values retrieved from the trie can be intersected with other sets 

or iterated over using the operations in Table 2.

3.3.2 GHD Translation—The goal of code generation is to translate a GHD to the 

operations in Table 2. Each GHD node v ∈ V(T) is associated with a trie described by the 

attribute ordering in χ(v). Unlike previous worst-case optimal join engines, there are two 

phases to our algorithm: (1) within nodes of V(T) and (2) between nodes V(T).

Within a Node: For each v ∈ V(T), we run the generic worst-case optimal algorithm shown 

in Algorithm 1. Suppose Qv is the triangle query.

Example 3.2: Consider the triangle query. The hypergraph is V = {X, Y, Z} and E = {R, S, 

T}. In the first call, the loop body generates a loop with body Generic-Join({Y, Z}, E, tX). In 

turn, with two more calls this generates:

Across Nodes: Recall Yannakakis’ seminal algorithm [54]: we first perform a “bottom-up” 

pass, which is a reverse level-order traversal of T. For each v ∈ V(T), the algorithm 
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computes Qv and passes its results to the parent node. Between nodes (v0, v1) we pass the 

relations projected onto the shared attributes χ(v0)∩χ(v1). Then, the result is constructed by 

walking the tree “top-down” and collecting each result.

Recursion: EmptyHeaded supports both naive and semi-naive evaluation to handle 

recursion. For naive recursion, EmptyHeaded’s optimizer produces a (potentially infinite) 

linear chain GHD with the output of one GHD node serving as the input to its parent GHD 

node. We run naive recursion for PageRank in Table 1. This boils to down to a simple 

unrolling of the join algorithm. Naive recursion is not an acceptable solution in applications 

such as SSSP where work is continually being eliminated. To detect when EmptyHeaded 

should run seminaive recursion, we check if the aggregation is monotonically increasing or 

decreasing with a MIN or MAX operator. We use seminaive recursion for SSSP.

Example 3.3: For the Barbell query (see Figure 3c), we first run Algorithm 1 on nodes v1 

and v2; then we project their results on x and x′ and pass them to node v0. This is part of the 

“bottom-up” pass. We then execute Algorithm 1 on node v0 which now contains the results 

(triangles) of its children. Algorithm 1 executes here by simply checking for pairs of (x,x’) 
from its children that are in U. To perform the “top-down” pass, for each matching pair, we 

append (y, z) from v1 and (y’, z’) from v2.

4. EXECUTION ENGINE OPTIMIZER

The EmptyHeaded execution engine runs code generated from the query compiler. The goal 

of the EmptyHeaded execution engine is to fully utilize SIMD parallelism, but extracting 

SIMD parallelism is challenging as graph data is often skewed in several distinct ways. The 

density of data values is almost never constant: some parts of the relation are dense while 

others are sparse. We call this density skew.4 A novel aspect of EmptyHeaded is that it 

automatically copes with density skew through an optimizer that selects among different 

data layouts. We implemented and tested five different set layouts previously proposed in the 

literature [6, 7, 15, 39]. We found that the simple uint and bitset layouts yield the highest 

performance in our experiments (see Appendix C.2.2). Thus, we focus on selecting between 

(1) a 32-bit unsigned integer ( uint) layout for sparse data and (2) a bitset layout for 

dense data. For dense data, the bitset layout makes it trivial to take advantage of SIMD 

parallelism. But for sparse data, the bitset layout causes a quadratic blowup in memory 

usage while uint sets make extracting SIMD parallelism challenging.

Making these layout choices is challenging, as the optimal choice depends both on the 

characteristics of the data, such as density, and the characteristics of the query. We first 

describe layouts and intersection algorithms in Sections 4.1 and 4.2. This serves as 

background for the tradeoff study we perform in Section 4.3, where we explore the proper 

granularity at which to make layout decisions. Finally, we present our automatic optimizer 

and show that it is close to an unachievable lower-bound optimal in Section 4.4. This study 

4We measure density skew using the Pearson’s first coefficient of skew defined as 3σ−1 (mean – mode) where σ is the standard 
deviation.
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serves as the basis for our automatic layout optimizer that we use inside of the 

EmptyHeaded storage engine.

4.1 Layouts

In the following, we describe the bitset layout in EmptyHeaded. We omit a description of 

the uint layout as it is just an array of 32-bit unsigned integers. We also detail how both 

layouts support associated data values.

BITSET—The bitset layout stores a set of pairs (offset, bitvector), as shown in Figure 4. 

The offset is the index of the smallest value in the bitvector. Thus, the layout is a 

compromise between sparse and dense layouts. We refer to the number of bits in the 

bitvector as the block size. EmptyHeaded supports block sizes that are powers of two with a 

default of 256.5 As shown, we pack the offsets contiguously, which allows us to regard the 

offsets as a uint layout; in turn, this allows EmptyHeaded to use the same algorithm to 

intersect the offsets as it does for the uint layout.

Associated Values—Our sets need to be able to store associated values such as pointers 

to the next level of the trie or annotations of arbitrary types. In EmptyHeaded, the associated 

values for each set also use different underlying data layouts based on the type of the 

underlying set. For the bitset layout we store the associated values as a dense vector 

(where associated values are accessed based upon the data value in the set). For the uint 

layout we store the associated values as a sparse vector (where the associated values are 

accessed based upon the index of the value in the set).

4.2 Intersections

We briefly present an overview of the intersection algorithms EmptyHeaded uses for each 

layout. This serves as the background for our tradeoff study in Section 4.3. We remind the 

reader that the min property presented in Section 2.1 must hold for set intersections so that a 

worst-case optimal runtime can be guaranteed in EmptyHeaded.

UINT ∩ UINT—For the uint layout, we implemented and tested five state-of-the-art SIMD 

set intersections [6, 7, 15, 39] (see Appendix C.2). For uint intersections we found that the 

size of two sets being intersected may be drastically different. This is another type of skew, 

which we call cardinality skew. So-called galloping algorithms [53] allow one to run in time 

proportional to the size of the smaller set, which copes with cardinality skew. However, for 

sets that are of similar size, galloping algorithms may have additional overhead. Therefore, 

like others [7, 15], EmptyHeaded uses a simple hybrid algorithm that selects a SIMD 

galloping algorithm when the ratio of cardinalities is greater than 32:1, and a SIMD 

shuffling algorithm otherwise.

BITSET ∩ BTTSET—Our bitset is conceptually a two-layer structure of offsets and 

blocks. Offsets are stored using uint sets. Each offset determines the start of the 

corresponding block. To compute the intersection, we first find the common blocks between 

5The width of an AVX register.
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the bitsets by intersecting the offsets using a uint intersection followed by SIMD AND 

instructions to intersect matching blocks. In the best case, i.e., when all bits in the register 

are 1, a single hardware instruction computes the intersection of 256 values.

