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Acquired resistance inevitably limits the curative effects of epidermal growth factor

receptor tyrosine kinase inhibitors (EGFR-TKIs), which represent the classical paradigm

of molecular-targeted therapies in non-small-cell lung cancer (NSCLC). How to

break such a bottleneck becomes a pressing problem in cancer treatment. The

epithelial-mesenchymal transition (EMT) is a dynamic process that governs biological

changes in various aspects of malignancies, notably drug resistance. Progress in

delineating the nature of this process offers an opportunity to develop clinical therapeutics

to tackle resistance toward anticancer agents. Herein, we seek to provide a framework for

the mechanistic underpinnings on the EMT-mediated acquisition of EGFR-TKI resistance,

with a focus on NSCLC, and raise the question of what therapeutic strategies along this

line should be pursued to optimize the efficacy in clinical practice.

Keywords: epithelial-mesenchymal transition, acquired resistance, therapeutic strategies, non-small-cell lung

cancer, epidermal growth factor receptor tyrosine kinase inhibitors

INTRODUCTION

Lung cancer is the leading cause of cancer mortality among males worldwide and females in
more developed countries (1). Non-small-cell lung cancer (NSCLC) accounts for 85% of cases
(2). Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)
has been the first-line treatment for NSCLC patients harboring activating EGFR mutations (3, 4).
Nonetheless, an overwhelming majority of patients who initially respond to EGFR-TKIs treatment
eventually develop acquired resistance, which invariably limits the clinical efficacy of therapy.
Epithelial-mesenchymal transition (EMT) has long been linked to acquired EGFR-TKI resistance in
NSCLC, but mechanisms underlying EMT-dependent acquisition of EGFR-TKIs resistance are still
far from fully explored. EMT, a reversible biological process, wherein cells undergo a switch from
epithelial phenotype to mesenchymal state. EMT is involved in both physiological and pathological
processes. Originally described in the context of embryonic development, to date, EMT has been
correlated closely with tumorigenesis, invasion, metastasis and drug resistance (5–7). Due to the
reversibility of EMT process, further understanding of the intricate relationship between EMT and
NSCLC, particularly the mechanistic basis responsible for EMT-mediated resistance contributes to
improving the benefit of TKI treatment for NSCLC patients. In this review, we focus on potential
mechanisms of acquired EGFR-TKI resistance induced by EMT and discuss promising avenues for
targeting the EMT program as a strategy for NSCLC treatment.
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EMT AND DRUG RESISTANCE

EMT is a process involved profound changes in bothmorphology
and physiology (6). During EMT, cells downregulate the
expression of epithelial proteins containing E-cadherin, whereas
upregulate the expression of mesenchymal proteins, such as
N-cadherin and vimentin. In addition, cells undergoing EMT
are characterized by the loss of apico-basal polarity and intact
cell-cell junctions, while acquisition of front-rear polarity and
dramatic remodeling of the cytoskeleton (8). Also, EMT program
endows cells with enhanced invasive capacity, therapeutic
resistance and cancer stem-cell-like properties (7, 9). These
findings have inspired the interests in EMT in the cancer field
during the last decade. Resistance to EGFR-TKI represents a
prime obstacle for NSCLC treatment, making it of particular
importance to delve into the detailed mechanisms. Hence, how
the execution of EMT contributes to drug resistance has been
studied extensively.

EMT Phenotype Attributes in EGFR-TKI
Resistant NSCLC Cells
A growing number of studies point to a molecular association
between EMT and drug resistance. Some clinical and molecular
evidences were established in the early 2010s. A lung cancer
patient who developed acquired resistance to erlotinib was
reported to be found EMT in the tissue sample. It is worth
noting that there were no other known resistant mechanisms
including T790M mutation and MET amplification. In an
additional experiment, the gefitinib-resistant subline of HCC827
cells shows phenotypic and molecular changes that are consistent
with EMT (10). Emerging evidence agrees that gefitinib-
resistance PC9 and HCC827 cells convert to a mesenchymal
phenotype. Accompanied by the decreased expression of E-
cadherin, the expression of N-cadherin and other mesenchymal
markers is elevated, illustrating the emergency of EMT (11).
Furthermore, NSCLC cells with acquired resistance to gefitinib
or osimertinib (AZD9291) showed EMT characteristics, with a
decrease in E-cadherin, and increases in vimentin and stemness,
without any EGFR secondary mutations (12). Taken together,
it is not surprising that EMT is considered as one of the
possible mechanisms for the acquired resistance to EGFR-TKIs
in NSCLC.

Abbreviations: EGFR-TKIs, epidermal growth factor receptor tyrosine kinase
inhibitors; NSCLC, non-small-cell lung cancer; EMT, epithelial-mesenchymal
transition; siRNA, small interfering RNA; ZEB, zinc-finger E-box-binding;
TGF-β, transforming growth factor-β; Grb2, growth factor receptor-bound-
2; HDAC6, histone deacetylase6; NICD, Notch intracellular domain; IGF,
insulin-like growth factor; IGF-1R, insulin-like growth factor-1 receptor; IRS-1,
insulin receptor substrate-1; MAML, Mastermind-like protein; Hh, Hedgehog;
SHH, Sonic hedgehog; IHH, Indian hedgehog; DHH, Desert hedgehog; SMO,
Smoothened; CSE, cigarette smoking extract; NAC, N-acetylcysteine; STAT3,
signal transducer and activator of transcription 3; OSM, oncostatin-M; TEM,
tumor microenvironment; JAK1, Janus Kinase1; miRNAs, microRNAs; 3′-UTR,
3′-untranslated region; PTEN, phosphatase and tensin homolog; CSCs, Cancer
stem-like cells; SMIs, Small molecule inhibitors; FHD, first-in-human dose; mAbs,
monoclonal antibodies; SAEs, serious adverse events; OS, overall survival; MTD,
maximum tolerated dose; AEs, adverse events; mTOR, mammalian target of
rapamycin; ASO, antisense oligonucleotide.

