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Abstract Event cameras are bio-inspired vision sen-
sors that output pixel-level brightness changes instead

of standard intensity frames. They offer significant ad-
vantages over standard cameras, namely a very high dy-
namic range, no motion blur, and a latency in the order

of microseconds. However, because the output is com-
posed of a sequence of asynchronous events rather than
actual intensity images, traditional vision algorithms
cannot be applied, so that a paradigm shift is needed.

We introduce the problem of Event-based Multi-View
Stereo (EMVS) for event cameras and propose a so-
lution to it. Unlike traditional MVS methods, which

address the problem of estimating dense 3D structure

from a set of known viewpoints, EMVS estimates semi-

dense 3D structure from an event camera with known

trajectory. Our EMVS solution elegantly exploits two

inherent properties of an event camera: (i) its abil-
ity to respond to scene edges—which naturally pro-

vide semi-dense geometric information without any pre-

processing operation—and (ii) the fact that it provides

continuous measurements as the sensor moves. Despite
its simplicity (it can be implemented in a few lines of

code), our algorithm is able to produce accurate, semi-
dense depth maps, without requiring any explicit data
association or intensity estimation. We successfully val-

idate our method on both synthetic and real data. Our

method is computationally very efficient and runs in

real-time on a CPU.
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1 Introduction

An event camera, such as the Dynamic Vision Sensor

(DVS) [Lichtsteiner et al., 2008], works very differently

from a traditional camera. It has independent pixels

that only send information (called “events”) in pres-

ence of brightness changes in the scene at the time they

occur. Thus, the output is not an intensity image but a

stream of asynchronous events at microsecond resolu-

tion, where each event consists of its space-time coordi-

nates and the sign of the brightness change (i.e., no in-
tensity). Since events are caused by brightness changes

over time, an event camera naturally responds to edges
in the scene in presence of relative motion.

Event cameras have numerous advantages over stan-

dard cameras: a latency in the order of microseconds,
low power consumption, and a very high dynamic range
(130 dB compared to 60 dB of standard cameras). These

properties make the sensors ideal in all those applica-

tions where fast response and high efficiency are crucial

and also in scenes with wide variations of illumination.

Additionally, since information is only sent in presence

of brightness changes, the sensor removes all the in-

herent redundancy of standard cameras, thus requiring

a very low data rate (kilobytes vs Megabytes). How-

ever, since event cameras became commercially avail-

able only recently [Lichtsteiner et al., 2008], little re-

lated work exists, and, because their output is signifi-

cantly different from that of standard cameras, tradi-

tional vision algorithms cannot be applied, which calls



2 Henri Rebecq et al.

for new methods to process the data from these novel

cameras, and therefore be able to unlock their potential.

Contribution

In this paper, we address the problem of structure es-

timation (i.e., 3D reconstruction) with a single event

camera by introducing the concept of Event-based Multi-

View Stereo (EMVS) (Section 4), and we propose an
algorithm to solve this problem.

Our approach (Sections 5 to 7) follows a Space-

Sweep [Collins, 1996] voting and maximization strategy
to estimate semi-dense depth maps at selected view-
points, and then we merge the depth maps to build

larger 3D models. We evaluate the method on both

synthetic and real data (Section 8). The results are an-

alyzed and compared with ground truth, showing the

successful performance of our approach.

This paper is based on our previous work [Rebecq

et al., 2016], which we extend in several ways:

– We provide a justification of the choice of perspec-

tive sampling of space by analyzing the operation of

event back-projection (Section 6).

– We show how event back-projection can be efficiently

implemented and parallelized using homographies

to enable real-time performance, and we quantify

the computational performance of our method (Sec-

tion 7).

– We improve structure estimation by means of simple
processing techniques, such as bilinear voting in the

Disparity Space Image (Section 7.1) and median fil-
tering of the semi-dense depth map (Section 5.2.5).

– We include additional experiments (Section 8), show-

ing the applicability of our method.

2 Event Cameras and Applications

Event cameras are biologically inspired sensors that

present a new paradigm on the way that dynamic visual
information is acquired and processed. Each pixel of
an event camera operates independently from the rest,

continuously monitoring its intensity level and trans-

mitting only information about brightness changes of

given size (“events”) whenever they occur, asynchronously,

with microsecond resolution. Specifically, if L(u, t)
.
=

log I(u, t) is the logarithmic brightness or intensity at

pixel u = (x, y)⊤ in the image plane, an event cam-

era such as the DVS [Lichtsteiner et al., 2008] (see

Fig. 1) generates an event ek
.
= 〈xk, yk, tk, pk〉 if the

change in logarithmic brightness at pixel uk = (xk, yk)
⊤

Fig. 1: The event camera “eDVS” produced by iniLabs.

reaches a threshold C (typically 10–15% relative bright-

ness change):

∆L(uk, tk)
.
= L(uk, tk)− L(uk, tk −∆t) = pkC, (1)

where tk is the timestamp of the event, ∆t is the time
since the previous event at the same pixel uk, and

pk = ±1 is the polarity of the event (the sign of the

brightness change). A comparison between the outputs

of a standard and an event camera is shown in Fig. 2.

Therefore, visual information is no longer acquired

based on an external clock (e.g., global shutter); in-

stead, each pixel has its own sampling rate, based on

the visual input: event cameras are data-driven sensors.

This different paradigm of acquiring visual information,

i.e., reporting temporal contrast, offers significant ad-

vantages over that of standard cameras, namely redun-

dancy removal, a very high dynamic range, no motion

blur, and a latency in the order of microseconds. How-
ever, new computer vision algorithms that exploit the
high temporal resolution and the asynchronous nature
of the sensor are required to cope with this unfamiliar

representation of the visual information.

Event cameras find applications in real-time inter-
action systems such as robotics or wearable electronics

[Delbruck, 2016], where operation under uncontrolled
lighting conditions, latency, and power are important.
Event cameras have been used for object tracking [Del-

bruck and Lichtsteiner, 2007, Drazen et al., 2011, Del-

bruck and Lang, 2013], surveillance and monitoring [Litzen-

berger et al., 2006, Piatkowska et al., 2012], object recog-

nition [Wiesmann et al., 2012, Orchard et al., 2015,
Lagorce et al., 2016] and gesture control [Lee et al.,
2014]. They have also been used for stereo depth esti-
mation [Rogister et al., 2012, Piatkowska et al., 2013]

(see also related work in Section 3), 3D panoramic imag-

ing [Schraml et al., 2015], structured light 3D scanning
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Fig. 2: Comparison of the output of a standard camera and an event camera (DVS) when viewing a spinning

disk with a black circle. The standard camera outputs frames at a fixed rate, thus sending redundant information

when no motion is present in the scene. In contrast, event cameras are data-driven sensors that output pixel-level

brightness changes with microsecond latency. Therefore, they do not suffer from motion blur and produce no output

if there is no visual change in the scene. An animated version can be found here: https://youtu.be/LauQ6LWTkxM.

[Matsuda et al., 2015], optical flow estimation [Benos-

man et al., 2012, 2014, Rueckauer and Delbruck, 2016,

Bardow et al., 2016], high dynamic range (HDR) im-

age reconstruction [Cook et al., 2011, Reinbacher et al.,

2016], mosaicing [Kim et al., 2014] and video compres-

sion [Brandli et al., 2014a]. In ego-motion estimation,
event cameras have been used for pose tracking [Weik-
ersdorfer and Conradt, 2012, Mueggler et al., 2014, Gal-
lego et al., 2016], and visual odometry and Simultane-

ous Localization and Mapping (SLAM) [Weikersdorfer

et al., 2013, Censi and Scaramuzza, 2014, Kueng et al.,

2016, Kim et al., 2016, Rebecq et al., 2017]. Event-based

vision is a growing field of research, and many more
applications are expected to appear as event cameras
become widely spread.

