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Emulating an Anechoic Environment in a
Wave-Diffusive Medium through an Extended

Time-Reversal Approach
Andrea Cozza,Member

Abstract—A generalized time-reversal (TR) technique for the
generation of coherent wavefronts within complex media is
presented in this paper. Although completely general, thismethod
is primarily considered for testing purposes herein, wherean
equipment under test is submitted to a series of impinging
wavefronts with varying features. Electromagnetic compatibility,
antenna testing as well as telecommunications facilities where
complex-wavefront schemes (e.g., multi-path configurations) are
required, could benefit from the proposed approach. The main
advantages and limitations of current standard TR approaches
are reviewed in this respect, exposing their inadequacy forthis
particular context. The proposed alternative technique, named
Time-Reversal Electromagnetic Chamber (TREC) is introduced
and studied by means of a formal theoretical analysis, showing
how a reverberation chamber (RC) supporting a diffused-field
condition can be operated as a generator of deterministic
pulsed wavefronts. The TREC is demonstrated to be capable
of generating arbitrary wavefronts with a remarkable accuracy,
allowing to revisit the RC as a deterministic facility: the main
advantages of RCs and anechoic ones are merged, leading to a
new facility capable of potentially generating in real-time pulsed
wavefronts while using low input energies, without requiring
neither mechanical displacements nor any special featuresof the
sources.

Index Terms—Cavities, random media, test facilities, time-
domain measurements, dyadic Green’s functions, wave focusing,
time reversal.

I. I NTRODUCTION

T HE idea of assessing the response of an equipment
under test (EUT) to external electromagnetic radiations

is fundamentally dependent on the availability of facilities
capable of generating suitable testing scenarios in a repro-
ducible and controllable manner. The most classical example
is certainly the case of a locally-plane wave, typically assumed
to propagate within an anechoic environment to simulate a
free-space configuration. A number of solutions have been
developed in the past, giving rise to such facilities as open-
area test sites, compact ranges, TEM cells, and the like. All
of these available solutions are somehow based on efforts to
simulate an anechoic environment, a task often achieved by
means of anechoic chambers (ACs), which rely on the use of
electromagnetic absorbing materials.

Among the several reasons for choosing this type of en-
vironment is the simplicity of interpretation of the results of
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Fig. 1: A schematic representation of the two main TR
techniques currently available: (a)-(b) TR of a radiating source;
(c)-(d) selective focusing over a point scatterer by means of
the DORT approach.

a test: having made use, at least ideally, of a single plane
wave, the field scattered by the EUT, the currents induced over
its external surface or at its interior are all straightforwardly
linked to a single and well-defined external excitation.

Such an approach shows its limitations as soon as a large
number of testing configurations is required (changing direc-
tion of arrival, polarization, etc.), thus leading to the need
of complex and time-consuming mechanical displacements
of the source or of the EUT. Albeit light-weight antennas
and EUTs can be easily moved around, the case of large
EUTs such as those considered in the aerospace industry (e.g.,
satellites, airplanes) or in electromagnetic compatibility (e.g.,
vehicles) requires complex mechanical solutions. A class of
testing configurations in itself where a similar problem is ob-
served is that involving the emulation of complex propagation
environments, such as for telecommunication tests: the need
to reproduce multi-path or fading environments comes with
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expensive solutions in ACs [1], [2].
For all these reasons, reverberation chambers (RCs) have

gained a wide following even outside the electromagnetic
compatibility (EMC) community, especially for the need of
assessing the performances of telecommunication devices for
data-transmission schemes through complex environments [3].
Here, the logic of the test is turned upside-down: the testing
conditions do not require anymore moving the sources or the
EUT, since it is considered that RCs can provide a testing
scenario where a large number of plane waves propagate along
ideally all possible directions [4], [5], [6]. The well-known
price to pay for this simplification is the loss of intuitive
understanding of the undergoing physical phenomena leading
to the test results, and the important issue of having hardly
repeatable testing conditions. We acknowledge the fact that
the average testing conditions are repeatable, but the exact
configuration is actually not.

As opposed to these two scenarios, in the last few years
it has been shown that the preconceived idea of reverberating
cavities as capable of supporting only narrow-band excitations
and incoherent fields should be revisited. Time-reversal (TR)
techniques have been shown to be capable of generating
coherent wavefronts that can behave in a similar way to
anechoic environments [7], [8], [9]. The availability of such a
new way of using RCs is particularly exciting because it could
be a way of accessing the main features of RCs and ACs at the
same time, within the same facility, by taking advantage of a
high energy efficiency while being able to generate simpler and
more easily predictable wavefronts. Unfortunately, as we argue
in the next two sections, currently available TR techniques
are unsuitable for testing purposes, since they rely on a
fixed two-step procedure that does not allow straightforwardly
controlling the features of the generated wavefronts.

A more powerful technique disposing of these limitations
was introduced in [10] and experimentally validated in [8].It
is based on the use of synthetic sources, leading to a general-
ized technique for the generation of time-reversed wavefronts
whose features can be controlled in a very simple manner. In
this paper, we present a formal analysis of how the equivalence
theorem, coupled to a phase conjugation technique allows
generating arbitrary wavefronts within random propagation
media characterized by weak spatial correlation. Our theory is
first introduced for a general medium, requiring only linearity
and reciprocity, while in a second time we focus on the specific
case of a medium supporting a diffused field distribution,
e.g., an overmoded reverberation chamber. The dyadic operator
describing how a target wavefront will be modified on average
by the proposed technique is derived, and numerical examples
are provided to illustrate our results. No experimental result is
provided, since they are already available in the literature [8],
[11].

As opposed to previous works dealing with the focusing
of time-reversed waves in complex media [9], the proposed
method is not limited by the intrinsical inability of standard
TR techniques to generate arbitrary wavefronts. A major result
is the proof that reverberation chambers are not only capable of
generating wideband pulsed fields, but in a more general way
to generate in an accurate way arbitrary coherent wavefronts,

through a simple procedure. Our analysis leads to the conclu-
sion that a paradigm shift can be introduced in TR applications
when dealing with reverberation chambers (or more generally
with wave-diffusive media), since the parameters defining the
wavefront can be changed in real-time by means of standard
signal-processing techniques, thus introducing the possibility
of high-speed testing in reverberation chambers and the gen-
eration of complex, but deterministic, propagation scenarios.

II. T IME-REVERSED WAVEFRONTS

In this section we do not pretend to provide a thorough
summary of TR, nor of all of its applications. A panoramic
view of available TR applications is necessary in order to get
a better grasp of the advances proposed in this paper.

TR is fundamentally the same technique previously known
as phase conjugation, which originated in optics in the late
70’s [12], primarily intended to compensate distortions (self-
healing) in wavefronts propagating through complex media,
particularly with the aim of focusing energy towards a given
position in space. All of the applications of TR are based
on the TR symmetry of Helmholtz equation, implying an
invariance of its solutions to a change of sign in the time
variable.

TR applications typically exploit this property by coupling
it to Huygens’ principle: as depicted in Figs. 1(a)-(b), we can
define a two-step procedure where the first step involves a
source of radiation generating a diverging wavefrontrecorded
by an ideally continuous set of transducers (e.g., antennas)
deployed over a closed surfaceΣ. These transducers are
usually referred to, in the context of TR applications, as a
TR mirror (TRM) [13]. Coupling Huygens’ principle to the
TR symmetry of Helmholtz equation implies that by exciting
the transducers with the time-reversed version of the signals
received during the first phase, the TRM will generate an
ideally perfect replica of the original wavefront, but this
time converging back at the source, as a consequence of our
inverting the direction of evolution of the time variable [13].