Role of EMT in Resistance to Targeted
Therapy
Accumulating evidence has highlighted that activation of Notch
signaling participates in EMT in NSCLC (13). Earlier studies
discovered that aberrant Notch-1 signaling leads to acquired
resistance to EGFR-TKI by triggering EMT and silencing of
Notch-1 using small interfering RNA (siRNA) increases the
sensitivity of gefitinib (14). The orchestrated changes in gene
expression that favors EMT results from acting cooperatively
of various master regulators, most notably Snail, Slug, Twist
and zinc-finger E-box-binding (ZEB) transcription factors (8).
Recent data have proven that the overexpression of Slug and
Snail, which are identified as EMT inducers, promotes gefitinib
resistance. Remarkably, recovery of TKI sensitivity is associated
with the EMT reversion, since blocking the reversal of EMT by
the forced expression of EMT inducers can suppress this effect
(11). Collectively, these experimental observations reveal the
notion that EMT is a vital event in the development of acquired
resistance to EGFR-TKIs.

Mechanisms Associated With EGFR-TKI
Resistance via EMT
Despite the vast body of studies regarding the role of
EMT in targeted therapy for NSCLC patients, its potential
mechanisms are not entirely clear. The mechanisms that
govern the EMT are non-linear complex networks (15). Various
extracellular signal factor stimuli and the activation of the
corresponding intracellular signaling pathway, ultimately results
in the downregulation of E-cadherin, which is considered as the
hallmark of EMT (8).

TGF-β: Inducer of EMT
Among flexible regulatory networks of EMT, one of the best-
characterized inducers is transforming growth factor-β (TGF-
β), which has context-dependent effects on cancer progression.
TGF-β can be tumor suppressive in pre-malignant epithelial cells
by cell cycle arrest and oncogene suppression. But in the context
of advanced carcinoma cells, the status of TGF-β is assigned
to pro-tumorigenic via mechanisms including promoting tumor
angiogenesis, restraining the function of immune system as well
as the activation of EMT (16, 17). Acting as a predominant
inducer, TGF-β can induce EMT through SMAD-medicated and
non-SMAD pathways (Figure 1).

Based on data in cellular and animal models, exposure
to gefitinib with increasing concentrations is sufficient to
raise the level of TGF-β secretion in HCC4006 and HCC827,
going with increased phosphorylation of downstream proteins,
SMAD2 and SMAD3. A TGF-β autocrine loop is established
by the EGFR inhibition in NSCLC with EGFR mutations,
facilitating TGF-β-stimulated activation of SMAD pathway, thus
playing a crucial role in EMT (18). How SMAD pathway
contributes mechanistically to EMT has been documented.
TGF-β family receptor is a heterotetrameric complex with
two type I and two type II components, comprising of three
distinct regions: an extracellular N-terminal ligand-binding
domain, an intracellular C-terminal Ser/Thr kinase domain
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FIGURE 1 | TGF-β/SMAD and non-SMAD pathways in EMT.

and centrally located transmembrane domain. Coupling of a
ligand with TGF-β receptor complexes, the TβRII (type II) is
activated through phosphorylation and thus activates the TβRI
(type I), which in turn phosphorylates the SMADs of kinase
domain at the C-terminal sequence. In response to receptor-
phosphorylated SMAD2 and SMAD3 combination with SMAD4,
the trimeric complexes subsequently translocate from cytoplasm
to nucleus. Via interacting with the DNA-binding transcription
factor, SMAD complexes serve as transcriptional coactivators to
activate transcription of mesenchymal genes and transcriptional
corepressors to repress transcription of epithelial genes (8).

SMADs also increase the activity of EMT transcription factors
as well. ZEB1 is overexpression in HCC4006ER cells which take
on mesenchymal characteristics and develop erlotinib resistance
by the activation of TGF-β/SMAD pathway. Correspondingly,
knockdown of ZEB1 can reverse EMT and restore the sensitivity
to TKI. This finding identifies ZEB1 as a remarkable regulator in
TGF-β/SMAD-related EMT and TKI resistance (19).

Apart from its role through SMAD pathway, TGF-β activates
the MAPK pathway, which also results in EMT-mediated
resistance to EGFR-TKI. Blocking ERK signaling by MEK1/2
inhibitor can prevent TGF-β-induced EMT, indicating that
MAPK pathway plays a key role in the induction of EMT

by TGF-β (5). Upon TGF-β stimulation, the tyrosine and
serine phosphorylation of SRC homology 2 domain-containing-
transforming A (SchA) is induced, which is mechanistically
associated with TβRI. Phosphorylated SchA possesses a growth
factor receptor-bound-2 (Grb2) binding site and induces its
association with son-of-sevenless (Sos), then converts Ras into
active Ras-GTP, thereby initiating the downstream Ras-Raf-
MEK1/2-ERK1/2 cascade (20). Of note, enhanced sensitivity to
gefitinib is in line with changes in epithelial and mesenchymal
markers. After reaching a peak, heightened responses to gefitinib
by chronic MEK inhibition eventually decline (5). In light of
this, discovering alternative signaling inhibitions that render
more stable maintenance of an epithelial phenotype awaits
further investigation.

Additionally, crosstalk exists between the TGF-β and Notch
signaling to coordinately regulate the reprogramming of gene
expression in EMT (21). TGF-β can significantly increase the
expression of Notch downstream target genes, namely HEY-
1 and HES-1. Consistent with this notion, pharmacological
inhibition of Notch by histone deacetylase6 (HDAC6)-targeted
siRNA leads to decreased expression of EMT genes, HEY-
1 and HES-1, suggesting that HDAC6 is required for Notch
activation by TGF-β. Further experiment illuminates HDAC6
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FIGURE 2 | Mechanisms of IGF-1R-induced EMT.

is activated then deacetylates its substrate, HSP90, in response
to TGF-β stimulation, which is of necessity in the cleavage of
Notch receptor. This enables the release of Notch intracellular
domain (NICD) and then enter the nucleus, where in cooperation
with RBP-J (also known as CSL) as a transcription cofactor to
regulate the expression of target genes, including Hey and Hes
(22). Given that overexpression of HDAC6 is common in lung
adenocarcinoma cell lines and confers resistance to gefitinib,
interplay amongst TGF-β, Notch signaling and HDAC6 may be
implicated in EMT and resistance to EGFR-TKI (23).