3 Related Work on Event-Based Depth

Estimation

The majority of works on event-based depth estima-
tion tackle the 3D reconstruction problem by using two

or more event cameras that are rigidly attached (i.e.,
with a fixed baseline) and share a common clock. These

methods follow a two-step approach: first they solve the

event correspondence problem across image planes and

then triangulate the location of the 3D point. Events

are matched in two ways: either using traditional stereo

methods on artificial frames generated by accumulat-

ing events over time [Schraml et al., 2010, Kogler et al.,

2011a], or exploiting simultaneity and temporal corre-

lations of the events across sensors [Kogler et al., 2011b,

Rogister et al., 2012, Lee et al., 2012, Camunas-Mesa

et al., 2014].

The event-based depth estimation problem that we

address is entirely different: (i) we consider a single

camera and (ii) we do not require simultaneous event
observations.

Depth estimation from a single event camera is more
challenging because we cannot exploit temporal cor-

relation between events across multiple image planes.

Notwithstanding, we show that a single event camera

suffices to estimate depth, and, moreover, that we are

able to do it without solving the data association prob-

lem, as opposed to event-based stereo-reconstruction

methods.

Since the publication of our monocular event-based
depth estimation method [Rebecq et al., 2016], another

solution has been proposed in [Kim et al., 2016]. Their
method is part of a pipeline that uses three filters op-
erating in parallel to jointly estimate the motion of the
event camera, a 3D map of the scene, and the inten-

sity image. Their depth estimation approach requires

using an additional quantity—the intensity image—to

solve for data association (events corresponding to the

same 3D point have the same image intensity under
the Lambertian hypothesis). Intensity estimation and
depth regularization are carried out using dedicated
hardware (a GPU) to achieve real-time performance.

In contrast, our approach [Rebecq et al., 2016] lever-
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ages directly the sparsity of the event stream to per-

form 3D reconstruction (it does not need to recover

the intensity image to estimate depth), and is compu-

tationally efficient, running in real-time on the CPU.

In our most recent article [Rebecq et al., 2017], we ad-

dress the problem of parallel tracking and mapping with

an event camera; notably, we show how the 3D recon-

struction method proposed in the present paper can be
combined with an event-based pose tracking algorithm
to yield both trajectory estimates as well as semi-dense

3D maps.

4 The Event-based Multi-View Stereo Problem

MVS with traditional cameras addresses the problem

of 3D structure estimation from a collection of images

taken from known viewpoints [Szeliski, 2010] of an in-

trinsically calibrated camera. Our Event-based MVS

(EMVS) shares the same goal; however, there are some
key differences:

1. Traditional MVS algorithms work on full images,

so they cannot be applied to the stream of asyn-
chronous events provided by the sensor. EMVS must
take into account the sparse and asynchronous na-

ture of the events.

2. Because event cameras do not output data if both

the sensor and the scene are static, any event-driven

algorithm, such as EMVS, requires the sensor to be

moved in order to acquire visual content. In tra-
ditional MVS, the camera does not need to be in

motion to acquire visual content.

3. Because events are caused by intensity edges, the

natural output of EMVS is a semi-dense 3D map,

as opposed to the dense maps of traditional MVS.

Hence, the EMVS problem consists of obtaining the 3D

reconstruction of a scene from the sparse asynchronous

streams of events acquired by moving event cameras

with known viewpoints. Without loss of generality, it

suffices to consider the case of one event camera.

To solve the EMVS problem, classical MVS approaches
cannot be directly applied since they work on intensity

images. Nevertheless, our event-based approach builds

upon previous works on traditional MVS [Seitz et al.,

2006]. In particular, we follow (in Section 5) the solv-

ing strategy of Scene Space MVS methods [Seitz et al.,

2006], which consist of two main steps: computing an

aggregated consistency score in a discretized volume of

interest (the Disparity Space Image (DSI)) by warping

image measurements, and then finding 3D structure in-

formation in this volume. The term DSI [Szeliski and

Golland, 1999] is interchangeably used to refer to the

projective sampling of the volume (i.e., discretized vol-

ume) or to the scalar function defined in it (i.e., the
score). Just by considering the way that visual informa-
tion is provided, we can point out two key differences

between the DSI approaches in MVS and EMVS:

1. In classical MVS, the DSI is densely populated using

pixel intensities. In EMVS, the DSI may have holes

(voxels with no score value), since warped events are

also sparse.

2. In classical MVS, scene objects are obtained by find-

ing an optimal surface in the DSI. By contrast, in

EMVS, finding semi-dense structures (e.g., points,

curves) is a better match to the sparsity of the DSI.

5 Event-Based Space-Sweep Method

Our method to solve the EMVS problem is similar to
Collin’s Space-Sweep approach for MVS [Collins, 1996],
which shows how sparsity can be leveraged to estimate
3D structures without the need for explicit data asso-

ciation or photometric information. We generalize the

Space-Sweep approach for the case of a moving event

camera by building a virtual camera’s DSI [Szeliski and

Golland, 1999] containing only geometric information of
edges and finding 3D points in it.

First, we review the classical Space-Sweep method

for standard cameras (Section 5.1), and then we de-

scribe our generalization to a moving event camera (Sec-

tion 5.2), showing that the continuous stream of events

produced by the sensor is specially relevant to recover

3D structure.

5.1 Classical Space-Sweep Method

In contrast to most classical MVS methods, which rely

on pixel intensity values, the Space-Sweep method [Collins,

1996] relies solely on binary edge images (e.g., Canny)

of the scene from different viewpoints.

Thus, it leverages the sparsity or semi-density of
the view-point dependent edge maps to determine 3D

structure.

More specifically, the method consists of three steps:

(1) warping (i.e., back-projecting) image features as

rays through a DSI, (2) recording the number of rays

that pass through each DSI voxel, and (3) determin-

ing whether or not a 3D point is present in each voxel.

The DSI score measures the geometric consistency of

edges in a very simple way: each pixel of a warped

edge-map onto the DSI votes for the presence or ab-

sence of an edge. Then, the DSI score is thresholded to

determine the scene points that most likely explain the

image edges.
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(a) Classical (frame-based) Space-Sweep: only a fixed number
of views is available. Two points of an edge map are visible
in each image. The intersections of rays obtained by back-
projecting the image points are used as evidence for detection
of scene features (object points).

(b) Event-Based Space-Sweep: as the event sensor moves,
events are triggered on the sensor. To each observed event
corresponds a ray (through back-projection), that spans the
possible 3D-structure locations. The areas of high ray density
correspond to the locations of the two points, and are progres-
sively discovered as the sensor moves.

Fig. 3: Comparison of the back-projection step in classical Space-Sweep and Event-Based Space-Sweep. This is a

2D illustration with the scene consisting of two points.

5.2 Event-Based Space-Sweep Method

In this section, we extend the Space-Sweep algorithm
in Section 5.1 to solve EMVS. Notice that the stream
of events provided by event cameras is an ideal input to

the Space-Sweep algorithm because (i) event cameras

naturally highlight edges in hardware, and (ii) edges

trigger events from many consecutive viewpoints rather

than a few sparse ones (cf. Fig. 3).

Next we detail the three steps of the event-based
Space-Sweep method: back-projection (Section 5.2.1),

ray-counting (Section 5.2.2), and determining the pres-
ence of scene structure (Section 5.2.3). Then, we also

discuss how to merge depth maps from multiple view-

points (Section 5.2.4), and how to improve the quality

of the reconstruction with simple post-processing tech-

niques (Section 5.2.5).

