
Emulating cellular automata in chemical reaction–diffusion

networks

Dominic Scalise1 • Rebecca Schulman1,2

� Springer Science+Business Media Dordrecht 2015

Abstract Chemical reactions and diffusion can produce a

wide variety of static or transient spatial patterns in the

concentrations of chemical species. Little is known, how-

ever, about what dynamical patterns of concentrations can be

reliably programmed into such reaction–diffusion systems.

Here we show that given simple, periodic inputs, chemical

reactions and diffusion can reliably emulate the dynamics of

a deterministic cellular automaton, and can therefore be

programmed to produce a wide range of complex, discrete

dynamics. We describe a modular reaction–diffusion pro-

gram that orchestrates each of the fundamental operations of

a cellular automaton: storage of cell state, communication

between neighboring cells, and calculation of cells’ subse-

quent states. Starting from a pattern that encodes an

automaton’s initial state, the concentration of a ‘‘state’’

species evolves in space and time according to the automa-

ton’s specified rules. To show that the reaction–diffusion

program we describe produces the target dynamics, we

simulate the reaction–diffusion network for two simple one-

dimensional cellular automata using coupled partial differ-

ential equations. Reaction–diffusion based cellular automata

could potentially be built in vitro using networks of DNA

molecules that interact via branch migration processes and

could in principle perform universal computation, storing

their state as a pattern ofmolecular concentrations, or deliver

spatiotemporal instructions encoded in concentrations to

direct the behavior of intelligent materials.

Keywords Reaction–diffusion � Cellular automata �

DNA strand displacement � Chemical reaction network �
Intelligent materials � Molecular programming �

Programmable matter � Distributed computation

1 Introduction

A fundamental question in materials design is how we

might program materials to sense and respond to dynamic

signals across time and space. Biological materials rou-

tinely exhibit this capacity, as cells and tissues sense and

respond to a complex array of spatial and temporal cues.

For example, during chemotaxis, many cells can detect

gradients of chemoattractants and move in the direction of

increasing chemoattractant concentration. In a mechanism

like chemotaxis (Murray 2003; Greenfield et al. 2009;

Baker et al. 2006), cells use spatiotemporal chemical

reaction networks to process information collected by

distributed chemical sensors to decide on and execute

responses to changing environmental conditions. In this

paper we discuss the design of analogous synthetic chem-

ical reaction networks that have robust, programmable

spatiotemporal dynamics. The ability to engineer such

systems could have wide-ranging applications for the

design of smart, responsive, programmable materials.

To design a generic set of mechanisms that can process

a wide range of input signals and invoke a wide range of

responses, we consider a framework for distributed spatial

computation that has been studied extensively—the cellu-

lar automaton (Fig. 1). A cellular automaton (CA) is a

model of computation consisting of a rectangular lattice of
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domains, or ‘cells’. At a given time a cell can be in one of a

finite number of states, such as an on or off. In a syn-

chronous CA, cells update their state once per time step

based on their current state and the current states of a finite

set of nearby cells. Although each cell update is relatively

simple, groups of cells can together perform elaborate

spatial computation. CA can execute any computable

algorithm, a trait known as universal computation (Gács

2001; Gács and Reif 1988; Cook 2004; Neary and Woods

2006). Specific automata also exist that can programmably

construct any structure (Neumann and Burks 1966; Codd

1968), self-replicate (Neumann and Burks 1966), (Codd

1968; Langton 1984), mutate and evolve (Sayama 1999).

CA have previously been implemented in DNA tile

assemblies (Rothemund et al. 2004; Fujibayashi et al.

2007), and it has further been suggested that it may be

possible to implement CA with reactions tethered to the

surface of DNA origami (Qian and Winfree 2014). In the

case of DNA tile assembly, cell states are stored in

molecular building blocks (i.e. tiles) whose preference for

stably binding to other tiles with matching two-input

binding sites facilitates each step of the cellular automa-

ton’s computation, forming a growing array that stores the

entire history of the computation.

In this paper we propose a strategy for building syn-

chronous CA using chemical reaction–diffusion networks.

We begin by breaking down CA into their fundamental

operations: storage of cell states, communication between

nearby cells, and calculation of new cell states. We

demonstrate how existing chemical computing mechanisms

could implement these operations. We then combine these

chemical mechanisms to emulate two specific automata,

known as ‘Rule 110’ and ‘Rule 60’. These chemical CA

can be viewed as a proof of concept that synthetic materials

could sense signals across space and time and execute a

broad class of dynamic programmed responses.

2 Background: reaction–diffusion processes

for computation

Reaction–diffusion (RD) networks are sets of chemically

reactive species that diffuse within a continuous substrate.

In contrast to a well-mixed chemical reaction system,

reaction–diffusion (RD) networks can produce spatial

patterns, where some species are more abundant in some

parts of the substrate and less abundant in others. The

interplay of reactions and diffusion can lead to sustained

spatial patterns and even the emergence of patterns from a

homogeneous initial substrate which experiences transient

concentration fluctuations (Turing 1952). Transient waves

within reaction–diffusion patterns can also generate Turing

patterns or perform basic computations (Tóth and

Showalter 1995; Steinbock et al. 1996; Bánsági et al.

2011).

Recently it has been shown that arbitrary chemical

reaction networks can be readily designed and imple-

mented in vitro using short strands of synthetic DNA

(Soloveichik et al. 2010; Chen et al. 2013). Because DNA

binding under many conditions is largely determined by the

Watson–Crick sequence complementarity (A-T, G-C),

reactive species can be designed to minimize unintended
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Fig. 1 A cellular automaton consists of a lattice of cells. At a given

time, each cell is in one of a finite number of states, shown by color

(blue or white). Cell states change over time as the result of the

application of local rules—finite functions that take as inputs the

states of the current cell and a finite set of neighbors and produce the

cells’ new state as output. Here we consider a one-dimensional

automaton where each cell is either on or off, and where update rules

take the cell’s own state and those of its left and right neighbors as

inputs. a An example rule set. b Example dynamics for the rule set in

(a). c Schematic of the chemical reaction–diffusion cellular

automaton described in this paper. A one-dimensional channel

contains cells separated by spacers. The state in each cell is encoded

by either a high or low concentration of a ‘state’ species within that

cell. Spacers between cells, which do not contain any state

information, are shown in black. During the computation, the

program and state species react and diffuse. This reaction–diffusion

process maintains and updates cell state according to the rules of the

desired cellular automaton. d Target dynamics of the state species for

the example cellular automaton rule in (a)
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crosstalk between species that should not interact. These

techniques separate the design of new reaction networks

from the discovery of naturally occurring chemicals that

perform the intended reactions. In support of this idea,

large reaction networks involving up to 130 different

sequences of DNA have been demonstrated in vitro without

substantial crosstalk (Qian and Winfree 2011), and have

been used to implement Boolean logic (Qian and Winfree

2011; Seelig et al. 2006; Qian and Winfree 2011). Further,

the rates of the emulated reactions can be controlled (Chen

et al. 2013).

It also appears plausible to extend this mechanism of

DNA reaction design to the design of large reaction–dif-

fusion networks, as the diffusion rates of different DNA

strands can be programmed. Because the diffusion coeffi-

cient of DNA scales polynomially with the length of the

strand (Smith et al. 1996), the diffusion rate of each species

in a DNA reaction network can be independently tuned by

adding or removing bases from a sequence, and such

changes can be done so that the reactive propensity of a

species is largely unchanged. Further, within a polymer gel,

species attached to the gel substrate do not diffuse, but can

continue to react. Together, the capacities to design arbi-

trary chemical reactions and tune the diffusion coefficient

of each species in principle enable us to implement de novo

simple RD networks that perform pattern transformations

(Allen et al. 2012; Chirieleison et al. 2013; Dalchau et al.

2014). Here we ask how we might design an RD network

that could be implemented by DNA molecules, given what

is known about designing DNA-based reactions and dif-

fusion processes. To focus on this question, here we ignore

experimental nonidealities and the challenges of building

large molecular networks, including unintended crosstalk

between species.

By designing RD network modules that perform simple,

predictable, repeatable transformations to a pattern of

chemical concentrations, circuits of modules can be com-

bined to perform elaborate patterning operations (Scalise

and Schulman 2014). Pattern transformation modules take

specific species as inputs, perform reactions potentially

involving some intermediate species within the module,

and produce an output species (Fig. 2). Modules can be

connected together with the output of upstream modules

serving as the input to downstream modules. If these

modules are designed such that the intermediate species of

one module do not react with the intermediates of other

modules, then many modules can operate simultaneously in

the same substrate without interfering with each other.

