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a b s t r a c t

Long run growth of the US national economic system, for example, reveals a strong
oscillatory behavior due to complex interactions of aggregates. However, modelizations
of such dynamics often assume that instability is the outcome of linear and additive
cycles determined by exogenous shocks. In this work, a modelization of endogenous
nonlinear and inseparable cycles is retained to explain the highly complex business
cycle phenomenon. Bouali’s system is built to this scope. Its numerical simulations
exhibit a rich repertoire of nonlinear dynamical phenomena, but this paper introduces
its electronic implementation. The robust plug and play chaotic circuit is designed to be
easily realized using standard components in a rigorous, fast and inexpensive way.We find
that experimental results display periodicity, bifurcations and chaos that match with high
accuracy the corresponding theoretical values.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

From the early years of the 20th century, empirical studies of the National Bureau of Economic Research [1] have
confirmed that economic aggregates (GDP, consumption, investment, . . .) follow expansion and contraction series. Such
oscillatory motion embeds a vast spectrum of cycles [2] called seasonal cycles (within a year), Kitchin cycles (3 years),
Juglar cycles (9–10 years), Kuznets cycles (15–20 years) and Kondratiev cycles (48–60 years). Obviously, every cycle
exhibits a complete ‘‘four-phase’’ sequence (boom, recession, depression, recovery). However, theoretical modelization
often assumed that oscillations are the outcome of ‘‘external’’ shocks (technological innovations, consumption jumps,
natural catastrophes, . . .) distorting the steady state of the long run growth. Goodwin [3] introduced the idea that economic
fluctuations result from endogenous interactions of the economic system itself and are not driven by exogenous shocks as
assumed previously in academic literature.

In his seminal paper, Goodwin modelizes economic growth oscillation as the outcome of a struggle between the
employment factor and capital according to the 2D Lotka–Volterra equations (LVE) [4,5]. However, LVE displays a unique
cycle, in contrast to the real complex economic system running. Indeed, long run growth is fundamentally unpredictable
since it is derived from deep and intricate economic interactions. LVE as a 2D model cannot display a wide spectrum of
oscillations with different amplitudes and frequencies. To the scope of the extension of the oscillatory dynamics, the forcing
of the 2D dynamical models could inject a new kind of instability to look like the data series of the economic aggregates.
In this way, the modification of the 2D Van der Pol oscillator [6] with a feedback loop leads to a full 3D model with a rich
repertoire of oscillations [7]. From the Van der Pol oscillator, complexity emerges by an endogenous linkage.
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This methodology is the ‘‘bridge’’ to generating complexity and constitutes the trigger mechanism of new dynamical
patterns from basic 2D models. Small perturbations imply now large effects appearing in unpredictable and singular
oscillations and chaotic ones. The hardware implementation of similar mathematical models constitutes the expected step
following the classical computer simulations. Indeed, to display the wide range of dynamical patterns and the fascinating
motion of chaos and its apparently erratic behavior, the physical processors developed are not only electronic chips but
also mechanical machineries. For instance, the Lorenz model has been implemented in a specially engineered waterwheel
developed at M.I.T. in the earlier 70’s [8–10]. The design of such chaotic analogues emerged as fully experimental research
accompanying the theoretical study of chaos [11,12]. Electronic circuits provide a systematic way to design and implement
such analogues that can be then used for experimental characterization of the modeled dynamics [13].

This paper presents an in-depth study of a novel electronic circuit based on the chaotic model introduced in [7] that
exhibits awide spectrum of nonlinear dynamics. Its technical configuration has been chosen to achieve robustness, accuracy
and ease-of-implementation criteria according to theoretical and experimental constraints. In particular, to design it the
state variable approach discussed in [14] has been used.

The paper is organized as follows: in Section 2 the mathematical model considered is introduced, giving some insight
into its relevance in economicalmodeling; Section 3 outlines the design procedurewhich leads to the implementation of the
analogue electronic circuit of the chaotic model, while in Section 4 the experimental characterization of the implemented
circuit is discussed; finally Section 5 gives some concluding remarks.