UINT ∩ BITSET—To compute the intersection between a uint and a bitset, we first 

intersect the uint values with the offsets in the bitset. We do this to check if it is possible 

that some value in a bitset block matches a uint value. As bitset block sizes are 

powers of two in EmptyHeaded, this can be accomplished by masking out the lower bits of 

each uint value in the comparison. This check may result in false positives, so, for each 

matching uint and bitset block we check whether the corresponding bitset blocks 

contain the uint value by probing the block. We store the result as a uint as the 

intersection of two sets can be at most as dense as the sparser set.6 Notice that this algorithm 

satisfies the min property with a constant determined by the block size.

4.3 Tradeoffs

We explore three different levels of granularity to decide between uint and bitset layouts 

in our trie data structure: the relation level, the set level, and the block level.

Relation Level—Set layout decisions at the relation level force the data in all relations to 

be stored using the same layout and therefore do not address density skew. The simplest 

layout in memory is to store all sets in every trie using the uint layout. Unfortunately, it is 

difficult to fully exploit SIMD parallelism using this layout, as only four elements fit in a 

single SIMD register.7 In contrast, bitvectors can store 256 elements in a single SIMD 

register. However, bitvectors are inefficient on sparse data and can result in a quadratic 

blowup of memory usage. Therefore, one would expect unsigned integer arrays to be well 

suited for sparse sets and bitvectors for dense sets. Figure 5 illustrates this trend. Because of 

the sparsity in real-world data, we found that uint provides the best performance at the 

relation level.

Set Level—Real-world data often has a large amount of density skew, so both the uint 

and bitset layouts are useful. At the set level we simply decide on a per-set level if the 

entire set should be represented using a uint or a bitset layout. Furthermore, we found 

that our uint and bitset intersection can provide up to a 6x performance increase over the 

best homogeneous uint intersection and a 132x increase over a homogeneous bitset 

intersection. We show in Sections 4.4 and 5.3 that the impact of mixing layouts at the set 

level on real data can increase overall query performance by over an order of magnitude.

Block Level—Selecting a layout at the set level might be too coarse if there is internal 

skew. For example, set level layout decisions are too coarse-grained to optimally exploit a 

set with a large sparse region followed by a dense region. Ideally, we would like to treat 

dense regions separately from sparse ones. To deal with skew at a finer granularity, we 

propose a composite set layout that regards the domain as a series of fixed-sized blocks; we 

6Estimating data characteristics like output cardinality a priori is a hard problem [33] and we found it is too costly to reinspect the data 
after each operation.
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represent sparse blocks using the uint layout and dense blocks using the bitset layout. 

We show in Figure 6 that on synthetic data the composite layout can outperform the uint 

and bitset layouts by 2×.

4.4 Layout Optimizer

Our synthetic experiments in Section 4.3 show there is no clear winner, as the right 

granularity at which to make a layout decision depends on the data characteristics and the 

query. To determine if our system should make layout decisions at a relation, set, or block 

level on real data, we compare each approach to the time of a lower-bound oracle optimizer. 

We found that while running on the real graph datasets shown in Table 3, choosing layouts at 

the set level provided the best overall performance (see Table 4).

Oracle Comparison—The oracle optimizer we compare to provides a lower bound as it is 

able to freely select amongst all layouts per set operation. Thus, it is allowed to choose any 

layout and intersection combination while assuming perfect knowledge of the cost of each 

intersection. We implement the oracle optimizer by brute-force, running all possible layout 

and algorithm combinations for every set intersection in a given query. The oracle optimizer 

then counts only the cost of the best-performing combination (from all possible 

combinations), therefore providing a lower bound for the EmptyHeaded optimizer. On the 

triangle counting query, the set level optimizer was at most 1.6x off the optimal oracle 

performance, while choosing at the relation and block levels can be up to 7.3× and 3.2× 

slower respectively than the oracle. Although more sophisticated optimizers exist, and were 

tested in the EmptyHeaded engine, we found that this simple set level optimizer performed 

within 10%–40% of the oracle optimizer on real graph data. Because of this we use the set 

optimizer by default inside of EmptyHeaded (and for the remainder of this paper).

Set Optimizer—The set optimizer in EmptyHeaded selects the layout for a set in isolation 

based on its cardinality and range. It selects the bitset layout when each value in the set 

consumes at most as much space as a SIMD (AVX) register and the uint layout otherwise. 

The optimizer uses the bitset layout with a block size equal to the range of the data in the 

set. We find this to be more effective than a fixed block size since it lacks the overhead of 

storing multiple offsets.

5. EXPERIMENTS

We compare EmptyHeaded against state-of-the-art high-and low-level specialized graph 

engines on standard graph benchmarks. We show that by using our optimizations from 

Section 3 and Section 4, EmptyHeaded is able to compete with specialized graph engines.

5.1 Experiment Setup

We describe the datasets, comparison engines, metrics, and experiment setting used to 

validate that EmptyHeaded competes with specialized engines in Sections 5.2 and 5.3.

5.1.1 Datasets—Table 3 provides a list of the 6 popular datasets that we use in our 

comparison to other graph analytics engines. LiveJournal, Orkut, and Patents are graphs with 

Aberger et al. Page 15

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2017 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a low amount of density skew, and Patents is much smaller graph in comparison to the 

others. Twitter is one of the largest publicly available datasets and is a standard 

benchmarking dataset that contains a modest amount of density skew. Higgs is a medium-

sized graph with a modest amount of density skew. Google+ is a graph with a large amount 

of density skew.

5.1.2 Comparison Engines—We compare EmptyHeaded against popular high- and low-

level engines in the graph domain. We also compare to the high-level LogicBlox engine, as it 

is the first commercial database with a worst-case optimal join optimizer.

Low-Level Engines: We benchmark several graph analytic engines and compare their 

performance. The engines that we compare to are PowerGraph v2.2 [21], the latest release of 

commercial graph tool (CGT-X), and Snap-R [43]. Each system provides highly optimized 

shared memory implementations of the triangle counting query. Other shared memory graph 

engines such as Ligra [50] and Galois [8] do not provide optimized implementations of the 

triangle query and requires one to write queries by hand. We do provide a comparison to 

Galois v2.2.1 on PageRank and SSSP. Galois has been shown to achieve performance 

similar to that of Intel’s hand-coded implementations [29] on these queries.

High-Level Engines: We compare to LogicBlox v4.3.4 on all queries since LogicBlox is the 

first general purpose commercial engine to provide similar worst-case optimal join 

guarantees. LogicBlox also provides a relational model that makes complex queries easy and 

succinct to express. It is important to note that LogicBlox is full-featured commercial system 

(supports transactions, updates, etc.) and therefore incurs inefficiencies that EmptyHeaded 

does not. Regardless, we demonstrate that using GHDs as the intermediate representation in 

EmptyHeaded’s query compiler not only provides tighter theoretical guarantees, but 

provides more than a three orders of magnitude performance improvement over LogicBlox. 

