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AbstrAct

Tumor relapse and metastasis are the primary causes of poor survival rates 

in patients with advanced cancer despite successful resection or chemotherapeutic 

treatment. A primary cause of relapse and metastasis is the persistence of cancer 

stem cells (CSCs), which are highly resistant to chemotherapy. Although highly 

efficacious drugs suppressing several subpopulations of CSCs in various tissue-specific 
cancers are available, recurrence is still common in patients. To find more suitable 
therapy for relapse, the mechanisms underlying metastasis and drug-resistance 

associated with relapse-initiating CSCs need to be identified. Recent studies in 
circulating tumor cells (CTCs) of some cancer patients manifest phenotypes of both 

CSCs and epithelial-mesenchymal transition (EMT). These patients are unresponsive 

to standard chemotherapies and have low progression free survival, suggesting that 

EMT-positive CTCs are related to co-occur with or transform into relapse-initiating 

CSCs. Furthermore, EMT programming in cancer cells enables in the remodeling 

of extracellular matrix to break the dormancy of relapse-initiating CSCs. In this 

review, we extensively discuss the association of the EMT program with CTCs and 

CSCs to characterize a subpopulation of patients prone to relapses. Identifying the 

mechanisms by which EMT-transformed CTCs and CSCs initiate relapse could facilitate 

the development of new or enhanced personalized therapeutic regimens.

IntroductIon

Despite initially successful multimodal therapy 

that includes resection, chemotherapy and for some 

cases radiation therapy, tumor recurrence remains a 

major etiology of the morbidity and mortality in cancer 

patients. A systematic review of acquired relapse in cancer 

patients suggested that tumor cells undergo dynamic 

clonal evolution under the strong selective pressure of 

chemotherapy, radiation therapy and any other therapeutic 

intervention [1, 2]. These treatment-resistant clones of 

neoplastic cells show somatic mutations and phenotypic 

variations not present in their state of origin. Over the past 

decade, these subpopulations have been isolated using 

novel surface markers of CSCs to dissect the causes of 

inter- and intra- tumors heterogeneity [3]. The source of 

this subset of treatment-resistant, relapse-initiating and the 

dynamic evolution of these clones must be understood.

The location of a tumor recurrence relative to the 

primary tumor (local, regional or distant) is influenced 
predominantly by microenvironmental factors that 

provide an adaptive landscape for relapsed tumor cells. 

The adhesion of tumor cells to the extracellular matrix 

(ECM) drives the activation of certain signature genes that 

promote cancer progression or tissue-dependent dormancy 

[4, 5]. Thus, identifying these genetic alterations could 

reveal new avenues for preventing or treating tumor 

relapse and could improve the long-term survival of 

patients. As shown in Table 1, survival rate is associated 

with tumor recurrence in various types of cancer. 

A major cause of tumor relapse is an increasing 

number of CTCs and their downstream transformation 

into CSCs which initiate recurrence [6-9]. Notably, cases 

demonstrating chemo- or radio-resistance have high 

numbers of EMT transformed CTCs [10, 11]. Evidence 

from clinical studies suggests that poor survival of 

cancer patients has been linked with EMT phenotypes in 

malignant cancer cells [12-14]. 
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Accumulating evidence shows that a subset of 

CTCs and CSCs have an EMT phenotype [15-19]. 

Another notable finding demonstrates that a subclone 
of CTCs can be induced to express phenotypes of CSCs 

[18, 20-23]. These discoveries suggest that EMT links 

CTCs and CSCs, enabling these cells to survive in the 

peripheral circulation and actively causing relapse. A 

better understanding of the etiology of the reprogramming 

switches that determine the progression through EMT, 

CTCs, dormancy and CSCs could pave the way towards 

clinically relevant drug targets.

In this review, we revisit the concept of relapse to 

introduce the notion of EMT transformed CTCs and CSCs. 

