
Introduction

Mutation breeding makes extensive use of deviations
from the norms to improve the characteristics of
important crops. However, an efficient genetic
improvement of a cultivar depends on the knowledge of
mode of gene action, genetic variability, and the
interrelationship among important plant characters.
Induced mutagenesis is a significant tool to break through
the limitations of variability and to create variability in a
short period of time (1,2). The degree of cytological
aberrations in either mitosis or meiosis is regarded as one
of the dependable criteria for estimating the effect of a
mutagen.

Mutagen induced anomaly of the chromosome is the
primary basis of genetic change; therefore, investigations
on the mechanism of chromosome breakage, type of
aberrations, and their genetic consequences form an
integral part of most mutation studies (3).

Cytogenetical investigation is one of the best
documented experimental proofs for the elucidation of
the mode of speciation on different groups of plants (4).
Ethyl methane sulfonate (EMS) has recently received
much attention as the most effective mutagenic agent in
higher plants known today. Studies reveal that EMS is an
effective mutagen and has been used to induce genetic
variability in a number of crop plants (5,6).
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Abstract: Chemical mutagen induced chromosomal variations were broadly observed from the point of view of understanding the
mechanics of EMS induced anomalies and biological dosimetry in Zea mays L. Seeds of 6 inbred lines of maize, i.e. CM-135, CM-
136, CM-137, CM-138, CM-142, and CM-213 inbreds, were first presoaked in distilled water and then these seeds were treated
with 0.5% solution of EMS for 3 durations, i.e. 3, 5, and 7 h, and genetic segregations were carefully observed. During the present
investigation, through EMS treatment, many chromosomal anomalies, namely precocious movements, stickiness, univalents, bridges,
laggards, multivalents etc., were induced in all the inbred lines of maize. Higher frequencies of chromosomal anomalies were
displayed at the maximum dose (7 h) of treatment in all the inbred lines of maize. Maximum chromosomal anomalies were observed
in CM-213 (i.e. 22.92%) but inbred CM-138 displayed better responses in all the morphological parameters at the maximum dose
(7 h) of EMS treatment. However, CM-142 was found to be the most suitable inbred line for induced mutagenesis since it registered
minimum chromosomal damage with maximum variability.
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EMS ile Uyar›lm›fl M›s›r Hatlar›nda Karyomorfolojik De¤ifliklikler

Özet: M›s›rda EMS ile muamele ile edilerek elde edilerek  kimyasal mutagenler ile oluflan kromozomal varyasyonlar çal›fl›lm›flt›r.
M›s›rda alt› hat CM-135, CM-136, CM-137, CM-138, CM-142 ve CM-213 hatlar› ilk olarak distile su içinde bekletilmifl ve daha sonra
% 5 lik EMS çözeltisi içinde 3 saat, 5 saat ve 7 saat muamele edilerek genetik segregasyon incelenmifltir. Çal›flma esnas›nda, EMS
muamelesi sonucu birçok kromozomal anormallik, erken hareketlilik, yap›flma, univalant köprüler, lagard ve multivalan gibi
de¤ifliklikler m›s›r hatlar›nda gözlenmifltir. Bütün m›s›r hatlar›nda kromozomal anormalliklerin yüksek s›kl›¤›na maksimum dozda (7
saat) da raslanm›flt›r. Maksimum kromozom anormalli¤i CM-213 de (% 22,92), gözlenmifl fakat, CM-138 de bütün morfolojik
parametreler EMS maksimum dozunda (7 saat) daha iyi sonuçlar vermifltir. Fakat, CM-142 çok az kromozomal hasar göstermesi
nedeniyle en uygun m›s›r hatt› oldu¤una karar verilmifltir.

Anahtar Sözcükler: M›s›r hatlar›, EMS, mayoz, kromozom anormalli¤i



Innovative research on genetic amelioration of kharif
maize at the University of Allahabad on maize inbred lines
has been carried out to elucidate the mutagenic
effectiveness of EMS and its effect on the chromosome
biology of Zea mays L.

Materials and Methods

Seeds of 6 inbred lines of maize, namely CM-135,
CM-136, CM-137, CM-138, CM-142, and CM-213, were
obtained from the Division of Genetics, Indian
Agricultural Research Institute (I.A.R.I.), New Delhi,
India. The seeds were first presoaked in distilled water
and then treated with a 0.5% solution of EMS for 3
durations (3, 5, and 7 h). The seeds were then washed
thoroughly in running tap water for 12 h and excess
moisture was blotted off. Three replicates were
maintained for each dose of treatment and then they
were sown under natural conditions to raise M1

generation.