2. Bouali’s equations

The chaotic system originally introduced by Bouali is suitable for use in emulating the behavioral complexity of the
economic aggregates linked to the long run growth when adequate parameters of the state variables are chosen. It is
derived from the phenomenon of capital flight observed in less developed countries [15], injecting disequilibrium in the
capital market, perturbing several other economic aggregates. The state variables of this economic model are the savings
(households) S, the gross domestic product Y , and the foreign capital inflow (net) F .

The savings dynamics is characterized by the following equation:

dS

dt
= aY + p(Y ∗ − Y 2)S (1)

where Y ∗ is the value of the potential gross domestic product, a is the variation of the marginal propensity to saving, and p
is the fraction of capitalized profit.

The second dynamical equation that has to be considered refers to the gross domestic product:

dY

dt
=

−S + F

v
(2)

where v represents the capital–output ratio.

Finally, the dynamical equation of foreign financing is taken into account:

dF

dt
= mS − rY (3)

wherem is the capital inflow–saving ratio, and r the debt refund–output ratio.

Hence, the bridge to finding the complete model is provided by a feedback loop connected to the two equations of the
Van der Pol oscillator. The model overlaps with the 2D oscillator. It can be written by means of the following three rescaled
coupled ordinary differential equations:







ẋ = ky + µx(b − y2)
ẏ = −x + sz
ż = px − qy

(4)

where k, µ, b, s, p, and q are positive parameters, and x, y, and z are dimensionless variables representative of savings, gross
domestic product, and foreign capital inflow.

The model includes one nonlinearity in its first equation and displays three unstable equilibria: E0, which is the origin
as the trivial solution, and E1 = (α, p/qα, 1/sα) and E2 = (−α, −(p/q)α, −(1/s)α), two antisymmetric points with
α = [µb + k(p/q)]/[(p/q)2µ]1/2.

System (4) is able to reproduce a large repertoire of dynamical behaviors including limit cycles of different periods,
chaos, and blue sky bifurcations. In particular, chaotic behavior can be obtained for a quite large range of parameters. We
report two examples of chaotic behaviors, obtained for two different values of the bifurcation parameter s. The first example
refers to the following set of parameters: k = 0.02, µ = 0.4, b = 0.2, p = 10, q = 0.1, and s = 50. Fig. 1 shows the
projection of this attractor in the phase planes x–z and y–z. The second example refers to the following set of parameters:
k = 0.02, µ = 0.4, b = 0.2, p = 10, q = 0.1, and s = 110. Fig. 2 shows the projection of this attractor in the phase planes
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a b

Fig. 1. Projections of the attractor for s = 50, double scroll: (a) x–z phase plane, (b) y–z phase plane.

a b

Fig. 2. Projections of the attractor for s = 110, single scroll: (a) x–z phase plane, (b) y–z phase plane.

a b

Fig. 3. Projections of the limit cycle for s = 250: (a) x–z phase plane, (b) y–z phase plane.

x–z and y–z. A further increase in the parameter s leads to the occurrence of periodic limit cycles, such as the one obtained
for s = 250 and reported in Fig. 3.

In the next section, the physical implementation of system (4) is introduced. The first step in the design of this
implementation is a suitable scaling of the dynamics of the mathematical model in order to match the physical constraints
of the electronics used. After discussing this rescaled dynamics, the circuit will be presented and the experimental results
reported.

3. Design of the circuit

Since the seminal work of Edward Lorenz [16] in 1963, chaos has rapidly become a fundamental subject of wide interest
in many research fields and many efforts have been devoted to discovering new mathematical systems showing chaotic
attractors. Chaos appears in a lot of different phenomena and soon chaotic phenomena came to fascinate circuit designers.
The first chaotic circuit is the well-known Chua circuit [17] and it is remarkable that this circuit generating chaos is
constituted of a very limited number of components (namely two capacitors, an inductor, a resistor and a Chua diode).
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Following the Chua circuit, many other chaotic circuits have been designed. Some of them implement the dynamics of the
mathematical systems showing chaos; others exploit the fundamental feature of electronic devices to showchaotic behavior.
Examples of chaotic circuits exploiting the specific features of some electronic components are the Chua circuit [17] using
a nonlinear component with piecewise linear characteristic, the circuits reported in [18–20] based on hysteretic elements
and the circuits based on memristors discussed in [21–24], while switching devices interrupting the current in a coil or
short-circuiting the voltage of a capacitor [25] and ‘‘disturbance of integration’’ [26] are other commonmechanisms used in
designing chaos generators.