We further demonstrate that our set layouts account for over an order of magnitude 

performance advantage over the LogicBlox design. We also compare to SociaLite [23] on 

each query as it also provides high-level language optimizers, making the queries as succinct 

and easy to express as in EmptyHeaded. Unlike LogicBlox, SociaLite does not use a worst-

case optimal join optimizer and therefore suffers large performance gaps on graph pattern 

queries. Our experimental setup of the LogicBlox and SociaLite engines was verified by an 

engineer from each system and our results are in-line with previous findings [9, 23, 29].

Omitted Comparisons: We compared EmptyHeaded to GraphX [19] which is a graph 

engine designed for scale-out performance. GraphX was consistently several orders of 

magnitude slower than EmptyHeaded’s performance in a shared-memory setting. We also 

compared to a commercial database and PostgreSQL but they were consistently over three 

orders of magnitude off of EmptyHeaded’s performance. We exclude a comparison to Grail 

[20] as its performance has been shown to be comparable to or substantially worse than 

PowerGraph [21], to which we provide a comparison.

5.1.3 Metrics—We measure the performance of EmptyHeaded and other engines. For end-

to-end performance, we measure the wall-clock time for each system to complete each 

query. This measurement excludes the time used for data loading, outputting the result, data 
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statistics collection, and index creation for all engines. We repeat each measurement seven 

times, eliminate the lowest and the highest value, and report the average. Between each 

measurement of the low-level engines we wipe the caches and re-load the data to avoid 

intermediate results that each engine might store. For the high-level engines we perform runs 

back-to-back, eliminating the first run which can be an order of magnitude worse than the 

remaining runs. We do not include compilation times in our measurements. Low-level graph 

engines run as a stand-alone program (no compilation time) and we discard the compilation 

time for high-level engines (by excluding their first run, which includes compilation time). 

Nevertheless, our unoptimized compilation process (under two seconds for all queries in this 

paper) is often faster than other high-level engines’ (Socialite or LogicBlox).

5.1.4 Experiment Setting—EmptyHeaded is an in-memory engine that runs and is 

evaluated on a single node server. As such, we ran all experiments on a single machine with 

a total of 48 cores on four Intel Xeon E5-4657L v2 CPUs and 1 TB of RAM. We compiled 

the C++ engines (EmptyHeaded, Snap-R, Power-Graph, TripleBit) with g++ 4.9.3 (−O3) 

and ran the Java-based engines (CGT-X, LogicBlox, SociaLite) on OpenJDK 7u65 on 

Ubuntu 12.04 LTS. For all engines, we chose buffer and heap sizes that were at least an 

order of magnitude larger than the dataset itself to avoid garbage collection.

5.2 Experimental Results

We provide a comparison to specialized graph analytics engines on several standard 

workloads. We demonstrate that EmptyHeaded outperforms the graph analytics engines by 

2–60× on graph pattern queries while remaining competitive on PageRank and SSSP.

5.2.1 Graph Pattern Queries—We first focus on the triangle counting query as it is a 

standard graph pattern benchmark with hand-tuned implementations provided in both high- 

and low-level engines. Furthermore, the triangle counting query is widely used in graph 

processing applications and is a common subgraph query pattern [30, 47]. To be fair to the 

low-level frameworks, we compare the triangle query only to frameworks that provide a 

hand-tuned implementation. Although we have a high-level optimizer, we outperform the 

graph analytics engines by 2–60× on the triangle counting query.

As is the standard, we run each engine on pruned versions of these datasets, where each 

undirected edge is pruned such that srcid > dstid and id’s are assigned based upon the degree 

of the node. This process is standard as it limits the size of the intersected sets and has been 

shown to empirically work well [49]. Nearly every graph engine implements pruning in this 

fashion for the triangle query.

Takeaways: The results from this experiment are in Table 5. On very sparse datasets with 

low density skew (such as the Patents dataset) our performance gains are modest as it is best 

to represent all sets in the graph using the uint layout, which is what many competitor 

engines already do. As expected, on datasets with a larger degree of density skew, our 

performance gains become much more pronounced. For example, on the Google+ dataset, 

with a high density skew, our set level optimizer selects 41% of the neighborhood sets to be 

bitsets and achieves over an order of magnitude performance gain over representing all 
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sets as uints. LogicBlox performs well in comparison to CGT-X on the Higgs dataset, 

which has a large amount of cardinality skew, as they use a Leapfrog Triejoin algorithm [53] 

that optimizes for cardinality skew by obeying the min property of set intersection. 

EmptyHeaded similarly obeys the min property by selecting amongst set intersection 

algorithms based on cardinality skew. In Section 5.3 we demonstrate that over a two orders 

of magnitude performance gain comes from our set layout and intersection algorithm 

choices.

Omitted Comparison: We do not compare to Galois on the triangle counting query, as 

Galois does not provide an implementation and implementing it ourselves would require us 

to write a custom set intersection in Galois (where >95% of the runtime goes). We describe 

how to implement high-performance set intersections in-depth in Section 4 and 

EmptyHeaded’s triangle counting numbers are comparable to Intel’s hand-coded numbers 

which are slightly (10–20%) faster than the Galois implementation [29]. We provide a 

comparison to Galois on SSSP and PageRank in Section 5.2.2.

5.2.2 Graph Analytics Queries—Although EmptyHeaded is capable of expressing a 

variety of different workloads, we benchmark PageRank and SSSP as they are common 

graph benchmarks. In addition, these benchmarks illustrate the capability of EmptyHeaded 

to process broader workloads that relational engines typically do not process efficiently: (1) 

linear algebra operations (in PageRank) and (2) transitive closure (in SSSP). We run each 

query on undirected versions of the graph datasets and demonstrate competitive performance 

compared to specialized graph engines. Our results suggest that our approach is competitive 

outside of classic join workloads.

PageRank: As shown in Table 6, we are consistently 2–4x faster than standard low-level 

baselines and more than an order of magnitude faster than the high-level baselines on the 

PageRank query. We observe competitive performance with Galois (271 lines of code), a 

highly tuned shared memory graph engine, as seen in Table 6, while expressing the query in 

three lines of code (Table 1). There is room for improvement on this query in EmptyHeaded 

since double buffering and the elimination of redundant joins would enable EmptyHeaded to 

achieve performance closer to the bare metal performance, which is necessary to outperform 

Galois.