We highlight the most recent studies demonstrating the 

potential contributions of EMT positive CTCs and CSCs 

to recurrence and recommend a redesign of the therapeutic 

research on CSCs. Improving our understanding of these 

cells may help to categorize potential targets for novel 

therapies to preclude relapse.

tumor dormAncy And relApse

Tumor dormancy is a state of clinical remission in 

which cancer cells remain occult, i.e., indiscernible and 

asymptomatic for an extended period of time. Primary 

tumors often employ this strategy as a means of resisting 

the first line of treatment. The phenomenon of dormancy 
is associated with numerous epithelial tumors, including 

melanoma and breast, prostate, liver, and thyroid cancer 

with variable latency periods [24-29]. Dormancy is 

frequently observed in patients with cancer who have 

undergone frequent chemo- or radiation therapy [30, 31]. 

Thus, it is critical to delineate gene signatures associated 

with the sequential stages of dormancy including mitotic-

arrest in dividing tumor cells, the angiogenic switch, and 

the escape from immune surveillance and transformation 

into relapse initiating cells (Figure 1). 

In the era of translational studies and extensive 

genomic sequencing, numerous genes have been linked 

to dormancy in different types of cancer [32-35]. For 

example breast and prostate cancers, NR2F1, SHARP1, 

BMP7high and COCOlow signatures induce quiescence and 

delayed metastasis [36]. Many investigations recently 

interpreted that EMT-transformed cells are linked with 

decreased proliferation or quiescence [37-39]. Notably, 

the EMT program drives tumor cells to become quiescent 

CTCs. Identifying the molecular characteristics of EMT 

positive CTCs and CSCs during the latency period are 

thus instrumental to determine whether these cells relapse 

or remain dormant. 

According to experimental and clinical studies, the 

microenvironments of certain organs such as the bone 

marrow, lung, liver, and brain promote dormancy [40]. 

The host microenvironments in these tissues maintain 

reciprocal signaling with CTCs and CSCs and thus induce 

the expression of pro-dormancy genes. Furthermore 

these cancer cells are embedded in a niche that provides 

a shield from immune surveillance, extending the period 

of dormancy. 

Survival signals rather than proliferative ones can 

be identified in dormant tumor cells and used to prevent 
recurrence. In multiple myeloma, bortezomib treatment 

causes tumor cells to enter a quiescent phase owing to 

activation of the unfolded protein response pathway [41]. 

Inhibiting eIF2α dephosphorylation in this type of cancer 
using the GADD34-PP1c inhibitor decreased the number 

of dormant tumor cells and reduced recurrences in this 

type of cancer [41]. In breast cancer, low expression of 

extracellular-signal-regulated kinase (i.e., ERK) and 

high levels of p38α were detected in quiescent cancer 
cells [42]. Activation of p38α induced at least three 
transcription factors- p53 (R213Q), BHLHB3 and NR2F1 

and inhibited the expression of FOXM1 and c-JUN, which 

are associated with G1-S transition [42, 43]. Some of these 

Table 1: Tissue-specific tumor recurrence rates and 5-year survival rates in patients with cancer.
     Tumor sites   Recurrence rate         5 years survival rate   References 
       Bladder       ~40-70%            ~15-98%      [86, 87]

       Bone       ~50% .          ~60-80%      [88]    

       Breast       ~15-20%            ~90-20%      [89, 90]   

       Brain       ~85%            ~10%      [91]

       Colon       ~18-32%            ~6-74%      [92, 93]

       Head and Neck       ~24-33%            ~50-66%      [94-96]

       Kidney       ~20-40%            ~8-81%      [97]

       Liver       ~70%            ~25-50%      [98, 99]

       Lung       ~10-24%            ~40-60%      [100-102]

       Ovary       ~20-50%            ~18-89%      [103, 104]

       Pancreatic       ~80%            ~5-14%      [105]

       Prostate       ~30-44%            ~99-100%      [106]  

       Testis       ~4-14%            ~74-99%      [107, 108]

       Thyroid       ~5-10%            ~51-100%      [109, 110]

       Uterus       ~14-25%            ~17-95%      [111-113]
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dormancy signature genes were found to delay recurrence 

in breast and prostate cancers by suppressing malignant 

behavior [44]. Furthermore knockdown or systemic 

inhibition of p38α in vivo showed that dormant cells 

were capable of regaining tumorigenicity [45]. A recent 

study using a head and neck cancer model identified that 

transforming growth factor-β 2 (TGFβ2) was increased in 
dormant cells [45]. TGFβ2 created a unique signal through 
TGFβRIII to induce canonical pathway SMAD1/2/5 to 
upregulate p27 and induce non-canonical activation of p38 

for dormancy [45]. 