Induction of IGF1 and EMT
The insulin-like growth factor (IGF) signaling is thought to
play a particularly prominent role in growth, development and
apoptosis. The insulin-like growth factor-1 receptor (IGF-1R),
a key signaling element in the IGF system, is a transmembrane
tyrosine kinase receptor, which exerts its effect by binding

to the ligand IGF-1. Once activated, IGF-1R is capable of
intrinsic tyrosine kinase phosphorylation and activating multiple
intracellular adaptor proteins, such as insulin receptor substrate-
1 (IRS-1) and Shc to transmit signals, leading to the activation of
downstream signaling pathway (24, 25). Recently, various studies
have revealed that IGF-1/IGF-1R also appears to take part in
EMT and drug resistance (24, 26, 27). NSCLC patients with
elevated expression of IGF-1R show poor responses to EGFR-
TKIs treatment, strongly suggesting that activation of the IGF-
1R pathway is relevant to resistance against EGFR-TKIs (27).
However, the importance of IGF-1R-induced EMT in driving the
resistance to TKI, specially NSCLC, remains largely obscure.

Several works have been undertaken to elucidate the
interplay between IGF-1R and TKI resistance (Figure 2). For
example, in a model of EGFR-TKI-resistant NSCLC, in which
along with IGF-1R upregulation, cells display a highly EMT
phenotype. Furthermore, silencing of IGF-1R or overexpression
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FIGURE 3 | Key signaling pathways involved in EMT.

of E-cadherin dramatically represses the EMT program and
decreases the cells survival against EGFR-TKI. It should be
noted that the expression of Snail and nucleus β-catenin
are subsequently enhanced in IGF-1R-dependent EMT. In
addition, not PI3k/AKT pathway, but rather the activation of
ERK/MAPK signaling is proven to contribute critically to this
process in both PC-9 and HC460 cell lines (26). Taken as a
whole, these experimental observations provide direct evidence
that upregulating of Snail expression arising from activating
ERK/MAPK signaling and propelling β-catenin relocation from
the cell membrane into nucleus might engender IGF-1R-induced
EMT in NSCLC. The synergistic cooperation between these two
processes stifles the expression of E-cadherin directly, thereby
conferring mesenchymal attributes and acquired resistance to
EGFR-TKIs in NSCLC. Of interest, β-catenin is the downstream
signal molecule of Wnt signaling. Wnt signaling is considered
to promote EMT by impeding the function of glycogen synthase
kinase-3β (GSK-3β) to stabilize β-catenin, which translocates to
the nucleus and interacts with the transcription factors lymphoid
enhancer-binding factor 1 (LEF) and T cell factor (TCF) to define
EMT (8). It is increasingly clear that the presence of interaction
between the IGF-1R and Wnt/β-catenin in the context of EMT-
mediated TKI resistance.

In contrast to the prevailing studies that focus on the
impact of specific receptors in resistance, a report has furnished
evidence from different viewpoints. Genetic deletion is used to

functionally remove IGF-1R in HCC827 cells. Upon exposure to
continuous high-dose erlotinib, HCC827 (IGF-1R−/−) ER cells
do not exhibit an EMT phenotype shift like HCC827ER cells as
expected. Intriguingly, acquired resistance is developed by bypass
signaling, namely MET-amplification, indicating that IGF-1R is
not essential tomaintain the gained TKI-resistant state in NSCLC
(28). Indeed, results of these data offer us better insights into the
resistance by induction of IGF-1R and underscore the complexity
of underlying resistance mechanisms, that is under a given TKI
selective pressure, cells are prone to find another way to develop
resistance in the absence of certain mechanism.

Key Signaling Pathways in EMT
As with growth factors mentioned above, Notch signaling has
been recognized as a potent mediator of EMT (Figure 3). In
mammals, there are four receptors (Notch1-Notch4) and two
families of Notch ligands, Delta-like (DLL1/3/4) and Jagged-like
(JAG1/2) have been identified. Simply speaking, Notch signaling
is an intercellular communication mechanism, in which a Notch
ligand on the surface of cell induces a suite of proteolytic events
including sequential cleavage by ADAM enzymes and then γ-
secretase. These events permit the liberation of NICD, which
translocates to the nucleus to modulate the expression of Notch
target genes in company with CSL (also known as RBP-J) and
Mastermind-like protein (MAML) as a result (29, 30).
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In a previous experiment, inappropriate activation of
Notch1 inhibit gefitinib-induced apoptosis relying on caspase-
3 inactivation caused by Notch1-induced EMT, Accordingly,
out of balance between apoptosis and anti-apoptosis allows
resistance to EGFR-TKI (14). Recently, studies in cell culture
have exemplified that chronic treatment of gefitinib dramatically
enhances ZEB1 expression, together with the repression of miR-
200c. Meanwhile, an EMT state is observed in gefitinib-resistant
cells. Conversely, knockdown of Notch-1 enables partially reverse
EMT and gefitinib resistance, sharing similarity with the effect
of miR-200c. This result implies that Notch1 facilitates EMT to
mediate ZEB1-induced TKI resistance. Furthermore, treatment
with the γ-secretase inhibitor to block Notch signaling, cells gain
growing sensitivity to gefitinib, manifesting the central role of
Notch in EGFR-TKI resistance and promising therapeutic value
for NSCLC patients with EMT-induced resistance. Nevertheless,
consideration of both necessary and sufficient part of NICD
to transcriptionally attenuate ERBB3 expression by binding to
its promoter directly, inhibition of Notch1 inevitably induces
ERBB3, a driver of EGFR-mutated lung cancer cell growth
(31). To summarize, these findings support the versatile role
of Notch1 in EGFR-mutated cells. Under the circumstance
that EGFR is inhibited by TKI treatment, Notch1 results in
the acquisition of resistance by triggering EMT. Of particular
note, the fact that Notch1-ERBB3 axis functions as a universal
regulatory mechanism in NSCLC, provides solid evidence and
attractive possibilities for combined targeting of Notch1 and
EGFR to treat EMT-driven resistance to EGFR-TKI (31). This
result, as well as the prior one, validate the knowledge that
Notch signaling is a robust contributor of EMT-mediated
TKI resistance.