Single-Source Shortest Paths: We compare EmptyHeaded’s performance to LogicBlox and 

specialized engines in Table 7 for SSSP while omitting a comparison to Snap-R. Snap-R 

does not implement a parallel version of the algorithm and is over three orders of magnitude 

slower than EmptyHeaded on this query. For our comparison we selected the highest degree 

node in the undirected version of the graph as the start node. EmptyHeaded consistently 

outperforms PowerGraph (low-level) and SociaLite (high-level) by an order of magnitude 

and LogicBlox by three orders of magnitude on this query. More sophisticated 

implementations of SSSP than what EmptyHeaded generates exist [32]. For example, 

Galois, which implements such an algorithm, observes a 2–30x performance improvement 

over EmptyHeaded on this application (Table 7). Still, EmptyHeaded is competitive with 
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Galois (172 lines of code) compared to the other approaches while expressing the query in 

two lines of code (Table 1).

5.3 Micro-Benchmarking Results

We detail the effect of our contributions on query performance. We introduce two new 

queries and revisit the Barbell query (introduced in Section 3) in this section: (1) K4 is a 4-

clique query representing a more complex graph pattern, (2) L3,1 is the Lollipop query that 

finds all 3-cliques (triangles) with a path of length one off of one vertex, and (3) B3,1 the 

Barbell query that finds all 3-cliques (triangles) connected by a path of length one. We 

demonstrate how using GHDs in the query compiler and the set layouts in the execution 

engine can have a three orders of magnitude performance impact on the K4, L3,1, and B3,1 

queries.

Experimental Setup—These queries represents pattern queries that would require 

significant effort to implement in low-level graph analytics engines. For example, the 

simpler triangle counting implementation is 138 lines of code in Snap-R and 402 lines of 

code in PowerGraph. In contrast, each query is one line of code in EmptyHeaded. As such, 

we do not benchmark the low-level engines on these complex pattern queries. We run 

COUNT(∗) aggregate queries in this section to test the full effect of GHDs on queries with the 

potential for early aggregation. The K4 query is symmetric and therefore runs on the same 

pruned datasets as those used in the triangle counting query in Section 5.2.1. The B3,1 and 

L3,1 queries run on the undirected versions of these datasets.

5.3.1 Query Compiler Optimizations—GHDs enable complex queries to run efficiently 

in EmptyHeaded. Table 8 demonstrates that when the GHD optimizations are disabled 

(“−GHD”), meaning a single node GHD query plan is run, we observe up to an 8x 

slowdown on the L3,1 query and over a three orders of magnitude performance improvement 

on the B3,1 query. Interestingly, density skew matters again here, and for the dataset with the 

largest amount of density skew, Google+, EmptyHeaded observes the largest performance 

gain. GHDs enable early aggregation here and thus eliminate a large amount of computation 

on the datasets with large output cardinalities (high density skew). LogicBlox, which 

currently uses only the generic worst-case optimal join algorithm (no GHD optimizations) in 

their query compiler, is unable to complete the Lollipop or Barbell queries across the 

datasets that we tested. GHD optimizations do not matter on the K4 query as the optimal 

query plan is a single node GHD.

5.3.2 Execution Engine Optimizations—Table 8 shows the relative time to complete 

graph queries with features of our engine disabled. The “−R” column represents 

EmptyHeaded without SIMD set layout optimizations and therefore density skew 

optimizations. This most closely resembles the implementation of the low-level engines in 

Table 5, who do not consider mixing SIMD friendly layouts. Table 8 shows that our set 

layout optimizations consistently have a two orders of magnitude performance impact on 

advanced graph queries. The “−RA” column shows EmptyHeaded without density skew 

(SIMD layout choices) and cardinality skew (SIMD set intersection algorithm choices). Our 

layout and algorithm optimizations provide the largest performance advantage (>20×) on 
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extremely dense ( bitset) and extremely sparse ( uint) set intersections (see Appendix C.

1), which is what happens on the datasets with low density skew here. Like others [41], we 

found that explicitly disabling SIMD vectorization, in addition to our layout and algorithm 

choices, decreases our performance by another 2x (see Appendix A.1.2). Our contribution 

here is the mixing of data representations (“−R”) and set intersection algorithms (“−RA”), 

both of which are deeply intertwined with SIMD parallelism. In total, Table 8 and our 

discussion validate that the set layout and algorithmic features have merit and enable 

EmptyHeaded to compete with graph engines.

6. RELATED WORK

Our work extends previous work in four main areas: join processing, graph processing, 

SIMD processing, and set intersection processing.

Join Processing

The first worst-case optimal join algorithm was recently derived [18]. The LogicBlox (LB) 

engine [53] is the first commercial database engine to use a worst-case optimal algorithm. 

Researchers have also investigated worst-case optimal joins in distributed settings [34] and 

have looked at minimizing communication costs [10] or processing on compressed 

representations [48]. Recent theoretical advances [24,26] have suggested worst-case optimal 

join processing is applicable beyond standard join pattern queries. We continue in this line 

of work. The algorithm in EmptyHeaded is a derived from the worst-case optimal join 

algorithm [18] and uses set intersection operations optimized for SIMD parallelism, an 

approach we exploit for the first time. Additionally, our algorithm satisfies a stronger 

optimality property that we describe in Section 3.

Graph Processing

Due to the increase in main memory sizes, there is a trend toward developing shared 

memory graph analytics engines. Researchers have released high performance shared 

memory graph processing engines, most notably SociaLite [23], Green-Marl [35], Ligra 

[50], and Galois [8]. With the exception of SociaLite, each of these engines proposes a new 

domain-specific language for graph analytics. SociaLite, based on datalog, presents a engine 

that more closely resembles a relational model. Other engines such as PowerGraph [21], 

Graph-X [19], and Pregel [14] are aimed at scale-out performance. The merit of these 

specialized approaches against traditional online analytical processing (OLAP) engines is a 

source of much debate [5], as some researchers believe general approaches can compete 

with and outperform these specialized designs [12,19]. Recent products, such as SAP 

HANA, integrate graph accelerators as part of a OLAP engine [27]. Others [20] have shown 

that relational engines can compete with distributed engines [14,21] in the graph domain, but 

have not targeted shared-memory baselines. We hope our work contributes to the debate 

about which portions of the workload can be accelerated.

SIMD Processing

Recent research has focused on taking advantage of the hardware trend toward increasing 

SIMD parallelism. DB2 Blu integrated an accelerator supporting specialized heterogeneous 
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layouts designed for SIMD parallelism on predicate filters and aggregates [37]. Our 

approach is similar in spirit to DB2 Blu, but applied specifically to join processing. Other 

approaches such as WideTable [45] and BitWeaving [44] investigated and proposed several 

novel ways to leverage SIMD parallelism to speed up scans in OLAP engines. Furthermore, 

researchers have looked at optimizing popular database structures, such as the trie [38], and 

classic database operations [55] to leverage SIMD parallelism. Our work is the first to 

consider heterogeneous layouts to leverage SIMD parallelism as a means to improve worst-

case optimal join processing.