An important step in our proposal is the passage from
the usually open media addressed when using the paradigm
we just recalled, towards bounded ones, e.g., closed cavities.
This issue was studied in several papers, e.g., [14], [15],
[16], [11], where it was shown that the presence of reflective
boundaries allows reducing the number of TRM transducers
to just a few, typically one: this number is to be compared
with the inevitably higher number of sources needed in wave-
front synthesis in free-space environments [1], [2], a direct
consequence of the spatial-sampling theorem [17]. The use of
TR signals also allows the generation of short pulses within
a reverberation chamber, which is of practical interest when
testing EUTs closely exposed to high-power radar pulses [18].

The second approach to generating TR wavefronts is the
DORT technique [19], [20]: while standard TR considers that
what will be the target of the focusing wave during the
second phase (Fig. 1(b)), needs to be a source during the
first one (Fig. 1(a)), the DORT allows avoiding the target
to be a source, whenever it behaves as apoint scatterer,
i.e., as a passive device that will respond with a spherical
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wavefront (Fig. 1(d)) to an externally excited locally plane
wave (Fig. 1(c)). The DORT may appear to have a potential
for testing applications, particularly when dealing with passive
EUTs that cannot be operated as active sources. In fact, as we
argue in the next section, the DORT could hardly be applied
for testing purposes.

The problem with all of these methods is that in the
available literature TR applications always aim at producing a
focusing wavefront at some position in space. The motivation
is never the generation of a wavefront per se: the reason why
focusing is under consideration is typically either a clearer
transmission of signal through complex media at a given
position (e.g., a receiver in sonar [21] or telecommunication
schemes [22]) or to improve imaging techniques [19], [20],
[23]. As we will argue in the next section, this is not compat-
ible with EUT testing, since EUTs are often electrically large
and present distributed scattering features rather than localized
ones.

III. TR FROM A TESTING POINT OF VIEW

Following this short discussion about current TR techniques,
one may think that it could be interesting to implement them
within RCs for at least two reasons: 1) to provide a solution
to the problem of pulsed field generation; 2) as a way of more
effectively generating high-intensity fields within a reverber-
ation chamber. Such points are apparently useful only in the
context of EMC, where the absolute intensity of the testing
wavefront is of paramount importance. As it will be shown
in the rest of this paper, the proposed generalized approach
provides a more powerful rationale for the idea of coupling
TR to reverberation chambers; as a matter of fact, a further
motivation is the ability to control the generated wavefront
without any mechanical displacement of the sources, nor any
need for complex sources.

Before passing to the advantages brought in by our method,
let us us start by looking at the shortcomings of TR from a
testing point of view. If the standard paradigm depicted in
Figs. 1(a)-(b) were used, how to generate in the first place the
diverging wavefront (first phase) that will be time-reversed in
order to be focused over the EUT? The eventual solution of
applying auxiliary sources over the EUT in order to radiate
the first-phase wavefront are bound to fail, since the standard
paradigm would require passing through the two phases we
have recalled in the previous section: hence, as soon as a new
direction of incidence is to be established, the auxiliary sources
would need to be moved over the EUT, and a new cycle of
test would start all over. This is hardly acceptable, as it would
require an increased number of manipulations with respect to
tests carried out in anechoic chambers.

A potential solution could be envisaged by recalling the
DORT paradigm (Figs. 1(c)-(d)): in this case, it would not
be possible to chose whatever direction of incidence on the
EUT, as the DORT can merely select a wavefront among the
scattering responses of the EUT. If this response is (as often
is the case) dominated by a few bright points [24], the choice
of the test wavefront will be limited to the intrinsical response
of the EUT, rather than satisfying the need to identify the
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Fig. 2: Configuration for the application of Love’s equivalence
theorem. Equivalent electric and magnetic currents are defined
over the surfaceΣ, representing the wavefrontEwf(r, t) that
would have been generated by a synthetic source contained
in the volume bounded by the surfaceΞ. These elements are
embedded into a complex mediumΩ.

responses of the EUT to a varying, but predefined, testing
wavefront.

The problem is that TR techniques in their present state
are not suitable for EUT testing: they are actually mismatched
to practical needs, as they have been designed to deal with
mainly point scatterers, rather than electrically extended ones,
as it is often the case when dealing with real-life EUTs, and
this goes without taking into account the issue of polarization,
which leads to an even more complex scenario when compared
to the scalar-wave propagation and scattering undergoing in
acoustics.

The solution to this mismatch is to shift our attention from
the idea of focusing over a point to the idea of generating
a controllable wavefront. By this last term, we consider the
ability to control all of the parameters defining a wavefront,
e.g., its time-dependence, polarization, directivity anddirec-
tion of arrival. This reflection has motivated our proposing
an alternative approach based on the use of synthetic sources
(section IV), leading to a new paradigm for TR that is not only
suitable for EMC purposes but also brings in new advantages
for any test based on submitting an EUT to impinging wave-
fronts. This approach, that we have named the Time-Reversal
Electromagnetic Chamber (TREC) was originally introduced
in [10] while the first experimental validation was proposed
in [8].

IV. A GENERALIZED TR TECHNIQUE

Our analysis takes its start from the standard two-step
approach recalled in section II. The application we envision
is peculiar in the sense that we do not consider the usual
retrieval of the wavefront generated by an elementary source,
but rather a generic wavefront. In this respect, we introduce
the functionEwf(r, t) describing the space-time dependence of
the wavefront we aim at generating, i.e., the target wavefront:
in fact, Ewf(r, t) is the diverging wavefront that would be
generated in a free-space environment, whereas the TREC will
rather be used in order to deliver, ideally,Ewf(r,−t), i.e., the
converging version of the wavefront, used to test the EUT
response in a number of potential applications. We are not
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interested in specifying the nature of the source generating the
originalEwf(r, t) wavefront, nor is it necessary: the wavefront
Ewf(r, t) can be imagined as the result of an unspecified
source, to be eventually found within a volume enclosed by the
surfaceΞ, introduced in Fig. 2. This surface will be assumed
to be spherical for simplicity, with radiusrΞ. Knowledge
of the electrical dimensionrΞ/λ provides a direct measure
of the potential directivity of the wavefronts radiated by the
source [25]. For reasons that will be clearer at the end of this
section, we will refer to this source as the synthetic source.

The divergent wavefront thus radiated during the first phase
can be regarded through the lens of Love’s equivalence
theorem [26]: by defining a closed surfaceΣ bounding the
synthetic source (see Fig. 2), the sampling of the function
Ewf(r, t) over Σ allows defining equivalent currents capable
of exactly reproducing the same space-time dependence at
any position outsideΣ itself, independently from the eventual
presence of an EUT.

Two assumptions will be introduced in order to simplify
our analysis, with no loss of generality: the first one consists
in regardingEwf(r, t) over Σ as the far-field radiation of
the synthetic source, while the second one is to assume that
Σ be a spherical surface. The rationale for requiring a far-
field radiation is twofold: first, our analysis will be greatly
simplified, thanks to the simpler relationship existing between
electric and magnetic fields, while the fact that time-reversed
wavefronts are deprived of reactive components calls for the
need to remove the reactive components off a wavefront before
comparing it to the one generated at the end of the TR
procedure, since only propagative components are conserved,
as recalled in section II. The use of far-field wavefronts allows
for a direct comparison of the target wavefront and the one
actually generated by the proposed procedure.

According to these assumptions

Hwf(r, t) =
1

ζ0
r̂ × Ewf(r, t) r ∈ Σ, (1)

whereζ0 is the free-space wave impedance andr̂ is the radial
unit vector coinciding with the outward pointing unit vector
normal toΣ, as depicted in Fig. 2. As we are dealing with
the generation of arbitrary wavefronts, and in particular pulsed
ones, a time-domain description should be the final outcome of
our analysis. Still, the intermediary steps of our analysiswill
be carried out in the frequency domain. We thus introduce
the wavefront description for the electric fieldEwf(r, ω) in
Fourier frequency domain, defined as

Ewf(r, ω) = F{Ewf(r, t)}, (2)

where F{·} is Fourier transform, with the magnetic-field
spectrum similarly defined.