Further, by imposing the design requirement that modules

must not significantly deplete (or ‘‘load’’) the concentra-

tions of their inputs, it is possible to ensure that a module’s

reactions affect only other modules that lie downstream

within the network (Scalise and Schulman 2014). Thus,

modules can be added one at a time to a system such that

each addition of a module results in a simple, predictable

change to the patterning process. In the case of modular

DNA strand-displacement systems, formal analysis can

help to verify the system will operate correctly (Codon

et al. 2012; Lakin et al. 2013).

Here we extend existing pattern transformation tech-

niques to emulate a discrete, synchronous, one-dimensional

CA, generating spatial patterns of chemical concentrations

with controlled dynamics. We design a network of reac-

tion–diffusion pattern transformation modules (defined in

detail in Fig. 2) in combination with a simple, static initial

pattern and an external ‘‘clock’’ signal whose concentra-

tions change periodically. This network forms the target

CA structure, and controllably transforms the state of that

structure over time. In principle, our abstract chemical

reaction–diffusion network could be translated into a DNA

strand displacement network for in vitro implementation.

One challenge in the design of pattern transformations is

that the second law of thermodynamics implies that without

the continual input of energy, purely diffusive patterns are

unstable and tend to become well mixed over time. Thus, to

prevent spatial patterns of solublemolecules fromdissipating,

reaction–diffusion networks will require a constant energy

flux. One way to achieve this flux is to develop reactions that

slowly release and degrade high-energy species. These reac-

tions produce a sustained flux of molecules in the environ-

ment, and maintain a pattern such that only sporadic

replenishment of some high-energy precursors are required to

sustain the pattern formation process. Production reactions

take the form source ! species, and continuously produce

reactants that are depleted by converting a high-energy pre-

cursor into the desired species. Degradation reactions take the

form species ! waste, and convert species that are produced

into low-energy waste to stabilize the system.We assume that

the resulting waste products are inert. In practice, the eventual

accumulation of waste products may necessitate their physi-

cal extraction from the system.

3 Anatomy of our reaction–diffusion cellular

automaton

Reaction–diffusion systems emulating a one-dimensional

CA must be able to store the current state of the system as a

tape or grid of cells and execute the update rules as a

function of the states of the cell and the cell’s left and right

neighbors (Fig. 3). For the class of CA we consider here,

the state of each cell is either on or off.

In our construction, each cell is a region of the substrate

with a static, uniformly high concentration of a particular

catalyst molecule. Catalyst molecules are attached to the

substrate, so they do not diffuse. We call these molecules

Emulating cellular automata in chemical reaction–diffusion networks
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‘keys.’ In our one-dimensional grid, cells can have one of

four different types of keys (KeyA;KeyB;KeyC and KeyD)

with key types repeating as one proceeds down the channel

so that cells can identify neighbors based on local key type

(Fig. 3a). For instance, cells defined by KeyA are always

neighbored on the right by KeyB cells, and the left by KeyD
cells. In principle it is possible to accomplish the same task

using only three keys. We chose to include a fourth key

type because with only three types, cells that are two units

apart might mistake each other for immediate neighbors if

their broadcasts reach a slightly wider area than expected.

With four key types, broadcasts would have to span three

units in order to cause an error, rather than just two. Cells

are separated by ‘spacer’ regions that do not contain keys.

Since key molecules only participate in reactions as

catalysts, it is assumed that they are not depleted over

time.1 In this paper we assume that this pattern of key

catalysts is present at the start of the reaction as a set of

initial conditions. Such a grid pattern could either be

manually patterned into the substrate by top-down tech-

niques, such as microcontact printing (Ruiza and Chen

2007) or directed hydrogel assembly (Du et al. 2008), or

generated by a separate bottom-up RD patterning program

(Scalise and Schulman 2014).

In addition to the static pattern of key catalysts, a mix of

many other freely diffusing ‘‘program’’ species is supplied

across the substrate. These program molecules interact with

the key molecules to emulate the dynamics of a CA in a

cycle of three discrete conceptual stages (Fig. 3b, c). In the

first stage, cells share their states with their neighbors and

receive the states of other neighbors. Next, cells use

information about their local state and the states of their

neighbors to determine their state at the next time step.

Finally, the calculated state is stored as the current state.

Cycles of communication, calculation of new states, and

storage of the new state in a cell’s memory emulate the

dynamics of a CA. In the construction below, we assume

the existence of a global chemical ‘‘clock’’ signal which

everywhere in space oscillates with a well-defined period

and amplitude. Such a clock would be easiest to provide

using an external system, but might also be possible using
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Fig. 2 Reaction–diffusion modules Each module is a set of simpler

modules or of abstract chemical reactions that could in principle be

emulated in vitro using a DNA strand-displacement network. In an

emulation of these reactions using DNA strand displacement

processes, species are represented as DNA strands or hybridized

complexes of strands with particular sequences. Other strands or

complexes are also required for the emulation, and act as ‘‘interme-

diates’’ in the reaction process (Soloveichik et al. 2010; Scalise and

Schulman 2014). More details on these modules and their operation

can be found in Scalise and Schulman (2014)

1 In practice, catalysts have a fixed turnover number. Reactions that

cyclically produce and degrade catalysts could enable the periodic

replacement of key catalysts (and other catalysts in the system) that

are no longer functional.
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an oscillatory chemical reaction combined with a system

that would maintain synchronization across space (Danino

et al. 2010). We included this clock because while asyn-

chronous CA can be constructed without the use of a global

clocking mechanism (Nehaniv 2004), our attempts to

design unclocked reaction–diffusion systems that emulate

CA resulted in dramatically more complex circuits com-

pared to our clocked system. We therefore begin by

assuming a clock exists in the system, and in Sect. 5 dis-

cuss how we could dispense with this requirement.

3.1 Communication: sending and receiving

addressable signals

We begin the description of a CA cycle in the Communi-

cation Stage, right after a set of cell states for the last time

step have been stably stored. At this point, each cell’s

current on/off state is represented, respectively, by the local

high or low concentration of a ‘state’ species. During the

communication stage of a computation cycle, cells must

communicate their current state to their immediate

neighbors.

Communication is managed by Broadcast and Receive

modules (Fig. 4). Each on cell broadcasts information

about its current state by producing a signal within the cell

that can diffuse away from the cell. Broadcast modules

(Fig. 2g) execute this function. In order for neighboring

cells to interpret these broadcasts as coming from the left or

right neighbor cell, these broadcasts must contain infor-

mation about which cell is sending them. The identity of

the cell broadcasting information about its state is encoded

using the key types of cells: Cells that are defined by ‘key

(b) Broadcasting Each Cell’s Own State

On cells broadcast signal,  cells do not broadcast 

(e.g. for keyA cells, keyA  + S -> keyA  + S + signal A).

(c) Receiving Neighbor States

Cells interpret broadcasts locally based on keys

(e.g. for keyA cells, keyA  + signal B -> keyA  + signal B + R,

and keyA  + signal D -> keyA  + signal D + L).

(d) Calculating Next States

A composite Boolean function f(L, S, R), executed by

the global reaction network calculates next state.

When clock goes high, calculation is stored in [state].
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 cells have low [state], on cells have high [state].

Global `clock’ is until cells compute new state, then on.

Legend:
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SignalD

Right neighbor ON
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Fig. 3 The chemical CA we describe performs three types of

operations. a The state of each cell is stored locally. b and c Cells

communicate their state to their immediate neighbor cells. d A

Boolean logic circuit calculates each cell’s next state as a function of

the cell’s own state and the state of its neighbors, and stores this new

state in (a), completing one cycle of automaton dynamics. A global

clock signal synchronizes these three operations. The clock is off for

the communication and calculation stages, and turns on to allow the

calculated new state to be stored in memory for the next cycle

[ ]
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Fig. 4 Communication stage a Using a broadcast module, each on

cell produces a gradient encoding its current state and key. Receive

modules interpret broadcasts based on the identity of their local key. b

½species� versus x for a single on A-type cell, with local ½S� ¼ high. A

broadcast module generates a stable gradient of ABroadcast that decays

with distance from KeyA. Receive modules at D-type cells interpret

ABroadcast as R, while receive modules at B-type cells interpret the

same broadcast as L. Broadcast signals below a threshold are ignored,

so cells only communicate with their neighbors
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A’ species broadcast ‘signal A’, those defined by ‘key B’

broadcast ‘signal B’, and so on. The distance that broadcast

signals propagate is controlled by the production and

degradation rates of the Broadcast module, such that a

cell’s broadcasts only reach its neighbors. Each key has its

own separate broadcast module.