Set Intersection Processing

In recent years there has been interest in SIMD sorted set intersection techniques [6, 7,15, 

39]. Techniques such as the SIMDShuffling algorithm [39] break the min property of set 

intersection but often work well on graph data, while techniques such as SIMDGalloping [7] 

that preserve the min property rarely work well on graph data. We experiment with these 

techniques and slightly modify our use of them to ensure min property of the set intersection 

operation in our engine. We use this as a means to speed up set intersection, which is the 

core operation in our approach to join processing.

7. CONCLUSION

We demonstrate the first general-purpose worst-case optimal join processing engine that 

competes with low-level specialized engines on standard graph workloads. Our approach 

provides strong worst-case running times and can lead to over a three orders of magnitude 

performance gain over standard approaches due to our use of GHDs. We perform a detailed 

study of set layouts to exploit SIMD parallelism on modern hardware and show that over a 

three orders of magnitude performance gain can be achieved through selecting among 

algorithmic choices for set intersection and set layouts at different granularities of the data. 

Finally, we show that on popular graph queries our prototype engine can outperform 

specialized graph analytics engines by 4–60x and LogicBlox by over three orders of 

magnitude. Our study suggests that this type of engine is a first step toward unifying 

standard SQL and graph processing engines.
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A. APPENDIX FOR SECTION 2

A.1 Dictionary Encoding and Node Ordering

A.1.1 Node Ordering

Because EmptyHeaded maps each node to an integer value, it is natural to consider the 

performance implications of these mappings. Node ordering can affect the performance in 

two ways: It changes the ranges of the neighborhoods and, for queries that use symmetry 

breaking, it affects the number of comparisons needed to answer the query. In the following, 

we discuss the impact of node ordering on triangle counting with and without symmetry 

breaking.

We explore the impact of node ordering on query performance using triangle counting query 

on synthetically generated power law graphs with different power law exponents. We 

generate the data using the Snap Random Power-Law graph generator and vary the Power-

Law degree exponents from 1 to 3. The best ordering can achieve over an order of 

magnitude better performance than the worst ordering on symmetrical queries such as 

triangle counting.

We consider the following orderings:

Random random ordering of vertices. We use this as a baseline to measure the 

impact of the different orderings.

BFS labels the nodes in breadth-first order.

Strong-Runs first sorts the node by degree and then starting from the highest 

degree node, the algorithm assigns continuous numbers to the neighbors of 

each node. This ordering can be seen as an approximation of BFS.

Degree this ordering is a simple ordering by descending degree which is 

widely used in existing graph systems.

Rev-Degree labels the nodes by ascending degree.

Shingle an ordering scheme based on the similarity of neighborhoods [11].

In addition to these orderings, we propose a hybrid ordering algorithm hybrid that first 

labels nodes using BFS followed by sorting by descending degree. Nodes with equal degree 

retain their BFS ordering with respect to each other. The hybrid ordering is inspired by our 

findings that ordering by degree and BFS provided the highest performance on symmetrical 

queries. Figure 7 shows that graphs with a low power law coefficient achieve the best 

performance through ordering by degree and that a BFS ordering works best on graphs with 

a high power law coefficient. Figure 7 shows the performance of hybrid ordering and how it 

tracks the performance of BFS or degree where each is optimal.

Each ordering incurs the cost of performing the actual ordering of the data. Table 9 shows 

examples of node ordering times in EmptyHeaded. The execution time of the BFS ordering 

grows linearly with the number of edges, while sorting by degree or reverse degree depends 
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on the number of nodes. The cost of the hybrid ordering is the sum of the costs of the BFS 

ordering and ordering by degree.

A.1.2 Pruning Symmetric Queries

We explore the effect of node ordering on query performance with and without the data 

pruning that symmetrical queries enable. Symmetric queries such as the triangle query or the 

4-clique query on undirected graphs produce equivalent results for graphs where each src, 
dst pair occurs only once and datasets where each src, dst has a corresponding dst, src pair 

(the latter producing a result that is a multiple of the former). Specialized engines take 

advantage of restricted optimization that only holds for symmetric patterns. For this 

experiment, we measure the effect of the node orderings introduced in Appendix A.1.1 on 

five datasets with different set layouts. We show that node ordering only has a substantial 

impact on queries that enable symmetry breaking and that our layout optimizations typically 

have a larger impact on the queries which do not enable symmetry breaking, which is the 

more general case.

We use the relative triangle counting performance on 5 datasets with a random ordering and 

ordering by degree as a proxy for the impact of node ordering. For each dataset, we measure 

the triangle counting performance with random ordering and ordering by degree (the default 

standard), with and without pruning, and with the EmptyHeaded set level optimizer and with 

a homogeneous uint layout. We call pruned data on symmetrical queries symmetrically 
filtered. We report the relative performance of the random ordering compared to ordering by 

degree. Table 10 shows that ordering does not have a large impact on queries that do not 

enable symmetry breaking. In addition. Table 10 shows that our optimizer is more robust to 

various orderings in the special cases where symmetry filtering is allowed. Table 11 shows 

that our optimizations typically have a larger impact on data which is not symmetrically 

filtered. This is important as symmetrical queries are infrequent and their symmetrical 

property breaks with even a simple selection.

A.2 Extended Query Language Discussion

Conjunctive Queries: Joins, Projections, Selections

Equality joins are expressed in EmptyHeaded as simple conjunctive queries. We show 

EmptyHeaded’s’ syntax for two cyclic join queries in Table 1: the 3-clique query (also 

known as triangle or K3), and the Barbell query (two 3-cliques connected by a path of length 

1). EmptyHeaded easily enables selections and projections in its query language as well. We 

enable projections through the user directly annotating which attributes appear in the head. 

We enable selections by directly annotating predicates on attribute values in the body (e.g. b 

= ‘Chris’).

We illustrate how our query language works by example for the PageRank query:

Example A.1—Table 1 shows an example of the syntax used to express the PageRank 

query in EmptyHeaded. The first line specifies that we aggregate over all the edges in the 

graph and count the number of source nodes assuming our Edge relation is two-attribute 

relation filled with (src, dst) pairs. For an undirected graph this simply counts the number of 
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nodes in the graph and assigns it to the relation N which is really just a scalar integer. By 

definition the COUNT aggregation and by default the SUM use an initialization value of 1 if 

the relation is not annotated. The second line of the query defines the base case for 

recursion. Here we simply project away the z attributes and assign an annotation value of 

1/N (where N is our scalar relation holding the number of nodes). Finally, the third line 

defines the recursive rule which joins the Edge and InvDegree relations inside the database 

with the new PageRank relation. We SUM over the z attribute in all of these relations. When 

aggregated attributes are joined with each other their annotation values are multiplied by 

default [26]. Therefore we are performing a matrix-vector multiplication. After the 

aggregation the corresponding expression for the annotation y is applied to each aggregated 

value. This is run for a fixed number (5) iterations as specified in the head.