The equivalent electric and magnetic currents overΣ can
thus be defined as

Je(r, ω) = J ′

e(r, ω)δ(r − rΣ) (3a)

Jm(r, ω) = J ′

m(r, ω)δ(r − rΣ), (3b)

Z V ex,iL
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Fig. 3: Equivalent models of the TRM antennas used for the
computation of the signals received during the first standard
TR phase and the field generated by them in the second phase:
(a) receiving-mode model; (b) transmission-mode model.

with

J ′

e(r, ω) = −Ewf(r, ω)

ζ0
(4a)

J ′

m(r, ω) = Ewf(r, ω)× r̂. (4b)

where rΣ is a vector spanning the surfaceΣ and δ(r) is
Dirac’s delta distribution.

Given the distributions of electric and magnetic currents,the
electric fieldE(r, ω) they generate at any position within a
propagation medium can be expressed by means of its dyadic
Green’s functions as

E(r, ω) =

∫

Σ

G̃ee(r, r
′, ω) · J ′

e(r
′, ω)d2r′+

∫

Σ

G̃em(r, r
′, ω) · J ′

m(r′, ω)d2r′.

(5)

where the two dyadic functionsG̃ee(r, r
′, ω) and

G̃em(r, r
′, ω) refer to the Green’s functions relating,

respectively, electric and magnetic currents to the electric
field.

The configuration depicted in Fig. 2 presents TRM antennas
assimilable to elementary dipoles, positioned atri and ori-
ented alonĝqi. These antennas will be operated in receiving
and transmitting mode and can thus be described by means of
the equivalent models shown in Fig. 3. In this framework, the
electric fieldE(ri, ω) related to the wavefront will eventually
couple with them, leading to an output voltageVi(ω)

Vi(ω) =
ZL(ω)

ZL(ω) + Zin(ω)
E(ri, ω) · he,i(ω), (6)

where he,i(ω) is the vector effective height of the TRM
antennas

he,i(ω) = he(ω)q̂i, (7)

having assumed all of the antennas to have an identical
effective heighthe(ω).

As recalled in section II, TR applications require the output
signals Vi(ω) to be time-reversed, or phase-conjugated in
the frequency domain, and subsequently applied to the TRM



5

antennas. The TR of theVi(ω) output signals would naturally
require considering a delayT representing the duration of the
first phase during which the output signals are recorded. This
delay will be neglected in the rest of the paper, as it only leads
to a phase-shift term shared by all of the output signals, with
no impact on the results.

During the second phase of TR, the TRM antennas will be
excited by means of the signalsVex,i(ω) = V̄i(ω), where the
overhead bar stands for phase conjugation. According to the
equivalent model in Fig. 3(b), the antennas will be driven by
a currentIi(ω)

Ii(ω) = − Vex,i(ω)

Zg(ω) + Zin(ω)
, (8)

leading to an equivalent electric-current density

J i(ri, ω) = Ii(ω)he(ω)δ(r − ri). (9)

The electric field thus generated by each TRM antenna
during the emission phase can be expressed as

ETR,i(r, ω) =

∫

Ω

G̃ee(r, r
′, ω) · J i(r

′, ω)d3r′

= he(ω)Ii(ω)G̃ee(r, ri, ω) · q̂i.

(10)

In order to simplify our notations, we introduce the electric
and magnetic vector transfer functions

N e,i(r, ω) = G̃ee(r, ri, ω) · q̂i (11a)

Nm,i(r, ω) = G̃em(r, ri, ω) · q̂i, (11b)

relating the electric or magnetic field observed at a generic
position r to the signals applied to the input port of the
i-th TRM antenna. They have units ofΩm−2 and m−2,
respectively.

Inserting (5)-(8) into (10), and making use of (11), yields

ETR,i(r, ω) =

− C(ω)

{
∫

Σ

Ne,i(r, ω)N̄e,i(r
′, ω) · J̄ ′

e(r
′, ω)d2r′

+

∫

Σ

N e,i(r, ω)N̄m,i(r
′, ω) · J̄ ′

m(r′, ω)d2r′
}

, (12)

having exploited the spatial reciprocity of Green’s functions,
and thus of the vector transfer functions (11). The quantity
C(ω) in (12) takes care of the electrical parameters of the
TRM antennas

C(ω) =
|he(ω)|2

Zg(ω) + Zin(ω)

Z̄L(ω)

Z̄L(ω) + Z̄in(ω)
. (13)

It is noteworthy that the doublets of vector transfer functions
under the integral signs are dyadic functions. Equivalent
currents (4) can now be inserted, leading to

ETR,i(r, ω) =
1

ζ0

∫

Σ

Ne,i(r, ω)N̄e,i(r
′, ω) · Ēwf(r

′, ω)d2r′+

−
∫

Σ

N e,i(r, ω) r̂
′ × N̄m,i(r

′, ω) · Ēwf(r
′, ω)d2r′.

(14)

having assumed excitation signalsVex,i(ω) = V̄i(ω)/C(ω).
This last result allows linking the space-time description

of the target wavefront to the one actually generated after

TR excitations are applied to the TRM antennas. Since we
are interested in wave-diffusive media, the vector transfer
functions (11) will be considered as random functions in
section VI. The self-averaging property of TR [27], [28]
implies that the wavefronts generated by a TREC converge
towards their ensemble average, independently from the ran-
dom realizations of Green’s dyadic functions. This issue is
discussed in Appendix B.

Hence, we introduce the average dyadic responses

T̃ ee,i(r, r
′, ω) = E

[

N e,i(r, ω)N̄ e,i(r
′, ω)

]

(15a)

T̃ em,i(r, r
′, ω) =

E
[

Ne,i(r, ω)(r̂
′ × N̄m,i(r

′, ω))
]

(15b)

T̃ i(r, r
′, ω) =

1

ζ0
T̃ ee,i(r, r

′, ω)− T̃ em,i(r, r
′, ω), (15c)

with E [·] the ensemble-average operator. These functions are
directly related to the autocorrelation functions of the generic
random processN(r, ω) and are anisotropic. Finally, (14)
gives place to

E [ETR,i(r, ω)] =

∫

Σ

T̃ i(r, r
′, ω) · Ēwf(r

′, ω)d2r′, (16)

requiring no assumption on the nature of the medium, nor
on the type of wavefront distribution, apart the simplifying
assumption of a far-field configuration.

The possibility of obtaining an accurate transmission
through a complex medium is feasible in the special case of
a diffusive medium, which is characterized by a low spatial-
correlation, thus ensuring an equivalent Green’s functionclose
to that of a free-space environment (see section VI). The
fundamental point that we want to stress here is that the
application of a TR approach allows reproducing a behavior
that is actually closer to a free-space environment, but within
a complex medium supporting a diffused-field configuration.
This idea is illustrated in section VIII.

The far-field assumption was introduced as a way of simpli-
fying the derivation of the above results, but the equivalence
theorem is not affected by the region of radiation of a source,
and will stay exact even in its reactive region, even though only
the propagative part of the target wavefront will be reproduced,
thus leading to the inevitable diffraction limit in the focus
region [29].

V. A PARADIGM SHIFT FORTR APPLICATIONS

The derivation of (16) implies that as soon as the dyadic
Green’s functions of the medium are known between the
points overΣ and the positions of the TRM antennas, a direct
relationship can be promptly established between the target
wavefront distribution and the one generated by the TREC.