Outside of Notch cascade, the Hedgehog (Hh) pathway is
frequently linked with EMT and dwindling response to EGFR-
TKI treatment. There are three HH counterparts have been
made clear in human: Sonic hedgehog (SHH), Indian hedgehog
(IHH) and Desert hedgehog (DHH). In the absence of HH
binding, Patch (PTCH) suppresses the activity of Smoothened
(SMO), amember of the G protein-coupled receptor superfamily.
Interaction of HH ligands with PTCH initiates the Hh signaling
cascade through the relief of its inhibitory effect on SMO, giving
rise to activation of GLI1, a zinc-finger transcription factor, to
play its part in the nucleus (32, 33).

Mounting evidence demonstrates that dysregulation of this
pathway is crucial for EMT-dependent resistance. In vitromodel
of acquired resistance to EGFR-TKIs indicates that HCC827GR
cells present a mesenchymal signature accompanied by markedly
elevated expression of GLI1 and SMO amplification, implying
an involvement of the Hh pathway in the course of EMT.
Strikingly, interplay between Hh and MET is described in
cell lines and tumor xenografts of nude mice. Depletion of
SMO and MET concomitantly enhances gefitinib sensitivity and
significantly diminishes the phosphorylation level of MAPK and
AKT proteins. In brief, excessive activation of Hh pathway,
drives EGFR-TKI resistance owing to EMT induction via SMO
amplification and concurrent MET activation. Therefore, the
combination of Hh and MET inhibitors may yield powerful
antitumor effects in EGFR-mutated NSCLC patients (34).

More recently, further cue to emerging importance of Hh
signaling in the induction of EMT derives from a series of studies.
For instance, findings of a research show the functional links
among Hh signaling, EMT, CSC abundance to the acquired
resistance of EGFR-TKI (35). Additional experiment designed to
investigate the efficacy and mechanisms of acquired resistance
during the sequential treatment with first-, second- and third-
generation EGFR-TKIs reveals that activation of the Hh pathway
is a common nature that all of three lines share. Different from the
preceding result in a model of the first-generation inhibitor, MET
hyperactivity is not detected in second- and third-generation
resistant models, while SMO activation coexists persistently in
diverse treatment (36). In addition, synergic role of AXL and Hh
pathway has been reported to mediate resistance to second- and
third-generation EGFR-TKIs (36). Given all above, the idea that
Hedgehog pathway behaves as a fundamental player for EMT-
mediated acquired EGFR-TKIs resistance is little surprising.

Other factors are noted to aid the induction of EMT and
cancer progression. Src has been reported to elicit cigarette
smoking extract (CSE)-induced EMT and resistance to gefitinib,
while N-acetylcysteine (NAC) abrogates the resistance through
alleviating Src activation and EMT, providing a clue that
simultaneous targeting of EGFR-TKI and Src may help in
clinical outcomes in EGFR-mutated NSCLC patients with
smoking history (37). Another report indicates that smoking
abolishes EGFR-TKI therapeutic effects in NSCLC on account of
continuously activating ERK1/2 and AKT pathway downstream
of EGFR signaling as well as EMT induction (38). Besides, studies
have shown that metformin, a well-known antidiabetic drug,
effectively overcomes resistance to EGFR-TKI in vitro and in
vivo, by reversing EMT and suppression of interleukin (IL)-
6/signal transducer and activator of transcription 3 (STAT3)
pathway (39). Recent advance reveals that anticancer drugs
activate IL-6 proinflammatory pathway with upregulation of IL-
6 and oncostatin-M (OSM) expression. It is noteworthy that
acquired resistance cell lines display genic and morphologic
changes, suggesting the occurrence of EMT. In addition to
STAT3 activation by autocrine, cocultured with cancer-associated
fibroblasts (CAFs) in NSCLC cells in culture also gives rise to
inflammation in the tumor microenvironment (TEM) via the
secretion of IL-6 and OSM, thus leading to resistance to TKIs.
However, this result can be prevented by Janus Kinase1 (JAK1)
knockdown. In this context, OSMRs/JAK1/STAT3 axis has been
proposed to result in TKI resistance in NSCLC (40).

Regulation of miRNA on EMT
Beyond regulatory networks at the transcriptional level, EMT
program is tightly controlled by microRNAs (miRNAs), which
has been brought in to focus currently. MiRNAs, small non-
coding single-stranded RNAs encompassing 19–25 nucleotides,
that modulate gene expression post-transcriptionally, are found
to exert pivotal impacts on a variety of biological processes in
the development of cancers (41–45). Through coupling with
complementary sequences via incompletely base-pairing in the
3′-untranslated region (3′-UTR), miRNAs are able to silence
EMT-related molecules, which favor or repress the progress of
EMT (Figure 4) (44).
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FIGURE 4 | miRNAs regulating EMT program and susceptibility to targeted

therapy.

Several lines of evidence shed some light on how the
resistance to EGFR-TKI is generated by miRNAs regulation.
Experiments in cell lines of NSCLC illuminate that long-term
treatment with gefitinib renders changes in miRNAs expression,
including depletion of miR-155 and miR-200c. Furthermore,
together with the augmented protein level of SMAD2 and ZEB1,
the expression of E-cadherin is sharply declined, at least in
part, depending on histone modification. In support of this
idea, under co-treatment of miR-155 and miR-200c inhibitors,
similar results are shown in terms of protein expression and
appearance of mesenchymal profile (46). As mentioned, miRNA-
200 family members, strong negative regulators of EMT, have
drawn substantial attention in tumor biology (47). Analyses of
NSCLC cell lines explain that epigenetic modifications, such
as promoter hypermethylation, are accounting for the aberrant
silencing of miR-200c. Moreover, acquired resistance NSCLC
cells bearing the EMT feature exhibit low expression of miR-
200c and high LIN28B expression. On the other hand, miR-200c
induction not only suppresses the expression of ZEB1, which is
known as a mesenchymal marker, but also LIN28B in parallel.
Alternatively, knockdown of LIN28B also poses an antitumor
effect (48). Overall, the miR-200c/LIN28B axis is complicit in
NSCLC resistant against EGFR-TKI. Identification of such a
fundamental mechanism involving miR-200c and LIN28B is an
ongoing topic of research to pave the way to curative remedy
in future.