At the time of flowering, young floral buds were fixed
in 1:3 acetic alcohol solutions for 24 h, after which they
were transferred to 70% alcohol and stored at 4 °C. For
cytological analysis, slides were prepared using the
chromosomal squash technique with 2% acetocarmine
stain.

Observations

Cytological Effects

Meiosis was normal in the control plants (2n = 20)
(Figures 1-3) of the 6 inbred lines of maize tested with
relatively negligible amounts of chromosomal anomalies.
However, the plants under EMS treatment displayed
varying degrees of chromosomal anomalies in all the
inbred lines (Table 1). A dose-dependent increase in
meiotic irregularities was observed along with the
mutagenic treatments. Unoriented bivalents (Figure 4),
precocious movement (Figure 5), multivalents (Figure 6),
scattering (Figure 7) etc. were the pronounced effects at
metaphase I after EMS treatment, while the first and
second anaphases were characterized by stickiness
(Figure 8), laggards (Figure 9), unequal separation, and
multipolarity. The most prominent abnormality induced
by EMS was stickiness of chromosomes at metaphase I
and II as well as at anaphase I and II. During stickiness
chromosomes formed a compact mass and the identity of
individual chromosomes was lost. Varying numbers of
univalents were also observed in all the inbred lines but
their frequency was higher at the highest dose duration
of EMS treatment. Non-synchronization in the divisional
stage of PMCs and late separation of bivalents were
observed in all the 6 inbreds tested. Multivalents at
metaphase I were also noted in considerably frequency at
the maximum duration of mutagenic treatment. Rarely
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Figure 1. Normal diakinesis (n = 10). Figure 2. Normal metaphase I (n = 10).
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bridges, fragments, and cytoplasmic connections were
also registered at some of the treatment durations.
Chromatin bridges were sometimes found accompanied
by fragments, although their occurrence was mostly
independent of each other. Non-disjunction of
chromosomes was often observed at the first and second
anaphase, resulting in aneuploid numbers of
chromosomes in daughter cells. Some pollen mother cells

had very few chromosomes probably representing
examples of cells having undergone degeneration of
chromatin material. The lagging chromosomes and
fragments, which usually failed to be included in the
daughter nuclei, formed micronuclei.

On comparison of the 6 inbreds for their response
against the mutagenic treatment, it was found that CM-
142 was the most tolerant genotype, while CM-213 was
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Figure 3. Normal anaphase I (10:10 separation). Figure 4. Unorientation at metaphase I.

Figure 5. Precocious movement at metaphase I. Figure 6. Multivalent formation at metaphase I.



the least. Clastogenic abnormalities were registered in
greater frequency in CM-136 (i.e. 22.00%) and CM-213
(i.e. 22.92%) at the maximum dose (7 h) of treatment
(Table 1).

Morphological Effects

Mutagenic treatment also affected the morphological
parameters of the treated sets. Germination percentage

was found to be maximum (93.5%) in the control set of
CM-138, while the minimum germination percentage
(68.6%) was observed in the inbred line CM-135. It was
observed that, along with increasing treatment duration
of EMS, the germination percentage was reduced
continuously. The maximum reduction in germination
percentage was reduced continuously. The maximum
reduction in germination percentage was registered in
CM-136, where it decreased from 91.2% in the control
set to 79.9% at the 7 h treatment duration. Plant height
was also found to be significantly reduced at higher doses
of mutagenic treatment but some of the plants at lower
doses responded positively to the mutagen and recorded
a slight increase in plant height. Similar trends in days to
50% silking, 100 seed weight, and pollen fertility were
recorded after EMS treatment, while inbred CM-138
displayed better responses in all the morphological
parameters at the maximum dose (7 h) of EMS treatment
(Table 2).

Thus, in the present study, inbred CM-142 displayed
the minimum chromosomal anomalies percentage among
all the inbred lines, while the maximum chromosomal
anomalies were configured in CM-213 (Table 1);
however, inbred CM-138 displayed better responses
among all the morphological parameters (Table 2).
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Figure 7. Scattering at metaphase I.

Figure 9. Laggards at anaphase I.

Figure 8. Stickiness at anaphase I.