5.2.1 Feature-Viewing Rays by Event Back-Projection

Let us formally define an event ek = (xk, yk, tk, pk) as a

tuple containing the pixel position (xk, yk), timestamp

tk, and polarity pk (i.e., sign) of the brightness change.
We extend the Space-Sweep method to the event-based

paradigm by using the event stream {ek} output by the

event camera as the input point-like features that are

warped into the DSI. Each event ek is back-projected

according to the viewpoint of the event camera at time

tk, which is known according to the assumptions of
MVS.

From a geometric point of view, we compare the

back-projection step in the classical frame-based and

the event-based settings using Fig. 3. Observe that in

frame-based MVS the number of viewpoints is small

compared to that in the highly sampled trajectory of

the event camera (at times {tk}). This higher abun-

dance of measurements and viewpoints in the event-

based setting generates many more viewing rays than
in frame-based MVS, and therefore, it facilitates the de-
tection of scene points by analyzing the regions of high

ray density.

A major advantage of our method is that no explicit
data association is needed. This is the main difference

between our method and existing event-based depth es-
timation methods (Section 3). While other works es-
sentially attempt to estimate depth by first solving the
stereo correspondence problem in the image plane (us-

ing frames of accumulated events [Schraml et al., 2010,

Kogler et al., 2011a], reconstructed intensity [Kim et al.,

2016], temporal correlation of events [Kogler et al., 2011b,

Rogister et al., 2012, Lee et al., 2012, Camunas-Mesa
et al., 2014], etc.), our method works directly in 3D
space.

This is illustrated in Fig. 3b: there is no need to

associate an event to a particular 3D point to be able
to recover its 3D location.

5.2.2 Volumetric Ray Counting. Creating the Disparity

Space Image (DSI)

In the second step of Space-Sweep, we discretize the

volume containing the 3D scene and count the number
of viewing rays passing through each voxel using a DSI.
To allow for the reconstruction of large scenes in a scal-

able way, we split the 3D volume containing the scene

into smaller 3D volumes along the trajectory of the

event camera, compute local 3D reconstructions, and

then merge them, as will be explained in Section 5.2.4.

For now, let us focus on computing a local 3D re-

construction of the scene from a subset of events. For

this task, we create a virtual camera located at a refer-

ence viewpoint that is chosen among those event camera
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RV

Fig. 4: The DSI ray counter is centered at a virtual

camera in a reference viewpoint (RV) and its shape is

adapted to the perspective projection. Every incoming

viewing ray from a back-projected event (in red) votes

for all the DSI voxels (in light blue) which it traverses.

viewpoints associated to the subset of events, and then

define a DSI in a volume V adapted to the field of view

and perspective projection of the event camera, as illus-
trated in Fig. 4 (see [Szeliski and Golland, 1999]). The

DSI is defined by the event camera pixels and a number
Nz of depth planes {Zi}

Nz

i=1, i.e., it has size w×h×Nz,

where w and h are the width and height of the event

camera, respectively. The score stored in the DSI

f(X) : V ⊂ R
3 → R

+ (2)

is the number of back-projected viewing rays passing

through each voxel with center X = (X,Y, Z)⊤, as
shown in Fig. 4. We show in Section 7.1 how to effi-

ciently compute the ray-voxel intersections using a two-
step approach, allowing for real-time performance on a
single CPU.

5.2.3 Detection of Scene Structure by Maximization of

Ray Density

In the third step of Space-Sweep, we obtain a semi-
dense depth map in the virtual camera by determining

whether or not a 3D point is present in each DSI voxel.
The decision is taken based on the ray density function
stored in the DSI, f(X).

Rephrasing the assumption of the Space-Sweep method

[Collins, 1996], scene points are likely to occur at re-
gions where several viewing rays nearly intersect (see
Fig. 3b), which correspond to regions of high ray den-

sity. Hence, scene points are likely to occur at local max-
ima of the ray density function. Fig. 5 shows an exam-
ple of slicing the DSI in Fig. 6a, from a real dataset,

at different depth planes; the presence of local maxima

of the ray density function is evidenced by the in-focus

areas. Additionally, Fig. 7 shows the emergence of high

ray-density regions in the DSI as the sensor moves and

more events are observed.

We detect the local maxima of the DSI f(X) fol-

lowing a two-step procedure: we first generate a dense

depth map Z∗(x, y) in the virtual camera and an asso-

ciated confidence map c(x, y) by recording the location

and magnitude of the best local maximum of the DSI

f(X(x), Y (y), Z∗) =: c(x, y) along the row of voxels in
the viewing ray of each pixel (x, y). Then, we select

the most confident pixels in the depth map by thresh-

olding the confidence map, yielding a semi-dense depth

map (Fig. 6c). We use Adaptive Gaussian Threshold-

ing: a pixel (x, y) is selected if c(x, y) > T (x, y), with

T (x, y) = c(x, y) ∗ Gσ(x, y) − C. In practice, we use a

5× 5 neighborhood in Gσ and C = −10. The adaptive
approach yields better results than global threshold-

ing [Collins, 1996]. A summary of the main elements of

our DSI approach is given in Fig. 6.

5.2.4 Merging Depth Maps from Multiple Reference

Viewpoints

So far, we have shown how to reconstruct the struc-

ture of scene corresponding to a subset of the events

around a reference view. As pointed out in Section 5.2.2,

motivated by a scalable design, this operation is car-

ried out on subsets of the event stream, thus recov-

ering semi-dense depth maps of the scene at multiple

key reference views. More specifically, we select a new

key reference view as soon as the distance to the pre-

vious key reference view exceeds a certain percentage
of the mean scene depth (typically a number between

15% and 40%), and use the subset of events until the

next key reference view to estimate the corresponding

semi-dense depth map of the scene. The depth maps

are then converted to point clouds, cleaned from iso-

lated points (those whose number of neighbors within a

given radius is less than a threshold) and merged into a

global point cloud using the known positions of the vir-
tual cameras. Other depth map fusion strategies could
be implemented. However, such a research topic is out
of the scope of this paper. In practice, our approach

shows compelling large-scale 3D reconstruction results

even without the need for complex fusion methods or

regularization.

5.2.5 Map Cleaning

To further enhance the quality of the 3D reconstruc-

tion, we use a median filter on the semi-dense depth

maps obtained in Section 5.2.3. Specifically, we consider

only the converged pixels, i.e., the remaining pixels af-
ter the Adaptive Gaussian Thresholding, as input to
the median filter. This allows removing outliers while

preserving depth discontinuities.
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(a) Image at virtual camera. (b) DSI slice at close depth. (c) DSI slice at middle depth. (d) DSI slice at far depth.

Fig. 5: (a) Scene with the event camera moving above three textured planes located at different depths (close,

middle, far). We build the ray density DSI f(X) as described in Section 5.2.2 and show the effect of slicing it

at different depths, (b)–(d), as simulating a plane sweeping through the DSI. When the sweeping plane coincides

with an object plane, the latter appears very sharp while the rest of the scene is “out of focus”.

(a) Ray density DSI f(X). (b) Confidence map. (c) Semi-dense depth map. (d) 3D point cloud.

Fig. 6: Our method builds the ray density DSI (a), from which a confidence map (b) and a semi-dense depth map
(c) are extracted in a virtual camera. The semi-dense depth map gives a point cloud of scene edges (d). Same

dataset as in Fig. 5.

(a) (b) (c) (d) (e)

Fig. 7: Evolution of the DSI as the event camera moves. Figure (a) shows a preview of the scene, while figures
(b) to (e) show the successive projections of the DSI along its three axes (top-left inset: front view, top-right

inset: side-view, bottom-left inset: top-view). As more events are observed, areas of high ray density (in red) start

appearing and the uncertainty in depth decreases in all directions. In this example, the DSI is sampled uniformly

in inverse depth.

Additionally, we also apply a radius filter [Rusu and
Cousins, 2011] to the final point cloud, which discards

the points whose number of neighbors within a given ra-

dius is less than a threshold. This helps remove isolated

points, which are most likely outliers.