The circuit implementing Bouali’s equations has been designed by using a state variable approach, in which each state
variable, i.e. x, y, z, is associated with the voltage across a capacitor, C1, C2, C3 respectively, and each dynamical equation
is implemented through an operational amplifier (op-amp) in integrator configuration [14]. This approach requires that
specific constraints on the amplitudes of state variables are satisfied. In fact, the oscillations have to be small enough to
satisfy the limits imposed by power supply (otherwise theywill saturate), and at the same time they have to be large enough
to overcome the noise always present in electronic circuits.

In the case of Bouali’s equations, the three dimensionless state variables x, y, z oscillate in the ranges [−0.03; 0.03],
[−5; 5], [−0.2; 0.2], respectively. In particular, the state variables x and z, having small amplitude (which can be comparable
to the noise), need to be scaled up to oscillate in a larger range. Therefore, the rescaled system reads as























Ẋ = K


150kY + µX(b − 9Y 2)


Ẏ = K



−
1

150
X +

s

12
Z



Ż = K



4

50
pX − 12qY



(5)

where X = 50x, Y =
y

3
, Z = 4z, and K = 3 · 104 is a time scaling factor which allows to reduce the observation time in

experiments.
The circuit implementing system (5) is reported in Fig. 4. It is governed by the following equations:

Ẋ = k1



−X +
R5

R1

X +
R5

R3

Y −
R5

R4

XY 2



Ẏ = k2



−Y −
R12

R10

X +
R12

R7

Y +
R12

R9

Z



Ż = k3



−Z +
R18

R16

X −
R18

R17

Y +
R18

R15

Z



(6)

where k1 = 1
R6C1

, k2 = 1
R13C2

, k3 = 1
R19C3

.

The circuit makes use of two AD633 multipliers implementing the nonlinearity of the system, with the following
input–output characteristics:

W =
(I1 − I2)(I3 − I4)

10V
+ Z . (7)

Components of the circuit have been chosen in order to match Eq. (5). In particular, parameter values can be fixed
according to the following relations:

k =
10

3

R5

150R3

µ =
10

3

R5

9R4

µb =
10

3



R5

R1

− 1



p =
50

4

R18

R16

q =
R18

12R17

s =
22

100



1 +
R21

R20



12R12

R9

.

(8)

The component values listed in the caption of Fig. 4 allow us to realize the parameter values reported in the previous
section.
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Fig. 4. Schematic of the circuit implementing Bouali’s equations. The values of the components are the following: R1 = 9.76 k�, R2 = 57.5 k�, R3 =

10 k�, R4 = 8.3 k�, R5 = 10 k�, R6 = 100 �, R7 = 10 k�, R8 = 700 �, R9 = 1.72 k�, R10 = 299 k�, R11 = 500 �, R12 = 10 k�, R13 =

1.5 k�, R14 = 242.3 k�, R15 = 100 k�, R16 = 127 k�, R17 = 83.3 k�, R18 = 100 k�, R19 = 300 �, R20 = 1 k�, R22 = 1 k�, R23 = 9 k�, R24 =

1 k�, R25 = 9 k�, C1 = C2 = C3 = 100nF . R21, which implements the bifurcation parameter s, is a variable resistor. TL084 op-amps and AD633

multipliers have been used.

Fig. 5. Chaotic attractor exhibited by the circuit for s = 50: projections on the (a) X–Z and (b) Y–Z phase planes (horizontal axis: 500 mV/div; vertical

axis: 500 mV/div).

4. Experimental results

The circuit has been implemented in our labwith off-the-shelf discrete components. Thewaveforms have been displayed
on the oscilloscope for a first investigation of the circuit by visual inspection and then the corresponding data have been
acquired by using a National Instruments (NI-USB6251) data acquisition board with a sampling frequency fs = 750 kHz.