The counterpart to a Broadcast module, a Receive

module (Fig. 2f), receives signals transmitted by a cell’s

neighbors and translates them into local information about

the state of a neighboring cell. This conversion is also done

in a cell-specific manner, such that each cell converts

particular broadcasts into information about particular

types of neighbors. For example, within cells defined by

KeyA, the key species catalyzes the conversion of the

broadcast signal from KeyB into a species that encodes the

right neighbor’s state as on and catalyzes the conversion of

the broadcast signal from KeyD into a species that encodes

the left neighbor’s state as on. Key species B through

D catalyze a corresponding set of reactions to produce

signals that encode whether their right and left neighbors

are on. Each conversion reaction of a broadcast to a type of

neighbor information is managed by a separate receive

module. Because there are four keys and each cell has two

neighbors, eight Receive modules are required.

Receive modules convert broadcasts into ‘‘preliminary

neighbor signals’’. These preliminary neighbor signals are

at different concentrations throughout a cell because they

are copies of the broadcast signals, which decay in con-

centration with the distance from the neighbor. To produce

uniform on/off neighbor signals throughout a cell, com-

parators (Fig. 2h) rectify preliminary neighbor signals,

producing digital ‘‘processed neighbor signals’’ whose on

levels are the same across a cell. Together, the broadcast

and receive modules ensure that after some period of

broadcasting, each cell contains species that encode its own

state and those of its neighbors.

3.2 Calculation stage: calculating new state changes

Neighbor broadcasts that are received and processed by

each cell are used to calculate the next cell state. Each

update rule can be encoded as a Boolean circuit with the

neighbors and the cell’s own state as inputs. Such circuits

can be implemented as a set of reaction–diffusion program

modules (Fig. 5). For instance, in a Rule 60 CA, a cell’s

next generation state is on if its own current state is on OR

its left-hand neighbor is on, but NOT if both of these states

are on. Because the state of the right-hand neighbor is

irrelevant, Rule 60 cells do not need to listen to their right-

hand neighbor’s broadcast. The logic for a Rule 110 local

update is performed by the sub-circuit in Fig. 5d. The

output signal produced by this circuit determines the target

state of the cell at the next time step.

3.3 Memory: storing and stably encoding a new cell

state

During the Memory stage the computed next state of the

cell is stored using a ‘‘flip-flop’’ module (Fig. 6). Flip-flops

have ‘‘set’’ and a ‘‘reset’’ input signal and one output sig-

nal. When the set input is on, the output signal also turns

on. The output remains on even after the set signal turns

off. When the reset signal turns on the output turns off, and

remains off until the set signal again turns on. This module

encodes the cell’s state, providing a persistent state signal

used by the communication and calculation stages.

The reactions that communicate a cell’s state to its

neighbors and compute its next state occur without control

over timing. Different cells (or different regions within a

cell) may take different amounts of time to compute their

new state. To ensure that all cells finish computing their

next states before any other cell commits its new state to

memory, calculated next states are not stored in memory

C
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C
O

C
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R
L

O

(b)

(d)

LAST
NEXT

(a) Rule 60

(c) Rule 110

Fig. 5 Calculation stage Every CA update rule has a corresponding

Boolean logic implementation. a Rule 60. b Rule 60 converted into

Boolean logic. c Rule 110. d Boolean logic for Rule 110

STATERESET

SET

SET RESET

STATE

FLIP

FLOP

(a) (b)

Fig. 6 The memory stage Stores cell state in a flip-flop. a A flip-flop’s

output does not change when its inputs are off. In our design, these

inputs are off when the clock is off. When the clock is on, the set

signal is on if the calculation stage outputs on, setting the flip-flop on.

The reset signal is on if the calculation stage outputs off, resetting the

flip-flop off. Memory is required so the inputs to the other stages are

not affected by the calculation of new local or neighbor states.

b Circuit for our reaction–diffusion flip-flop using modules from

Fig. 2. Copy modules ensure output is not depleted by internal

feedback or downstream load
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until a global clock signal turns on. For a given CA, the

clock period must be designed so that all cells finish

communicating and calculating before the clock signal

turns on. The next state must be committed to memory

before the clock turns off.

To ensure that calculated next states are not stored in

memory unless the clock signal is on, an AND gate takes

the clock signal and the calculated next state from the

Calculation stage as inputs, and sends a set signal to the

flip-flop module only when both the clock and the cal-

culated next state are on. Another AND gate takes the

clock signal and the inverse of the calculated next state as

inputs, and produces a reset signal when the clock is on

but the next state is off. The process of storing the new

state in memory ends when the clock signal returns to a

low value at the beginning of the next stage of

computation.

4 Simulation of a reaction–diffusion cellular

automaton

The complete automaton circuit is shown in Fig. 7. We

simulated the simultaneous mass action reaction kinetics

and diffusion for the entire system, using Rules 60 and 110

in the logic stage, and observed the intended cell updating

for both rules (Fig. 9). The complete set of chemical

reactions and the corresponding coupled partial differential

equations describing these systems are provided in Sec-

tion 8, along with all other simulation details. Concentra-

tions within ½0; 0:3� lM were considered off, while

concentrations within ½0:7; 1� lM were considered on. One

irregularity that appears in our system is that the cells have

blurred boundaries, an artifact that arises when chemical

species produced inside of a cell diffuse across the cell

boundary. This blurring effect is the reason that we

included short spacer regions to separate adjacent cells, so

that the logic inside of one cell does not interfere with the

logic inside of its neighbors.

Two important parameters can break the reaction–dif-

fusion program if not tuned carefully: the on time or ‘duty

cycle’ of the clock signal, and the kinetic rates for the

broadcast module. If the duty cycle is too short, then the

flip-flop does not have enough time to store the intended

next-generation state. In our simulations, this occurs for

duty cycles shorter than 15–20 min. Particularly long duty

cycles can also cause problems because the calculation

stage of our CA is continually active while the clock is on.

If the communication stage of a cell continues too long

after the calculation of the cell’s next state is complete, the

cell will continue to recalculate new values for the next

state without waiting for the communication stage to

receive updated values from neighboring cells, resulting in

errors. In our simulations, duty cycles longer than about an

hour and a half led cells to become desynchronized.

The second critical parameter is the production rate

constant for the broadcast module. When a cell is on, this

constant must be high enough to saturate its neighbors with

signaling molecule. In the worst case, where a cell is at the

minimum on concentration of 0:7 lM, it must maintain a

broadcast signal above the receive module’s threshold

concentration at the farthest edge of its neighboring cell

regions. On the other hand, when a cell is off, this constant

must be low enough to avoid broadcasting any signal to its

neighbors. Specifically, in the worst case where a cell is at

the maximum off concentration of 0:3 lM, it must maintain

a broadcast signal below the receive module’s threshold

concentration at the closest edge of its neighboring cell

regions. If either of these conditions are not met, then

erroneous signals can be sent between cells.

5 Asynchronous cellular automata

One limitation to the design for the cellular automaton that

we presented above is that it requires a global ‘‘clock’’

signal that is continuously supplied such that it continually

changes concentration in an oscillatory pattern. It is likely

that providing such a signal externally would be chal-

lenging, because existing biomolecular oscillators are

generally noisy, and may not provide the required

L C

NEXT GEN

CA

LOGIC

R

FROM LEFT

TO

NEIGHBORS

&

(a) COMMUNICATE

[clock]

t
communicate

and calculate

store

FROM RIGHT

&

(b)

SET RESET

STATE

FLIP

FLOP

(c)

Fig. 7 CA circuit diagram a The ‘Communication’ stage. Current

cell states are broadcast to neighbors, while neighbor states are

received. b The ‘Calculation’ stage. The states of a cell and its

neighbors are passed through a subcircuit that performs the update

logic. The output from this subcircuit is on if the cell should change

into an on state in the next generation. This next state is prevented

from affecting the Memory stage by AND gates when the clock is off.

c When the clock turns on, the next state is stored in the ‘Memory’

stage
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synchronization (Montagne et al. 2011). An alternative to

the design we have presented would be to use an asyn-

chronous cellular automaton, which does not require a

clock signal to operate. Instead, for each update round, all

cells in the network wait until they have received infor-

mation indicating that their neighbors are ready to proceed

to the next round, thus preventing any single cell from

getting out of synchrony with its immediate neighbors.