As is apparent from these instances, miR-200 family members
have been depicted as primary miRNA suppressors. For another,
tumor promoter miRNAs, provide an additional approach to
induce EMT by inhibiting the molecules suppress this step
or provoking those initiate it (44). Overexpression of miR-
134 and miR-487b as a consequence of TGF-β stimulation
has been portrayed to contribute to the occurrence of EMT
and drug resistance in NSCLC. Compatible with this result,
transfection of anti-miR134/487b inhibits the EMT phenomenon
and regains sensitivity to gefitinib likewise.Membrane-associated
guanylate kinase, WW, and PDZ domain-containing protein 2
(MAGI2), a scaffold protein is required for phosphatase and
tensin homolog (PTEN) stability, is a direct target of miR134 and
miR-487b. Reduction of MAGI2 caused by TGF-β leads to PTEN
phosphorylation and PI3k/AKT cascade activation. It is therefore
promoting the TGF-β-induced EMT and acquired resistance to
EGFR-TKI in NSCLC (48).

In summary, numerous studies on the regulation of EMT
process by miRNAs unravel their functional roles as tumor
suppressors or tumor promoters. MiRNAs seem to participate
in carcinoma progression by targeting EMT-related mRNAs in
elaborate regulatory networks at the post-transcriptional level,
imbuing an additional layer of gene expression. Consequently,
these miRNAs are likely to dictate how activation of signaling
pathways affects cell fate and determinate the response to targeted
agents. Despite the research advances concerning molecular
mechanisms of miRNAs in the regulation of EMT in cancers,
little is known about its relative contribution on EMT-mediated
acquisition of EGFR-TKI resistance, especially in NSCLC. Future
effort is needed to fill these gaps for improvements in therapy.

Relationship Between EMT and CSC
As discussed previously, the conversion of EMT is a key
component in malignancy, resulting in disease progression and
drug resistance. Cancer stem-like cells (CSCs) are another strong
driving force in the development of therapeutic resistance,
ranging from conventional chemotherapeutics to molecularly
targeted therapy (49, 50). The CSC paradigm postulates the
existence of a minor subpopulation of neoplastic cells that hold
self-renewal ability to generate daughter CSCs and differentiation
potency to produce non-CSCs progenies. Implicit in this
paradigm is the capacity of seeding new tumors and the
generation of tumor heterogeneity (51).

Currently available evidence points to the mutual relationship
between these two phenotypes in EGFR-TKI resistance. One
example is the identification of EMT features and stem cell-
like properties in a study based upon afatinib-resistant cell
lines, revealing a possible association in the midst of EMT,
stem cell-like signature and EGFR-TKI resistance (52). Data
from a model with ectopic activation of Hh pathway, NSCLC
cells exhibit EMT attributes and ABCG2 upregulation. ABCG2,
have been referred as a stem cell marker, severs as multidrug
resistance pumps to EGFR-TKIs, which is controlled by Hh
signaling directly. Blocking Hh pathway by a specific inhibitor,
NSCLC cells become able to resensitize to EGFR-TKI, along
with the reversal of EMT phenotype and CSCs reduction
(35). In addition, analyses of the molecular characteristics
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of gefitinib-resistance chemokine receptor 4 (CXCR4)-positive
cells have unveiled that upregulation of CXCR4, to some
degree, is induced by EMT. Given the knowledge that
CXCR4-positive cells have the property of stemness, it is
conceivable that CXCR4 is a hub to find the connection
between EMT and CSCs, both of which correlate intimately
with EGFR-TKI resistance (53). More recently, results of in-
vitro assays and murine model, have reinforced the view that
TKI treatment triggers EMT and confers a CSC phenotype
in NSCLC cells, subsequently contributing to drug resistance.
Further exploration reveals that the imperative character of
AKT/FOXM1/stathmin axis in TKI-induced CSC enrichment
and drug resistance, which is verified by the assessment of
EMT and CSC biomarkers. Importantly, genetic manipulation of
FOXM1 and stathmin 1, or blockade of PI3k/AKT pathway may
impair CSC abundance and improve the response toward TKI
agents (9).

Taking these into account, the connection between EMT and
a CSC phenotype is proposed by massive experimental data, the
mechanistic basis within these two events is unsolved yet. Since
EMT appears to be a crucial strategy employed by tumor cells
to acquire CSC-like properties, which are coupled to promote
the potential of resisting to antitumor drugs, making EMT an
appealing biological target for cancer therapy. Thus, a surge of
attention has been given to targeting EMT regulators to eradicate
CSCs (54). As such, whether EMT program is a necessary or
sufficient condition for the enrichment of CSCs, and what is
the relationship as well as the distinction between EMT and
CSCs remains to be addressed. Given that CSCs are subjected
to robust regulation by tumor microenvironment, one possible
explanation is that alternations in diverse factors induced
by carcinoma cells undergoing EMT change surrounding
microenvironment, which affects the induction and maintenance
of CSCs (55).

STRATEGIES TO OVERCOME
EMT-DEPENDENT ACQUISITION OF
EGFR-TKI RESISTANCE

Drug resistance is a pervasive barrier in TKI therapy.
Unremitting studies enable us to better understand its biological
underpinnings in lung cancer and lend added insights into
clinical implications, such as novel therapeutic strategies
to combat TKI resistance (56). EMT, a well-coordinated
process, has been viewed as a major mechanism of EGFR-
TKI resistance in NSCLC, in this setting, strategies aimed
at extracellular stimuli and intracellular signaling pathways
related to EMT are rapidly accumulating (57). In this section,
we recapitulate the emerging agents that impinging on EMT-
associated signaling networks in the field of therapeutic
intervention for NSCLC (Table 1).