Moreover, the derivation leading to (16) paves the way
for a change of paradigm in the use of TR techniques:
indeed, as soon as the vector transfer functionsNe,i(r, ω)
andN r,i(r, ω) are known, it is no more necessary to undergo
the two standard phases of TR. The signalsVi(ω) that would
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Fig. 4: Sequences of necessary steps to follow when using an
(a) anechoic test environment or a (b) TREC. Shaded blocks
represent operations based on mechanical displacements or
substitution of devices.

result from the recording phase (or first phase) can be straight-
forwardly computed for any target wavefront without needing
its actually being radiated, since

Vi(ω) ∝
∫

Σ

N eq,i(r, ω) ·Ewf(r, ω)d
2r, (17)

with

N eq,i(r, ω) = −Ne,i(r, ω)

ζ0
+ r̂ ×Nm,i(r, ω), (18)

leading to a direct synthesis of the excitation signals for the
second phase.

This simple modification has deep consequences: as a matter
of fact, the standard implementation of TR techniques implies
that each time that a new converging wavefront is to be
generated, the diverging version of the same wavefront needs
to be generated by an actual source during the first phase.
Furthermore, as the characteristics of the wavefront change,
e.g., the direction of arrival or the polarization, the firstphase
is to be carried out again. This is clearly a strong limitation
when proposing TR for testing applications, since as soon as
a wide range of configurations is to be tested, the repetitionof
the two phases would be too costly. Moreover, the question of
how to generate the diverging wavefront in the first place is far
from trivial. The paradigm shift we propose solves all of these

problems in a elegant and simple way. In fact, a preliminary
characterization orlearning phase can be considered during
which the propagation medium is explored, proceeding to
a direct measurement ofN eq,i(r, ω) without any need to
formulate any hypothesis on its nature. At this point, the
signals that would have been received for any wavefront can
be directly computed by means of (17).

The use of (17) implies that once a physical target wavefront
is defined, the excitation signals needed to apply to the TRM
antennas are readily available, even though the generationof
this same wavefront could prove to be difficult when using
real-life sources. It is therefore appropriate to refer to the time-
reversed wavefronts provided by (17) as generated by synthetic
sources. The approach here proposed is somewhat reminiscent
of synthetic aperture radar techniques, where post-processing
techniques allow to emulate the availability of a source that
would be practically unfeasible, while its emulation is actually
quite straightforward. The difference is that although the
synthetic source does not radiate in the first place, its TR
wavefront is actually generated, not only computed in a post-
processing fashion.

The advantages of this approach are clear: passing from
one wavefront to another just involves the synthesis of new
excitation signals, without any need for further measurements,
as long as the propagation medium has not undergone any
modification, e.g., due to mechanical displacements of the
EUT. Moreover, the linearity of the propagation of waves
within the medium implies that superposition of effects holds:
as a consequence, it is possible to conceive complex test
scenarios where multiple wavefronts can be generated to
impinge onto the EUT from different directions, with any type
of time-dependence associated to each individual wavefront.
The generation of similar scenarios by means of state-of-the-
art facilities would involve a sophisticated system to feedthe
antennas associated to each direction of arrival and control
their orientations [1]. As opposed to this need, the TREC is
theoretically capable of generating arbitrary wavefrontswith a
reduced number of antennas, typically just one, by exploiting
the weak spatial correlation of the wave-diffusive media [30].

From a practical point of view, this approach allows dramat-
ically reducing the time needed for generating a new converg-
ing wavefront, as the only steps needed are the computation
of the excitation signals and their direct digital synthesis.
A flow-chart representation of the sequence of operations
needed when testing with a standard anechoic chamber or a
TREC based on an overmoded cavity is proposed in Fig. 4,
where it is made clear that the modification of the testing
wavefront does not require any physical modification of the
test environment, but only changing excitation signals. Rather
than repeating mechanical displacements each time that a
new test configuration is required, these are relegated to the
learning phase, before starting a cycle of uninterrupted tests.

The entire procedure here suggested relies on previous
knowledge of theN eq,i(r, ω) functions. A detailed discussion
of this issue is out of the scope of this paper, and it was
partially considered in [8].
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VI. T HE CASE OF A WAVE-DIFFUSIVE MEDIUM

In this section we address the special case of an ideal wave-
diffusive medium. By this term we consider any medium,
not necessarily homogeneous, whose Green’s functions can be
approximated by means of a superposition of a large number of
random plane waves propagating with equal probability along
any direction [31], ensuring very simple statistical properties
for the field: a Gaussian-distributed field with spatial-invariant
moments and a perfect depolarization. Among the several con-
figurations where this property can be invoked, large cavities
such as reverberation chambers are perhaps the simplest way
of implementing it, as soon as an overmoded condition is
satisfied [32], [33].

The hypothesis of perfect diffusion and thus a random
plane-wave spectrum are actually the basis for the asymptotic
analysis of reverberation chambers, as proposed, e.g., in [4].
As a direct consequence of spatial stationarity,T̃ i(r, r

′, ω)
are independent from the position of the TRM antennas and
their orientation, so that it is possible to drop thei index and
consider the average responseT̃ (r, r′, ω) of the TREC.

In order to derive a closed-form expression for the dyadic
operatorT̃ (r, r′, ω), we expand the vector transfer functions
(11) over the local reference system depicted in Fig. 5, defined
by of a longitudinal unit vector̂ρ = d/‖d‖, whered = r′−r,
a transversal unit vector̂ν lying on the plane defined by the
vectorsr andr′ and a third unit vector̂η = ρ̂× ν̂.

The dyadic operators introduced in (15), e.g., for the case of
the T̃ ee(r, r

′, ω) dyadic function, can thus be expressed into
this new basis, yielding scalar components

(

T̃ ee

)

ûmûn

(r, r′, ω) =

E
[

ûm ·N e(r, ω) ûn · N̄ e(r
′, ω)

]

,
(19)

where ûm is any of the basis unit vectorŝρ, η̂ and ν̂.
Recalling that the vector functionsN(r, ω) are generic trans-
fer functions observed within a diffusive medium, the scalar
terms (19) actually represent the covariances between the
scalar components of two transfer functions evaluated at two
positions within the medium. Hence, the results presented
in [34] apply, leading to

(

T̃ ee

)

ρ̂ρ̂

(r, r′, ω) =
N2

e,av(ω)

3
ρl(d, ω) (20a)

(

T̃ ee

)

ν̂ν̂

(r, r′, ω) =
N2

e,av(ω)

3
ρt(d, ω) (20b)

(

T̃ ee

)

η̂η̂

(r, r′, ω) =
(

T̃ ee

)

ν̂ν̂

(r, r′, ω), (20c)

results that hold for any wave-diffusive medium.
In (20), Ne,av(ω)/

√
3 is the rms amplitude of the electric

field observed along any of its scalar components within
the region of space where the ideal diffused-field conditions
hold [35]; this quantity is derived in Appendix A. The func-
tionsρt(d, ω) andρl(d, ω) are spatial correlation functions, so
they only depend on the distanced = |r − r′|.

Apart for the three scalar components shown in (20), the
remaining ones are identically null, as demonstrated in [34].
The two spatial-correlation functionsρl(d, ω) and ρt(d, ω)

r

d

r’

r’

r
h

n

O

^

^

^
^

Fig. 5: The local reference system based on the orientation
of the r and r′ vectors, defined by the right-hand set of
unit vectorsν̂, η̂ and ρ̂. This choice is at the basis of the
results derived for the case of a wave-diffusive medium, e.g.,
an overmoded reverberation chamber.

refer to the longitudinal the transversal components of the
electric field, respectively. These functions are [34]

ρl(d, ω) =
3

(kd)2
[sinc(kd)− cos(kd)] (21a)

ρt(d, ω) =
3

2
sinc(kd)− 1

2
ρl(d, ω), (21b)

with k = ω/c0 the wave-number andc0 the speed of light in
the homogeneous medium filling the cavity.