B. APPENDIX FOR SECTION 3

B.1 Selections

Implementing high performance selections in EmptyHeaded requires three additional 

optimizations that significantly effect performance: (1) pushing down selections within the 

worst-case optimal join algorithm, (2) index layout tradeoffs. and (3) pushing down 

selections across GHD nodes. The first two points are trivial so we briefly overview them 

next while providing a detailed description and experiment for pushing down selections 

across GHDs in Appendix B.1.1. We narrow our scope in this section to only equality 

selections, but our techniques are general and can be applied to general selection constraints.

Within a Node

Pushing down selections within a GHD node is akin to rearranging the attribute ordering for 

the generic worst-case optimal algorithm. Simply put, the attributes with selections should 

come first in the attribute ordering forcing the attributes with selections to be processed first 

in Algorithm 1.

Index Layouts

The data layouts matter again here as placing the selected attributes first in Algorithm 1, 

causes these attributes to appear in the first levels of the trie which are often dense and 

therefore best represented as a bitset. For equality selections this is enables us to perform the 

actual selection in constant time versus a binary search in an unsigned integer array.

B.1.1 Across Nodes

Pushing down selections across nodes in EmptyHeaded’s query plans corresponds to 

changing the criteria for choosing a GHD described in Section 3.2. Our goal is to have high-

selectivity or low-cardinality nodes be pushed down as far as possible in the GHD so that 

they are executed earlier in our bottom-up pass. We accomplish this by adding three 

additional steps to our GHD optimizer:

1. Find optimal GHDs  with respect to fhw, changing V in the AGM 

constraint to be only the attributes without selections.
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2. Let Rs be some relations with selections and let Rt be the relations that we 

plan to place in a subtree. If for each e ∈ Rs, there exists e′ ∈ Rt such that 

e′ covers e′s unselected attributes, include Rs in the subtree for Rt. This 

means that we may duplicate some members of Rs to include them in 

multiple subtrees.

3. Of the GHDs , choose a  with maximal selection depth, where 

selection depth is the sum of the distances from selections to the root of 

the GHD.

B.1.2 Queries

To test our implementation of selections in EmptyHeaded we ran two graph pattern queries 

that contained selections. The first is a 4-clique selection query where we find all 4-cliques 

connected to a specified node. The second is a barbell selection query where we find all 

pairs of 3-cliques connected to a specified node. The syntax for each query in EmptyHeaded 

is shown in Table 12.

Consider the 4-clique selection query:

Example B.1—Figure 8 shows two possible GHDs for this query. The GHD on the left is 

the one produced without using the three steps above to push down selections across GHD 

nodes. This GHD does not filter out any intermediate results across the potentially high 

selectivity node containing the selection when results are first passed up the GHD. The GHD 

on the right uses the three steps above. Here the node with the selection is below all other 

nodes in the GHD, ensuring that high selectivities are processed early in the query plan.

B.1.3 Discussion

We run COUNT(∗) versions of the queries here again as materializing the output for these 

queries is prohibitively expensive. We did materialize the output for these queries on a 

couple datasets and noticed our performance gap with the competitors was still the same. We 

varied the selectivity for each query by changing the degree of the node we selected. We 

tested this on both high and low degree nodes.

The results of our experiments are in Table 13. Pushing down selections across GHDs can 

enable over a four order of magnitude performance improvement on these queries and is 

essential to enable peak performance. As shown in Table 13 the competitors are closer to 

EmptyHeaded when the output cardinality is low but EmptyHeaded still outperforms the 

competitors. For example, on the 4-clique selection query on the patents dataset the query 

contains no output but we still outperform LogicBlox by 3.66× and SociaLite by 5754×.

B.2 Eliminating Redundant Work

Our compiler is the first worst-case optimal join optimizer to eliminate redundant work 

across GHD nodes and across phases of code generation. Our query compiler performs a 

simple analysis to determine if two GHD nodes are identical. For each GHD node in the 

“bottom-up” pass of Yannakakis’ algorithm, we scan a list of the previously computed GHD 
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nodes to determine if the result of the current node has already been computed. We use the 

conditions below to determine if two GHD nodes are equivalent in the Barbell query. 

Recognizing this provides a 2x performance increase on the Barbell query.

We say that two GHD nodes produce equivalent results in the “bottom-up pass” if:

1. The two nodes contain identical join patterns on the same input relations.

2. The two nodes contain identical aggregations, selections, and projections.

3. The results from each of their subtrees are identical.

We can also eliminate the “top-down” pass of Yannakakis’ algorithm if all the attributes 

appearing in the result also appear in the root node. This determines if the final query result 

is present after the “bottom-up” phase of Yannakakis1 algorithm. For example, if we 

perform a COUNT query on all attributes, the “top-down” pass in general is unnecessary. We 

found eliminating the top down pass provided a 10% performance improvement on the 

Barbell query.

C. APPENDIX FOR SECTION 4

C.1 Additional Set layouts

We discuss three additional set layouts that ErnptyHeaded implements: pshort, variant, 

and bitpacked. The pshort layout groups values with a common upper 16-bit prefix 

together and stores each prefix only once. The variant and bitpacked layouts use 

difference encoding which encodes the difference between successive values in a sorted list 

of values (x1, δ2 = x2−x1, δ3 = x3−x2, …) instead of the original values (x1, x2, x3, …). The 

original array can be reconstructed by computing prefix sums . The 

benefit of this approach is that the differences are always smaller than the original values, 

allowing for more aggressive compression. Previous work found that the variant and 

bitpacked layouts both compress better and can be an order of magnitude faster than 

compression tools such as LZO, Google Snappy, Fast LZ, LZ4 or gzip [7].

C.1.1 Prefix Short

The Prefix Short ( pshort) layout exploits the fact that values which are close to each other 

share a common prefix. The layout consists of partitions of values sharing the same upper 16 

bit prefix. For each partition, the layout stores the common prefix and the length of the 

partition. Below we show an example of the pshort layout.