A design for an asynchronous CA is outlined in Fig. 8.

The circuit elements (i.e. modules) are the same as those

for the synchronous CA, but more elements are required

and they are arranged differently. In this asynchronous CA,

three banks of memory modules are used to (1) store the

cell’s current state, (2) store the all of the received neighbor

states, and (3) store the calculated next states. Between

each memory bank, Boolean logic circuits inside of each

cell prevent it from updating the next bank until the cell has

received indication that its neighbor cells have updated the

current bank. Cells can be at most one step ahead of their

neighbors before they are forced to stop and wait for their

neighbors to catch up. This strategy guarantees that each

cell will pass through the correct series of states, and that

local groups can never be out of synchronization. However,

because each cell is permitted to proceed up to one step in

advance of its neighbors, any two cells that are N neighbors

away from each other can also be up to N time steps out of

synchronization. So while the overall process will compute

the correct dynamics for each individual cell, the state of

the system may not represent the particular global state of

the ideal cellular automaton for any particular time step.

This issue could make it difficult to use such a CA to

process incoming spatial information within the environ-

ment, because the computation process in different regions

of the CA will not see this environmental information at the

same stage of computation. Furthermore, due to the addi-

tional storage of information and verification circuitry, the

overall circuit size of our asynchronous CA is much larger

than the synchronous (clocked) design. However, we

believe that an asynchronous automaton could overcome

many of the disadvantages of the synchronous automaton

we presented, because the asynchronous version requires

less global coordination.

6 Discussion

In this work we develop a method for building a CA using

a reaction–diffusion program. This program consists of a

set of molecules that everywhere can react and diffuse in

the same way, along with a small set of molecules that are

patterned into a grid of cells. The collective actions of these

molecules cause the pattern of molecules that encode an

‘‘on’’ state to change over time to display a series of

patterns that are the successive states of a one-dimensional

binary CA. While the construction we propose is for a one-

dimensional binary CA, straightforward extensions to the

system could be used to produce two- or three-dimensional

CA, or CA in which cells can be in more than two states.

This construction thus suggests two important new

capabilities for systems that are driven by designed chemical

reaction networks. First, this system provides a way to

generate dynamic spatial patterns, where the concentrations

of species vary continuously over time, by encoding these

dynamics within a CA. Second, this systemmakes it possible

F.F.
S R

F.F.
S R

F.F.
S R

F.F.
S R

F.F.
S R

F.F.
S R

CA

LOGIC

L RC

on

(c) receive left

(a)
current state

(dual rail)
F.F.
S R

F.F.
S R

on

(b) broadcasting (d) receive right

(h)
logic

(g)
wait for neighbors

(j)
wait for neighbors

(l)
clear stored states

(f)
both

(k)
neither

(e)
store

F.F.
S R

F.F.
S R(i)

tertiary memory

Fig. 8 An asynchronous cellular automaton. a A cell’s state is stored

in memory. Dual-rail logic is used to differentiate between neighbors

that are off and neighbors that have had insufficient time to broadcast

their state. b Current states are broadcast. c and d Neighbor states are

received. e Dual-rail states of cell and both neighbors are stored in a

secondary memory bank. This enables cells to remember neighbors

states even after neighbors stop broadcasting. f When both neighbor

broadcasts are received, a cell resets its primary memory, turns off its

broadcast signals, and g passes the stored information to (h) the

cellular automaton logic stage. If the time scale for chemical reactions

tR is much faster than the time scale for diffusive propagation between

cells tD, then the logic stage is guaranteed to have sufficient time to

use the information stored in (e) to calculate the next state and store

the results in (i) a tertiary memory bank before it stops receiving

neighbor broadcasts. This calculated next state is blocked by (j) two

AND gates until (k) all neighbor broadcasts have had time to turn off.

Then, the secondary memory in (e) is reset by (l), the next state is

stored in (a), and the cycle repeats
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to perform computations using molecules in which the same

molecular species simultaneously perform different com-

putations within different regions of a substrate.

The capacity for this kind of spatial computation is

likely to be an important part of scaling the capacity for

molecular systems to process information. Because the

number of independent molecular interfaces is inherently

limited, it is not possible to arbitrarily increase the number

of interacting molecules within a well-mixed system

without introducing crosstalk. The importance of spatial

computation with molecules is underscored by its preva-

lence in living systems. Reaction–diffusion processes are

used for signaling within cells, and across tissues, where

different cells (which each share the same genome) col-

lectively coordinate tissue behavior.

While other molecular processes can perform Turing

universal computation with only a limited number of

molecular species, i.e. they are uniform, these construc-

tions are highly susceptible to errors resulting from random

fluctuations inherent in stochastic chemical kinetics. For

example, they may require that the state of a computation

be encoded within a single molecular assembly, as in

algorithmic self-assembly (Rothemund et al. 2004) or store

information in the form of the precise number of molecules

in the system (Soloveichik et al. 2008; Qian et al. 2011). In

these systems, a computation may be irrevocably corrupted

by a single anomalous chemical interaction. In contrast,

computation by the CA that we describe involves the col-

lective action of many molecules, so it is not susceptible to

errors caused by a small number of microscopic events.

However, the designs presented in this paper require the

construction of large chemical reaction networks, a clock

signal at regular intervals and a printed grid of different

‘‘key’’ molecules. Our reaction network uses 65 species to

emulate a ‘‘Rule 60’’ CA, and 76 species to emulate a

‘‘Rule 110’’ CA. Further emulating these abstract chemical

networks using DNA strand-displacement reactions could

increase the network size by an order of magnitude,

because multiple intermediate DNA strands are generally

required when emulating reactions. Likely there are sim-

plifications that could be made to our circuit, as our goal

was to demonstrate that such an implementation is theo-

retically possible instead of designing the smallest possible

circuit. For instance, it may be possible to condense some

sections of our system into smaller special case circuits for

particular CA updating rules. Additionally, our four-key

system that provides unique identities to cells in a local

group is expensive in terms of number of species, requiring

four separate sets of transmitter modules and eight separate

sets of receiver modules in one-dimensional space, and a

more clever means for identifying neighboring cells may

exist. However, it is unclear how to reduce the number of

strands in our system by an order of magnitude.

Generally, the complexity of our circuits suggests that

implementing even a simple one-dimensional automaton

would be challenging with current chemical computers.

Constructing a CA as complex as von Neumann’s self-

replicating automata is likely to be infeasible for the

foreseeable future. It will therefore be important to ask

whether there are more efficient models for spatial com-

puting in which complex behaviors such as self-replica-

tion or healing can be designed as simply as possible. One

starting point is to consider computation systems that do

not require an explicit regular grid, such as Lindenmayer

systems (Lindenmayer 1968), or graph automata (Wu and

Rosenfeld 1979; Tomita et al. 2002), and un-clocked

systems such as asynchronous CA (Nehaniv 2004).

More generally, we might ask not only how to perform

molecular computation using space as a medium, but how to

construct a scalable architecture for computing appropriate

responses of a material to stimuli that are presented across

space and time. Patterns generated by CA could act as

blueprints, encoding dynamic information spatially. By

constructing CA in chemical networks, it may be possible to

use this information to coordinate the behavior of intelligent

programmable materials. Biological cells, tissues, and
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Ideal t

x

RD Program

t 
(d

a
ys

)
x(mm)

0
2

6

10

14

18
4 12 20 28 36

Idealt

x

RD Program t (days)

x (mm)
0 8 16 24 32

0
2

4
transition

Fig. 9 Results of chemical CA simulations Ideal CA (left) compared

to our simulated reaction–diffusion program (right). Every three-

length binary input state is contained in each pattern, demonstrating

correct updating for all eight possible local states. a Rule 60. b Rule

110. The dynamics shown here were computed using the set of

coupled partial differential equations in Section 8. The detail of the

rapid dynamics of a state transition are shown on the far right
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synthetic nanostructures could potentially respond to local

instructions released by an embedded chemical automaton.

A CA could endow these physical systems with unique

properties, creating artificial structures that heal, self-

replicate and evolve.
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Rule 110 chemical reactions (synonymous

with Sect. 8)

This section describes the complete set of abstract chemical

reactions that govern our Rule 110 chemical automaton.

These chemical reactions can be converted into a set of

coupled partial differential equations and solved to observe

how the system behaves over time (see Section 8). Fig-

ure 10 shows a detail of the circuit from Fig. 7 for a Rule

110 automaton, with each chemical species labeled.