In dyadic formalism,T̃ ee(r, r
′, ω) can be expressed as

T̃ ee(r, r
′, ω) =

N2
e,av(ω)

3

[

ρ̂ρ̂ρl(d, ω) + (ν̂ν̂ + η̂η̂)ρt(d, ω)
]

.
(22)

Following the same procedure for thẽT em(r, r
′, ω) dyadic

function, recalling that only the cross-transversal components
(defined with respect tôρ) of the electric and magnetic
fields are correlated [34], we can state that the only non-zero
components are

(

T̃ em

)

ν̂ν̂

(r, r′, ω) =

N2
e,av(ω)

3ζ0
ρm(d, ω)r̂′ × ν̂ · η̂ (23a)

(

T̃ em

)

ν̂ρ̂

(r, r′, ω) =

N2
e,av(ω)

3ζ0
ρm(d, ω)r̂′ × η̂ · ρ̂ (23b)

(

T̃ em

)

η̂η̂

(r, r′, ω) =
(

T̃ em

)

ν̂ν̂

(r, r′, ω), (23c)

where ρm(d, ω) is the mixed correlation function between
the cross-transveral components of the electric and magnetic
fields, given by [34]

ρm(d, ω) = −1

2
jkdρl(d, ω). (24)

Whence, the operator̃T (r, r′, ω) reads, for the case of an
ideally diffused field

T̃ (r, r′, ω) =
N2

e,av(ω)

3ζ0
ρ̃(r, r′, ω), (25)
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(a) (b)

Fig. 6: Normalized dyadic functioñρ(r, r′, ω) computed forr ∈ Σ andr′ = rΣx̂, with rΣ = 3λ: (a) real and (b) imaginary
parts. The 9 terms of the dyadic response are shown, matrix-wise, considering standard spherical unit vectors, following the
order r̂, ϑ̂ and ϕ̂, defined with respect to a polar axis vertically oriented.

with

ρ̃(r, r′, ω) = ρ̂ρ̂ρl(d, ω)− ν̂ρ̂ρm(d, ω)r̂′ × η̂ · ρ̂+
+ (ν̂ν̂ + η̂η̂)

[

ρt(d, ω)− ρm(d, ω)r̂′ × ν̂ · η̂
]

.
(26)

introducing the normalized dyadic responseρ̃(d, ω). As a
result, the real and imaginary parts of the scalar components
of this function are now bounded to one, since they correspond
to the degree of coherence of the medium [36]. The operator
ρ̃(r, r′, ω) behaves as a point-spread function (PSF).

The PSFρ̃(r, r′, ω) will be used in two frameworks: 1) by
settingr, r′ ∈ Σ, it allows assessing how a TREC-generated
wavefront is distorted with respect to the target one in the far-
field region; 2) withr′ ∈ Σ and a genericr, it provides a
direct access to the spatial evolution of a wavefront generated
by the proposed method.

VII. O N THE PSFOF THE TREC

Albeit the previous results hold for any diffusive medium,
hereafter we will assume that this medium is an overmoded
reverberation chamber, filled by a reciprocal and homogeneous
medium surrounding the EUT. The target wavefront can be
expressed, in the frequency domain, as

Ewf(r, ω) = X(ω)G(r, ω)F (r̂, ω), (27)

whereF (r̂, ω) is the radiation pattern of the synthetic source,
G(r, ω) is the far-field Green’s scalar function of the medium

G(r, ω) =
e−jk0r

4πr
(28)

andX(ω) is related to the excitation signal that would be used
to drive the synthetic source. Such a factorized representation

is made possible by the assumption ofΣ being in the far-
field region of the synthetic source. Again we stress the fact
that this choice is not a limitation, but just a simplifying
assumption. The time-domain representation ofEwf(r, t) can
thus be expressed as

Ewf(r, t) =
x(t − r/c0)

4πr
∗t F−1 {F (r̂, ω)} , (29)

where ∗t stands for the convolution integral applied to the
time variable; this result holds for anyr = rr̂ in the far-field
region of the synthetic source.

Introducing (27) into (16) while using (25) yields

E [ETR(r, t)] ∝ x(−t) ∗t F−1
{

ρ̃(r, r′, ω) ∗r′ F̄ (r̂′, ω)
}

,
(30)

where∗r′ is the pseudo-convolution integral required in (16)
and carried out overΣ. Comparing (30) with (29) it appears
that in order to have a converging version of the target
wavefront,ρ̃(r, r′, ω) should comply with the three following
points: 1) it should provide a delay going liker/c0; 2) a radial
dependence like1/r in the far-field region and 3) should not
distort the angular dependenceF (r̂, ω). The first two points
are easily verified since the functions (21) appearing in the
PSF (26) are dominated by terms going likeexp(±jk0r)/r.
As shown in the examples in section VIII, the coexistence
within the PSF of the incoming and outgoing versions of
the free-space propagator has a simple physical meaning: if
a focusing wavefront is generated, after focusing onto the
phase-center of the synthetic source, it will inevitably diverge
along the opposite direction. The only point requiring a closer
investigation is the third one, i.e., the eventual distortion of
the angular dependence, which is not easily assessable from
(16).
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To this effect, it is convenient to study the average wavefront
E [ETR(r, ω)] over the equivalent-source surfaceΣ. The fact
that the PSF̃ρ(r, r′, ω) is dependent on the distancerΣ/λ is
not due to limitations in the equivalent-source approach, but
rather because asrΣ becomes smaller, while the wavefront
in the far-field region shall not be modified, its progression
towards the focal spot will indeed lead to a modification of
the wavefront features, due to diffraction phenomena in the
focal region [29].

Therefore, the properties of the PSF̃ρ(r, r′, ω) can be
evaluated in a general manner by setting the dominant pa-
rameter rΣ/λ, i.e., deciding how close the observer will
be to the focal spot. The choice of having the equivalent-
source surface coinciding with that of the observer allows a
simpler comparison of how the radiation pattern (considered
independent of the distance) will eventually be affected bythe
PSF. An example is given in Fig. 6, where the nine components
of the PSF̃ρ(r, r′, ω) are shown for the case of vectorsr and
r′ belonging to the same surfaceΣ, where the choicerΣ = 3λ
was made. The PSF is expressed with respect to a spherical
reference system, for a point-source positioned at anr′ chosen
to be alongx̂.

Fig. 6 shows that the PSF is not perfectly isotropic, with
diagonal terms depending on the field component, and off-
diagonal terms (cross-polarization coupling) not identically
equal to zero. The weak oscillations outside the peak regions
present a zero mean-value and can be expected to lead to
a very low result after the pseudo-convolution (16), as their
overall contribution to the integral will be negligible as long as
the target pattern undergoes angular variations slower than the
pseudo-period of these oscillations. This point will be given
more room in the rest of this section and in the next one.

The six off-diagonal terms share the absence of an even-
symmetry positive-valued dominant peak, substituted by odd-
symmetry responses. The low-level oscillations present pat-
terns similar to those found in the three direct terms. Of par-
ticular interest is the fact that the coupling terms are stronger
between the two tangential componentsϑ andϕ, which could
be a source of inaccuracy in the reproduction of the target
wavefront. Still, theϑ̂ϕ̂ andϕ̂ϑ̂ terms are characterized by a
double odd-symmetry, implying that convolution with a even-
symmetric radiation pattern would result in a zero atr′, i.e.,
no coupling between theϑ andϕ components. In other words,
the original polarization should be expected to be preserved.
Examples are shown in section VIII for the radiation pattern
generated by an aperture source, where it is made clear
how the coupling is indeed very weak and negligible in
practical configurations. These results are consistent with those
presented in [37], [38], extending them to the general case of
a wavefront rather than a mere focal spot.