6 Sampling the DSI: Uniform vs. Projective

In this section we justify our choice of using a projec-
tive sampling of the DSI volume, i.e., a projective voxel

grid, instead of using a uniform sampling (as originally
proposed in [Collins, 1996]). The reader who is not in-

terested in this explanation can jump to Section 7.

We compare both sampling strategies (uniform and
projective) by means of a simple experiment in 2D,

illustrated in Fig. 8, and support the comparison by
means of well-grounded mathematical results.

Let us consider a 2D scene consisting of a moving

event camera and a few set of points with large contrast
so that they generate events (Fig. 8a).
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(a) 2D scene geometry featuring five points, the camera tra-
jectory (in green) and optical axis direction (in red), and the
projective voxel grid (in blue).
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(b) Ray density in Euclidean space (uniform voxel grid). The
width of each ray grows with the depth.
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(c) Ray density using projective voxel grid, equispaced in
depth (voxel vertical index). The width of each ray is constant
along the depth.
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(d) Ray density using projective voxel grid, equispaced in
inverse depth (voxel vertical index). As in Fig. 8c, the width
of each ray is constant along the depth.

Fig. 8: Illustration of uniform vs. projective sampling of the DSI using a 2D example. Ray density plots are pseudo-
colored, from dark blue (small density) to red (high density). Figure generated with 50 camera poses, a camera

FOV of 75 degrees, and image resolution of 100 pixels (along the camera’s X axis). The voxel grid has a resolution
of 240 pixels (along the X axis) and 240 depth planes.

For simplicity, and since our method does need the
event polarity, we model the event camera as a sensor

that outputs a binary value describing whether a scene

point is visible by a specific camera pixel. This is only

an approximate model; for example, an event camera

moving forward towards a point in the center of the

image plane would not trigger events (since the bright-

ness of this pixel does not change), but in this model

we consider that for every visible scene point an event

is generated at each camera pose. Nevertheless, this is

a good geometric model that provides insight into the

EMVS problem and our proposed solution. We use this

model to compute the DSI ray density function on a

region of the XZ space, and sample it in two differ-

ent ways: (i) using a uniform grid along both X and

depth Z axes (i.e., on a Cartesian grid), as shown in

Fig. 8b, and (ii) using a projective grid (as in Fig. 4)

that mimics the perspective operation of a camera lo-

cated somewhere along the event camera trajectory, as

shown in Fig. 8a. Approach (i) corresponds to the one

originally proposed in [Collins, 1996]. We are interested

in comparing the effect of both sampling strategies on
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the shape and size of the rays, more correctly “cones”,

obtained by back-projecting events, that is, we consider

that pixels are not just points but have a finite extent.

6.1 Shape of the Back-Projected Rays

First, let us analyze the shape, i.e., ignoring the finite
extent of the pixel. Later, we will analyze the effect of

the finite pixel size on the back-projection operation to

create the DSI. The ray back-projected from a point u

in the camera is a line in Euclidean space. Using cali-

brated coordinates, and assuming that P = (R|t) is the

projection matrix of the camera, the ray is given by the

line joining two points [Hartley and Zisserman, 2003,

p.162]: the optical center of the camera C = −R⊤t and

the point at infinity (D⊤, 0)⊤, with D = R⊤u, project-

ing on u. A point on the ray has Euclidean coordinates

X = ρD+C. (3)

These are the parametric equations of the line, with

depth parameter ρ. The uniform sampling strategy pre-
serves the straight nature of the back-projected rays,

as shown in Fig. 8b. In contrast, the rays are no longer

straight in the case of the projective sampling (Fig. 8c).

In the projectively sampled space, a Euclidean point

X
.
= (X,Y, Z)⊤ is described by coordinates

Xp =

(

X

Z
,
Y

Z
,Z

)⊤

.
= (x, y, Z)⊤. (4)

Letting C = (Ci) and D = (Di), i = 1, . . . , 3, we com-

bine (3) and (4) to obtain the parametric equations

Xp =

(

ρD1 + C1

ρD3 + C3
,
ρD2 + C2

ρD3 + C3
, ρD3 + C3

)⊤

. (5)

Let us show that (5) explains the curved shapes of
back-projected rays observed in Fig. 8c. For depth val-

ues ρ ≫ 1, the points on the ray follow the curve
Xp ≈ (D1/D3, D2/D3, 0)

⊤ + ρ (0, 0, D3)
⊤, which is a

line with direction vector (0, 0, D3), i.e., a line parallel

to the Z-axis. This is observed in the top part of Fig. 8c.
For small depth values (ρ → 0), the points on the ray

approach the optical center of the camera, as expected,
Xp ≈ (C1/C3, C2/C3, C3)

⊤, so we look at the way that

they approach this point by computing the tangent:

dXp

dρ

(5)
=

(

D1C3 −D3C1

(ρD3 + C3)2
,
D2C3 −D3C2

(ρD3 + C3)2
, D3

)⊤

. (6)

The plots in Fig. 8c where generated with a moving

camera with C3 ≪ D3, and so, for small depth values,

dXp/dρ ≈ ((−C1/(D3ρ
2),−C2/(D3ρ

2), D3)
⊤. In the

2D example (only considering X and Z coordinates),

as ρ → 0 the tangent is dominantly along the X axis,
which agrees with Fig. 8c. In summary, when going from

zero to infinite depth, the tangent changes from being

parallel to the X axis to being parallel to the Z axis,

and so, the tangent varies (smoothly) between these two
directions, as shown in the curved shapes of Fig. 8c.

Finally, consider what happens when the DSI is

sampled projectively and equispaced in inverse depth
instead of depth: the curved shapes analyzed in Fig. 8c
become almost straight, as shown in Fig. 8d. This is

similar to the effect of representing the function y = ex

in logarithmic scale: log(y) becomes a line. The curve

represented by the X and Z coordinates of (5) is the

parametric curve (x(r), r), with x(r) = D1/D3 + (C1 −

(C3D1)/D3)r
−1 and the change of variables r = ρD3 +

C3. Thus, x(r) is a line when using the parameter r−1 =

(ρD3 + C3)
−1, which is approximately inverse depth.

Fig. 8d was generated with C3 ≪ D3, and so the ray

(x(r), r) is indeed almost straight when the Z axis is

given in inverse depth.

6.2 Size of the Back-Projected Cones

We now consider that pixels have a non-zero area and

study how a back-projected event contributes to the

DSI depending on the sampling scheme.

A pixel collects the light in a fixed, small angle
around a given direction. This angle correspond to dif-

ferent object sizes depending on the distance of the ob-

ject to the camera. This idea is roughly expressed by

the formula of the area A of a sphere patch seen by a

central solid angle Ω: A = Ωr2, where r is the radius

of the sphere. Thus, the same pixel angle Ω covers an

area A at a distance r and an area four-times larger 4A
at double the distance 2r. Hence, the back-projection

of a pixel into space generates a cone whose base area

A grows quadratically with the distance to the camera.