In order to investigate the behavior of the system with respect to s, the value of resistor R21 has been varied using a
20 k� trimmer, such that s = s(R21) is changed in the system. The exact dependence of parameter s on R21 is given by
Eqs. (8). The chaotic attractor shown by the circuit when R21 = 2.3 k�, corresponding to s ≈ 50, is reported in Fig. 5.
Comparing these projections with the numerical results shown in Fig. 1, a good agreement can be observed. Increasing the
bifurcation parameter, the circuit shows the transition from a double-scroll to a single-scroll attractor. The behavior of the
circuit with R21 = 6 k�, implementing s ≈ 110, is reported in Fig. 6, which is similar to the numerical simulations reported
in Fig. 2. Finally, for R21 = 15.3 k� the behavior of the circuit is a periodic limit cycle, reported in Fig. 7, corresponding to
an implemented value of s ≈ 250, which can be compared to the model behavior reported in Fig. 3.

The behavior of the circuit has been characterized with respect to the bifurcation parameter s (see Fig. 8). The
experimental bifurcation diagram, reported in Fig. 8, has been obtained by varying R21 in steps of 65 � corresponding to a
unitary increasing of s. The relative maxima YMAX of the second state variable are reported for each value of the parameter s.
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Fig. 6. Chaotic attractor exhibited by the circuit for s = 110: projections on the (a) X–Z (horizontal axis: 200 mV/div; vertical axis: 200 mV/div) and

(b) Y–Z phase planes (horizontal axis: 100 mV/div; vertical axis: 200 mV/div).

Fig. 7. Limit cycle exhibited by the circuit for s = 250: projections on the (a) X–Z (horizontal axis: 200 mV/div; vertical axis: 200 mV/div) and (b) Y–Z

phase planes (horizontal axis: 100 mV/div; vertical axis: 200 mV/div).

Fig. 8. Experimental bifurcation diagram with respect to s = s(R21) (the exact dependence is given by Eqs. (8)) for the circuit implementing Bouali’s

equations.

The bifurcation diagram shows the chaotic regions of the system behavior, the periodic windows and the transition from
a double-scroll to a single-scroll case occurring approximatively for s ≈ 50. Around the crisis an intermittent behavior
(bursting behavior) appears. This is shown in Fig. 9, showing the waveform exhibited by the circuit for R21 = 2.6 k� which
corresponds to s ≈ 52. Therefore, around this critical value of the parameters, the dynamicalmodel exhibits a breaking point
simulating the classic signs of the economic bursts. The system does not collapse but displays an intermittent behavior. The
economic system suddenly falls into a re-adjustment process diving the overvalued investments, for example, to a restricted
range of oscillation. Financial market exuberance vanishes and the dynamical trend is driven to an utterly different path in
a brutal way.

5. Concluding remarks

Modelization of the long-term economic trend should display the complex interaction of its major variables. Bouali’s
system as an elementary nonlinear dynamical model with a limited number of equations leads to a very wide range of
behaviors. With a unique nonlinear equation, the system induces patterns similar to the data series of the real economy.
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Fig. 9. Experimental waveform of the Y variable obtained for R21 = 2.6 k� which corresponds to s ≈ 52. Around the crisis, bursting behavior appears.

This paper proposes a discrete component circuit implementation of this model alongside its computational simulations.
The realization of physical processors obeying chaotic dynamical equations is fundamental for experimental research
on chaos and nonlinear dynamics in general. By adopting an approach based on state variables, an electronic analogue
emulating Bouali’s equation and constituted of only common, low-cost circuital components, like resistors, capacitors, op-
amps and analogue multipliers, has been presented. The experimental behavior tested and compared with the numerical
simulations replicates the whole dynamical range exhibited by the corresponding theoretical model, thus validating the
possibility of using the circuit introduced to experimentally study chaos in economic cycles. Measures confirm the correct
physical implementation, high throughput, and robustness of the nonlinear circuit. While the present circuit as well as
other chaotic circuits can also find applications as a random number generator [14] or in secure communications [27], it
chiefly implements amodel in accordancewith the complex behavior of the long run growth of the contemporary globalized
economy. Complexity of the real world implies complexity of its representation tools.
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