In addition to p38α and TGFβ2, the composition 

Figure 1: Tumor relapse driven by EMT-positive CTCs and CSCs. Upon anti-cancer therapy of primary tumors, EMT-positive 

CTCs are detected in large numbers in the peripheral blood. These CTCs migrate through organs such as the liver, lungs, lymph nodes, and 

bone marrow. Once the tumor cells arrive at their site of relapse, they remain dormant for an extended period and transform into CSCs. 

ECM remodeling; p38α, NR2F1, and TGFβ2 signaling; and inhibition of ERK1/2, FAK, FOXM1, and c-JUN pathways facilitate dormancy. 
Furthermore, tumor-associated tissue environments provide an embedded niche to protect these cells from anti-cancer therapies or any 

other lethal damage. Under ambient conditions, with ECM remodeling and activation of proliferative, angiogenic signaling pathways, 

EMT-positive CSCs undergo proliferation to initiate recurrence. These cells are highly resistant to anti-cancer drugs and are capable of 

evading immune surveillance. 
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of the ECM has the potential to determine proliferation 

and dormancy. Adhesion to the ECM initiates intracellular 

signaling pathways that can increase cell cycle progression, 

motility, survival, and other metastatic phenotypes of 

tumor cells. For example, downregulation of the urokinase 

receptor in squamous cell carcinoma (HEp3) inactivates 

α5β1-integrins [46]. Subsequently, focal adhesion kinase 
(FAK) signaling is inhibited owing to the cells inability 

to bind to fibronectin. This results in dormancy of cancer 
cells. Conversely, dormancy to proliferative response 

in a fibrotic environment requires collagen-I mediated 
integrin β1 signaling, which requires activation of Src 
and FAK to phosphorylate myosin light chain kinase in 

an ERK dependent manner [47]. Clearly cytoskeletal 

rearrangement and ECM composition are critical in 

determining whether tumor cells will remain dormant 

or metastasize. Thus, inhibiting the growth promoting 

changes in an ECM-associated microenvironment may 

help prevent relapse.

emt And cAncer AdvAncement

The EMT program is now known to facilitate the 

metastatic spread and progression of cancer cells from 

the site of the primary tumor to the surrounding tissues 

and distant organ(s). The identification and biological 
characterization of the EMT inducing transcription 

factors Snail, Slug and Twist showed the cascade of the 

tissue remodeling process of epithelial tumors [48, 49]. 

Overexpression of these EMT signatures changes the 

polarity of epithelial cells such that they acquire the 

morphological and biochemical traits of mesenchymal 

cells. Numerous genes linked with EMT, evidence that 

this program is essential for tumor cells to circumvent 

apoptosis, anoikis, oncogene addiction, and cellular 

senescence and to escape immune surveillance [50].

 Understanding and targeting the adaptive growth 

of EMT driven cancer cells could lengthen progression-

free survival [51]. A prospective study of 46 patients 

with liver cancer showed the EMT markers twist and 

Vimentin in 84.8% and 80.4% of those patients’ CTC 

samples respectively [52]; tumor progression was closely 

correlated with the presence of EMT positive CTCs in 

those patients. In patients with non–small cell lung cancer 

(NSCLC), resistance to EGFR inhibitors was associated 

with EMT induction [53, 54]; in this subset, EMT may 

have been promoted through Zeb1 and Src activation 

upon overexpression of the growth factor CRIPTO1 [53]. 