Discussion

The frequency and spectrum of aberrations observed
during the present investigation clearly displayed that
EMS is a very potent mutagen for Zea mays L. The results
also showed a co-linearity between the duration of
treatment and the percentage of chromosomal anomalies.

Chemical mutagen induced chromosomal variations
have been widely investigated from the point of view of
understanding the mechanics of EMS induced damage and
biological dosimetry in Zea mays L. Enhancement in the
frequency of meiotic chromosomal anomalies is wide and
it included a high proportion of stickiness and secondary

association and moderate frequency of laggards and
multivalents. EMS induced chromosomal stickiness has
also been reported by Kumar and Singh (7) in Hordeum
vulgare L. It implies that the chemical mutagen may have
brought some alterations in the pattern of organization
of chromosomes. Similar results were also found by
Kumar and Rai (5), and Sharma and Kumar (8).

The phenotypic manifestation of stickiness may vary
from mild, when only a few chromosomes of the genome
are involved, to intense, with the formation of pycnotic
nuclei that may involve the entire genome, culminating in
chromatin degeneration (9).
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Table 2. Effect of EMS on morphological parameters in 6 inbred lines of Zea mays L. 

Germination Plant height Days to 50% silking 100 Seed weight Pollen fertility
I.L. Treatments (%) (In cm) (In days) (In gm) (%)

(Mean ± S.E.) (Mean ± S.E.) (Mean ± S.E.) (Mean ± S.E.) (Mean ± S.E.)

Cont. 79 ± 0.48 153.8 ± 0.51 52 ± 0.27 119.0 ± 0.38 97.6 ± 0.11

3 h 74.5 ± 0.78 152.1 ± 0.53 57 ± 0.43 112.43 ± 0.57 95.1 ± 0.17

5 h 69.9 ± 0.97 141.9 ± 0.68 59 ± 0.67 109.11 ± 0.77 90.0 ± 0.43

7 h 68.6 ± 0.85 128.4 ± 0.86 63 ± 0.91 100.13 ± 0.94 83.4 ± 0.66

Cont. 91.2 ± 0.25 161.5 ± 0.43 54 ± 0.15 117.61 ± 0.25 98.9 ± 0.08

3 h 87.11 ± 0.41 158.3 ± 0.65 59 ± 0.22 112.36 ± 0.49 96.2 ± 0.25

5 h 81.12 ± 0.72 143.6 ± 0.82 63 ± 0.45 103.06 ± 0.87 88.7 ± 0.57

7 h 79.9 ± 0.67 123.8 ± 1.27 67 ± 0.74 99.09 ± 1.20 79.6 ± 0.63

Cont. 89.91 ± 0.33 156.1 ± 0.65 53 ± 0.31 109.41 ± 0.31 97.2 ± 0.23

3 h 87.15 ± 0.56 148.5 ± 0.59 57 ± 0.49 101.11 ± 0.56 96.8 ± 0.15

5 h 82.11 ± 0.29 133.7 ± 0.90 61 ± 0.68 97.49 ± 0.46 90.1 ± 0.37

7 h 79.96 ± 0.78 124.2 ± 0.94 63 ± 0.88 93.56 ± 0.78 81.5 ± 0.48

Cont. 93.5 ± 0.08 162.1 ± 0.47 50 ± 0.25 120.41 ± 0.33 96.1 ± 0.28
3 h 86.9 ± 0.31 159.4 ± 0.51 56 ± 0.41 114.45 ± 0.57 94.4 ± 0.29