In a uniform sampling of the DSI, where all voxels
have the same size, a pixel back-projects into a cone

that will cover more voxels the farther they are from
the camera. In contrast, using a projective sampling of
the DSI, we compensate for the perspective effect of the

camera by making the size of the voxel increase with

the distance of the voxel to the virtual camera defining

the projective grid, so that a pixel back-projected into

space will cover always roughly the same number of

voxels: one. This comparison can be observed in Figs. 8b

and 8c. In Fig. 8b we can identify the cones, whose

apexes lie on the event camera trajectory. In Fig. 8c,

the cones are represented by curves of approximately

constant width (perpendicular to the depth axis). This
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constant width is also appreciated in Fig. 8d, where the

cones become “cylinders”.
Let us mathematically support the previous state-

ments. Fig. 8a illustrates the geometry of the projective

sampling considered. The projective DSI is defined by

a virtual camera with projection matrix Pv = (I|0),
in calibrated coordinates. At the time of the current

event e = (u, v, t, p), the event camera is described by
projection matrix Pe = (R|t). The pixel where the event

has been triggered is back-projected into points of the

form (4) in the projective DSI. Each depth plane Z = Zi

induces a planar homography between the image plane

of the event camera and the image plane of the virtual

camera, by mapping the event coordinates (u, v)⊤ to

the first two coordinates of (4), (x, y)⊤. We use this

planar homography to measure the area in the virtual

camera (i.e., the area perpendicular to the depth axis

in the projective grid) that is due to the pixel that trig-

gered the event. The relation between the area elements

in both cameras is given by the determinant of the Ja-

cobian of the homography:

dxdy = det

(

∂(x, y)

∂(u, v)

)

dudv. (7)

The planar homography HZi
: (u, v) 7→ (x, y) from

the event camera to the virtual camera, induced by the

plane Z = Zi (with coordinates π = (e⊤3 ,−Zi)
⊤, e3 =

(0, 0, 1)⊤), is given by the inverse of the homogeneous

matrix (see (24))

H−1
Zi

∼ R+
1

Zi

te⊤3 . (8)

The Jacobian in (7) can be computed applying Result 2

in the Appendix to (8) and the fact that the Jacobian

of HZi
is the inverse of the Jacobian of H−1

Zi
:

det

(

∂(x, y)

∂(u, v)

)

=

(

Z ′

i

Zi

)3 (

1−
Cz

Zi

)−1

, (9)

where Z ′

i is the depth of the point X ∈ π with respect
to the event camera Pe, and Cz is the third coordinate of

the optical center of Pe. Therefore, the conversion factor

between areas in the image planes is a function of the
ratio of depths of the scene point with respect to both
cameras and the ratio of depths Cz/Zi. Assuming that

the scene point is equally far away from both cameras
(i.e., Z ′

i ≈ Zi) and that the amount of forward motion of
the event camera is negligible compared to Zi, Cz ≪ Zi,

the conversion factor (9) in (7) becomes approximately

1, that is, a pixel maps to an area (perpendicular to the

depth axis) of 1 pixel in the projective grid; this is the

area of a cross-section of a voxel, hence for each depth

plane Z = Zi, a pixel in the event camera votes for 1

voxel in the projective grid.

To summarize, we have shown that the projective

sampling of the DSI is a better choice than the uniform
sampling because a back-projected event will vote for
approximately one grid cell per depth plane instead of

multiple cells (in case of uniform sampling) whose num-

ber would grow quadratically with depth. This property

(area conversion factor ≈ 1) is not only advantageous

when creating the DSI (only one vote needed per depth

plane), but also when extracting the scene edges from

it. Indeed, areas at different depth planes of the virtual

camera are comparable when using the projective DSI,

thus enabling the use of a fixed-size adaptive-threshold

mask in all depth planes to extract clusters of high ray

density along the viewing rays of the virtual camera.

In contrast, with a uniform voxel grid, the size of the
clusters depends on the depth, which means that the
mask size of the adaptive threshold itself would have to
be dependent on the depth plane.

Remark. The previous analysis used calibrated co-

ordinates. If, instead, we use pixel coordinates, with Kv
and Ke being the intrinsic parameter matrices of the DSI

virtual camera and the event camera, respectively, it is
easy to show, using an argument on how area elements
transform (7), that (9) will become

det

(

∂(x, y)pixel
∂(u, v)pixel

)

=
det(Kv)

det(Ke)

(

Z ′

i

Zi

)3 (

1−
Cz

Zi

)−1

,

(10)

that is, the ratio of the focal lengths of the cameras can

be used to modify the number of voxels that each event

votes for. However, a typical design choice is det(Kv) =

det(Ke) so that such a number is 1, as analyzed above.
Other compelling reasons to choose a local projec-

tive DSI over a global, uniform DSI are that: (i) for

a given amount of memory, it is better to maintain a

local map since it allows for higher resolution, and (ii)

for some applications, such as visual odometry (without

loop closure), it suffices to provide a local 3D map.

7 Algorithmic Considerations for Real-Time

Performance

The goal of this section is two-fold: (i) describe the
two-step approach that is used to accelerate computa-

tions and (ii) quantitatively measure the computational

performance of the method (e.g., in number of events

processed per second).

7.1 Efficient Event Back-Projection onto the DSI

Following [Collins, 1996], we populate the DSI using

a space-sweep strategy. However, our approach differs
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Algorithm 1 Efficient event back-projection

Goal: back-project events positions {(uj , vj)} to the projec-
tive DSI.
Input: a projective DSI defined by a virtual camera P = (I|0)
and Nz depth planes Z = Zi; points {(uj , vj)} at the current
location of the event camera Pe = (R|t).
Procedure:

1. Map points from the event camera to the virtual cam-
era via a canonical plane Z = Z0, according to ho-
mography HZ0

(see (8)), and store the transferred points
{(xj(Z0), yj(Z0))} with full precision.

2. For each depth plane Z = Zi:
(a) Map points from the event camera to the virtual cam-

era via the plane Z = Zi using the homography hi0 ≡
HZi

H
−1
Z0

on the stored points: (xj(Zi), yj(Zi)) =

hi0((xj(Z0), yj(Z0))). See (15).
(b) Vote for the DSI voxels at positions

{(xj(Zi), yj(Zi), Zi)}.
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Fig. 9: Efficient event back-projection in Algorithm 1.

An event with coordinates (u, v) is mapped onto the

depth plane Z = Zi of the projective DSI in two steps:
first, it is mapped to the depth plane Z = Z0 via HZ0

and then it is mapped to Z = Zi via the similarity
HZi

H−1
Z0

in (15). In the figure, the notation xi = x(Zi)

and yi = y(Zi) is used for brevity.

from his in the fact that we use a projective DSI instead

of a uniform one and we keep the entire DSI in memory,

not just a slice of it, for later processing.

The approach is summarized in Algorithm 1. The

main idea behind the approach is that to compute the

back-projection locations corresponding to the depth

plane Z = Zi it is more efficient to do it in two steps

(back-projecting via a depth plane Z = Z0 and then
modifying the point locations to take into account the

change in Z value) than it is to apply the homography
to the original points. This is illustrated in Fig. 9.

The homography to transfer points from the event
camera to points on the virtual camera of the DSI via

a plane Z0 is HZ0
, used in step 1 of Algorithm 1:

(x(Z0), y(Z0), 1)
⊤ ∼ HZ0

(u, v, 1)⊤, (11)

where we explicitly wrote the dependency of the trans-

ferred point (x(Z0), y(Z0)) with respect to the plane
used Z = Z0. Points transferred via another plane,

Z = Zi, can be written in terms of the points trans-

ferred using Z = Z0 as follows:

(x(Zi), y(Zi), 1)
⊤ ∼ HZi

H−1
Z0

(x(Z0), y(Z0), 1)
⊤, (12)

where the homography HZi
H−1
Z0

has a very simple struc-

ture: a similarity without rotation. Let us show this.

Using the matrix inversion lemma on the first term of

HZi
H−1
Z0

(8)
=

(

R+
1

Zi

te⊤3

)−1 (

R+
1

Z0
te⊤3

)

, (13)

and the equation of the optical center of the event cam-

era, (Cx, Cy, Cz)
⊤ .
= C = −R⊤t, we obtain

HZi
H−1
Z0

∼ I+
Z0 − Zi

Z0(Zi − Cz)
Ce⊤3 . (14)

Dividing the homogeneous matrix (14) by its last entry

and writing (12) in expanded form gives

x(Zi) =
Z0

Zi

δ x(Z0) +
1

Zi

(1− δ)Cx,

y(Zi) =
Z0

Zi

δ y(Z0) +
1

Zi

(1− δ)Cy,

(15)

where δ = (Zi−Z0)/(Z0−Cz). Hence, the transforma-

tion HZi
H−1
Z0

in (15) is very simple and fast to compute.