A seminal study by Shao et al highlighted that a loss of 

K-Ras signaling was compensated by the transcriptional 

coactivator YAP1 to maintain the EMT program during 

relapse in a murine lung cancer model [55]. Similarly, the 

functional study with High Mobility Group A1 (HMGA1) 

protein has emphasized its role as a key regulator of 

the mesenchymal transition and linked with stem-like 

phenotypes in breast cancer [56]. Apart from dynamics 

of cellular proteins, metabolic reprogramming is an 

essential step to maintain EMT state for CSCs [57]. Under 

nutrient starvation condition, EMT positive CSCs utilizes 

glycolytic and ketogenic end products to catabolize 

exogenous mitochondrial fuel [57, 58]

These findings suggest that the differentiation state 
of tumor cells contributes significantly to acquired drug 
resistance. The mechanisms by which tumor cells sustain 

the EMT phenotype in the relapse state are highly diverse 

between different types of cancer. The enhancement 

of mesenchymal-like features may epigenetically 

reprogram epithelial cancer cells to adapt well to new 

microenvironments and thus may contribute to distant 

recurrence. 

ctcs And rIsk of relApse

CTCs have gained huge importance in the design of 

therapeutic regimens and monitoring cancer progression in 

the era of personalized medicine. Owing to advancements 

in single-cell molecular analysis, CTCs are considered a 

precursor for metastatic transformation and a predictive 

factor of tumor relapse. Compared with the traditional 

single-biopsy approach, the analysis of CTCs captures 

a broad range of genomic variations. With the use of 

next-generation sequencing, CTC profiles are a powerful 
clinical indicator for the transition from chemotherapeutic 

susceptibility to chemoresistance. Also, the genomic 

landscape obtained from these sequencing data greatly 

facilitates the identification of druggable therapeutic 
targets.

CTCs are heterogeneous and can be broadly 

classified into three categories- epithelial, transitioning 
from epithelial to mesenchymal and mesenchymal. 

We will focus on epithelial and EMT CTCs and their 

association with metastatic potential and acquired drug 

resistance in adult cancers. Epithelial-origin CTCs are 

detected in the peripheral circulation and are believed 

to shed periodically from primary or metastatic tumor 

sites (Figures 1, 2). Extensive, seminal studies in the past 

decade have implicated EMT and CSCs in metastasis and 

relapse [15, 18, 59]. 

Acquisition of the EMT phenotype in CTCs 

can indicate the risk of relapse and survival (Figure 

1). Compared with epithelial CTCs detected by the 

conventional markers EpCAM and cytokeratin, the 

high rates of EMT-positive CTCs were associated with 

prognosis in patients with hepatocellular carcinoma 

[52]. In breast, prostate, liver, colorectal, head and neck, 

pancreatic, endometrial, and lung cancers, the number of 

CTCs exhibiting EMT markers increased from early- to 

late-stage cases [4, 16, 52, 60, 61]. In a comparative study 

between early and metastatic breast cancer cases, CTCs 

expressing the EMT markers vimentin and twist increased 

from ~73-77% to ~100% of CTCs [16]. In another 

study, 14 of 52 primary breast cancers between stages I 
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and III received neoadjuvant therapy [10]. Interestingly, 

EMT-inducing transcription factors were overexpressed 

in neoadjuvant therapy-treated patients compared with 

those not treated with neoadjuvant therapy. Similarly, in 

patients with colorectal cancer, the novel marker Plastin3 

identified the most aggressive CTCs undergoing EMT 
in one-third of 711 patients with colorectal cancers [11]; 

these Plastin3-positive CTCs showed inducible staining of 

the EMT marker vimentin. 

Another novel marker, cell surface Vimentin (CSV), 

has recently been shown to detect EMT-positive CTCs 

in breast and colorectal cancer patients [62, 63]. In a 

pilot study of 58 patients with metastatic breast cancer, 

CSV antibodies demonstrated superior sensitivity (85% 

vs 48%) and specificity (94% vs 83%) compared with 
EpCAM-based detection for progressive disease upon 

treatment. This difference could be attributed to a shifting 

of the CTC population toward drug-resistant, dormant, or 

both phenotypes. Also, the low detection of CTCs by the 

EpCAM antibody was likely due to its nuclear localization 

upon disease progression. These studies clearly concluded 

the possibility of shortcomings in U.S. Food and Drug 

Administration–approved EpCAM-based CTC capture 

techniques [16, 64, 65]. 