0 15 16 31 32 47 48 63 64 79

v1[31..16] length v1[15..0] v2[15..0] v3[15..0]

1 3 0 100 200

Aberger et al. Page 26

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2017 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C.1.2 Variant

The variant layout or Variable Byte encoding is a popular technique that was first 

proposed by Thiel and Heaps in 1972 [40]. The variant layout encodes the data into units 

of bytes where the lower 7 bits store the data and the 8th-bit indicates whether the data 

extends to another byte or not. The decoding procedure reads bytes sequentially. If the 8th 

bit is 0 it outputs the data value and if the 8th bit is 1 the decoder appends the data from this 

byte to the output data value and moves on to the next byte. This layout is simple to 

implement and reasonably efficient [40]. Below we show an example of the variant 

layout.

uint32
|S|

byte-1
data + cont.bit

byte-2
data + cont. bit

byte-3
data + cont. bit

3 0+0 2+0 2+0

C.1.3 Bitpacked

The bitpacked layout partitions a set into blocks and compresses them individually. First, 

the layout determines the maximum bits of entropy of the values in each block b and then 

encodes each value of the block using b bits. Lemire et al. [7] showed that this technique can 

be adapted to encode and decode values efficiently by packing and unpacking values at the 

granularity of SIMD registers rather than each value individually. Although Lemire et al. 

propose several variations of the layout, we chose to implement the bitpacked with the 

fastest encoding and decoding algorithms at the cost of a worse compression ratio. An 

example of the bitpacked layout is below.

Instead of computing and packing the deltas sequentially, we use the techniques from 

Lemire et al. [7] to compute deltas at the granularity of a SIMD register:

Next, each delta is packed to the minimum bit width of its block SIMD register at a time, 

rather than sequentially. In EmptyHeaded, we use one partition for the whole set. The deltas 

for each neighborhood are computed by starting our difference encoding from the first 

element in the set. For the tail of the neighborhood that does not fit in a SIMD register we 

use the variant encoding scheme.

uint32
length

byte-1
bits/elem

byte-2
data

bits[0–2]
data

bits[3–5]
data
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3 3 0 2 6

C.2 Additional Set Intersection Algorithms

C.2.1 Unsigned Integer Arrays

We explore 5 unsigned integer layouts presented in the literature.

SIMDShuffling iterates through both sets block-wise and compares blocks of 

values using SIMD shuffles and comparisons [39].

V1 Iterates through the smaller set one-by-one and checks each value against a 

block of values in the larger set using SIMD comparisons [7].

Galloping Similar to Lemire V1, but performs a binary search on four blocks 

of data in the larger set (each the size of a SIMD register) to identify potential 

matches [7].

SIMDGalloping iterates through the smaller set and performs a scalar binary 

search in the larger set to find a block of data with a potential match and then 

uses SIMD comparisons [7].

BMiss uses SIMD instructions to compare an upper prefix of values to filter 

out unnecessary comparisons (and therefore unnecessary branches) [15]. Once 

potential matches are found, this algorithm uses scalar comparisons to check 

the full values of the partial matches. BMiss is designed to perform well on 

intersections with low output cardinalities, as the algorithm is efficient at 

filtering out values that do not match.

Figure 10 shows that the SIMDGalloping and V3 algorithm outperform all other algorithms 

when the cardinality difference between the two sets becomes large. Figure 11 shows that 

the V1 and SIMDShuffling algorithms outperform all other algorithms, by over 2x, when the 

sets have a low density. Based on these results, by default we select the SIMDShuffling 

algorithm, but when the ratio between the cardinality of the two sets became over 1:32, like 

others [7, 15], we select the SIMDGalloping algorithm. Because the sets in graph data are 

typically sparse, we found the impact of selecting the SIMDGalloping on graph datasets to 

be minimal, often under a 5% total performance impact.

To test cardinality skew we fix the range of the sets to 1M and the cardinality of one set to 

64 while changing the cardinality of the other set. Confirming the findings of others [6, 7, 

15, 39], we find that SIMDGalloping outperforms other intersection algorithms by more 

than 5x with a crossover point at a cardinality ratio of 1:32. In contrast to the other two 

algorithms, SIMDGalloping runs in time proportional to the size of the smaller set. Thus, 

SIMDGalloping is more efficient when the cardinalities of the sets are different. Figure 10 

shows that when the set cardinalities are similar, we find that SIMDShuffling and BMiss 

outperform SIMDGalloping by 2x.

We also vary the range of values that we place in a set from 10K-1.2M while fixing the 

cardinality at 2048. Figure 11 shows the execution time for sets of a fixed cardinality with 

varying ranges of numbers. BMiss is up to 5x slower when the sets have a small range and a 
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high output cardinality. When the range of values is large and the output cardinality is small 

the algorithm outperforms all others by up to 20%.

We find that no one algorithm dominates the others, so EmptyHeaded switches dynamically 

between uint algorithms. Based on these results, EmptyHeaded’s query engine uses 

SIMDShuffling unless the ratio of the sizes of sets exceeds 32, in which case we choose 

SIMDGalloping as shown in Algorithm 2. As we see in Figure 10 and Figure 11, switching 

to SIMDShuffling provides runtime benefits in the cases where the cardinalities are similar. 

SIMDGalloping satisfies the min property, and so trivially does Algorithm 2. Thus, our 

worst-case optimality of the join algorithm is preserved.

Algorithm 2

uint intersection optimizer

# |S1| > |S2|

def intersect (S1, S2):

 if |S1| / |S2| > threshold

  return intersect_SIMDGalloping (S1, S2)

 else:

  return intersect_SIMDShuffling (S1, S2)

Algorithm 3

Set layout optimizer

def get layout type(S):

 inverse density = S.range/ |S|

 if inverse-density < SIMD_register_size :

  return bitset

 else:

  return uint

C.2.2 Additional Layouts

We discuss the intersection algorithms of the set layouts that EmptyHeaded implements but 

are omitted from the main paper.

pshort ∩ pshort. The pshort intersection uses a set intersection algorithm 

proposed by Schlegel et al. [6]. This algorithm depends on the range of the 

data and therefore does not preserve the min property, but can process more 

elements per cycle than the SIMDShuffling algorithm. The pshort 

intersection uses the x86 STNII (String and Text processing New Instruction) 

comparison instruction allowing for a full comparison of 8 shorts, with a 

common upper 16 bit prefix, in one cycle. The pshort layout also enables 

jumps over chunks that do not share a common upper 16 bit prefix.
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uint ∩ pshort. For the uint and pshort set intersection we again take 

advantage of the STNII SIMD instruction. We compare the upper 16-bit 

prefixes of the values and shuffle the uint layout if there is a match. Next, we 

compare the lower 16-bits of each set, 8 elements at a time using the STNII 

instruction.

variant and bitpacked. Developing set intersections for the variant 

and bitpacked types is challenging because of the complex decoding and 

the irregular access pattern of the set intersection. As a consequence, 

EmptyHeaded decodes the neighborhood into an array of integers and then 

uses the uint intersection algorithms when operating on a neighborhood 

represented in the variant or bitpacked layouts.

Intersection Performance—Figure 9 displays the highest performing layout 

combinations and their relative performance increase compared to the highest performing 

uint algorithm while changing the density of the input sets in a fixed range of 1M. 

Unsurprisingly, the variant and bitpacked layouts never achieve the best performance. 

On real data, we found the variant and bitpacked types typically perform the triangle 

counting query 2x slower due the decoding step. While our experiments on synthetic data 

show moderate performance gains from using the pshort layout. we found that on real data 

that the pshort layout is rarely a good choice for a set in combination with other layouts.