This is the advantage of the two-step approach. These

equations are similar to the equations in [Collins, 1996],

except for the additional multiplicative factors Z0/Zi

and 1/Zi.
Accumulating votes in the DSI (line 2b of Algo-

rithm 1) is a process known as forward mapping in im-

age processing [Wolberg, 1990, ch.3], and it can be done

in different ways. The simplest one is nearest neigh-

bor: point (xj(Zi), yj(Zi)) votes for a single cell of the

depth plane Z = Zi. A better strategy because it mit-

igates the grid discretization effect is bilinear voting:

point (xj(Zi), yj(Zi)) votes for its four nearest cells on

the depth plane Z = Zi, splitting the vote according

to the distances of (xj(Zi), yj(Zi)) to the integer cell

locations, similarly to bilinear interpolation.

7.2 Computational Performance of the Method

The algorithm can be parallelized in a multi-core ar-

chitecture by making each thread work on a different

group of depth planes so that there are no race condi-

tions during voting.

The two-step approach in Algorithm 1 is efficient

if events are processed in groups or batches. Theoreti-

cally, each event has a different camera pose Pe(t), but
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using a different pose to process each event would make

any algorithm terribly inefficient. For example, just the

simple operation of pose interpolation along the cam-

era trajectory becomes an expensive operation when it

is done at the event rate (in the order of 105 to 106

events per second). In practice, it is sensible to assume
that events, which have microsecond resolution, can be

grouped in time so that they are assigned the same

camera pose and processed together (i.e., they share

the same homography HZ0
, which is the most expensive

part to compute). We typically use batches containing

a small, fixed number of events (typically, 256 events).

The corresponding time interval depends on the event

rate (hence the camera motion), but it is typically very

small (in the order of 1ms or less).

The number of operations required to compute the

DSI grows linearly with the number of depth planes in
the voxel grid. Moreover, as explained in Section 6.2, for
the choice det(Kv) = det(Ke), the complexity does not

depend on the spatial resolution of the depth planes, be-
cause in that case only one vote is necessary per depth
plane.

Finally, for an efficient implementation with real
cameras, it is a good practice to use a look-up-table
of undistorted calibrated coordinates (u, v) of the event

camera and to use SIMD instructions for matrix multi-
plications in Algorithm 1.

Quantitative Evaluation.We measured the speed of our

implementation on a Lenovo W541 laptop computer
containing an Intel Core i7-4810MQ @2.80 GHz quad-

core processor, and a scene recorded in a typical office
environment (similar to the first row in Fig. 15) with the
DAVIS camera (240×180 resolution). The event rate in

the scene varied between 250 000 events/s and 900 000
events/s. We used 100 depth planes in the voxel grid,
and a batch size of 256 events. On a single core, our im-
plementation can process on average 1.2 million events

per second (which is higher than the maximum event
rate in the scene, thus running faster than real-time),
and on average 4.7 million events/s with the multi-core

implementation (using 4 cores).

8 Experiments

We now evaluate the performance of our event-based

Space Sweep Method, on both synthetic and real datasets.

8.1 Synthetic Data

We generated three synthetic datasets with ground truth
information by means of an event camera simulator [Mueg-

Table 1: Depth estimation accuracy in the synthetic
datasets (Nz = 100)

Dunes 3 planes 3 walls

Depth range 3.00m 1.30m 7.60m
Mean error 0.14m 0.15m 0.52m
Relative error 4.63% 11.31% 6.86%

gler et al., 2017]. We set the spatial resolution to 240×

180 pixels, as that of commercial event sensors. The

datasets also contain intensity images along the event
camera viewpoints. However, these are not used in our
EMVS algorithm; they are solely shown to aid the visu-

alization of the semi-dense depth maps obtained with

our method. The datasets exhibit various depth profiles

and motions: Dunes consists of a smooth surface (two

dunes) and a translating and rotating camera in two de-

grees of freedom (DOF), 3 planes shows three planes at
different depths (i.e., discontinuous depth profile with

occlusions) and a linear camera motion; finally, 3 walls

shows a room with three walls (i.e., a smooth depth

profile with sharp transitions) and a general, 6-DOF

camera motion.

Our EMVS algorithm was executed on each dataset.

First, we evaluated the sensitivity of our method with

respect to the number of depth planes Nz used to sam-

ple the DSI. In this experiment, the planes in the DSI

were equispaced in depth (as opposed to inverse depth)

since it provided better results in scenes with finite

depth variations. Fig. 10d shows, as a function of Nz,

the relative depth error, which is defined as the mean

depth error (between the estimated depth map and the

ground truth) divided by the depth range of the scene.

As expected, the error decreases with Nz, but it stag-

nates for moderate values of Nz. Hence, from then on,

we fixed Nz = 100 depth planes. Table. 1 reports the
mean depth error of the estimated 3D points, as well

as the relative depth error for all three datasets. Depth
errors are small, in the order of 10% or less, showing
the good performance of our EMVS algorithm and its

ability to handle occlusions and a variety of surfaces

and camera motions.

8.2 Real Data

We also evaluated the performance of our EMVS algo-
rithm on datasets from a DAVIS sensor [Brandli et al.,
2014b]. The DAVIS outputs, in addition to the event
stream, intensity frames as those of a standard camera,

at low frame rate (24Hz)1. However, our EMVS algo-

1 The DAVIS comprises both a frame camera and an event
sensor (DVS) in the same pixel array of size 240 × 180. The
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Fig. 10: Synthetic experiments: estimated semi-dense depth maps overlayed over screenshots of the scene, in three
datasets (a)-(c). Depth is colored, from close (red) to far (yellow). Our EMVS algorithm successfully recovers most

edges, even without regularization or outlier filtering. (d): Relative depth error as a number of depth planes Nz,
in all three datasets: Dunes (blue), 3 planes (red), and 3 walls (green).

rithm does not use the frames; they are displayed here

only to illustrate the semi-dense results of the method.

We considered two methods to provide our EMVS

algorithm with camera pose information: a motorized

linear slider or a visual odometry algorithm on the

DAVIS frames. We used the motorized slider to ana-

lyze the performance in controlled experiments (since

it guarantees very accurate pose information) and a vi-

sual odometry algorithm (SVO [Forster et al., 2014]) to
show the applicability of our method in hand-held (i.e.,
unconstrained) 6-DOF motions.

8.2.1 High Dynamic Range and High-Speed

Experiments

In this section, we show that our EMVS algorithm is

able to recover accurate semi-dense structure in two

challenging scenarios, namely (i) high-dynamic-range

(HDR) illumination conditions and (ii) high-speed mo-
tion. For this, we place the DAVIS on the motorized

linear slider, facing a textured wall at a known con-

stant depth from the sensor. In both experiments, we

measure the accuracy of our semi-dense maps against

ground truth and demonstrate compelling depth esti-

mation accuracy, in the order of 5% of relative error,

which is very good, especially considering the low res-

olution of the sensor (only 240 × 180 pixels). In order

to provide a fair measurement of the raw accuracy of

our approach, we did not perform any additional post-

processing or map cleaning (Section 5.2.5) for these

quantitative experiments.

High Dynamic Range Experiment.We recorded

two datasets under the same acquisition conditions ex-

cept for illumination (Fig. 11): first with constant il-

lumination throughout the scene and, second, with a

frames may be used to simplify intrinsic camera calibration,
by applying standard algorithms [Zhang, 2000]. Otherwise,
tailored event-based algorithms, such as [Mueggler et al.,
2014], may be applied.

powerful lamp illuminating only half of the scene. In

the latter case, a standard camera cannot cope with

the wide intensity variation in the middle of the scene
since some areas of the images are under-exposed while
others are over-exposed. We performed the HDR ex-
periment with two different wall distances (close and

far).