Figure 2: Understanding the dynamic equilibrium between EMT positive CTCs and CSCs to define tumor relapse. 
Periodic chemo- or radiotherapy on primary tumor induces EMT positive tumor cells. These EMT positive tumor cells are transformed into 

quiescent CTCs upon entering into the bloodstream. These EMT positive CTCs express Plastin 3 (PLS3) and cell surface Vimentin (CSV) 

on its surface. During relapse phase, EMT positive CTCs reprogram into drug-resistant EMT positive CSCs under ambient condition to 

cause poor survival rate for cancer patients. 
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More than 300 clinical trials are using CTC counts 

as an indicator for disease progression and overall 

survival (Table 2) [66, 67]. These clinical trials reflect 
the translational significance of CTC for monitoring 
therapeutic responses to adjuvant therapies. In general, 

higher numbers of CTCs (≥5 per 7.5 ml of blood) were 
associated with shorter median survival and higher tumor 

burden (Table 2). Upon chemotherapeutic treatment, 

a decrease in CTC count was associated with an 

improvement in median overall survival. Hence, CTC 

kinetics has the potential to indicate whether to maintain 

current medication or switch therapy. However, most of 

these clinical trials used EpCAM as a CTC marker, which 

may mean that the assessments of the pharmacodynamics 

of the drugs under trial are not optimally accurate. It is 

imperative to include the markers Plastin3 and CSV to 

detect EMT-positive CTCs for comprehensive, more 

precise characterization of CTCs.

Characterizing the EMT phenotype in CTCs 

is not sufficient to explain their transformation to a 
proliferative state at distant organs; it is critical to shed 

light on the variable duration of dormancy and how 

these cells are breaking quiescence and are modified into 

relapse-initiating cells at a secondary site. Recent studies 

validated the existence of stem cell–like CTCs, which 

have the ability to self-renew, clonally expand, and initiate 

tumors, like CSCs can [20, 59, 68, 69]. In 2013, Sun et 

al reported the CSC biomarkers CD133 and ABCG2 in 

EpCAM-positive CTCs in 82 patients with hepatocellular 

carcinoma [70], and they identified the nuclear localization 
of β-catenin in 10 of 17 of these patients with EpCAM-
positive CTCs. The authors concluded that EpCAM-

positive CTCs with stem cell–like phenotypes might 

represent a subset of CTCs with a more aggressive 

phenotype, earlier recurrence, and worse survival. Further 

studies are required to explore these stem cell–like CTCs 

to predict the recurrence timeframe and determine the 

therapeutic window of treatment for better survival.

cscs And relApse

CSCs are a rare subset of tumor cells that bear 

properties of stem cells, and they show the greatest 

diversity in cancer progression. Recently, substantial 

progress has been made in understanding CSCs by 

characterizing genetic and epigenetic changes occur in 

Table 2: Prognostic significance of CTC counts in phase II and III clinical trials in cancers of various tissues.

Tumor Tissue CTC detection rate Phase of 
Trial    Prognostic relevance   References

   Breast 91% (n = 41 of 45)     II
42.9% of patients had 12 months of 
survival with CTCs (≥1).       [114]

   Breast 11.2%(n = 51 of 455)     III Not applicable.       [115]

   Breast 39% (n = 148 of 378)     II
75% of trastuzumab-treated group 
showed CK19-negative CTCs.

      [116]

   Colon 37.5% (n = 180 of 480)     III
41% of CTC-positive (≥5) patients had 
24 months survival.

      [117]

   Lung 44.4% (n = 8 of 18)     II
76.5% patients showed favorable CTC 
counts.

      [118]

   Lung 78% (n = 32 of 41)     II
18% of patients with ≥5 CTCs converted 
to favorable CTCs (<5).

      [119]

   Ovary 32.1% (n = 216 of 672)     III
CTC count was not correlated with 
survival.

      [120]

   Prostate 66% (n = 263 of 400)     III
Median progression-free survival times, 
25.1 months (<3 CTCs) and 16.2 months 
(≥3 CTCs).

      [121]

   Prostate 71.5% (n = 88 of 123)     I/II
47% of patients with ≥2 positive 
and 28% of patients with <2 CTC 
biomarkers showed distant relapse.

      [122]

   Prostate 35.4% (n = 11 of 31)     II

Overall survival rate for 36 months 
was positive for 55% of patients with 
1 positive and 42% of patients with 2-3 
positive CTC biomarkers. 