1. Communication stage

a. Broadcasting:

SrcAþ keyAþ Last!
kB

SrcAþ SigAþ keyA

þ Last

ð7:1Þ

SigA!
kBd

waste ð7:2Þ

SrcBþ keyBþ Last!
kB

SrcBþ SigBþ keyB

þ Last ð7:3Þ

SigB!
kBd

waste ð7:4Þ

SrcC þ keyC þ Last!
kB

SrcC þ SigC þ keyC

þ Last

ð7:5Þ

SigC!
kBd

waste ð7:6Þ

SrcD þ keyDþ Last!
kB

SrcDþ SigDþ keyD

þ Last ð7:7Þ

SigD!
kBd

waste ð7:8Þ

a. Receiving and processing left-hand signal:

SigDþ keyA!
kx

SigD þ Lrawþ keyA ð7:9Þ

SigAþ keyB!
kx

SigAþ Lrawþ keyB ð7:10Þ

SigBþ keyC!
kx

SigBþ Lrawþ keyC ð7:11Þ

SigC þ keyD!
kx

SigC þ Lrawþ keyD ð7:12Þ

Lraw�!
4�kx

waste ð7:13Þ

source �!
crecTh�kp

ThL!
kx

waste ð7:14Þ

source!
kp

AmpL!
kx

waste ð7:15Þ

Lrawþ ThL!
kT

waste ð7:16Þ

Lrawþ AmpL!
kL

Lrawþ Lft ð7:17Þ

Lft!
kx

waste ð7:18Þ

a. Receiving and processing right-hand signal:

SigBþ keyA!
kx

SigBþ Rrawþ keyA ð7:19Þ

SigC þ keyB!
kx

SigC þ Rrawþ keyB ð7:20Þ

SigDþ keyC!
kx

SigDþ Rrawþ keyC ð7:21Þ

SigAþ keyD!
kx

SigAþ Rrawþ keyD ð7:22Þ

Rraw�!
4�kx

waste ð7:23Þ

source �!
crecTh�kp

Thr�!
kx

waste ð7:24Þ

source�!
kp

Ampr�!
kx

waste ð7:25Þ

Rrawþ Thr�!
kT

waste ð7:26Þ

Rrawþ Ampr�!
kL

Rrawþ Rght ð7:27Þ

Rght�!
kx

waste ð7:28Þ

2. Calculation Stage

a. Copy left, right and previous time step (pr) signals

(multiple gates operate on each):

Last�!
kx

Last þ BrPr ð7:29Þ

BrPr�!
kx

waste ð7:30Þ

Rght�!
kx

Rght þ RBr ð7:31Þ

RBr�!
kx

waste ð7:32Þ

Last�!
kx

Last þ OnPr ð7:33Þ
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OnPr�!
kx

waste ð7:34Þ

Rght�!
kx

Rght þ RCr ð7:35Þ

RCr�!
kx

waste ð7:36Þ

Lft�!
kx

Lft þ LCr ð7:37Þ

LCr�!
kx

waste ð7:38Þ

source�!
kp

OffPr ð7:39Þ

OffPr�!
kx

waste ð7:40Þ

BrPr þ OffPr�!
kT

waste ð7:41Þ

a. Boolean logic for Br (birth) condition: off to on

transition:

source�!
2�kp

SgBr�!
kx

waste ð7:42Þ

OffPr þ SgBr�!
kL

SumBr�!
kx

waste ð7:43Þ

RBr þ SgBr�!
kL

SumBr ð7:44Þ

source �!
1:35�kp

ThBr�!
kx

waste ð7:45Þ

source�!
kp

AmpBr�!
kx

waste ð7:46Þ

SumBr þ ThBr�!
kT

waste ð7:47Þ

SumBr þ AmpBr�!
kL

SumBr þ Br ð7:48Þ

Br�!
kx

waste ð7:49Þ

a. Boolean logic for no death condition (on and at

least one neighbor off): stay on:

source�!
2�kp

SgnbOff �!
kx

waste ð7:50Þ

RCr þ SgnbOff �!
kL

SumnbOff �!
kx

waste

ð7:51Þ

LCr þ SgnbOff �!
kL

SumnbOff ð7:52Þ

source �!
1:35�kp

ThnbOff �!
kx

waste ð7:53Þ

source�!
kp

AmpnbOff �!
kx

waste ð7:54Þ

SumnbOff þ ThnbOff �!
kT

waste ð7:55Þ

ThnbOff þ AmpnbOff �!
kL

ThnbOff þ nbrOff

ð7:56Þ

nbrOff �!
kx

waste ð7:57Þ

source�!
2�kp

SgCr�!
kx

waste ð7:58Þ

OnPr þ SgCr�!
kL

SumCr�!
kx

waste ð7:59Þ

nbrOff þ SgCr�!
kL

SumCr ð7:60Þ

source �!
1:35�kp

ThCr�!
kx

waste ð7:61Þ

source�!
kp

AmpCr�!
kx

waste ð7:62Þ

SumCr þ ThCr�!
kT

waste ð7:63Þ

SumCr þ AmpCr�!
kL

SumCr þ Live ð7:64Þ

Live�!
kx

waste ð7:65Þ

a. Boolean logic to determine if next state is on:

source�!
2�kp

SgNx�!
kx

waste ð7:66Þ

Liveþ SgNx!
kL

SumNx!
kx

waste ð7:67Þ

Br þ SgNx!
kL

SumNx ð7:68Þ

source �!
0:65�kp

ThNx!
kx

waste ð7:69Þ

source!
kp

AmpNx!
kx

waste ð7:70Þ

SumNxþ ThNx!
kT

waste ð7:71Þ

SumNxþ AmpNx!
kL

SumNxþ Nx ð7:72Þ

Nx!
kx

waste ð7:73Þ

Nx!
kx

Nxþ OnNx ð7:74Þ

OnNx!
kx

waste ð7:75Þ

a. Boolean logic to determine if next state is off:

Nx!
kx

Nxþ NtNx ð7:76Þ

NtNx!
kx

waste ð7:77Þ

source!
kp

OffNx!
kx

waste ð7:78Þ

NtNxþ OffNx!
kT

waste ð7:79Þ

a. Clocked synchronization gates:

clk!
kx

clk þ clkOn ð7:80Þ
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clkOn!
kx

waste ð7:81Þ

clk!
kx

clk þ clkOff ð7:82Þ

clkOff !
kx

waste ð7:83Þ

source�!
2�kp

SgNxOn!
kx

waste ð7:84Þ

OnNxþ SgNxOn!
kL

OnNxSum!
kx

waste ð7:85Þ

clkOnþ SgNxOn!
kL

OnNxSum ð7:86Þ

source �!
1:35�kp

OnNxTh!
kx

waste ð7:87Þ

source!
kp

OnNxAmp!
kx

waste ð7:88Þ

OnNxSumþ OnNxTh!
kT

waste ð7:89Þ

OnNxSumþ OnNxAmp!
kL

OnNxSumþ SetBfr

ð7:90Þ

SetBfr!
kx

waste ð7:91Þ

source�!
2�kp

SgOffNx!
kx

waste ð7:92Þ

OffNxþ SgOffNx!
kL

SumOffNx!
kx

waste ð7:93Þ

clkOff þ SgOffNx!
kL

SumOffNx ð7:94Þ

source �!
1:35�kp

ThOffNx!
kx

waste ð7:95Þ

source!
kp

AmpOffNx!
kx

waste ð7:96Þ

SumOffNxþ ThOffNx!
kT

waste ð7:97Þ

SumOffNxþ AmpOffNx!
kL

SumOffNxþ ResBfr

ð7:98Þ

ResBfr!
kx

waste ð7:99Þ

3. Storage Stage

a. Copies of Set/Res signals:

SetBfr!
kx

SetBfr þ Set ð7:100Þ

Set!
kx

waste ð7:101Þ

ResBfr!
kx

ResBfr þ Res ð7:102Þ

Res!
kx

waste ð7:103Þ

a. Flip-flop module:

ffBfrd!
kx

ffBfrd þ ffFback ð7:104Þ

ffFback!
kx

waste ð7:105Þ

source�!
2�kp

N1Sg!
kx

waste ð7:106Þ

Set þ N1Sg!
kL

N1Sum!
kx

waste ð7:107Þ

ffFback þ N1Sg!
kL

N1Sum ð7:108Þ

source �!
0:65�kp

N1Th!
kx

waste ð7:109Þ

source!
kp

N1!
kx

waste ð7:110Þ

N1Sumþ N1Th!
kT

waste ð7:111Þ

N1Thþ N1!
kL

N1Thþ ffFbackNot ð7:112Þ

ffFbackNot!
kx

waste ð7:113Þ

source�!
2�kp

N2Sg!
kx

waste ð7:114Þ

Resþ N2Sg!
kL

N2Sum!
kx

waste ð7:115Þ

ffFbackNot þ N2Sg!
kL

N2Sum ð7:116Þ

source �!
0:65�kp

N2Th!
kx

waste ð7:117Þ

source!
kp

N2!
kx

waste ð7:118Þ

N2Sumþ N2Th!
kT

waste ð7:119Þ

N2Thþ N2!
kL

N2Thþ ffBfrd ð7:120Þ

ffBfrd!
kx

waste ð7:121Þ

ffBfrd!
kx

ffBfrd þ Last ð7:122Þ

Last!
kx

waste ð7:123Þ

Rule 110 partial differential equations

‘‘I hope to say something about a ‘continuous’ rather

than ‘crystalline’ model [of automata]. There, as far

as I can now see, a system of nonlinear partial dif-

ferential equations, essentially of the diffusion type,

will be used.’’ John von Neumann (Oct. 28th, 1952)

discussing unfinished Theory of Automata.

von Neumann papers, Library of Congress, Box 28

‘‘Theory of Automata’’.

This section describes the set of coupled partial differential

equations that govern our Rule 110 chemical automaton,

derived from the reactions in this section. These equations use

standard mass-action equations and the diffusion equation.
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Figure 9b contains a plot of the solution to these equations.

One equation is devoted to each of the 76 species in our net-

work. Figure 10 shows a detail of the circuit from Fig. 7 for a

Rule 110 automaton, with each species labeled.

Unless otherwise specified, all species start with zero

initial concentration. Absorbing boundary conditions apply

to all species whose concentrations change over time. Our

reaction rate constants and diffusion coefficients are

selected to be realistically attainable values for DNA-based

reaction–diffusion networks, on the same order of magni-

tude as experimentally derived data in the literature (Zhang

and Winfree 2009; Lukacs et al. 2000; Stellwagen et al.

2003). The Mathematica code we used to numerically

solve these equations is available upon request. Constants:

(b)

(c) 

TO

NEIGHBORS

FROM LEFT FROM RIGHT

clock

(a) COMMUNICATE

STORE - MEMORY

1 - key A
2 - key B
3 - key C
4 - key D
5 - clock (clk)
6 - clock On (clkOn)

8 - source A (SrcA)
9 - source B (SrcB)
10 - source C (SrcC)
11 - source D (SrcD)
12 - signal A (SigA)
13 - signal B (SigB)
14 - signal C (SigC)
15 - signal D (SigD)
16 - left raw (Lraw)
17 - threshold left (ThL)
18 - amp left (AmpL)
19 - left (Lft)
20 - right raw (Rraw)
21 - threshold right (Thr)
22 - amp right (Ampr)
23 - right (Rght)
24 - Previous for Birth (BrPr) 
25 - Right for Birth (RBr)
26 - Previous for On (OnPr)
27 - Right for Crowded (RCr)
28 - Left for Crowded (LCr)

30 - `birth’ sum gate (SgBr)
31 - `birth’ sum signal (SumBr)
32 - `birth‘ threshold (ThBr)
33 - `birth’ amp (AmpBr)
34 - `birth’ signal (Br)

)
)

)
)

)
40 - `crowded’ sum gate (SgCr)
41 - `crowded’ sum signal (SumCr)
42 - `crowded’ threshold (ThCr)
43 - `crowded’ amp (AmpCr)
44 - still alive signal (Live)
45 - next state on sum gate (SgNx)
46 - next state on sum signal (SumNx)
47 - next state on threshold (ThNx)
48 - next state on amp (AmpNx)
49 - next state on signal (Nx)
50 - next state on copy (OnNx)
51 - next state not on copy (NtNx)

)
53 - on sum gate (SgNxOn)
54 - on sum signal (OnNxSum)
55 - on threshold (OnNxTh)
56 - on amp (OnNxAmp)

)
)

)
)

)
)

63 - set signal (Set)
64 - reset signal (Res)

)

67 - NOR gate 1 threshold (N1Th)
68 - NOR gate 2 sum signal (N2Sum)

70 - NOR gate 1 sum gate (N1Sg)
71 - NOR gate 1 sum signal (N1Sum)
72 - NOR gate 1 amp (N1)
73 - NOR gate 2 sum gate (N2Sg)
74 - NOR gate 2 threshold (N2Th)
75 - NOR gate 2 amp (N2)
76 - Stored state (Last)
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Fig. 10 Chemical reaction–diffusion circuit for Rule 110. This is a detailed version of the circuit outlined in Fig. 7, using the modules defined in

Fig. 2. Species are labelled in red by their equation numbers from Section 8., with species names and abbreviations to the right
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1. External signals:

a. Keys (in lM):

b. Clock:

clkðt;xÞ ¼

1 lM : t\4000

1 lM : Modðt;clkPeriodÞ\clkDuty

0 : otherwise:

8

>

<

>

:

ð8:5Þ

oclkOnðt; xÞ

ot
¼Dr2clkOnðt; xÞ � kd

� clkOnðt; xÞ þ kd � clkðt; xÞ

� kL � clkOnðt; xÞ � SgnxOnðt; xÞ

ð8:6Þ

oclkOff ðt; xÞ

ot
¼Dr2clkOff ðt; xÞ � kd � clkOff ðt; xÞ

þ kd � clkðt; xÞ � kL � clkOff ðt; xÞ

� SgOffNxðt; xÞ ð8:7Þ

2. Communication Stage:

a. Broadcast Modules (in lM):

SrcAðt; xÞ ¼ 1 ð8:8Þ

SrcBðt; xÞ ¼ 1 ð8:9Þ

SrcCðt; xÞ ¼ 1 ð8:10Þ

SrcDðt; xÞ ¼ 1 ð8:11Þ

b. Broadcast signals, note initial concentration of

SigA triggers initial on cell:

oSigAðt;xÞ

ot
¼Dr2SigAðt;xÞþ kBSrcAðt;xÞKeyA

ðt;xÞLastðt;xÞ� kBdSigAðt;xÞ

SigAðt¼ 0;xÞ ¼
2 lM : xmax� 8\x\xmax� 0:1

0 : otherwise:

�

ð8:12Þ

oSigBðt;xÞ

ot
¼Dr2SigBðt;xÞþ kBSrcBðt;xÞKeyBðt;xÞ

�Lastðt;xÞ� kBdSigBðt;xÞ ð8:13Þ

oSigCðt;xÞ

ot
¼Dr2SigCðt;xÞþ kBSrcCðt;xÞ

�KeyCðt;xÞLastðt;xÞ� kBdSigCðt;xÞ

ð8:14Þ

oSigDðt;xÞ

ot
¼Dr2SigDðt;xÞ þ kBSrcDðt;xÞ

�KeyDðt;xÞLastðt;xÞ � kBdSigDðt;xÞ

ð8:15Þ

c. Receiving and processing left-hand neighbor signal:

oLrawðt; xÞ

ot
¼ Dr2Lrawðt; xÞ � 4kdLrawðt; xÞ

� kTLrawðt; xÞThlðt; xÞ þ kxSigDðt; xÞKeyAðt; xÞ

þ kxSigAðt; xÞKeyBðt; xÞ þ kxSigBðt; xÞKeyCðt; xÞ

þ kxSigCðt; xÞKeyDðt; xÞ ð8:16Þ

xMax ¼ 64 kp ¼ 0:002 lMs�1 kBd ¼ 0:00002 s�1

D ¼ 0:00015 mm2 s�1 kd ¼ 0:002 l s�1 crecTh ¼ 0:5 lM

kT ¼ 20 lM�1 s�1 kx ¼ 0:002 lM�1 s�1 clkPeriod ¼ 2 � 24 � 3600 s

kL ¼ 0:2 lM�1 s�1 kB ¼ 0:0002 lM�2 s�1 clkDuty ¼ :5 � 3600 s

KeyAðt; xÞ ¼
1=ð1þ Exp½�25 � ðModðx; 16Þ � 1Þ�Þ : Modðx; 16Þ� 2

1� 1=ð1þ Exp½�25 � ðModðx; 16Þ � 3Þ�Þ : otherwise:

�

ð8:1Þ

KeyBðt; xÞ ¼
1=ð1þ Exp½�25 � ðModðx; 16Þ � 5Þ�Þ : Modðx; 16Þ� 6

1� 1=ð1þ Exp½�25 � ðModðx; 16Þ � 7Þ�Þ : otherwise:

�

ð8:2Þ

KeyCðt; xÞ ¼
1=ð1þ Exp½�25ðModðx; 16Þ � 9Þ�Þ : modðx; 16Þ� 10

1� 1=ð1þ Exp½�25ðModðx; 16Þ � 11Þ�Þ : otherwise:

�

ð8:3Þ

KeyDðt; xÞ ¼
1=ð1þ Exp½�25ðModðx; 16Þ � 13Þ�Þ : modðx; 16Þ� 14

1� 1=ð1þ Exp½�25ðModðx; 16Þ � 15Þ�Þ : otherwise:

�

ð8:4Þ
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oThlðt; xÞ

ot
¼ Dr2Thlðt; xÞ þ crecThkp � kdThlðt; xÞ

� kTLrawðt; xÞThlðt; xÞ ð8:17Þ

oAmplðt; xÞ

ot
¼ Dr2Amplðt; xÞ þ kp � kdAmplðt; xÞ

� kLLrawðt; xÞAmplðt; xÞ ð8:18Þ

oLftðt; xÞ

ot
¼ Dr2Lftðt; xÞ � kdLftðt; xÞ

þ kLLrawðt; xÞAmplðt; xÞ ð8:19Þ

d. Receiving and processing right-hand neighbor

signal:

oRrawðt; xÞ

ot
¼ Dr2Rrawðt; xÞ � 4kdRrawðt; xÞ

� kTRrawðt; xÞThrðt; xÞ þ kxSigðt; xÞKeyAðt; xÞ

þ kxSigCðt; xÞKeyBðt; xÞ þ kxSigDðt; xÞKeyCðt; xÞ

þ kxSigAðt; xÞKeyDðt; xÞ ð8:20Þ

oThrðt; xÞ

ot
¼ Dr2Thrðt; xÞ þ crecThkp

� kdThrðt; xÞ � kTRrawðt; xÞThrðt; xÞ

ð8:21Þ

oAmprtðt; xÞ

ot
¼ Dr2Amprtðt; xÞ þ kp

� kdAmprtðt; xÞ � kLRrawðt; xÞAmprtðt; xÞ

ð8:22Þ

oRghtðt; xÞ

ot
¼ Dr2Rghtðt; xÞ � kdRghtðt; xÞ

þ kLRrawðt; xÞAmprtðt; xÞ ð8:23Þ

3. Calculation Stage:

a. Copy left, right and previous time step (pr) signals

(multiple gates operate on each)