Targeting TGF-β
TGF-β can foster cancer progression by stimulating EMT,
identification of its pro-oncogenic role has provided a rationale
for the development of drugs targeting TGF-β in cancer

treatment. However, the pleiotropic functions of TGF-β pose
a formidable hurdle for the application of this strategy (58).
Small molecule inhibitors (SMIs) embody a spectrum of
pharmacological approaches to reversing EMT by blockage of
TGF-β signaling, among them galunisertib (LY2157299) is the
most well-studied one (59). It had an acceptable safety profile and
achieved success with a manner of intermittent dosing regimen
based on the preclinical pharmacokinetic/pharmacodynamic
models and predictive biomarkers development in a first-in-
human dose (FHD) study in glioma patients (60). Given the
encouraging results of the FHD study, a nonrandomized, open-
label phase I clinical trial was conducted in Asian populations,
12 advanced solid tumors Japanese patients were treated with
the improved dosage in lack of cardiotoxicity or other dose-
limiting toxicities during the treatment of galunisertib (61).
Recently, a phase 2 study demonstrated that galunisertib plus
sorafenib showed acceptable safety and a prolonged overall
survival outcome for advanced hepatocellular carcinoma (62).
Owing to cardiac toxicities in animals, the implementation
of comprehensive cardiac monitoring throughout the course
of the FHD study becomes an urgent imperative. Yet,
administration of LY2157299 did not observe significant cardiac
toxicity in either a short or long therapeutic procedure
manner, thereby providing support for advancing clinical
development (63).

Another avenue for blocking this pathway is immunotherapy.
Belagenpumatucel-L, an allogeneic tumor cell vaccine, was
evaluated in a randomized, placebo-controlled phase III study
in III/IV NSCLC patients. Results in this work showed that it
was well tolerated and rendered better survival compared to
the placebo cohort. Unsatisfactorily, patients who completed the
previous chemotherapy more than 12 weeks failed to receive
any advantages. The clinical utility of belagenpumatucel-L merits
further evaluation as a consequence (64).

Targeting IGF-1R
IGF-1R pathway also promotes EMT and evolution of resistance
against TKI in clinical practice, hence IGF-1R pathway has
evolved into an important target across different malignancies.
Therapeutic agents studied in clinical trials involving patients
with NSCLC include bothmonoclonal antibodies (mAbs) to IGF-
1R and small molecule tyrosine kinase inhibitor of IGF-1R (65).
Two phase III trials assessed the combination of figitumumab
with cytotoxic chemotherapy (paclitaxel and carboplatin) and
EGFR-TKI (erlotinib) in patients with advanced NSCLC were
closed early with disappointing consequences (66, 67). The
all-causality serious adverse events (SAEs) and treatment-
related deaths in a subset of patients receiving figitumumab
plus carboplatin/paclitaxel, as compared with those receiving
chemotherapy alone, witnessed the failure of this clinical trial
(67). Similarly, figitumumab combined with erlotinib did not
hold superiority over erlotinib alone in another phase III
study (66). Whereas these unimpressive outcomes in the clinic,
further clinical development of figitumumab has been halted
prematurely. However, in a recent phase II trial, chemotherapy-
naïve patients harboring activating EGFR mutations with
stage IIIB/IV or post-surgical recurrent non-squamous NSCLC
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TABLE 1 | Overview of clinical data involving EMT-related pathway inhibition in NSCLC.

Mechanism of

drug action

Drugs Phase Tumor type Preliminary results References

TGF-β signaling inhibitors

TGF-β kinase

inhibitor

Galunisertib

(LY2157299)

I Solid tumors An acceptable tolerability and safety profile (61)

Galunisertib

(LY2157299)

I Glioma and solid

tumors

No medically relevant cardiac toxicity detected (62)

Tumor cell vaccine Belagenpumatucel-L III NSCLC Good tolerability, no serious safety issues, no

improvement in patients’ survival after

platinum-based chemotherapy

(63)

IGF-1R signaling inhibitors

IGF-1R mAb Figitumumab III NSCLC No improvement in patients’ survival after

figitumumab plus chemotherapy

(65)

Figitumumab III NSCLC No improvement in patients’ survival after erlotinib

plus figitumumab

(66)

IGF-1R/INSR kinase

inhibitor

Linsitinib (OSI-906) II NSCLC A poor patients’ prognosis caused by linsitinib plus

erlotinib

(67)

Linsitinib (OSI-906) II NSCLC No improvement in patients’ survival after linsitinib

plus erlotinib

(68)

IGF-1R kinase

inhibitor

AXL1717 I NSCLC Bone marrow toxicity profile (69)

AXL1717 II NSCLC Low incidence of grade 3/4 neutropenia (70)

RAS-RAF-MAPK inhibitors

BAF inhibitor + MEK

inhibitor

Dabrafenib +

Trametinib

II NSCLC Clinically meaningful antitumour activity and a

manageable safety profile

(71)

PI3k-AKT-mTOR inhibitors

PI3k inhibitor Pictilisib (GDC-0941) I Solid

tumors/NSCLC

Well-toleration and preliminary antitumor activity (72–74)

mTOR inhibitor Everolimus I NSCLC Measurable, dose-dependent, biologic, metabolic,

and antitumor activity of everolimus in early-stage

NSCLC

(75)

AKT inhibitor MK-2206 I Solid tumors Well-toleration and preliminary antitumor activity for

MK-2206 plus carboplatin and paclitaxel, docetaxel,

or erlotinib

(76)

Notch signaling inhibitors

Γ -secretase

inhibitor (GSI)

PF-03084014 I Solid tumors Well-toleration and a dose-dependent

pharmacokinetic profile

(77)

RO4929097 I Solid tumors Autoinduction at all dose levels that limited the

ability to dose escalate the doses

(78)

BMS-906024 Preclinical Leukemia and

solid tumors

– (79)

LY900009 I Advanced cancer Recommended maximum tolerated dose at 30

mg/kg Q3W

(80)