      [123]

   Pancreas 37.5% (n = 19 of 51)     II
Median overall survival times, 17.4 to 
25.3 months (<2 CTCs) and 12.4 months 
(≥2 CTCs).

      [124]

   Skin
~13-17.5% (n = 44-56 of 
320)

    III
Unable to correlate with disease 
characteristics owing to low CTC 
counts.

      [125]

   Skin 86% (n = 214 of 269)     III
Increased progression-free survival with 
decreased CTC counts.

      [126]
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their dormant and relapsed stages (Figures 1, 2); however, 

the surface markers may not unequivocally enrich all 

CSCs. To date, researchers have identified a few surface 
markers that enrich various CSCs from the primary tumor 

for the majority of cancer types. Tumor dormancy and 

therapeutic refractoriness in different types of cancer are 

due largely to CSCs and their clonal evolution [71-74]. 

However, because of the repeated refinement of the CSCs 
on the basis of new markers, it is difficult to categorize 
the exact or overlapping populations responsible for 

promoting the processes of dissemination, intravasation, 

dormancy, and relapse. Also, self-replicative and non-

differentiating cancer stemloids are a topic of considerable 

interest to pursue effective anti-cancer therapy [74, 75]. 

These stem-like cells play a seminal role in therapy-

resistant relapse due to diverse oncogenic mutations in 

their clonal populations [75]. Thus, selectively targeting 

cancer stemloids might provide better therapeutic response 

for cancer patients.

Our increasing understanding of the molecular 

biology and aberrantly activated cellular pathways of 

CSCs has revealed a number of novel targets for targeted 

therapeutic regimens that have successfully reduced 

CSCs both in vitro and in preclinical models (Table 3). 

An example is that upregulation of anti-apoptotic pathway 

has been detected to maintain mesenchymal state and 

chemoresistance in breast cancer cells [76]. Using this 

molecular concept in preclinical study showed that BH3-

mimetics were capable to remove both epithelial and 

mesenchymal HMLE (Human Mammary with Large 

T and TERT) cells [76]. Therefore, drugs suppressing 

CSCs hold great promise for redefining cancer therapy in 
advanced-stage cases. However, CSCs undergo dynamic 

clonal modification during the metastatic cascade, 
chemotherapeutic treatments, dormancy, and relapse. 

Because of their highly heterogeneous nature, relapse-

initiating CSCs must be captured and characterized, as 

most conventional anti-cancer therapies have limited 

success in eradicating them in patients. A recent study 

on prostate cancer cells showed that EMT-positive CSCs 

exhibit resistance to radiation therapy via the PI3K/Akt/
mTOR pathway [19]. The biologic link between EMT 

phenotypes and CSCs has recently been evidenced 

by epigenetic programming in many types of cancer 

[77, 78]. In breast cancer cells, Snail interacts with 

methyltransferase G9a to recruit DNA methyltransferase 

at the E-cadherin promoter region to silence its expression 

under low-glucose conditions [78]. In malignant 

pediatric brain tumor ATRT (Atypical teratoid/rhabdoid 
tumor), activated STAT3 regulates EMT phenotypes in 

association with Snail in cisplatin resistant cells [79]. A 

recent work found that nuclear localized PKCθ acts as a 
chromatin-anchored switch for EMT to induce expression 

of mesenchymal genes [78]. Furthermore, the long 

noncoding RNA Hotair is overexpressed upon TGFβ 
pathway activation in many cases of cancer [80]; Hotair 

interacts with polycomb repressive complex 2 to promote 

methylation at the promoter regions of epithelial genes and 

involved EMT progression [80, 81]. 

It has been demonstrated that a subset of isolated 

CSCs expresses EMT phenotypes in numerous cancers 

[82-84]. Unfortunately, no suitable marker can enrich 

Table 3: Novel therapeutic compounds targeting CSCs in various tissue-specific cancers. ATRA, all-trans retinoic acid; 
AML, acute myelogenous leukemia; CML, chronic myelognous leukemia; MM, multiple myeloma.