oBrprðt; xÞ

ot
¼ Dr2Brprðt; xÞ � kdBrprðt; xÞ

þ kdLastðt; xÞ � kTBrprðt; xÞOffprðt; xÞ ð8:24Þ

oRbrðt; xÞ

ot
¼ Dr2Rbrðt; xÞ � kdRbrðt; xÞ

þ kdRghtðt; xÞ � kLRbrðt; xÞSgbrðt; xÞ

ð8:25Þ

oOnprðt; xÞ

ot
¼ Dr2Onprðt; xÞ � kdOnprðt; xÞ

þ kdLastðt; xÞ � kLOnprðt; xÞSgcrðt; xÞ ð8:26Þ

oRcrðt; xÞ

ot
¼ Dr2Rcrðt; xÞ � kdRcrðt; xÞ

þ kdRghtðt; xÞ � kLRcrðt; xÞSgnbOff ðt; xÞ ð8:27Þ

oLcrðt; xÞ

ot
¼ Dr2Lcrðt; xÞ � kdLcrðt; xÞ

þ kdLftðt; xÞ � kLLcrðt; xÞSgnbOff ðt; xÞ

ð8:28Þ

oOffprðt; xÞ

ot
¼ Dr2Offprðt; xÞ þ kp � kdOffprðt; xÞ

�T Brprðt; xÞOffprðt; xÞ � kLOffprðt; xÞSgbrðt; xÞ

ð8:29Þ

b. Boolean logic for Br (birth) condition: off to on

transition

oSgbrðt; xÞ

ot
¼ Dr2Sgbrðt; xÞ þ 2kp � kdSgbrðt; xÞ

� kLOffprðt; xÞSgbrðt; xÞ � kLRbrðt; xÞSgbrðt; xÞ

ð8:30Þ

oSumbrðt; xÞ

ot
¼ Dr2Sumbrðt; xÞ � kdSumbrðt; xÞ

þ kLOffprðt; xÞSgbrðt; xÞ þ kLRbrðt; xÞSgbrðt; xÞ

� kTSumbrðt; xÞThbrðt; xÞ ð8:31Þ

oThbrðt;xÞ

ot
¼ Dr2Thbrðt;xÞ þ 1:35kp � kdThbrðt; xÞ

� kTSumbrðt;xÞThbrðt;xÞ ð8:32Þ

oAmpbrðt; xÞ

ot
¼ Dr2Ampbrðt; xÞ þ kp

� kdAmpbrðt; xÞ � kLSumbrðt; xÞ

� Ampbrðt; xÞ ð8:33Þ

oBrðt; xÞ

ot
¼ Dr2Brðt; xÞ � kdBrðt; xÞ

þ kLSumbrðt; xÞAmpbrðt; xÞ � kLBrðt; xÞSgnxðt; xÞ

ð8:34Þ

c. Boolean logic for no death condition (on and at

least one neighbor off): stay on

oSgnbOff ðt; xÞ

ot
¼ Dr2SgnbOff ðt; xÞ þ 2kp

� kdSgnbOff ðt; xÞ � kLRcrðt; xÞSgnbOff ðt; xÞ

� kLLcrðt; xÞSgnbOff ðt; xÞ ð8:35Þ

oSumnbOff ðt; xÞ

ot
¼ Dr2SumnbOff ðt; xÞ

� kdSumnbOff ðt; xÞ þ kLRcrðt; xÞSgnbOff ðt; xÞ

þ kLLcrðt; xÞSgnbOff ðt; xÞ � kTSumnbOff ðt; xÞ

� ThnbOff ðt; xÞ ð8:36Þ

oThnbOff ðt; xÞ

ot
¼ Dr2ThnbOff ðt; xÞ þ 1:35kp

� kdThnbOff ðt; xÞ � kTSumnbOff ðt; xÞThnbOff ðt; xÞ

ð8:37Þ
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oAmpnbOff ðt;xÞ

ot
¼ Dr2AmpnbOff ðt;xÞþ kp

� kdAmpnbOff ðt;xÞ� kLThnbOff ðt;xÞAmpnbOff ðt;xÞ

ð8:38Þ

onbrOff ðt; xÞ

ot
¼ Dr2nbrOff ðt; xÞ � kdnbrOff ðt; xÞ

þ kLThnbOff ðt; xÞAmpnbOff yðt; xÞ

� kLnbrOff ðt; xÞSgcrðt; xÞ ð8:39Þ

oSgcrðt;xÞ

ot
¼ Dr2Sgcrðt;xÞþ 2kp� kdSgcrðt;xÞ

� kLOnprðt;xÞSgcrðt;xÞ� kLnbrOff ðt;xÞSgcrðt;xÞ

ð8:40Þ

oSumcrðt;xÞ

ot
¼ Dr2Sumcrðt;xÞ � kdSumcrðt;xÞ

þ kLOnprðt;xÞSgcrðt;xÞ þ kLnbrOff ðt;xÞSgcrðt;xÞ

� kTSumcrðt; xÞThcrðt;xÞ ð8:41Þ

oThcrðt; xÞ

ot
¼ Dr2Thcrðt; xÞ þ 1:35kp

� kdThcrðt; xÞ � kTSumcrðt; xÞThcrðt; xÞ ð8:42Þ

oAmpcrðt; xÞ

ot
¼ Dr2Ampcrðt; xÞ þ kp

� kdAmpcrðt; xÞ � kLSumcrðt; xÞAmpcrðt; xÞ

ð8:43Þ

oLiveðt; xÞ

ot
¼ Dr2Liveðt; xÞ � kdLiveðt; xÞ

þ kLSumcrðt; xÞAmpcrðt; xÞ

� kLLiveðt; xÞSgnxðt; xÞ ð8:44Þ

d. Boolean logic to determine if next state is on

oSgnxðt; xÞ

ot
¼ Dr2Sgnxðt; xÞ þ 2kp

� kdSgnxðt; xÞ � kLLiveðt; xÞSgnxðt; xÞ

� kLBrðt; xÞSgnxðt; xÞ ð8:45Þ

oSumnxðt; xÞ

ot
¼ Dr2Sumnxðt; xÞ � kdSumnxðt; xÞ

þ kLLiveðt; xÞSgnxðt; xÞ þ kLBrðt; xÞSgnxðt; xÞ

� kTSumnxðt; xÞThnxðt; xÞ ð8:46Þ

oThnxðt; xÞ

ot
¼ Dr2Thnxðt; xÞ þ 0:65kp

� kdThnxðt; xÞ � kTSumnxðt; xÞThnxðt; xÞ ð8:47Þ

oAmpnxðt; xÞ

ot
¼ Dr2Ampnxðt; xÞ þ kp

� kdAmpnxðt; xÞ � kLSumnxðt; xÞAmpnxðt; xÞ

ð8:48Þ

oNxðt; xÞ

ot
¼ Dr2Nxðt; xÞ � kdNxðt; xÞ

þ kLSumnxðt; xÞAmpnxðt; xÞ ð8:49Þ

oOnnxðt; xÞ

ot
¼ Dr2Onnxðt; xÞ � kdOnnxðt; xÞ

þ kdNxðt; xÞ � kLOnnxðt; xÞSgnxOnðt; xÞ ð8:50Þ

e. Boolean logic to determine if next state is off

oNtnxðt; xÞ

ot
¼ Dr2Ntnxðt; xÞ � kdNtnxðt; xÞ

þ kdNxðt; xÞ � kTNtnxðt; xÞOffnxðt; xÞ ð8:51Þ

oOffnxðt; xÞ

ot
¼ Dr2Offnxðt; xÞ þ kp

� kdOffnxðt; xÞ � kTNtnxðt; xÞOffnxðt; xÞ

� kLOffnxðt; xÞSgOffNxðt; xÞ ð8:52Þ

f. Clocked synchronization gates

oSgnxOnðt; xÞ

ot
¼ Dr2SgnxOnðt; xÞ þ 2kp

� kdSgnxOnðt; xÞ � kLOnnxðt; xÞSgnxOnðt; xÞ

� kLclkOnðt; xÞSgnxOnðt; xÞ ð8:53Þ

oOnnxSumðt; xÞ

ot
¼ Dr2OnnxSumðt; xÞ

� kdOnnxSumðt; xÞ þ kLOnnxðt; xÞSgnxOnðt; xÞ

þ kLclkOnðt; xÞSgnxOnðt; xÞ

� kTOnnxSumðt; xÞOnnxThðt; xÞ ð8:54Þ

oOnnxThðt;xÞ

ot
¼ Dr2OnnxThðt;xÞ þ 1:35kp

� kdOnnxThðt;xÞ � kTOnnxSumðt;xÞOnnxThðt;xÞ

ð8:55Þ

oOnnxAmpðt; xÞ

ot
¼ Dr2OnnxAmpðt; xÞ

þ kp � kdOnnxAmpðt; xÞ � kLOnnxSumðt; xÞ

� OnnxAmpðt; xÞ ð8:56Þ

oSetBfrðt; xÞ

ot
¼ Dr2SetBfrðt; xÞ � kdSetBfrðt; xÞ

þ kLOnnxSumðt; xÞOnnxAmpðt; xÞ ð8:57Þ

oSgOffNxðt; xÞ

ot
¼ Dr2SgOffNxðt; xÞ þ 2kp

� kdSgOffNxðt; xÞ � kLOffnxðt; xÞSgOffNxðt; xÞ

� kLclkOff ðt; xÞSgOffNxðt; xÞ ð8:58Þ

oSumOffNxðt; xÞ

ot
¼ Dr2SumOffNxðt; xÞ

� kdSumOffNxðt; xÞ þ kLOffnxðt; xÞSgOffNxðt; xÞ

þ kLclkOff ðt; xÞSgOffNxðt; xÞ

� kTSumOffNxðt; xÞThOffNxðt; xÞ ð8:59Þ
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oThOffNxðt; xÞ

ot
¼ Dr2ThOffNxðt; xÞ þ 1:35kp

� kdThOffNxðt; xÞ � kTSumOffNxðt; xÞThOffNxðt; xÞ

ð8:60Þ

oAmpOffNxðt; xÞ

ot
¼ Dr2AmpOffNxðt; xÞ þ kp

� kdAmpOffNxðt; xÞ � kLSumOffNxðt; xÞ

� AmpOffNxðt; xÞ ð8:61Þ

oResBfrðt; xÞ

ot
¼ Dr2ResBfrðt; xÞ � kdResBfrðt; xÞ

þ kLSumOffNxðt; xÞAmpOffNxðt; xÞ ð8:62Þ

4. Storage stage

a. Copies of Set/Res signals

oSetðt; xÞ

ot
¼ Dr2Setðt; xÞ � kdSetðt; xÞ

þ kdSetBfrðt; xÞ � kLSetðt; xÞN1Sgðt; xÞ ð8:63Þ

oResðt; xÞ

ot
¼ Dr2Resðt; xÞ � kdResðt; xÞ

þ kdResBfrðt; xÞ � kLResðt; xÞN2Sgðt; xÞ ð8:64Þ

b. Flip-flop module

offBfrdðt; xÞ

ot
¼ Dr2ffBfrdðt; xÞ � kdffBfrdðt; xÞ

þ kLN2Thðt; xÞN2ðt; xÞ ð8:65Þ

offFbackNotðt; xÞ

ot
¼ Dr2ffFbackNotðt; xÞ

� kdffFbackNotðt; xÞ þ kLN1Thðt; xÞN1ðt; xÞ

� kLffFbackNotðt; xÞN2Sgðt; xÞ ð8:66Þ

oN1Thðt; xÞ

ot
¼ Dr2N1Thðt; xÞ þ 0:65kp

� kdN1Thðt; xÞ � kTN1Sumðt; xÞN1Thðt; xÞ

ð8:67Þ

oN2Sumðt; xÞ

ot
¼ Dr2N2Sumðt; xÞ

� kdN2Sumðt; xÞ þ kLResðt; xÞN2Sgðt; xÞ

þ kLffFbackNotðt; xÞN2Sgðt; xÞ

� kTN2Sumðt; xÞN2Thðt; xÞ ð8:68Þ

offFbackðt; xÞ

ot
¼ Dr2ffFbackðt; xÞ

� kdffFbackðt; xÞ þ kdffBfrdðt; xÞ

� kLffFbackðt; xÞN1Sgðt; xÞ ð8:69Þ

oN1Sgðt; xÞ

ot
¼ Dr2N1Sgðt; xÞ þ 2kp

� kdN1Sgðt; xÞ � kLSetðt; xÞN1Sgðt; xÞ

� kLffFbackðt; xÞN1Sgðt; xÞ ð8:70Þ

oN1Sumðt; xÞ

ot
¼ Dr2N1Sumðt; xÞ

� kdN1Sumðt; xÞ þ kLSetðt; xÞN1Sgðt; xÞ

þ kLffFbackðt; xÞN1Sgðt; xÞ

� kTN1Sumðt; xÞN1Thðt; xÞ ð8:71Þ

oN1ðt; xÞ

ot
¼ Dr2N1ðt; xÞ þ kp � kdN1ðt; xÞ

� kLN1Thðt; xÞN1ðt; xÞ ð8:72Þ

oN2Sgðt; xÞ

ot
¼ Dr2N2Sgðt; xÞ þ 2kp

� kdN2Sgðt; xÞ � kLResðt; xÞN2Sgðt; xÞ

� kLffFbackNotðt; xÞN2Sgðt; xÞ ð8:73Þ

oN2Thðt; xÞ

ot
¼ Dr2N2Thðt; xÞ þ 0:65kp

� kdN2Thðt; xÞ � kTN2Sumðt; xÞN2Thðt; xÞ

ð8:74Þ

oN2ðt; xÞ

ot
¼ Dr2N2ðt; xÞ þ kp � kdN2ðt; xÞ

� kLN2Thðt; xÞN2ðt; xÞ ð8:75Þ

c. Stored state

oLastðt; xÞ

ot
¼ Dr2Lastðt; xÞ � kdLastðt; xÞ

þ kdffBfrdðt; xÞ ð8:76Þ
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