D. APPENDIX FOR SECTION 5

D.1 Extended Triangle Counting Discussion

PowerGraph represents each neighborhood using a hash set (with a cuckoo hash) if the 

degree is larger than 64 and otherwise represents the neighborhood as a vector of sorted 

node ID’s. PowerGraph incurs additional overhead due to its programming model and 

parallelization infrastructure in a shared memory setting. CGT-X uses a CSR layout and runs 

Java code for queries which might not be as efficient as native code. Snap-R prunes each 

neighborhood on the fly using a simple merge sort algorithm and then intersects each 

neighborhood using a custom scalar intersection over the sets. We note that the runtimes in 

Table 5 do not reflect the cost of pruning the graph in our system, PowerGraph, SociaLite, or 

LogicBlox, while CGT-X and Snap-R include this time in their overall runtime. In Snap-R 

we found, depending on the skew in the graph, the pruning time accounts for 2%–46% of the 

runtime on the triangle counting.

D.2 Memory Usage

We utilize a small amount of the available memory (1TB RAM) for the datasets run in this 

paper. For example, when running the PageRank query on the Livejournal dataset our engine 

uses at most 8362MB of memory. For comparison, Galois uses 7915MB and PowerGraph 

uses 8620MB.
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Figure 1. 
The EmptyHeaded engine works in three phases: (1) the query compiler translates a high-

level datalog-like query into a logical query plan represented as a GHD (a hypertree with a 

single node here), replacing the traditional role of relational algebra; (2) code is generated 

for the execution engine by translating the GHD into a series of set intersections and loops; 

and (3) the execution engine performs automatic algorithmic and layout decisions based 

upon skew in the data.
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Figure 2. 
EmptyHeaded transformations from a table to trie representation using attribute order 

(managerID, employerID) and employerID attribute annotated with employeeRating.
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Figure 3. 
We show the Barbell query hypergraph and two possible GHDs for the query. A node v in a 

GHD captures which relations should be joined with λ(v) and which attributes should be 

retained with projection with χ(v).
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Figure 4. 
Example of the bitset layout that contains n blocks and a sequence of offsets (o1-on) and 

blocks (b1-bn). The offsets store the start offset for values in the bitvector.
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Figure 5. 
Intersection time of uint and bitset layouts for different densities.
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Figure 6. 
Intersection time of layouts for sets with different sizes of dense regions.
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Figure 7. 
Effect of data ordering on triangle counting with synthetic data.
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Figure 8. 
We show two possible GHDs for the 4-clique selection query.

Aberger et al. Page 40

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2017 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Highest performing layouts during set intersection with relative performance over uint.
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Figure 10. 
Intersection time of uint intersection algorithms for different ratios of set cardinalities.
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Figure 11. 
Intersection time of uint intersection algorithms for different densities.
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Table 1

Example Queries in EmptyHeaded

Name Query Syntax

Triangle Triangle (x, y, z) :- R (x, y), S (y, z), T (x, z).

4-Cliquc
4Clique (x, y, z, w) :- R (x, y), S (y, z), T (x, z), U (x, w), V (y, 
w), Q (z, w).

Lollipop Lollipop (x, y, z, w) :- R (x, y), S (y, z), T (x, z), U (x, w).

Barbell
Barbell (x, y, z, x’, y’, z’) :- R (x, y), S (y, z), T (x, z), U (x, 
x’), R’ (x’, y’), S’ (y’, z’), T’ (x’, z’).

Count Triangle
CountTriangle (; w:long) :- R (x, y), S (x, z), T (x, z); w=≪COUNT(∗)
≫.

PageRank

N (; w:int) :- Edge (x, y); w=≪COUNT (x)≫.
PageRank (x; y:float) :- Edge (x, z); y=1/N.
PageRank (x; y:float) ∗ [i=5] :- Edge (x, z), PageRank (z), InvDeg 
(z); y=0.15+0.85∗≪SUM(z).≫

SSSP
SSSP (x; y:int) :- Edge (“start”, x); y=l.
SSSP (x; y:int)∗ :- Edge(w, x), SSSP(w); y=≪MIN(w)≫+l.
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Table 2

Execution Engine Operations

Operation Description

Trie (R)
R[t] Returns the set matching tuple t ∈ R.

R ← R∪t×xs Appends elements in set xs to tuple t ∈ R.

Set (xs)
for x in xs Iterates through the elements x of a set xs.

xs ∩ ys Returns the intersection of sets xs and ys.
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Table 4

Relative time of the level optimizers on triangle counting compared to the oracle.

Dataset Relation level Set level Block level

Google+ 7.3x 1.1x 3.2x

Higgs 1.6x 1.4x 2.4x

LiveJournal 1.3x 1.4x 2.0x

Orkut 1.4x 1.4x 2.0x

Patents 1.2x 1.6x 1.9x
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Table 9

Node ordering times in seconds on two popular graph datasets.

Ordering Higgs LiveJournal

Shingles 1.67 9.14

hybrid 3.77 24.41

BFS 2.42 15.80

Degree 1.43 9.93

Reverse Degree 1.40 8.47

Strong Run 2.69 21.67
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Table 10

Relative time of random ordering compared to ordering by degree.

Dataset

Default Symmetrically Filtered

uint EmptyHeaded uint EmptyHeaded

Google+ 1.0x 1.4x 1.8x 4.7x

Higgs 0.9x 1.2x 3.0x 1.9x

LiveJournal 1.2x 1.1x 1.7x 1.6x

Orkut 1.1x 1.1x 1.4x 1.5x

Patents 1.2x 1.1x 1.9x 1.3x
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Table 12

Selection Queries in EmptyHeaded

Name Query Syntax

4-Cliquc-Selection S4Clique (x,y,z,w) :- R (x,y), S (y,z), T (x,z), U (x,w), V (y,w), Q 
(z,w), P (x, ‘node’).

Barbell-Selection SBarbell (x,y,z,x’,y’,z’) :- R (x,y), S (y,z), T (x,z), U (x,
‘node’),
    V(‘node’, x’), R’ (x’,y’), S’ (y’,z’), T’ (x’,z’).
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Table 14

Examples of cardinalities and ranges of sets in popular graph datasets.

LiveJournal Twitter

Mean cardinality 17.79 57.74

Max cardinality 20,334 2,997,487

Mean range 1,819,780 14,616,100

Max range 4,847,308 41,652,210
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Table 15

Set level and block level optimizer overheads on triangle counting. Overheads are the % of overall runtime 

used to dynamically determine the type.

Dataset Set Optimizer Block Optimizer

Google+ 4% 5%

Higgs 1% 6%

LiveJournal 4% 12%

Orkut 3% 8%

Patents 10% 24%
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