DLL4 mAb Enoticumab

(REGN421)

I Solid tumors Recommended phase II dose of 4 mg/kg Q3W and

3 mg/kg Q2W

(81)

Demcizumab I NSCLC Identification of a truncated dosing regimen and

recommended phase II dose of demcizumab (5

mg/kg q3-weekly ×4)

(82)

Hedgehog signaling inhibitors

SMO inhibitor PF-04449913 I Solid tumors Maximum tolerated dose at 320 mg/day, with

preliminary antitumor activity

(84)

TAK-441 I Solid tumors Maximum tolerated dose at 1,600 mg/day, with

preliminary antitumor activity

(85)

Sonidegib (LDE225) I Solid tumors Tolerance differences between East Asian and

Western populations

(86)

Other inhibitors

IL-6 inhibitor Siltuximab I Solid tumors Well-tolerated but no clinical activity in solid tumors (89)

(Continued)
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TABLE 1 | Continued

Mechanism of

drug action

Drugs Phase Tumor type Preliminary results References

STAT3 inhibitor AZD9150 I Lymphoma and

lung cancer

AZD9150 preclinical activity translated into

single-agent antitumor activity

(90)

OPB-51602 I Solid tumors A longer half-life and poorer tolerability of continuous

dosing compared with intermittent dosing

(91)

HDAC inhibitor Panobinostat (LBH589) I NSCLC and

head-and-neck

cancer

Maximum tolerated dose at 30mg (panobinostat)

and 100mg (erlotinib)

(95)

Romidepsin I NSCLC A well-tolerability and effects on relevant molecular

targets

(96)

were treated with erlotinib induction at 150 mg/day for 3
months, followed by cytotoxic chemotherapy with platinum
plus pemetrexed, with or without bevacizumab. Preliminary
results revealed that the therapy was well tolerated and may
be a treatment option for patients responsive to short-term
erlotinib treatment (68). In addition, Linsitinib (OSI-906) is
an orally bioavailable, dual small-molecule inhibitor of IGF-
1R and insulin receptor (INSR), whose efficacy is currently
being tested in clinical studies. A randomized phase II study
of the addition of linsitinib to erlotinib in chemotherapy-naive
NSCLC patients with positive EGFR mutation demonstrated a
detrimental effect that led to inferior efficacy (69). This is not
the only clinical trial of linsitinib failing to match the expected
results in concord with preclinical data. In a phase II trial,
linsitinib maintenance therapy in conjunction with erlotinib
showed no difference in progression-free survival (PFS) and
overall survival (OS) in NSCLC patients without progression
following platinum-based regimen (70). AXL1717 is another
small molecular agent which can modulate IGF-1R pathway to
develop its antitumor effect. A phase I pilot study designed
to definitize maximum tolerated dose (MTD) and recommend
phase II dose (RPTD) of AXL1717 adding to gemcitabine
HCl and carboplatin finally established 215mg BID as MTD
and RPTD due to the bone marrow toxicities encountered in
this trial (71). Besides, findings from an additional phase II
randomized study, in which patients with advanced or metastatic
NSCLC were treated with AXL1717 or docetaxel as a single
agent, found no statistically significant between two treatment
groups. The safety profile in this study concluded that there
was a lower frequency of adverse events (AEs), especially
neutropenia in the cohort of AXL1717 treatment. Unexpectedly,
treatment-related fatal events were noted more commonly in
this cohort (12 vs. 5) (72). On the whole, largely undesirable
effects encountered in clinical settings emphasize the issue that
identification of predictive markers indicative of responses to
therapeutic strategies is timely and paramount to improving
current therapy in carcinomas.

Blocking Intracellular Signaling Pathways
With regard to a diverse array of intracellular signaling pathways
resulting in EMT, inhibitors of these pathways are in active
clinical development. On the basis of compelling preclinical

evidence, RAS-RAF-MAPK pathway inhibitors have been put
into clinical tests. A recent phase II non-randomized trial of
combination BAF and MEK inhibition in patients with BRAF
V600E-mutant NSCLC demonstrated a clear clinical benefit of
dabrafenib plus trametinib, with a high overall response and
manageable toxicity (73). Hampering the PI3k-AKT-mammalian
target of rapamycin (mTOR) pathway is another means to
prevent or reverse EMT. Pictilisib (GDC-0941), a pan-class
PI3k inhibitor, had been reported to possess favorable safety
and exert antineoplastic effects in solid tumors, including
NSCLC, when administered in monotherapy or combination
therapy as well (74–76). Furthermore, a recent phase I study
of combination buparlisib (PI3k inhibitor) and radiotherapy
in patients with NSCLC showed a well toleration and no
dose-limiting toxicity (77). Beyond that, AKT inhibitor MK-
2206 and mTOR inhibitor everolimus had been tested in
the clinic reporting positive results through treatment for
cancer (78, 79).

As mentioned before, key roles of Notch, Hedgehog and Wnt
signal transduction pathways in EMT program and therapeutic
resistance are widely embraced. Therefore, various of compounds
targeting these pathways are now underway. For Notch cascade,
classes of approaches that in clinical pipeline mainly compose of
γ-secretase inhibitors (GSIs) and antibodies against the Notch
receptor or ligand (30). At present, considerable clinical trials
center on GSIs, which inhibit the generation of NICD to relay
transcriptional signals subsequently. So far, a broad range of
GSIs, known as PF-03084014, RO4929097, BMS-906024, and
LY900009 are under preclinical or early clinical development
in solid tumors inclusive of NSCLC (80–83). Besides using
GSIs to interfere with the cleavage of Notch receptors, DLL4-
specific mAbs inhibiting the ligand-receptor interaction reflects
another viable option investigated clinically. A phase I FHD
study examining enoticumab (REGN421) in eligible patients with
advanced solid tumors, to determine the safety, toxicity and
RPTD (84). Safety and efficacy of demcizumab in combination
with standard chemotherapy was being assessed currently in
NSCLC, implying the shorten treatment course in future
development (85).