The results of our EMVS algorithm are given in

Fig. 11 and Table 2. Observe that the quality of the
reconstruction is unaffected by the illumination condi-
tions. In both cases, the EMVS method has a very high

accuracy (mean relative error ≈ 5%), and also in spite

of the low spatial resolution of the sensor or the lack

of regularization. Moreover, observe that the accuracy

is not affected by the illumination conditions. Hence,

we unlocked the high-dynamic range capabilities of the

sensor to demonstrate successful HDR depth estima-

tion.

High-Speed Experiment. To show that we can

exploit the high-speed capabilities of the event sen-

sor for 3D reconstruction, we recorded a dataset with

the DAVIS at 40.5 cm from the wall and moving at
0.45m/s. This translated into an apparent speed of

376 pixels/s in the image plane, which caused motion
blur in the DAVIS frames (Fig. 12). The motion blur

makes the images unintelligible. By contrast, the high

temporal resolution of the event stream still accurately

captures the edge information of the scene. Our EMVS

method produced a 3D reconstruction with a mean

depth error of 1.26 cm and a relative error of 4.84%.

The accuracy is consistent with that of previous exper-
iments (≈ 5%), thus supporting the remarkable perfor-

mance of our method and its capability to exploit the

high-speed characteristics of the event sensor.

8.2.2 Three-dimensional Scenes

All previous experiments were carried out with nearest-

neighbor DSI voting (Section 7.1), and lacked structure
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(a) Constant illumination setup. Events on a frame. (b) HDR illumination setup. Events on a frame.

(c) Constant illum. 3D points: front and top views. (d) HDR illum. 3D points: front and top views.

Fig. 11: HDR experiment : Top: Scene and illumination setups, with the DAVIS on the motorized linear slider

(a) and a lamp (b). Sample frames show under- and over-exposed levels in HDR illumination (b). By contrast,

the events (overlayed on the frames) are unaffected, due to the high dynamic range of the event sensor. Bottom:

reconstructed point clouds.

Table 2: Depth estimation accuracy in the HDR experiment (no post-processing)

Close (distance: 23.1 cm) Far (distance: 58.5 cm)

Illumination Mean error Relative error Mean error Relative error
◦ constant 1.22 cm 5.29% 2.01 cm 4.33%
◦ HDR 1.21 cm 5.25% 1.87 cm 3.44%

(a) Frame (motion blur). (b) Events (∆t = 2ms). (c) Frame and events.

Fig. 12: High-speed experiment. Frame and the events from the DAVIS at 376 pixels/s. The frame suffers from

motion blur, while the events do not, thus preserving the visual content.

post-processing (no median or radius filters were ap-

plied). The following experiments were performed with

bilinear DSI voting and structure post-processing (Sec-

tion 5.2.5).

Figs. 13 and 14 show some results obtained by our

EMVS method on non-flat scenes. We show both the

semi-dense point cloud and its projection on a frame

(for better understanding). To ease the visualization,

depth is colored from red (close) to blue (far).

In Fig. 13, the DAVIS was moved in front of a scene
containing various objects with different shapes and at

different depths. In spite of the large occlusions of the

distant objects, generated by the foreground objects,

our EMVS algorithm was able to recover the structure
of the scene reliably. Fig. 14 shows the result of our
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(a) Side view. (b) Front view.
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Fig. 13: Desk dataset : scene with objects and occlusions.

(a) Side view. (b) Top view.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

(c) Projection on a frame.

Fig. 14: Boxes dataset: large-scale semi-dense 3D reconstruction with a hand-held DAVIS.

EMVS algorithm on a larger scale dataset. The sensor

was hand-held moved in a big room featuring various

textured boxes. Multiple local point clouds were esti-

mated along the trajectory, which were then merged

into a global, large-scale 3D reconstruction.

Finally, Fig. 15 shows qualitative results of our ap-

proach in various natural environments (both indoors

and outdoors) and depth ranges. For each scene, we

moved the event camera in a circular fashion, in order

to generate events from edges in all directions. We used

a visual odometry algorithm [Forster et al., 2014] on the

DAVIS frames to estimate the camera motion, and used

linear interpolation to provide the camera pose for each

event. The DSI was sampled uniformly in inverse depth

(as in Fig. 8d) to cope with large depth variations, using

between 100 and 150 depth planes. The minimum and

maximum depth values were set manually, differently
for each experiment to adapt better to the depth range
in the scene. We used a median filter of size 15 pixels in
the semi-dense depth maps. Then, in the point clouds,

we used a radius filter of size equal to 5 % of the mean
scene depth, and a minimum number of neighbors of
N = 4 to remove isolated points.

8.2.3 Effect of Dynamic Objects

In this section, we show that the proposed method is

robust to the presence of moving objects in the scene. In

Fig. 16, we compare two 3D reconstructions obtained

by our method, with and without the presence of a

moving, occluding object in front of the sensor, and

show that they are qualitatively equivalent. Indeed, the

moving object does not generate votes with a spatial

persistence in the DSI, and so the votes are treated
as noise and are filtered out by the Adaptive Gaussian
Thresholding. In both cases, the length of the sequence

of events used for reconstruction was the same, and the

camera motion was very similar.

8.2.4 Effect of Light Changes

Due to the fact that the event camera reacts to light
changes, one might think that strong temporal light
changes would perturb the performance of the algo-
rithm. In Fig. 17, we show that this is not the case, e.g.,

the proposed approach is robust to strong light changes.

The reason of this robustness is two-fold: (i) the sensor
itself, thanks to its high dynamic range, is to a large

extent invariant to illumination conditions (Fig. 17b),
and (ii) strong light changes generate a burst of events

across the whole sensor, which results in simply adding

a constant offset to the DSI, which does not affect the

adaptive thresholding step.
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(a) (b) (c) (d)

Fig. 15: Semi-dense 3D reconstructions of several scenes with a hand-held DAVIS. (a) Scene. (b) Events (positive

and negative). (c) Semi-dense depth map, pseudo-colored from red (close) to blue (far). (d) Point cloud.

9 Discussion

This work has focused on multi view stereo with a sin-

gle moving event camera. Our goal was to show that

3D reconstruction with a single event camera is pos-

sible, and that we do not need to solve the data as-

sociation problem or estimate image intensity. The re-

sults showed that (i) the method provides accurate re-
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(a) Static scene. From left to right: Preview image; Preview of the events; 3D reconstruction (front view and side view).

(b) Dynamic scene with hand continuously waving in front of the sensor. Apart from a small number of outlier 3D points
generated by the moving hand (circled in red), our algorithm is able to reconstruct the scene as well as in the static case.

Fig. 16: Effect of a Dynamic Scene: The same scene and camera motions were used to create the 3D reconstructions

shown in Figs. 16a and 16b. However, in Fig. 16b, a hand was continuously waived in front of the sensor, generating

a large number of outlier events. Nonetheless, our algorithm is barely affected and both 3D reconstructions are

similarly good.

sults, being able to unlock the capabilities of the sensor

in challenging scenarios (HDR and high-speed) where

standard cameras fail, (ii) the method can handle inac-

curate poses (the experiments with poses provided by

a frame-based visual odometry algorithm show visually

appealing results, which suggests that the method is ro-

bust to pose uncertainty), and (iii) the method is com-
putationally efficient and can run on the CPU, without

additional dedicated hardware.

The applicability of multi view stereo depends on

the availability of pose information, which in the ex-

periments was provided by an external tracking algo-

rithm or system. However, this is not a limitation, since

the method can be used in combination with an event-
based motion estimation algorithm, as shown in [Re-
becq et al., 2017], thus removing the need for an exter-
nal pose estimator.