5 h 83.1 ± 0.55 150.7 ± 0.69 59 ± 0.70 107.59 ± 0.85 90.2 ± 0.41

7 h 80.0 ± 0.96 138.2 ± 0.88 61 ± 0.97 100.48 ± 1.06 85.5 ± 0.59

Cont. 89.11 ± 0.15 150.1 ± 0.34 55 ± 0.39 108.45 ± 0.09 96.7 ± 0.18

3 h 85.41 ± 0.23 149.7 ± 0.62 57 ± 0.55 101.11 ± 0.29 94.3 ± 0.32

5 h 81.01 ± 0.21 144.2 ± 0.97 61 ± 0.89 99.82 ± 0.71 87.5 ± 0.49

7 h 78.11 ± 0.52 127.6 ± 1.10 64 ± 1.09 96.81 ± 0.93 80.2 ± 0.51

Cont. 90.14 ± 0.23 159.8 ± 0.45 51 ± 0.13 113.11 ± 0.26 97.3 ± 0.20

3 h 87.44 ± 0.39 153.3 ± 0.64 58 ± 0.30 109.76 ± 0.59 92.8 ± 0.38

5 h 82.10 ± 0.32 140.6 ± 0.79 62 ± 0.58 103.49 ± 0.70 85.9 ± 0.31

7 h 77.61 ± 0.68 127.5 ± 0.82 64 ± 0.75 99.59 ± 0.86 73.7 ± 0.52

CM
-1

35
CM

-1
36

CM
-1

37
CM

-1
38

CM
-1

42
CM

-2
13



Chromosome stickiness has been documented to be
due to genetic or environmental factors. Genetically
induced stickiness in maize has been reported by
Golubovskaya (10), Caetano-Pereira et al. (11), and
Kumar and Rai (12), while stickiness has also been
reported in other crops like Glycine max L. (7,13),
Hordeum vulgare L. (7), pearl millet (14), and wheat
(15). Gaulden (16) postulated that sticky chromosomes
may result from the defective functioning of 1 or 2 types
of specific non-histone proteins involved in chromosome
organization, which are needed for chromatid separation
and segregation.

The observed precocious chromosome migration to
the poles may have resulted from univalent chromosomes
at the end of prophase I or precocious chiasma
terminalization at diakinesis or metaphase I. Univalents
may originate from an absence of crossing over at
pachytene or from synaptic mutants. Chiasmata are
responsible for the maintenance of bivalents, which
permit normal chromosome segregation. Precocious
migration of univalents to the poles is a very common
abnormality among plants (17-21), which was also
evident in our case.

Unorientation and scattering of chromosomes may be
due to either the inhibition of spindle formation or the
destruction of spindle fibers formed. The behavior of
these and of the laggard chromosome is characteristic in
that they generally lead to micronucleus formation
(22,23). Laggards and disturbed polarity might have
appeared due to improper spindle functioning.

Bridges seem to be a result of non-separation of
chiasma due to stickiness. Division of nucleolar material
recorded here in some cases was in line with the
observations reported by Shaikh and Godward (24) in
irradiated populations of Vicia ervilia and Lathyrus
sativus.

In many studies, chromosome cluster, fragments,
laggard, chromatin bridges, and micronuclei were
observed as the effects of physical and chemical mutagens
(25-32).

Chromosomal damages may be the prominent causes
of reduced seed germination and decreased yield as
compared to controls. The reduction in germination
percentage might have been due to the effect of mutagen

on meristematic tissues of the seed. The mutagenic
treatments also delayed the germination process.
Kleinhofs et al. (33) reported a delay in the initiation of
metabolism following germination, resulting in uniform
delay in mitotic activity, seedling growth, and ATP and
DNA synthesis. Although all doses of mutagen elicited a
reducing effect on plant height, some of the plants at 3 h
treatment duration displayed an increase in plant height,
which may be due to the mutation in major or minor
genes. Fertility depends on the efficiency of the meiotic
process. Studies on different plant species have shown
that the decline in seed production is correlated with
meiotic irregularities (19,34). Reduction in pollen fertility
also supports a decrease in seed production due to the
meiotic anomalies. Similar results were also obtained by
Kumar and Rai (7).

As a result of these studies, genetic segregations
should be carefully observed. Efficient mutagenesis is
defined as the production of desirable changes
(mutations) free from the usually associated undesirable
changes such as chromosomal aberrations, sterility,
lethality, etc. (35). Ehrenberg (36) and Kawai (37) stated
that the highest mutation rates also induce a high degree
of lethality, sterility, and other undesirable effects. From
the practical breeding point of view, the mutagenic
treatments that induce high mutation rates with the least
accompanying deleterious effects are desirable. During
the present investigation, through EMS, many
chromosomal anomalies were induced. The genetic
structure of our material was highly affected, favoring
new genetic changes in the following generations.

From the present study, it is quite evident that EMS is
very efficient mutagen for creating genetic variability in
the natural gene pool of Zea mays L. It has also been
concluded from the present investigation that maximum
chromosomal anomalies were noted in CM-213,
suggesting that this inbred is most susceptible to EMS
and hence the least tolerant, while inbred CM-138
displayed better responses in morphological parameters
at the maximum dose of EMS treatment. CM-142 was,
however, found to be the most suitable inbred line for
induced mutagenesis through EMS since it registered
minimum chromosomal damage with maximum
variability.
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