For the PSFρ̃(r, r′, ω) to be expected not to modify the
original radiation pattern, it should be real-valued: in any
other case, it would at least imply a phase distortion of the
wavefront. In practice the imaginary part of the PSF is much
weaker than the real part, but for two components:r̂ϑ̂ andr̂ϕ̂.
As it will be shown in the examples presented in section VIII,
the role of these two functions is to reproduce the natural
distortion of the wavefront passing from essentially spherical

(in the far-field region) to the one corresponding to the near-
field region of the synthetic source. This remark does not
involve the idea of reproducing the reactive components of
the field, as the focal region of the wavefront is usually found
in the far-field region of the TRM antennas, the actual sources
of the converging wavefront [29]. These considerations should
be clearer when compared with the numerical results presented
in section VIII.

The impact of the PSF on the angular dependence of
ETR(r, ω) can be assessed by studying the zone of maximum
correlation in the diagonal terms of the PSF. The null-to-
null width of this main lobe can be computed from (21) and
(24) and intercepts an angular resolution angleψρ that can be
expressed (in radians) in a general way as

ψρ = αρ

λ

rΣ
, (31)

where αρ can take the values0.89 or 1.45 depending on
the direction along which the angleψρ is measured, since
the examples in Fig. 6 show that the PSF does not present
a cylindrical symmetry. It is common practice in optics to
approximate the size of the PSF to about a wavelength for
the diffraction of waves propagating in free-space: we will
adopt this approximation by takingαρ ≃ 1, for the sake of
simplicity. We can expect the TREC to be capable of reliably
reproducing the target wavefront as long as the angular rateof
variation of the radiation pattern of the wavefront is not faster
than that allowed by its PSFs.

With reference to Fig. 2, the assumption of an observation
surfaceΣ in the far-field region of the synthetic source requires

rΣ
λ
> 8

(rΞ
λ

)2

, (32)

implying that given the radiusrΣ of the equivalent-source
surface, the maximum dimensions of the volumeVΞ contain-
ing the synthetic source is given an upper bound, as well as
its maximum gain [25]. A simple estimate can be derived
by recalling that for a directive source, e.g., an aperture of
maximum width2rΞ, the −3 dB angleψF of its main lobe
can be approximated by

ψF ≃ λ

2rΞ
. (33)

From (32), the maximum directivity of the synthetic source,
or the minimum width of its main lobe, is

ψF >

√

2λ

rΣ
. (34)

We can now consider that the PSF will lead to a minor
modification of the radiation pattern as long asψρ is small
enough with respect to the angular variation inF (r̂, ω), as
measured by its main lobeψF . To this end, we introduce the
quantityR

R =
ψF

ψρ

, (35)

representing the angular resolution power of the TREC. A
numerical analysis is proposed in section VIII, where the
quality of the angular dependence of the wavefront produced
by the TREC is assessed as a function ofR.
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Fig. 7: Ranges of values taken by the ratioR = ψF /ψρ,
indicating the resolution power of the TREC. This quantity
is plotted against the radius ofrΣ of the equivalent-source
surface for two cases: (a) the lightly shaded area corresponds
to a cut along the E plane of the synthetic source, i.e., for
a main lobe that is physically lower-bounded by that of a
Hertzian dipole; (b) the domain of existence of the resolution
power is extended to the more deeply-shaded area when
dealing with the H plane of a linearly polarized source, i.e.,
its azimuthal plane, where its main lobe can present any value
up to 2π radian.

The range of values taken byR can be estimated by
recalling thatψF is bounded as

ψmax > ψF >

√

2λ

rΣ
. (36)

The lower bound is actually due to the far-field assumption at
the base of the proposed analysis, leading to (34), whereas the
upper-bound comes from the fact that for a linearly polarized
source the main-lobe−3 dB angle is actually limited by a
finite value. Considering the E plane of the synthetic source,
the upper limit is given byψmax = π/2 radians for an Hertzian
dipole, whereas for the H plane it can reach upψmax = 2π
radians. Accounting for these bounds, the range of variation
of R is shown in Fig. 7, as a function of the electrical size
of the equivalent-source surfaceΣ. It appears thatR > 1.5
as long asΣ is at least one wavelength in radius. This lower
limit is actually meaningful and even conservative, since any
smaller choice would not allow the observer to be in the far-
field of even the simplest source: indeed, the basic condition
k0rΣ ≫ 1 for the far-field region must also apply, hence
requiringrΣ/λ & 1.58.

The results in Fig. 7 prove that for any far-field configu-
ration,R will always be higher than 1.5, typically closer to
2, i.e., radiation patterns will be at least twice larger than the
PSFs main lobes.

VIII. N UMERICAL RESULTS

Numerical results are here presented in order to support
our conclusions about the ability of the TREC to reproduce
arbitrary wavefronts within a wave-diffusive medium. These
have been obtained by numerically solving the convolution
integral in (16), as applied to a reference radiation pattern.

ns
^

qs

fsx

y

z

b

a

p^

Fig. 8: The synthetic source considered in the validation
presented in section VIII. It consists of an ideal rectangular
aperture of dimensionsa andb, with a uniform field distribu-
tion linearly polarized along the direction̂p.

Our choice was for a rectangular aperture, as the one shown in
Fig. 8, with sidesa andb, characterized by a uniform electric
field linearly polarized along the generic directionp̂ lying on
the aperture, radiating towards the half-space identified by r̂ ·
n̂s > 0.

Assuming an aperture initially lying on thexy plane and
its main-lobe radiating alonĝz, its radiation pattern can be
approximated in closed-form as [26]

Fwf(r̂, ω) = (1 + cosϑ)(ϑ̂ϑ̂+ ϕ̂ϕ̂) · p̂

sinc
(

π
a

λ
x̂ · r̂

)

sinc

(

π
b

λ
ŷ · r̂

)

,
(37)

while a generic orientation along the anglesϑs andϕs can be
analyzed by applying standard rotation transformations.

We first proceed by assessing how accurately the radiation
pattern is reproduced for a varying electrical distance from
the synthetic-source volume, in the frequency domain, in
section VIII-A. The existence of a focusing phenomenon
is proven, while showing up to what distance the angular
dependence dictated by target radiation pattern holds. We are
particularly interested in assessing whether distortionsof the
wavefront intervene before its reaching the focal spot, which
would imply a limitation in the accuracy of the TREC even
during the far-field propagation of the wavefront. In a second
time, section VIII-B elucidates the existence of a back-lobe
contribution, by considering the time-domain evolution ofthe
converging wavefront for a non-harmonic excitation.

A. Frequency domain : focusing

Thanks to (16) and (26), we computed the average field
distribution that would be observed over concentric surfaces
of radius0.7, 1, 3 and5 λ, for an aperture of sidesa = b = 1 λ
pointing towardsϑs = π/2, ϕs = 0 with a ŷ-polarized electric
field (see Fig. 8). The results are shown in Fig. 9, together
with the target radiation pattern, as a reference. The results are
expanded into the three spherical coordinate components, with
the target radiation pattern having no radial component (far-
field radiation). It appears that the TREC approach is indeed
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r/λ = 0.7 r/λ = 1 r/λ = 3 r/λ = 5 Target wavefront

Fig. 9: The electric field distribution of the wavefront generated by a TREC as it would be observed at several distances.
The side of incidence of the wavefront is shown, where the absolute value of the field is considered for the three spherical
components of the field, in the orderEr, Eϑ andEϕ respectively, from the top to the bottom. The target wavefront distribution
is given as a reference in the last column. All results are normalized to the peak-amplitude of theEϕ component, for each
distance.

capable of very accurately reproducing the target radiation
pattern even at very close distance, with non-negligible dis-
tortions occurring only within a one-wavelength distance from
the phase-center of the synthetic source. The polarizationis
also preserved, not only the dominant component alongϕ̂,
but also the cross-polarization̂ϑ. A substantial deformation
of the radiation pattern is observed at0.7 λ, where the PSF
component for thêϕϕ̂ contribution is clearly recognizable,
with a more elongated distribution along theϕ̂.