Tissue stem cells Drug In vivo study In vitro inhibition References

 Breast         ATRA          No
  Mammosphere

      [127]

 Breast
    IMD-0354+    
   Doxorubicin

         Yes      Sphere       [128]

 Breast     Salinomycin          Yes  Mammosphere       [129]

 Brain      Disulfiram          No Ubiquitin-proteasomal pathway       [130]

 Brain γ-secretase inhibitor         Yes Notch pathway       [131]

 Blood (AML)        ABT-263          Yes      Oxidative phosphorylation       [132]

 Blood (CML)        FTY720           Yes    PP2A agonist       [133]

 Blood (MM) Palcitaxel-Fe
3
O

4
         Yes      Not tested       [134]

 Colon  Metformin + FuOx          No    Colonosphere       [135]

 Colon        CC188          No
Carbohydrate    
epitope on the surface

      [136]

 Colon         α-DLL4          Yes    Not tested       [137]

 Gallbladder        Emodin           Yes  ABCG2 pump       [138]

 Liver        Lupeol          Yes  Hepatosphere       [139]

 Lung, Breast and   
 Ovary

      VS-5584           No  PI3K-mTOR       [140]

 Pancreas       GDC-0449           No Hedgehog pathway       [141]

 Pancreas       GNT-61          Yes Hedgehog pathway       [142]
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EMT-transformed CSCs that are phenotypically different 

from primary tumor–derived CSCs. To avoid relapse, 

these cells must be detected in a dormant phase, which 

may last from a few months to many years. 

Some studies validated stem cell–like properties 

in CTCs [20, 59], suggesting that CSCs transformed into 

these CTCs and then became dormant. During relapse, 

they may then become EMT-positive CSCs that proliferate 

as relapse-initiating cells forming aggressive tumors. 

Considering the immense clinical significance of these 
CSCs, it is important to develop strategies to enrich these 

cells for molecular understanding of relapse. Application 

of conventional surface markers of CSCs has proven 

difficult owing to the dynamic clonal evolution of these 
cells in response to chemotherapy, dormancy, and new 

tumor microenvironments. 

One potential alternative strategy for enriching 

CSCs is using CTC markers, which can enrich EMT-

positive populations, as EMT-positive cancer cells are 

indicators of aggressive relapse in cancer patients [85]. 

Thus, isolating EMT-transformed CSCs using CTC surface 

markers from the relapse site and from the primary tumor 

could provide a comprehensive picture of the etiologies 

of relapse. Substantial and systematic research focusing 

on drug-resistant, relapse-initiating CSCs could promote 

the development of effective treatment for aggressive 

cancer, and the identification and culture of these CSCs 
could be a powerful tool in the investigation of cancer 

relapse. Also, the identification of aberrant pathways in 
relapse-initiating CSCs could facilitate the development of 

therapies for patients for whom traditional chemotherapies 

and radiation treatments have poor clinical outcomes. 

summAry

The etiology of tumor recurrence with a variable 

time frame remains elusive. Major obstacles include the 

heterogeneity of tumors in patients and the difficulty of 
capturing residual drug-resistant tumor cells. Thus, recent 

research has aimed to identify suitable clinical models 

that can accurately catalog the steps of cancer recurrence. 

Clinical studies indicate that harnessing EMT-transformed 

CTCs and CSCs could shed light on the transition from 

dormancy to relapse in cancer patients. Future therapeutic 

studies of CSCs should focus on EMT positive CSCs 

or relapse-initiating tumor cells rather than just CSCs 

enriched from primary tumors. The molecular and cellular 

plasticity of EMT-positive cells needs to be characterized 

to categorize aberrant molecular pathways and heterotypic 

interactions with tumor microenvironments. Furthermore, 

ECM remodeling that supports the EMT program in tumor 

cells to initiate drug resistance and relapse is required to 

allow more in-depth tracing.

Currently, neoadjuvant therapy is recommended 

for patients who are at risk of recurrence after resection 

of the primary tumor. However, because of the dynamic 

interaction between tumor microenvironments and cancer 

cells, EMT-positive CSCs frequently undergo genetic 

drift and clonal evolution, so novel pharmacologic 

agents that demonstrate better therapeutic efficacy than 
current neoadjuvant therapies need to be generated. 

As translational research is streamlined toward more 

personalized therapy, suppressing EMT-transformed CTCs 

and CSCs should prove useful for preventing relapse and 

extending the lifespans of patients with recurrent cancer.
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