Abnormal activation of the Hedgehog signaling pathway is
explicitly implicated in the biological behaviors of cancer, making
targeted inhibition of this pathway a clinically useful therapeutic
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strategy. In this respect, a multiple of SMO inhibitors have
entered clinical trials (86). As an example, a phase I study
evaluating PF-04449913 in advanced solid malignancies showed
prolonged stable disease in spite of no objective responses in
this trial (87). TAK-441 has been also employed as a potential
inhibitor in therapy with the effective outcomes of phase I trial
(88). Of note, preliminary data from a study performed that
investigated the safety of sonidegib (LDE225) in a total of 45
East Asian patients, suggested an ethnic difference in tolerability
between populations (89). As with Notch and Hh pathway, there
are intensive researches on targeting Wnt pathway for cancer
therapeutics at the stage of preclinical and clinical testing, though
no agents have been granted approval, thus far, to target such a
pathway (90, 91). Recently, a comprehensive body of preclinical
evidence that clofazimine specifically inhibits Wnt signaling
pathway, without side effect, which possesses potential as a Wnt
inhibitor (92).

IL-6 and STAT3 are frequently activated in carcinomas
and drive the induction of EMT. An anti-IL-6 mAb,
siltuximab, when used clinically to treat advanced solid
malignancies, had been proven to be well-tolerated but
without objective responses (93). STAT3 is a transcription
factor downstream of IL-6 that indirectly induces EMT. A
next-generation antisense oligonucleotide (ASO), termed
AZD9150, displayed antitumor activity in lung cancer models
and a phase I dose-escalation study involving patients with
refractory NSCLC (94). Additional clinical trial with OPB-
51602, a small-molecule STAT3-specific inhibitor, indicated
most salient anticancer activity in NSCLC. Given its long
half-life and poorer tolerability under continuous dosing,
further research is warranted to exploit less frequent dosing
schedule (95).

Regulation of miRNAs and Epigenetics
MiRNAs regulate the EMT process by exciting or undermining
EMT-related molecules. Even though a wealth of details is
increasingly being recognized between miRNAs and EMT,
to date, none of the EMT-associated miRNAs have been
applied in clinical utility (44). With expanding knowledge
of therapeutic miRNAs in recent years, it is legitimate
to say that further work should concentrate on devising
miRNA-targeting drugs as a strategy in cancer treatment (96,
97). Apart from the alterations in the genetic landscape,
HDACs mediate epigenetic changes during EMT (98). This
conceptual advance prompts HDAC inhibitors to translate to
the clinic. Of 42 patients with NSCLC and head-and-neck
cancer, incorporating an oral pan-HDAC inhibitor, termed as
panobinostat (LBH589) with erlotinib potentiated the antitumor
effect in a phase I trial (99). In combination with standard
erlotinib, romidepsin achieved intriguing clinical activity in
populations with NSCLC who did not respond well to EGFR-TKI
monotherapy (100).

Targeting CSCs
Cancer cells gain stem cell-like properties and present a
picture of phenotypic diversity, partly brought out by EMT.
For this reason, targeting EMT program offers a new ray

of hope to eliminate CSCs and improve CSC-based therapy
(6). The critical attributes of CSCs — stemness and EMT,
contribute to the onset of resistance to therapeutic intervention
(101). Cumulatively, treatment strategies operating to direct
against CSCs include therapy targeting CSC-dependent signaling
pathways, developing anti-EMT approaches and manipulating
the tumor microenvironment (6, 51, 54). First, targeting CSCs
via modification of CSC signaling, such as Notch, Hh, Wnt
cascade, holds great promise of propelling the clinical update
in cancer treatment (32). Second, CSC-targeted therapy can
also be accomplished by thwarting EMT-related signaling
pathways, given its interconnection with CSC biology (6).
Finally, targeting the TME is an alternative possibility in
the case of CSCs. As stated, diverse signals within TME
can trigger the activation of EMT and entrance cancer
cells into the CSC state, thus reducing the vulnerability to
targeted agents (51, 54). Furthermore, therapeutic functions of
miRNAs are coming into prominence for their multifaceted
biology to control EMT and EMT-induced CSCs (102). Over
the past few years, a renewed interest in immunotherapy
for NSCLC treatment conduces to accelerate progress in
targeting CSCs with immunotherapeutic methods (103). This
knowledge necessitates rigorous clarification of the cellular and
molecular mechanisms behind it to produce a durable response
to therapy.

CONCLUSIONS

EGFR as a therapeutic target, its role in patients with EGFR-
mutant NSCLC is of the essence. Unfortunately, therapeutic
susceptibility to EGFR-TKIs is affected by drug resistance
(104). With a growing understanding of EMT, the research
scope on it is expanding continuously. Most intriguing is
how the EMT program gives birth to acquired resistance
to EGFR-TKI-based treatment regimes. As argued above,
EMT is a kind of highly sophisticated nonlinear dynamic
process, which strongly linked with therapeutic responses,
stated differently, crosstalk between aforementioned signaling
pathways, subjected to genetic and epigenetic modifications,
ultimately leading to resistance against anticancer therapy. The
complexity and versatility of regulatory mechanisms exceed the
expectation, bringing obvious challenges to devise anticancer
therapies for clinical use. Another issue is to obtain a solid
understanding of EMT-CSC link whereby we can strike at the
root of evil (6).

Ongoing studies focusing on EMT make it lie at the heart of
drug resistance in oncotherapy. Still, clinical practicable strategies
to overcome resistance and improve survival are limited. Given
that EMT is a highly regulated process in contextual settings
and tightly associated with CSCs, from a therapeutic standpoint,
a thorough grasp of mechanism basis is the determinant and
first step in the long road fraught with difficulties. Moreover,
immunotherapy opens up an attractive area of drug discovery for
exploring and treating cancer, while the definition of potential
biomarkers that correspond with treatment responses and the
development of combinatorial strategies deserve deep concern
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in the future (105, 106). The personalized, precise diagnosis
and treatment for NSCLC is currently thriving, it is safe to
say, therapeutic approaches moving from bench to bedside
to ensure optimal efficacy in cancer therapies are on the
horizon (107).
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