The back-lobe contribution appearing in Fig. 9 will be
shown in section VIII-B to result from the impinging wave
focusing through the phase-center of the synthetic-sourceand
subsequently diverging along the opposite direction.

The same type of computation was carried out over a
continuous range of distances fromλ/10 up to3 λ, limited to a
horizontal cut, along thexy plane, starting from an equivalent-
source surface atrΣ = 3λ. These results are shown in Fig. 10,
where the two spherical componentsEϕ(r, ω) andEr(r, ω)
of the electric field are shown,Eϑ(r) being identically null by
virtue of symmetry. We therefore conclude that a focusing of
the propagating energy is indeed occurring, as the electricfield
builds up converging towards the phase-center of the synthetic
source.

Two notable distances are marked in Fig. 10:rΣ = 2λ
and rΞ = λ/2. The target wavefront (far field) should only
present âϕ-oriented field, which is indeed found in the TREC-
generated wavefront, as shown in Fig. 10(a)-(b); the purityof
the polarization appears to start degrading as the wavefront
crossedrΞ, when the focusing wavefront approximate the
original field distribution found in the reactive part of the
synthetic source, i.e.,̂y-oriented, as clearly visible in the
vector representation in Fig. 11. Since the TREC, as any other

anechoic environment, can only produce propagative waves
by means of distant sources (i.e., the TRM antennas), the
diffraction limit ensues, leading to a focal spot about one
wavelength wide. The appearance of a radial component in
Fig. 10(b) is due to this phenomenon of approximation of the
original source distribution, and it becomes more evident when
looking at the total field in Fig. 10(c): the wavefront focuses
back onto the source region, with an almost uniform intensity.

The accuracy of the angular distribution of the focusing
wavefront is more easily observed in Fig. 10(d), where the
wavefront is normalized to Green’s scalar function, yield-
ing the radiation pattern to be compared to that shown in
Fig. 10(e). The comparison is very good, with the converging
wavefront accurately reproducing a constant radiation pattern
over its far-field region within a±0.2 dB range over the main
lobe. Fig. 10(d) also provides a clear picture of the focal
spot due to diffraction limit: directivity is lost, with energy
almost equally spread over all directions, and particularly with
a reduction in its increase with respect to an ideal spherical
convergence.

These results imply that the loss of directivity is not due
to an intrinsic limitation of the method, as could have been
expected from the PSF shown in the previous section. It actu-
ally appears that the PSF is effectively capable of reproducing
all the phenomena leading to wave focusing under physical
conditions, including the diffraction limitation over thenear-
field region of the synthetic source. Practically, no significant
distortion occurs over the main-lobe outside the surfaceΞ,
thus implying that there is no need to requireR ≫ 1 to avoid
distortions of the far-field distribution of the wavefront.

The generated wavefront deviates from the target one out-
side the main lobe, even in the far-field region, within a range
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Fig. 10: Numerical solution of (16) for the case of the radiation
pattern of the wideband aperture antenna described in the
body of the text and shown in Fig. 8. The evolution of the
electric field is studied over the half-plane of thexy cut along
which the time-reversed wavefront is expected to focus, for
radial distances going fromλ/10 up to 3λ: (a) Eϕ(r); (b)
Er(r); (c) ‖E(r)‖; (d) ‖E(r)/G(r)‖; (e) angular dependence
‖F (r)‖, proportional to‖Ewf(r)/G(r)‖. The outer dashed
line represents the Fraunhofer distance for the synthetic source,
whose volume is marked by the inner dashed line. All results
are normalized to the peak-value ofEϕ and expressed in dB.
Radial dashed lines represent the -3 dB and the -10 dB angles.

of values inversely related to the intensity of the field. The
reason for this phenomenon is not clear and deserves further
investigations. It could indeed be caused by the approximate
radiation pattern (37) used as target, or to intrinsical limitations
in the TREC.

B. Time domain : causality and back-lobe radiation

The results in Fig. 9 present a back-lobe radiation related
to the long-range correlation of the PSF. Its physical meaning
becomes clear when studying the PSF in the time domain.
We have considered the same case as in the previous section,
with an equivalent-source surface of radiusrΣ = 3λ, imposing
an unchanged radiation pattern over a relative bandwidth
BT /fc = 10 % around the central frequencyfc of the
wavefront excitation. All results are normalized to the central
frequency.

Following these choices, the field distribution over thexy-
cut ofΣ was computed in the time domain, yielding the results
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Fig. 11: Vector representation of the normalized electric field
E [ETR(r, ω)] /G(r, ω) shown in Fig. 10: (a) real and (b)
imaginary part. As the wavefront closes onto the focal region,
the electric field passes from the TEM configuration typical
of far-field radiation to ây-oriented configuration, reminiscent
of the original field distribution of the synthetic aperture.

shown in Fig. 12. Here, the field over thexy-cut ofΣ is shown
as an angular distribution function of the time, proving that the
back lobe is actually the time-delayed replica of the impinging
wavefront. The delayτ is equal to a normalized delayfcτ = 6,
which coincides with a free-space propagation across a sphere
of radius 3λ, since fcτ = 2rΣ/λ = 6. Causality is thus
preserved, indicating that the proposed model is capable of
correctly assessing time-domain phenomena. In particular, the
previous results dealing with the focusing of energy can be
rightly interpreted as due to a convergent wavefront, whilethe
presence of the back-lobe is necessary for the causality of the
solution yielded by (16).

A non-ideality of the TREC method is apparent in
Fig. 12(b): the wavefront emerging from the focal region
is slightly distorted for the directions away from the main
lobe. This fact corresponds to the an error in the position
of the focusing spot of aboutλ/8, a fact that leaves room
to the interpretation of these errors as due to the use of the
approximate model (37). This notwithstanding, these errors do
not affect the conclusions of our work, as the proposed method
is clearly capable of a remarkably accurate reproduction of
free-space propagation within a wave-diffusive medium.

IX. SUMMARY AND DISCUSSIONS

We reckon that at this point it is important to summarize
the main results and ideas introduced in this paper. The
concept of time-reversed wavefronts has been revisited in a
novel manner, by looking at an originally diverging wavefront
as being radiated by equivalent currents, as opposed to the
standard approach based on a physical (and often point-
like) source. This different approach allows the introduction
of synthetic sources, which can be characterized by ideal
features not easily found in real-life sources. Moreover, these
features can be changed in real-time through a simple post-
processing procedure, yielding new excitation signals to be
applied to the ports of the TRM antennas. As a result, a wave-
diffusive medium can be “converted” into an anechoic one
where deterministic wavefronts propagate as in a free-space
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Fig. 12: Time-domain results for thêϕ component of the
average field generated by a TREC, as computed over a
spherical surface of radiusrΣ = 3λ, for a relative bandwidth
BT /fc = 10 %. The signal was chosen to have a constant
spectrum overBT , i.e., to have a sine cardinal profile in
the time domain. The results refer to thexy-cut of : (a) the
converging wavefront impinging overΣ, along the negative
part of thex-axis; (b) the diverging wavefront observed on
the opposed direction.

environment; interestingly, no hypothesis is needed aboutan
eventual link between the direction of arrival of the wavefront
and the positions of the TRM antennas, thanks to the diffusive
nature of the medium.

This surprising result entirely relies on the knowledge of
Green’s functions between the equivalent-source surfaceΣ and
the TRM antennas. These data can be readily measured by
means of low-scattering probes moved overΣ, as describe
in [8]. Previous experimental validations of the TREC ap-
proach are indeed already available in the literature. In this
paper we rather aimed at providing a deeper insight into the
physics of the TREC, from a theoretical point of view, in order
to have a better understanding of its intrinsical limitations,
whence our emphasizing theoretical and numerical results.