The major limitation of the proposed approach is
that it provides depth values on a discrete set, thus

the resolution is limited by the number of depth planes

used, Nz. The computational complexity of the method

is linear in the number of depth planes, O(Nz), while
the discretization error is proportional to 1/Nz. Hence,

there is an accuracy vs. computation effort tradeoff.

However, increasing Nz does not improve the total ac-

curacy, as shown in Fig. 10d, since the accuracy also de-

pends on the triangulation uncertainty. The discretiza-

tion effect has also an undesirable influence when merg-

ing point clouds from different keyframes: the same 3D

point may be extracted from two different DSIs, but

the 3D positions may not agree since they are rounded

to the position of the center of a voxel. A continuous

formulation, in the form of depth filters [Vogiatzis and

Hernández, 2011, Pizzoli et al., 2014], where depth can

have any positive real value, would be more desirable,

and it is a line of future work.

Investigating methods to regularize semi-dense depth

maps is also interesting and of large applicability since

semi-dense depth maps are used not only in our method

but also in state-of-the-art visual odometry algorithms

for standard cameras, such as LSD-SLAM [Engel et al.,

2014] and DSO [Engel et al., 2017]. We showed how

simple processing techniques, such as median filtering,

are effective tools to improve the quality of the recon-

structions, but more principled methods would also be

desirable.

10 Conclusion

We introduced the EMVS problem, and provided a sim-

ple and elegant solution to it that exploits the natural

strengths of the sensor, and runs in real-time on a CPU.

We validated our algorithm on both synthetic and real
data, for various motions and scenes, showing very ac-
curate 3D reconstructions (relative depth error of 5%)

in spite of the low resolution of the sensor and the high

amount of noise typical of event cameras. We believe
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(a) Preview of the scene.

(b) Visualization of frames from a standard camera, compared to the
events. Top row: light ON; Bottom row: light OFF. The events are unaf-
fected by the strong light change.

(c) From left to right: Top view, side view, and perspective view of the reconstructed 3D scene.

Fig. 17: Effect of strong light changes: Despite switching off the light in the middle of the sequence (Fig. 17b), the

obtained 3D reconstruction remains unaffected and of high quality (Fig. 17c).

this work is a major step towards building 3D recon-
struction algorithms robust to speed (the events do not
suffer from motion blur), and HDR illumination. This
paper further highlights the potential of event cameras

and the astounding possibilities it opens to computer

vision.

A Relation of Area Elements due to a 2D

Homography

This section provides a useful result on how a 2D transfor-
mation given by a homography affects the area element.

Result 1 (Jacobian of a Homography) Let H be a 2D ho-
mography transforming points x

.
= (x, y, 1)⊤ to points x′ .

=
(x′, y′, 1)⊤ in homogeneous coordinates: x′ ∼ Hx, where ∼
means equality up to a non-zero scale factor. The determi-

nant of the Jacobian of the transformation (x, y)
H
7→ (x′, y′)

(in Euclidean coordinates),

J
.
=

∂(x′, y′)

∂(x, y)
=

(

∂x′

∂x
∂x′

∂y
∂y′

∂x

∂y′

∂y

)

(16)

is

det(J) =
det(H)

(e⊤3 Hx)3
, (17)

where e3 = (0, 0, 1)⊤ is the 3-rd vector of the canonical basis
in R

3.

The determinant of the Jacobian (17) provides the relation
between the area elements in (x, y) and in (x′, y′) according
to the geometric transformation given by the homography H,

dA′ .
= dx′dy′ = det(J) dxdy = det(J) dA, (18)

as illustrated in Fig. 18.



EMVS: Event-based Multi-View Stereo 19

�d� d��

x x�

y�y

Fig. 18: Result 1. A homography Hmaps points to points

and lines to lines. Area elements are transformed ac-
cording to dA′ = |J|dA, where J is the Jacobian of the

homography H.

Proof Let H = (hij) be the homogeneous matrix of the ho-
mography, and let h⊤

3
.
= e⊤3 H be its third row. Writing out

explicitly the transformed variables

x′ =
h11x+ h12y + h13

h31x+ h32y + h33
, y′ =

h21x+ h22y + h23

h31x+ h32y + h33
, (19)

we may compute the four elements of the Jacobian matrix (17):

J =
1

h⊤

3 x

(

h11 − x′h31 h12 − x′h32

h21 − y′h31 h22 − y′h32

)

(20)

Next, we compute the determinant of this matrix. Noting that
(h11 − x′h31)(h22 − y′h32) − (h12 − x′h32)(h21 − y′h31) =
x′ ·((He1)×(He2)) is a mixed product in terms of the first two
columns of H, with e1 = (1, 0, 0)⊤ and e2 = (0, 1, 0)⊤, gives

det (J) =
1

(h⊤

3 x)2
x′ · ((He1)× (He2)) . (21)

Substituting x′ = Hx/(h⊤

3 x) in the mixed product x′·((He1)×
(He2)) = det (x′, He1, He2) and using the properties of the de-
terminant, det (Hx, He1, He2) = det(H) det (x, e1, e2) = det(H),
gives the desired result (17):

det (J)
(21)
=

det (Hx, He1, He2)

(h⊤

3 x)3
=

det(H)

(e⊤3 Hx)3
. (22)

A.1 Planar Homography

Next, we particularize the previous general Result 1 to the
case of a planar homography induced by a plane in space.

Let us consider (i) two finite cameras (i.e., whose optical
centers are not at infinity) with projection matrices given by
P = (I|0) and P′ = (R|t) in calibrated coordinates, and (ii) a
plane not passing through the optical centers of the cameras,
with homogeneous coordinates π = (a, b, c, d)⊤ = (n⊤, d)⊤,
where n is the unit normal to the plane. The optical centers
of P and P′ are 0 and C = −R⊤t, respectively. The planar
homography from the image plane of P to the image plane of
P′ via the plane π, such that x′ ∼ Hx, is

Hπ(P, P′) ∼ R−
1

d
tn⊤ = R

(

I+
1

d
Cn⊤

)

, (23)

where I is the identity matrix.
The planar homography from P′ to P via the plane π is

given by the inverse of (23):

Hπ(P′, P) = H−1
π

(P, P′) ∼

(

I−
1

d+ n⊤C
Cn⊤

)

R⊤. (24)
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Fig. 19: Result 2. Relation of area elements induced

by a planar homography: dA′ = |J|dA, where J is the

Jacobian of the planar homography, and Z,Z ′ are the

depths of the scene point X with respect to the two
cameras, respectively.

Result 2 (Jacobian of a Planar Homography) For a pla-
nar homography (23), Result 1 becomes

det (J) =

(

Z

Z′

)3 (

1 +
C · n

d

)

, (25)

where Z and Z′ are the depths of the point X ∈ π, projecting
on x and x′, with respect to cameras P and P′, respectively.
This is illustrated in Fig. 19

Proof Let us compute the numerator and denominator of (17).
Applying det(R) = 1 = det(I) and the matrix determinant
lemma to (23) gives

det(H) = det(R) det

(

I+
1

d
Cn⊤

)

= 1 +
1

d
n⊤C. (26)

A point X
.
= (X,Y, Z)⊤ lies on the plane π if it satisfies

n⊤X+ d = 0. (27)

The point X expressed in the frame of P′ becomes

(X′, Y ′, Z′)⊤
.
= X′ = RX+ t = R(X−C). (28)

Since xZ = (x, y, 1)⊤Z = X and

HX
(23)
= R

(

X+
X · n

d
C

)

(27)
= R(X−C)

(28)
= X′, (29)

the denominator of (17) is given in terms of e⊤3 Hx
(29)
= e⊤3 X′/Z.

Substituting this result and (26) in (17) gives (25).
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