What is most surprising is that the coupling of time-reversed
excitations to a diffusive cavity through the use of synthetic
sources allows generating any kind of wavefront, on average.
The question of how far the generated wavefront is from the
average one can be directly assessed by recalling the concept
of intrinsical SNR due to the inevitable finite number of
degrees of freedom available within the cavity. This issue was
studied in [11] and the main results are recalled in AppendixB,
where it is shown that the actual response of a TREC is very
close to its ensemble average.

The potential use of the TREC as a new kind of testing
facility clearly implies the inclusion of an EUT into the
test-volume defined byΣ. It goes without saying that the
presence of the EUT can have a dramatic impact on the
Green’s functions that would be observed with and without
the EUT. As a result, the EUT needs to be present during the
characterization phase yielding theN eq,i(r, r

′, ω) functions.
Without entering into details, the presence of an EUT could
impact the resulting wavefront at two levels: 1) by modifying
the wavefront radiated by the equivalent currents; 2) by modi-
fying the Green’s functions within the cavity. The first point is
actually not a real issue, since the equivalence theorem ensures
that the use of electric and magnetic currents implies that only
an outwards radiation (first phase) would take place, thus not
interacting with the EUT found withinΣ. As a result, the
average wavefront generated by the TREC should be expected
to be the same with and without an EUT, as long as the diffuse-
field assumption holds, thanks to the self-averaging property
of time reversal [27]. This point is fundamental if the TREC is
to be used as a testing facility, since a reproducible wavefront
independent of the EUT position, orientation and nature is a
necessary condition for any metrology application.

A crucial issue is the question of the energy efficiency of
the proposed procedure. We have not considered this point in
the context of this paper, but it had already received attention
in a previous work [39], where it was shown that the TREC
also improves the ability to generate high-intensity peaks
of electromagnetic power by a factor easily exceeding one
hundred, with respect to standard harmonic excitations in an
RC.

From a practical point of view, the simplifying assumptions
used throughout the paper should be taken for what they are,
i.e., not requirements, but just simplifications. For example,
whenever the equivalent-current surface is not in the far-
field region of the synthetic source, the TREC will reproduce
the propagative part of the radiation pattern, filtering out
the reactive part; the often dispersive response of electronic
devices and antennas can be compensated when synthesizing
the excitation signals; the average coupling between the TRM
antennas can be kept as low as needed since they are operated
in a wave-diffusive medium, i.e., with a weak spatial correla-
tion.

X. CONCLUSIONS

In this paper we have investigated the potential advantages
of applying TR techniques to tests based on the use of prede-
fined wavefronts. Having found that these are not straightfor-
wardly suitable for this purpose, an alternative approach,the
TREC, has been introduced. A theoretical analysis has proved
how the TREC enables a number of once held impossible
features in a reverberation chamber, namely the generationof
short-pulsed fields and a detailed control of the parameters
of wavefronts. More specifically, the use of TR leads to an
equivalent Green’s function that appears to be very close to
that of a free-space environment. The TREC is hence capable
of recreating within a reverberation chamber the necessary
conditions for the arbitrary generation of wavefronts.
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As a result, it was shown that the TREC allows the definition
of a testing environment sharing the advantages of anechoic
and reverberation chambers, namely the possibility of knowing
exactly the type of EM wavefront (polarization, direction of
arrival, time-dependence) testing the EUT response, while
maintaining the high energetic efficiency of reverberation
chambers. Furthermore, it was shown that the test wavefront
can be ideally steered in real-time, without requiring any
mechanical displacement of the antennas. The use of fast-
steered deterministic test wavefronts could lead to fasterR&D
cycles, giving a clearer information about the response of an
EUT to impinging wavefronts.

APPENDIX A
RMS VALUE OF THE N (r, ω) TRANSFER FUNCTIONS FOR A

DIFFUSIVE REVERBERATION CHAMBER

Following the conventions introduced in section VI, the field
radiated by a TRM antenna is given by

E(r, ω) = N e(r, ω)
Vex(ω)

Zant(ω)
he(ω). (38)

Assuming a purely resistive input impedance for the anten-
nas and a perfectly matched generator leads to

‖E(r, ω)‖2
Pav(ω)

=
4|he(ω)|2
Zant(ω)

‖N e(r, ω)‖2, (39)

with Pav(ω) the available power of the generator. Computing
the ensemble average of (39) and recalling the uniformity
property for the electric field in a diffusive cavity yields

N2
e,av(ω) = E

[

‖N e(r, ω)‖2
]

=
Zant(ω)

4|he(ω)|2
E
[‖E(r, ω)‖2

Pav(ω)

]

,
(40)

thus showing howN2
e,av(ω) is related to the average energy

efficiency of the cavityE
[

‖E(r, ω)‖2/Pav(ω)
]

through the
electrical parameters of the TRM antenna. For the special
case of a reverberation chamber, the energy efficiency can be
estimated in a straightforward manner as [35]

E
[‖E(r, ω)‖2

Pav(ω)

]

=
4ζ0
π

Q(ω)λ

V
. (41)

whereQ(ω) is the average composite quality factor of the
cavity, V is the volume of the medium filling it andλ
the average wavelength corresponding to the frequency of
excitation of the cavity. This result is straightforwardlylinked
to the variance of any Cartesian component of the electric field
and the covariance of orthogonal components of the electric
and magnetic field as

E
[

|ûm ·N e(r, ω)|2
]

=
N2

e,av(ω)

3
(42a)

E
[

ûm ·N e(r, ω) ûn · N̄m(r, ω)
]

=
N2

e,av(ω)

3ζ0
,(42b)

with ûm · ûn = 0. The above result relies on the average
isotropy of the electric and magnetic fields in a diffusive cavity.

APPENDIX B
FLUCTUATIONS IN TIME-REVERSED WAVEFRONTS

The reason why the results presented in this paper always
deal with ensemble averages is the self-averaging property
typical of non-harmonic TR applications [27], [28]. This
property is inherited by the fact that for a finite bandwidth
BT of excitation, the coherent excitation of a complex medium
implies an average overBT , that can be shown to approximate
an ensemble average.

For the special case of bounded media with low losses, it
has been shown that time-reversed signals are affected by a
residual error in the transmission through the medium, due
to the physical impossibility of efficiently transmitting certain
spectral components in a steady-state configuration. As soon as
frequency-selective media are considered, this residual error,
intrinsical to the very procedure of time-reversal transmissions,
can be assimilated to a background noise, or intrinsical noise.
Its rms intensity can be straightforwardly linked to a few
parameters, such as the average composite quality factorQ(fc)
evaluated at the central frequency and the fractional bandwidth
BT /fc [11]. By defining the intrinsical SNRΛp as the ratio
between the peak instantaneous power of the coherent part
of the time-reversed signal and the rms power of the residual
noise, it can be proven that

Λp = Λ
Q(fc)κ

2

π

BT

fc
, (43)

whereΛ is the energy SNR, which can be shown to be close
to one for a diffusive medium [11], whileκ is the ratio of
the real part of the average ofX(ω) over its rms value, both
defined over the bandwidthBT .

Assuming the residual error to behave as a normally-
distributed random variable, its rms amplitude coincides with
its standard deviationσn. The confidence interval within which
the fluctuations are expected to be found with a probability of,
e.g., 95 %, is thus simply given by the interval±2σn, resulting
in a relative confidence margin around the peak value of the
transmitted signal

∆E

E
=

2
√

Λp

=
2

κ

√

πfc
Q(fc)BT

. (44)

As a practical example, let us consider a moderately res-
onant cavity withQ = 5 · 104, BT /fc = 5 % and a sine
cardinal signal excitation, i.e.,κ = 1, yielding a range of
fluctuations of about±7 %, with a confidence of 95 %. Such
a low level of deviations is the reason why having access to a
model of the average response is indeed representative of the
actual response observed for a specific configuration.
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